TWI822447B - Movement monitor sensor - Google Patents

Movement monitor sensor Download PDF

Info

Publication number
TWI822447B
TWI822447B TW111142544A TW111142544A TWI822447B TW I822447 B TWI822447 B TW I822447B TW 111142544 A TW111142544 A TW 111142544A TW 111142544 A TW111142544 A TW 111142544A TW I822447 B TWI822447 B TW I822447B
Authority
TW
Taiwan
Prior art keywords
electrode
depth
orientation
planar
depth electrode
Prior art date
Application number
TW111142544A
Other languages
Chinese (zh)
Other versions
TW202325354A (en
Inventor
李若屏
曾勝弘
蘇忠信
吳詠翔
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US18/089,203 priority Critical patent/US20230201598A1/en
Publication of TW202325354A publication Critical patent/TW202325354A/en
Application granted granted Critical
Publication of TWI822447B publication Critical patent/TWI822447B/en

Links

Images

Abstract

The present invention discloses movement monitor sensor for implanting into human brain and connecting with a processor, which includes a body, a conduction area, at least one depth electrode set and one flat electrode set. The body has an axis. The conduction area and the flat electrode set is disposed relatively on both ends of the body along the axis. The depth electrode set has four depth electrodes which are disposed on the body and around the axis and relatively correspond to four directions. The flat electrode set has four flat electrodes which are disposed on substrate and around the axis and relatively correspond to four directions. Current is imported into the conduction area, depth electrodes and flat electrodes. Impedance value changing between depth electrodes, flat electrodes and/or the conduction area could be detected by a processor for electrical stimulation control when the human body is moving.

Description

動作監控感測器motion monitoring sensor

本發明涉及醫學技術領域,尤指一種動作監控感測器。 The invention relates to the field of medical technology, and in particular, to an action monitoring sensor.

腦部區域的神經核(nucleus)之間有許多神經纖維的連結,以視丘下核(SubthalamicNeucleus,STN)為例,為了產生動作的順暢性,視丘下核會產生電訊號活化其他的神經核,例如內側蒼白球(Globus pallidus interna,GPi),進而促使殼核(Putamen)產生多巴胺的分泌,而多巴胺會影響動作的啟動和停止。若這些神經網路無法啟動,則會導致因多巴胺分泌不足而動作僵硬或顫動等臨床症狀,這些就是巴金森氏症的典型臨床症狀。 There are many nerve fiber connections between nuclei in brain regions. Take the subthalamic nucleus (STN) as an example. In order to produce smooth movements, the subthalamic nucleus generates electrical signals to activate other nerves. Nuclei, such as the globus pallidus interna (GPi), in turn prompt the putamen to secrete dopamine, and dopamine affects the starting and stopping of movements. If these neural networks fail to activate, clinical symptoms such as stiffness or tremors due to insufficient dopamine secretion will result. These are the typical clinical symptoms of Parkinson's disease.

巴金森氏症患者會出現的主要動作障礙包括動作啟動的困難(例如從坐姿轉換為站姿)以及動作狀態轉換的困難(例如轉身)。 The main movement disorders seen in people with Parkinson's disease include difficulty initiating movements (such as changing from sitting to standing) and difficulty transitioning movement states (such as turning).

除了藥物之外,目前也被普遍使用的一種方式是植入神經調節探針。該類探針上設有多個電極,每一電極連接電線。將電流經由電線輸入電極,藉由電極透過刺激視丘下核或內側蒼白球來達到活化神經網路的作用,改善患者的動作障礙問題。 In addition to drugs, one method that is currently commonly used is the implantation of neuromodulation probes. This type of probe is equipped with multiple electrodes, and each electrode is connected to a wire. The current is input into the electrode through the wire, and the electrode activates the neural network by stimulating the subthalamic nucleus or the medial globus pallidus, thereby improving the patient's movement disorder.

然而臨床發現,部分患者對於持續式電刺激的反應不佳,唯有當患者的動作改變時,例如,在步態週期的切換點(例如,從坐姿轉換為站姿或轉身,腳跟觸地和離地時)才給予電刺激,方可有效改善行走能力。 However, it has been clinically found that some patients do not respond well to continuous electrical stimulation only when the patient's movements change, for example, at switching points in the gait cycle (e.g., transitioning from sitting to standing or turning, heel strike and Only when the patient is off the ground can electrical stimulation be given to effectively improve walking ability.

據此,如何發展出一種可透過對患者動作的感測,作為電刺激啟動時機的特徵來判定之「動作監控感測器」,是相關技術領域人士亟待解決之課題。 Accordingly, how to develop a "motion monitoring sensor" that can sense the patient's movements as a characteristic of the timing of starting electrical stimulation is an issue that people in the relevant technical field urgently need to solve.

於一實施例中,本發明提出一種動作監控感測器,設置於人體之腦組織,適於與一處理器連接,動作監控感測器包含:一本體,具有一軸心,本體沿該軸心具有相對二軸向端部;一導電區,設置於本體之其中一軸向端部,導電區連接一導電導線;至少一深度電極組,深度電極組包含四個深度電極,四個深度電極環繞軸心設置於本體之表面,四個深度電極分別對應於四個方位,每一深度電極連接一第一導線;以及一平面電極組,包括一基材與四個平面電極,基材具有相對之第一面與第二面,基材藉由第二面設置於本體相對於導電區之另一軸向端部,四個平面電極環繞軸心設置於基材,四個平面電極分別對應於四個方位,每一平面電極連接一第二導線;將電流經由導電導線、各第一導線及各第二導線分別導入導電區、各深度電極與各平面電極,當人體的動作改變時,由處理器比對深度電極組與 平面電極組及/或導電區所產生之阻抗變化量,作為對人體之腦組織之電刺激控制之依據。 In one embodiment, the present invention proposes a motion monitoring sensor, which is disposed in the brain tissue of the human body and is suitable for connection with a processor. The motion monitoring sensor includes: a body with an axis, and the body moves along the axis The core has two opposite axial ends; a conductive area is provided at one of the axial ends of the body, and the conductive area is connected to a conductive wire; at least one depth electrode group, the depth electrode group includes four depth electrodes, and the four depth electrodes Arranged on the surface of the body around the axis, four depth electrodes correspond to four directions respectively, each depth electrode is connected to a first wire; and a planar electrode group includes a base material and four planar electrodes, the base material has an opposite direction The first and second sides, the base material is disposed on the other axial end of the body relative to the conductive area through the second surface, four planar electrodes are disposed on the base material around the axis, and the four planar electrodes respectively correspond to In four directions, each plane electrode is connected to a second wire; the current is introduced into the conductive area, each depth electrode and each plane electrode respectively through the conductive wire, each first wire and each second wire. When the movement of the human body changes, The processor compares the depth electrode set with The amount of impedance change produced by the planar electrode group and/or the conductive area serves as the basis for electrical stimulation control of the human brain tissue.

100,100A:動作監控感測器 100,100A: motion monitoring sensor

10:本體 10:Ontology

20:導電區 20: Conductive area

30A~30D:深度電極組 30A~30D: Depth electrode group

40:平面電極組 40: Planar electrode group

41:基材 41:Substrate

411:第一面 411: Side 1

412:第二面 412:Second side

42:孔洞 42:hole

43:微結構 43:Microstructure

44:固定件 44: Fixtures

202:腦組織 202:Brain tissue

204:頭骨 204:Skull

206:第一側腦組織 206: First side brain tissue

208:第三側腦組織 208:Third side brain tissue

C10:軸心 C10: Axis

D1:第一方位 D1: first position

D2:第二方位 D2: Second position

D3:第三方位 D3: Third position

D4:第四方位 D4: The fourth position

D5:最大直徑 D5: Maximum diameter

DE1:第一深度電極 DE1: first depth electrode

DE2:第二深度電極 DE2: Second depth electrode

DE3:第三深度電極 DE3: The third depth electrode

DE4:第四深度電極 DE4: The fourth depth electrode

FE1:第一平面電極 FE1: first plane electrode

FE2:第二平面電極 FE2: Second plane electrode

FE3:第三平面電極 FE3: third plane electrode

FE4:第四平面電極 FE4: The fourth plane electrode

ST:電刺激 ST: electrical stimulation

W1:第一導線 W1: first wire

W2:第二導線 W2: Second wire

W20:導電導線 W20: Conductive wire

△Z1:第一阻抗變化量 △Z1: First impedance change amount

△Z2:第二阻抗變化量 △Z2: Second impedance change amount

△Z3:第三阻抗變化量 △Z3: The third impedance change amount

△Z4:第四阻抗變化量 △Z4: The fourth impedance change amount

△Z5:第五阻抗變化量 △Z5: The fifth impedance change amount

△Z6:第六阻抗變化量 △Z6: The sixth impedance change amount

圖1為本發明之一實施例之立體結構示意圖。 Figure 1 is a schematic three-dimensional structural diagram of an embodiment of the present invention.

圖2為圖1實施例之仰視結構示意圖。 FIG. 2 is a schematic structural view from below of the embodiment of FIG. 1 .

圖3為圖2之A-A剖面結構示意圖。 Figure 3 is a schematic structural diagram of the A-A section in Figure 2.

圖4為圖1實施例設置於腦部且設有固定件之前視結構示意圖。 FIG. 4 is a schematic structural view of the front view of the embodiment of FIG. 1 which is installed on the brain and is provided with a fixing member.

圖5為圖1實施例於人體平行移動時之電極作動示意圖。 FIG. 5 is a schematic diagram of the electrode operation when the human body moves in parallel according to the embodiment of FIG. 1 .

圖6為圖1實施例於人體垂直移動時之電極作動示意圖。 FIG. 6 is a schematic diagram of electrode operation when the human body moves vertically according to the embodiment of FIG. 1 .

圖7為本發明於人體移動時之腦組織作用於電極之示意圖。 Figure 7 is a schematic diagram of the brain tissue acting on the electrode when the human body is moving according to the present invention.

圖8為可應用於本發明之對向同步時序電壓量測電路設計範例。 FIG. 8 is a design example of a counter-synchronous sequential voltage measurement circuit applicable to the present invention.

圖9A至圖11B為可應用於本發明之多通道配對切換範例。 9A to 11B are examples of multi-channel pairing switching applicable to the present invention.

圖12A為人體起身且身軀向前的阻抗變化示意圖。 Figure 12A is a schematic diagram of impedance changes when a human body stands up and moves forward.

圖12B為人體行走的阻抗變化示意圖。 Figure 12B is a schematic diagram of impedance changes of human walking.

圖13為人體於同方向動作下所產生腦組織形變而引致之阻抗變化量與位移量呈線性關係。 Figure 13 shows a linear relationship between the amount of impedance change and the amount of displacement caused by brain tissue deformation when the human body moves in the same direction.

圖14為人體於同方向動作下所產生腦組織形變而引致之阻抗變化量與腦組織壓縮量呈線性關係。 Figure 14 shows a linear relationship between the amount of impedance change and the amount of brain tissue compression caused by the brain tissue deformation caused by the human body moving in the same direction.

圖15為本發明例另一實施例之立體結構示意圖,且人體平行移動時之電極作動示意圖。 Figure 15 is a schematic diagram of the three-dimensional structure of another embodiment of the present invention, and a schematic diagram of the electrode action when the human body moves in parallel.

圖16為圖15實施例於人體垂直移動時之電極作動示意圖。 FIG. 16 is a schematic diagram of electrode operation when the human body moves vertically according to the embodiment of FIG. 15 .

以下係參照所附圖示詳細敘述本發明之實施例。並且圖示中相同或類似的部位以相同的標號標示。圖式上的尺寸比例並非按照實際產品等比例繪製,因此並非作為限縮本發明保護範圍之用。 The embodiments of the present invention are described in detail below with reference to the accompanying drawings. And the same or similar parts in the illustrations are marked with the same numbers. The dimensional proportions in the drawings are not drawn to the same proportions as the actual product, and therefore are not intended to limit the scope of the present invention.

請參閱圖1所示實施例,本發明所提供之一種動作監控感測器100,適於設置於人體之腦組織。動作監控感測器100適於與一電源裝置以及一處理器(圖未示出)連接,處理器適於控制電源裝置供給電流至動作監控感測器100,並可根據動作監控感測器100所產生的阻抗變化控制電流對動作監控感測器100周圍的神經纖維產生電刺激。處理器的型態不限,例如電腦裝置。 Referring to the embodiment shown in FIG. 1 , a motion monitoring sensor 100 provided by the present invention is suitable for being installed in the brain tissue of the human body. The motion monitoring sensor 100 is adapted to be connected to a power supply device and a processor (not shown). The processor is adapted to control the power supply device to supply current to the motion monitoring sensor 100 , and can monitor the sensor 100 according to the motion. The generated impedance change controls the current to electrically stimulate the nerve fibers around the motion monitoring sensor 100 . The processor may be of any type, such as a computer device.

請參閱圖1至圖3所示,動作監控感測器100包含一本體10、一導電區20、四組深度電極組30A~30D及一組平面電極組40。 Referring to FIGS. 1 to 3 , the motion monitoring sensor 100 includes a body 10 , a conductive area 20 , four depth electrode groups 30A to 30D and a plane electrode group 40 .

本體10具有一軸心C10,導電區20與平面電極組40分別設置於本體10沿其軸心C10之相對二軸向端部。 The body 10 has an axis C10, and the conductive area 20 and the planar electrode group 40 are respectively disposed at two opposite axial ends of the body 10 along the axis C10.

導電區20由具有導電性之材料構成。導電區20連接一導電導線W20。 The conductive area 20 is made of conductive material. The conductive area 20 is connected to a conductive wire W20.

四組深度電極組30A~30D平行於本體10之軸心C10設置於本體10。每組深度電極組30A~30D皆包含一第一深度電極DE1、一第二深度電極DE2、一第三深度電極DE3、一第四深度電極DE4。 The four depth electrode groups 30A to 30D are arranged on the body 10 parallel to the axis C10 of the body 10 . Each depth electrode group 30A to 30D includes a first depth electrode DE1, a second depth electrode DE2, a third depth electrode DE3, and a fourth depth electrode DE4.

第一深度電極DE1、第二深度電極DE2、第三深度電極DE3、第四深度電極DE4環繞軸心C10設置於本體10之表面。第一深度電極DE1、第二深度電極DE2、第三深度電極DE3、第四深度電極DE4分別連接一第一導線W1。 The first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3, and the fourth depth electrode DE4 are arranged on the surface of the body 10 around the axis C10. The first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3, and the fourth depth electrode DE4 are respectively connected to a first wire W1.

第一深度電極DE1、第二深度電極DE2、第三深度電極DE3、第四深度電極DE4分別對應朝向一第一方位D1、一第二方位D2、一第三方位D3與一第四方位D4等四個方位。 The first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3, and the fourth depth electrode DE4 respectively face a first direction D1, a second direction D2, a third direction D3, a fourth direction D4, etc. Four directions.

第一方位D1、第二方位D2、第三方位D3與第四方位D4垂直於軸心C10且以軸心C10為中心等角度放射延伸。第一方位D1與第三方位D3對稱相對於軸心C10之兩側,第二方位D2與第四方位D4對稱相對於軸心C10之另兩側。第一方位D1位於第二方位D2與第四方位D4之間。 The first orientation D1, the second orientation D2, the third orientation D3 and the fourth orientation D4 are perpendicular to the axis C10 and extend radially at equal angles with the axis C10 as the center. The first orientation D1 and the third orientation D3 are symmetrical with respect to both sides of the axis C10, and the second orientation D2 and the fourth orientation D4 are symmetrical with respect to the other two sides of the axis C10. The first orientation D1 is located between the second orientation D2 and the fourth orientation D4.

要注意的是,在本實施例中,雖以每組深度電極組30A~30D皆包含四個深度電極(即第一深度電極DE1、第二深度電極DE2、第三深度電極DE3與第四深度電極DE4)為例,對應四個方位來進行動作的偵測或是方向性的電刺激。然而,在其他實施例中,亦可視需求而選擇性的增加來調整每組深度電極組所包含的深度電極之數量,並不以此為限。 It should be noted that in this embodiment, each depth electrode group 30A to 30D includes four depth electrodes (ie, the first depth electrode DE1 , the second depth electrode DE2 , the third depth electrode DE3 and the fourth depth electrode DE3 ). Taking electrode DE4) as an example, it corresponds to four directions for motion detection or directional electrical stimulation. However, in other embodiments, the number of depth electrodes included in each depth electrode group can also be adjusted according to the needs and selective increase, and is not limited to this.

平面電極組40包括一呈扁平圓形的基材41與一第一平面電極FE1、一第二平面電極FE2、一第三平面電極FE3與一第四平面電極FE4。第一平面電極FE1、第二平面電極FE2、第三平面電極FE3與第四平面電極FE4包括分別朝向第一方位D1、第二方位D2、第三方位D3與第四方位D4。 The planar electrode group 40 includes a flat circular base material 41 and a first planar electrode FE1, a second planar electrode FE2, a third planar electrode FE3 and a fourth planar electrode FE4. The first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3 and the fourth planar electrode FE4 include facing the first direction D1, the second direction D2, the third direction D3 and the fourth direction D4 respectively.

要注意的是,在本實施例中,雖以平面電極組40包含四個平面電極(即第一平面電極FE1、第二平面電極FE2、第三平面電極FE3與第四平面電極FE4)為例,對應四個方位來進行動作的偵測。然而,在其他實施例中,亦可視需求而選擇性的增加來調整每個平面電極組40所包含的平面電極之數量,並不以此為限。 It should be noted that in this embodiment, although the planar electrode group 40 includes four planar electrodes (namely, the first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3 and the fourth planar electrode FE4) as an example, , corresponding to four directions for motion detection. However, in other embodiments, the number of planar electrodes included in each planar electrode group 40 can also be adjusted according to the needs and optionally increased, and is not limited to this.

基材41具有一孔洞42平行軸向C10貫穿基材41。基材41之材質不限,例如可為矽膠或熱塑性聚胺酯(Thermoplastic Polyurethane,TPU)其中之一。 The base material 41 has a hole 42 extending through the base material 41 parallel to the axial direction C10. The material of the base material 41 is not limited, and may be, for example, silicone or thermoplastic polyurethane (TPU).

基材41的形狀及尺寸不限,以圖示圓形而言,其最大直徑D5例如可等於或小於10毫米(mm)。 The shape and size of the base material 41 are not limited. For example, for a circle as shown in the figure, its maximum diameter D5 may be equal to or less than 10 millimeters (mm).

基材41具有相對之一第一面411與一第二面412。基材41之第二面412設有微結構43。微結構43凸出基材41之高度不限,例如可等於或大於50微米(μm)。 The base material 41 has a first surface 411 and a second surface 412 opposite to each other. The second surface 412 of the base material 41 is provided with microstructures 43 . The height of the microstructure 43 protruding from the base material 41 is not limited, and may be equal to or greater than 50 micrometers (μm), for example.

第一平面電極FE1、第二平面電極FE2、第三平面電極FE3、第四平面電極FE4環繞孔洞42設置於基材41。 The first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3, and the fourth planar electrode FE4 are arranged on the base material 41 surrounding the hole 42.

第一平面電極FE1、第二平面電極FE2、第三平面電極FE3、第四平面電極FE4分別對應於第一方位D1、第二方位D2、第三方位D3與第四方位D4。第一平面電極FE1、第二平面電極FE2、第三平面電極FE3、第四平面電極FE4分別連接一第二導線W2。 The first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3, and the fourth planar electrode FE4 respectively correspond to the first orientation D1, the second orientation D2, the third orientation D3, and the fourth orientation D4. The first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3, and the fourth planar electrode FE4 are respectively connected to a second wire W2.

基材41藉由第二面412設置於本體10相對於導電區20之一軸向端部,且孔洞42對應設置於本體10之軸心C10。詳細來說,於仰視的角度來看,孔洞42的圓心與軸心C10重合,使第一平面電極FE1、第 二平面電極FE2、第三平面電極FE3、第四平面電極FE4環繞軸心C10設置於基材41。 The base material 41 is disposed at an axial end of the body 10 relative to the conductive area 20 via the second surface 412 , and the hole 42 is correspondingly disposed at the axis C10 of the body 10 . Specifically, from the perspective of looking up, the center of the hole 42 coincides with the axis C10, so that the first planar electrode FE1 and the second planar electrode FE1 The two planar electrodes FE2, the third planar electrode FE3, and the fourth planar electrode FE4 are arranged on the base material 41 around the axis C10.

各第一導線W1、各第二導線W2與導電導線W20分別由本體10與基材41通過孔洞42穿設而出。 Each first wire W1 , each second wire W2 and the conductive wire W20 are respectively penetrated from the body 10 and the base material 41 through the hole 42 .

必須說明的是,圖1及圖3僅示出一組深度電極組30A的第一深度電極DE1、第二深度電極DE2、第三深度電極DE3、第四深度電極DE4連接第一導線W1,然而,其他深度電極組30B~30D也連接有第一導線W1,但圖中予以省略。 It must be noted that FIG. 1 and FIG. 3 only show that the first depth electrode DE1 , the second depth electrode DE2 , the third depth electrode DE3 , and the fourth depth electrode DE4 of one depth electrode group 30A are connected to the first wire W1 . However, , other depth electrode groups 30B~30D are also connected to the first wire W1, but are omitted in the figure.

請參閱圖4所示,說明動作監控感測器100的設置方式。本體10設置於人體之腦組織202內,平面電極組40之基材41之第二面412貼靠於腦組織202,設置於第二面412的微結構43可提供基材41與腦組織202之腦膜接觸,利用沾黏特性產生固定作用。 Please refer to FIG. 4 to illustrate the setting method of the motion monitoring sensor 100 . The main body 10 is disposed in the brain tissue 202 of the human body. The second surface 412 of the base material 41 of the planar electrode group 40 is close to the brain tissue 202. The microstructure 43 disposed on the second surface 412 can provide a connection between the base material 41 and the brain tissue 202. The meningeal contact uses the adhesive properties to produce a fixation effect.

基材41之第一面411設有一固定件44,固定件44適於設置於人體之頭骨204,腦組織202位於頭骨204內。固定件44設置於人體之頭骨204,將本體10、導電區20、深度電極組30A~30D及平面電極組40封閉於頭骨204內。固定件44由剛性材質構成,例如塑膠。固定件44具有一通道441提供第一導線W1、第二導線W2及導電導線W20延伸穿設出固定件44且連通至頭骨204外部。 The first surface 411 of the base material 41 is provided with a fixing member 44. The fixing member 44 is suitable for being placed on the skull 204 of the human body, and the brain tissue 202 is located in the skull 204. The fixing member 44 is arranged on the skull 204 of the human body to seal the body 10 , the conductive area 20 , the depth electrode groups 30A to 30D and the plane electrode group 40 within the skull 204 . The fixing member 44 is made of rigid material, such as plastic. The fixing member 44 has a channel 441 for providing the first wire W1, the second wire W2 and the conductive wire W20 to extend out of the fixing member 44 and communicate to the outside of the skull 204.

將電流經由第一導線W1、第二導線W2及導電導線W20分別導入深度電極組30A~30D、平面電極組40及導電區20,當人體的動作改變時,由處理器比對深度電極組30A~30D與平面電極組40及/或導電區20所產生之阻抗變化量,作為對腦組織202之電刺激控制之依據。 The current is introduced into the depth electrode groups 30A to 30D, the planar electrode group 40 and the conductive area 20 respectively through the first wire W1, the second wire W2 and the conductive wire W20. When the movement of the human body changes, the processor compares the depth electrode group 30A ~30D and the impedance change generated by the planar electrode group 40 and/or the conductive area 20 serve as the basis for electrical stimulation control of the brain tissue 202.

請參閱圖5所示,當人體產生移動時,平面電極組40中的電極(例如是:第一平面電極FE1、第二平面電極FE2、第三平面電極FE3以及第四平面電極FE4)會與其對應距離最接近的深度電極組30A中的深度電極(例如是:第一深度電極DE1、第二深度電極DE2、第三深度電極DE3以及第四深度電極DE4)產生相應的阻抗變化量(例如是:第一阻抗變化量△Z1、第二阻抗變化量△Z2、第三阻抗變化量△Z3、第四阻抗變化量△Z4),處理器可依據多個阻抗變化量的比對來控制施加在腦組織202的電刺激ST。 Please refer to FIG. 5 . When the human body moves, the electrodes in the planar electrode group 40 (for example, the first planar electrode FE1 , the second planar electrode FE2 , the third planar electrode FE3 and the fourth planar electrode FE4 ) will move with it. Corresponding to the depth electrodes in the depth electrode group 30A that are closest to each other (for example, the first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3, and the fourth depth electrode DE4), a corresponding impedance change amount (for example, : the first impedance change amount △Z1, the second impedance change amount △Z2, the third impedance change amount △Z3, the fourth impedance change amount △Z4), the processor can control the application to the Electrical stimulation of brain tissue 202 ST.

詳細來說,當人體平行於第一方位D1與第三方位D3移動時(例如水平前後移動時),第一平面電極FE1與距離最接近的深度電極組30A之第一深度電極DE1產生第一阻抗變化量△Z1,第三平面電極FE3與距離最接近的深度電極組30A之第三深度電極DE3產生第三阻抗變化量△Z3。由處理器比對第一阻抗變化量△Z1與第三阻抗變化量△Z3後,作為對腦組織202之電刺激控制之依據,進而控制位於中間的兩組深度電極組30B、30C,以對周圍的腦組織202的神經纖維進行電刺激ST。在本實施例中,深度電極組30B、30C中的電極可作為刺激電極,並提供電刺激ST。 Specifically, when the human body moves parallel to the first orientation D1 and the third orientation D3 (for example, when moving forward and backward horizontally), the first plane electrode FE1 and the first depth electrode DE1 of the depth electrode group 30A that are closest to each other generate the first The impedance change amount ΔZ1 is generated by the third plane electrode FE3 and the third depth electrode DE3 of the depth electrode group 30A that is closest to each other to produce a third impedance change amount ΔZ3. After the processor compares the first impedance change amount ΔZ1 and the third impedance change amount ΔZ3, it is used as a basis for electrical stimulation control of the brain tissue 202, and then controls the two depth electrode groups 30B and 30C located in the middle to control the electrical stimulation of the brain tissue 202. The nerve fibers of the surrounding brain tissue 202 are electrically stimulated ST. In this embodiment, the electrodes in the depth electrode groups 30B and 30C can serve as stimulation electrodes and provide electrical stimulation ST.

同理,當人體平行於第二方位D2與第四方位D4移動時(例如水平左右移動時),第二平面電極FE2與距離最接近的深度電極組30A之第二深度電極DE2產生第二阻抗變化量△Z2,第四平面電極FE4與距離最近的深度電極組30A之第四深度電極DE4產生第四阻抗變化量△Z4。由處理器比對第二阻抗變化量△Z2與第四阻抗變化量△Z4後,作為 對腦組織202之電刺激控制之依據,進而控制位於中間的兩組深度電極組30B、30C,以對周圍的腦組織202的神經纖維進行電刺激ST。在本實施例中,深度電極組30B、30C中的電極可作為刺激電極,並提供電刺激ST。 In the same way, when the human body moves parallel to the second orientation D2 and the fourth orientation D4 (for example, when moving horizontally left and right), the second plane electrode FE2 and the second depth electrode DE2 of the depth electrode group 30A that are closest to each other generate a second impedance. The change amount ΔZ2, the fourth plane electrode FE4 and the fourth depth electrode DE4 of the depth electrode group 30A that are closest to each other produce a fourth impedance change amount ΔZ4. After the second impedance change amount ΔZ2 and the fourth impedance change amount ΔZ4 are compared by the processor, as The basis for controlling the electrical stimulation of the brain tissue 202 is to control the two depth electrode groups 30B and 30C located in the middle to electrically stimulate the nerve fibers of the surrounding brain tissue 202 ST. In this embodiment, the electrodes in the depth electrode groups 30B and 30C can serve as stimulation electrodes and provide electrical stimulation ST.

請參閱圖6所示,當人體平行於軸心C10移動時(例如垂直上下移動時),平面電極組40會與其對應距離最接近的深度電極組30A產生相應的阻抗變化量,即第一平面電極FE1、第二平面電極FE2、第三平面電極FE3與第四平面電極FE4分別與距離最接近的深度電極組30A之第一深度電極DE1、第二深度電極DE2、第三深度電極DE3與第四深度電極DE4產生一第五阻抗變化量△Z5。此外,導電區20會與其對應距離最接近的深度電極組30D產生相應的阻抗變化量,即導電區20與深度電極組30D的第一深度電極DE1、第二深度電極DE2、第三深度電極DE3與第四深度電極DE4產生一第六阻抗變化量△Z6。由處理器比對第五阻抗變化量△Z5與第六阻抗變化量△Z6,作為對腦組織202之電刺激控制之依據,進而控制位於中間的兩組深度電極組30B、30C,以對周圍的腦組織202的神經纖維進行電刺激ST。在本實施例中,深度電極組30B、30C中的電極可作為刺激電極,並提供電刺激ST。 Please refer to FIG. 6 . When the human body moves parallel to the axis C10 (for example, when moving vertically up and down), the plane electrode group 40 will generate a corresponding impedance change amount with the depth electrode group 30A that is closest to the corresponding distance, that is, the first plane The electrode FE1, the second planar electrode FE2, the third planar electrode FE3 and the fourth planar electrode FE4 are respectively the first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3 and the closest depth electrode group 30A. The four-depth electrode DE4 generates a fifth impedance variation ΔZ5. In addition, the conductive area 20 will produce a corresponding impedance change amount with the depth electrode group 30D that is closest to the corresponding distance, that is, the first depth electrode DE1, the second depth electrode DE2, and the third depth electrode DE3 of the conductive area 20 and the depth electrode group 30D. A sixth impedance variation ΔZ6 is generated with the fourth depth electrode DE4. The processor compares the fifth impedance change amount ΔZ5 with the sixth impedance change amount ΔZ6 as a basis for electrical stimulation control of the brain tissue 202, and then controls the two depth electrode groups 30B and 30C located in the middle to detect the surrounding areas. The nerve fibers of the brain tissue 202 are electrically stimulated ST. In this embodiment, the electrodes in the depth electrode groups 30B and 30C can serve as stimulation electrodes and provide electrical stimulation ST.

請參閱圖7所示,本發明之工作原理在於,當人體水平前後移動(亦即平行於第一方位D1或第三方位D3移動)時,腦組織202會平行於第一方位D1或第三方位D3產生形變,例如,第一側腦組織206呈放鬆狀態,第三側腦組織208呈壓縮狀態,電極運動方向如圖7箭頭所示。因此可量測第一側腦組織206、第三側腦組織208於人體動作過程中產生 形變對於第一深度電極DE1、第三深度電極DE3所產生的瞬間阻抗變化(即第一阻抗變化量△Z1與第三阻抗變化量△Z3之比對)。 Please refer to Figure 7. The working principle of the present invention is that when the human body moves forward and backward horizontally (that is, moving parallel to the first direction D1 or the third direction D3), the brain tissue 202 will move parallel to the first direction D1 or the third direction D3. The orientation D3 produces deformation. For example, the first side brain tissue 206 is in a relaxed state, the third side brain tissue 208 is in a compressed state, and the electrode movement direction is shown by the arrow in Figure 7 . Therefore, it is possible to measure the first side brain tissue 206 and the third side brain tissue 208 produced during human body movements. The instantaneous impedance change caused by the deformation to the first depth electrode DE1 and the third depth electrode DE3 (ie, the comparison of the first impedance change amount ΔZ1 and the third impedance change amount ΔZ3).

同理,當人體水平左右移動或垂直上下移動時都會造成相對兩側腦組織202相對變形,因此可產生不同的瞬間阻抗變化。例如是,水平左右移動時,第二阻抗變化量△Z2與第四阻抗變化量△Z4之比對,或垂直上下移動時,第五阻抗變化量△Z5與第六阻抗變化量△Z6之比對。 In the same way, when the human body moves horizontally left and right or vertically up and down, the brain tissue 202 on opposite sides will be relatively deformed, so different instantaneous impedance changes may occur. For example, when moving horizontally left and right, the ratio of the second impedance change △Z2 to the fourth impedance change △Z4, or when moving vertically up and down, the ratio of the fifth impedance change △Z5 to the sixth impedance change △Z6 right.

請參閱圖8所示對於第一方位D1、第二方位D2、第三方位D3與第四方位D4中,在四個方位的對向同步時序電壓量測電路設計範例,對第一方位D1、第二方位D2、第三方位D3與第四方位D4等四個方位進行量測/切換啟動,藉此偵測電壓阻抗變化。 Please refer to Figure 8 for the design example of the opposite synchronous timing voltage measurement circuit in the first position D1, the second position D2, the third position D3 and the fourth position D4. Four directions, including the second direction D2, the third direction D3, and the fourth direction D4, are measured/switched to detect changes in voltage impedance.

請參閱圖9A~9B、10A~10B、11A~11B,其顯示多通道切換持續偵測每個方位的阻抗變化量,取樣頻率例如可設定為至少100Hz。圖9A、10A、11A上方編號1、2、3、4分別代表第一方位D1、第二方位D2、第三方位D3與第四方位D4,第一列中的圓圈代表平面電極組40的四個平面電極(即第一平面電極FE1、第二平面電極FE2、第三平面電極FE3以及第四平面電極FE4),第二列中的圓圈代表深度電極組30A中的深度電極(即第一深度電極DE1、第二深度電極DE2、第三深度電極DE3以及第四深度電極DE4),第五列中的圓圈代表深度電極組30D中的深度電極(即第一深度電極DE1、第二深度電極DE2、第三深度電極DE3以及第四深度電極DE4),第六列中的圓圈代表導電區20的電極。 Please refer to Figures 9A~9B, 10A~10B, and 11A~11B, which show that multi-channel switching continuously detects the impedance change in each direction, and the sampling frequency can be set to at least 100Hz, for example. Numbers 1, 2, 3, and 4 at the top of Figures 9A, 10A, and 11A respectively represent the first orientation D1, the second orientation D2, the third orientation D3, and the fourth orientation D4. The circles in the first column represent the four directions of the planar electrode group 40. planar electrodes (ie, the first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3 and the fourth planar electrode FE4). The circles in the second column represent the depth electrodes (ie, the first depth electrodes) in the depth electrode group 30A. electrode DE1, the second depth electrode DE2, the third depth electrode DE3 and the fourth depth electrode DE4), the circles in the fifth column represent the depth electrodes in the depth electrode group 30D (ie, the first depth electrode DE1, the second depth electrode DE2 , the third depth electrode DE3 and the fourth depth electrode DE4), the circles in the sixth column represent the electrodes of the conductive region 20 .

圖9A與圖9B顯示針對平行於第一方位D1、第二方位D2、第三方位D3與第四方位D4移動時,偵測腦組織202形變對於平面電極組 40與對應之深度電極組30A之阻抗變化量,其電極通道切換的狀態。圖9A表示由第一方位D1與第三方位D3之電極通道變換到第二方位D2與第四方位D4之電極通道,以此類推。詳細來說,在第一方位D1與第三方位D3之電極通道導通時,平面電極組40的第一平面電極FE1與深度電極組30A中的第一深度電極DE1導通,可量測到第一阻抗變化量△Z1,且平面電極組40的第三平面電極FE3與深度電極組30A中的第三深度電極DE3導通,可量測到第三阻抗變化量△Z3。當電極通道變換到第二方位D2與第四方位D4時,第一方位D1與第三方位D3之電極通道斷開,平面電極組40的第一平面電極FE1與第三平面電極FE3、深度電極組30A中的第一深度電極DE1與第三深度電極DE3皆斷開,此時平面電極組40的第二平面電極FE2與深度電極組30A中的第二深度電極DE2導通,可量測到第二阻抗變化量△Z2,且平面電極組40的第四平面電極FE4與深度電極組30A中的第四深度電極DE4導通,可量測到第四阻抗變化量△Z4。藉此,處理器可依據多個阻抗變化量的比對來控制施加在腦組織202的電刺激ST。 9A and 9B show the planar electrode group for detecting the deformation of the brain tissue 202 when moving parallel to the first direction D1, the second direction D2, the third direction D3 and the fourth direction D4. 40 and the corresponding impedance change of the depth electrode group 30A, and the state of its electrode channel switching. FIG. 9A shows the transformation from the electrode channels in the first orientation D1 and the third orientation D3 to the electrode channels in the second orientation D2 and the fourth orientation D4, and so on. Specifically, when the electrode channels of the first orientation D1 and the third orientation D3 are connected, the first plane electrode FE1 of the plane electrode group 40 is connected to the first depth electrode DE1 of the depth electrode group 30A, and the first electrode can be measured. The impedance change amount ΔZ1 is measured, and the third planar electrode FE3 of the planar electrode group 40 is connected to the third depth electrode DE3 in the depth electrode group 30A, and the third impedance change amount ΔZ3 can be measured. When the electrode channels are transformed to the second orientation D2 and the fourth orientation D4, the electrode channels of the first orientation D1 and the third orientation D3 are disconnected, and the first planar electrode FE1, the third planar electrode FE3, and the depth electrode of the planar electrode group 40 The first depth electrode DE1 and the third depth electrode DE3 in the group 30A are both disconnected. At this time, the second plane electrode FE2 of the plane electrode group 40 and the second depth electrode DE2 in the depth electrode group 30A are connected, and the third depth electrode DE2 can be measured. The second impedance change amount ΔZ2, and the fourth planar electrode FE4 of the planar electrode group 40 is connected to the fourth depth electrode DE4 in the depth electrode group 30A, the fourth impedance change amount ΔZ4 can be measured. Thereby, the processor can control the electrical stimulation ST applied to the brain tissue 202 based on the comparison of multiple impedance changes.

圖10A與圖10B顯示針對平行於偵測第一方位D1、第二方位D2、第三方位D3與第四方位D4的斜角方向移動時,偵測腦組織202形變對於平面電極組40與對應之深度電極組30A之阻抗變化量,其電極通道切換的狀態。圖10A表示由第一方位D1與第二方位D2,以及第三方位D3與第四方位D4之電極通道,變換到第一方位D1與第四方位D4,以及第二方位D2與第三方位D3之電極通道,以此類推。詳細來說,圖10A左圖代表平面電極組40四個平面電極與深度電極組30A中的四個深 度電極皆同時導通,而處理器會同時依據代表第一方位D1與第二方位D2的阻抗變化量(即第一阻抗變化量△Z1與第二阻抗變化量△Z2)來與第三方位D3與第四方位D4的阻抗變化量(即第三阻抗變化量△Z3與第四阻抗變化量△Z4)進行比對,來控制施加在腦組織202的電刺激ST。而在圖10A右圖的實施例中,代表平面電極組40四個平面電極與深度電極組30A中的四個深度電極皆同時導通,而處理器會同時依據代表第一方位D1與第四方位D4的阻抗變化量(即第一阻抗變化量△Z1與第四阻抗變化量△Z4)來與第二方位D2與第三方位D3的阻抗變化量(即第二阻抗變化量△Z2與第三阻抗變化量△Z3)進行比對,來控制施加在腦組織202的電刺激ST。 10A and 10B show the corresponding deformation of the detected brain tissue 202 for the planar electrode group 40 when moving in an oblique direction parallel to the detection of the first orientation D1, the second orientation D2, the third orientation D3, and the fourth orientation D4. The amount of impedance change of the depth electrode group 30A and the state of its electrode channel switching. Figure 10A shows the transformation of the electrode channels from the first orientation D1 and the second orientation D2, and the third orientation D3 and the fourth orientation D4 to the first orientation D1 and the fourth orientation D4, and the second orientation D2 and the third orientation D3. the electrode channel, and so on. Specifically, the left picture of FIG. 10A represents the four planar electrodes in the planar electrode group 40 and the four deep electrodes in the depth electrode group 30A. Both electrodes are turned on at the same time, and the processor will simultaneously communicate with the third position D3 based on the impedance changes representing the first position D1 and the second position D2 (i.e., the first impedance change ΔZ1 and the second impedance change ΔZ2). Compare it with the impedance change amount in the fourth direction D4 (ie, the third impedance change amount ΔZ3 and the fourth impedance change amount ΔZ4) to control the electrical stimulation ST applied to the brain tissue 202 . In the embodiment on the right side of FIG. 10A , the four planar electrodes representing the planar electrode group 40 and the four depth electrodes in the depth electrode group 30A are all turned on at the same time, and the processor will simultaneously act according to the parameters representing the first orientation D1 and the fourth orientation. The impedance change amount of D4 (that is, the first impedance change amount ΔZ1 and the fourth impedance change amount ΔZ4) is related to the impedance change amount of the second position D2 and the third position D3 (that is, the second impedance change amount ΔZ2 and the third impedance change amount ΔZ2). The impedance change amount ΔZ3) is compared to control the electrical stimulation ST applied to the brain tissue 202.

圖11A與圖11B顯示針對平行於軸心C10移動時,偵測腦組織202形變對於平面電極組40與對應之深度電極組30A以及導電區20與對應之深度電極組30D之阻抗變化量,其電極刺激時的狀態。圖11A表示平面電極組40四個平面電極與深度電極組30A中的四個深度電極以及導電區20的電極與深度電極組30D中的四個深度電極皆同時導通,處理器會依據平面電極組40與深度電極組30A所產生之第五阻抗變化量△Z5來與導電區20的電極與深度電極組30D所產生之第六阻抗變化量△Z6進行比對,來控制施加在腦組織202的電刺激ST。 11A and 11B show the impedance changes of the flat electrode group 40 and the corresponding depth electrode group 30A and the conductive area 20 and the corresponding depth electrode group 30D when the deformation of the brain tissue 202 is detected when moving parallel to the axis C10. The state during electrode stimulation. FIG. 11A shows that the four planar electrodes in the planar electrode group 40 and the four depth electrodes in the depth electrode group 30A, as well as the electrodes in the conductive area 20 and the four depth electrodes in the depth electrode group 30D are all conductive at the same time. The processor will conduct according to the planar electrode group. 40 and the fifth impedance change amount ΔZ5 generated by the depth electrode group 30A are compared with the sixth impedance change amount ΔZ6 generated by the electrodes in the conductive area 20 and the depth electrode group 30D to control the impedance applied to the brain tissue 202 Electrical stimulation of ST.

請參閱圖12A、12B所示,綜合前述對於人體動作所產生的瞬間阻抗變化的偵測、對向同步時序性電壓量測、多通道的配對切換,因此可應用於對於人體連續動作的偵測並於適當的時機給予電刺激ST。 Please refer to Figures 12A and 12B. Combining the aforementioned detection of instantaneous impedance changes caused by human body movements, opposite synchronous sequential voltage measurement, and multi-channel pairing switching, it can be applied to the detection of continuous human body movements. And give electrical stimulation to ST at the appropriate time.

圖12A代表人體起身或身軀向前的阻抗值變化,可綜合對應圖5所示平行移動時的偵測態樣與圖9A的通道切換狀態。在本實施例中,假定第一方位D1為前方,當人體起身或身軀向前時,第一阻抗變化量△Z1與第三阻抗變化量△Z3可如圖12A所示。在一實施例中,處理器計算滿足於:|△Z3-△Z1|

Figure 111142544-A0305-02-0016-22
|△Z3|時,判斷此時動作為人體起身或身軀向前,便啟動電刺激模式,控制深度電極組30B、30C給予電刺激ST。 Figure 12A represents the change in impedance value when a human body stands up or moves forward, which can comprehensively correspond to the detection state during parallel movement shown in Figure 5 and the channel switching state in Figure 9A. In this embodiment, assuming that the first orientation D1 is the front, when the human body stands up or moves forward, the first impedance change amount ΔZ1 and the third impedance change amount ΔZ3 are as shown in FIG. 12A . In one embodiment, the processor calculation satisfies: |ΔZ3-ΔZ1|
Figure 111142544-A0305-02-0016-22
When |△Z3|, it is judged that the action at this time is that the human body stands up or the body moves forward, and the electrical stimulation mode is started, and the depth electrode groups 30B and 30C are controlled to provide electrical stimulation ST.

圖12B代表人體行走的阻抗值變化,可綜合對應圖6所示垂直移動時的偵測態樣。圖12B顯示人體在行走時第五阻抗變化量△Z5與第六阻抗變化量△Z6的變化情形。在一實施例中,當判定阻抗變化量△Z5、△Z6的差異特徵於一設定時段內重複出現三次後,認定此時動作為行走狀態,便啟動電刺激模式,控制深度電極組30B、30C給予電刺激ST。 Figure 12B represents the change in impedance value of the human body walking, which can comprehensively correspond to the detection state during vertical movement shown in Figure 6. Figure 12B shows the changes in the fifth impedance change amount ΔZ5 and the sixth impedance change amount ΔZ6 when the human body walks. In one embodiment, when the differential characteristics of the impedance changes ΔZ5 and ΔZ6 are determined to occur three times within a set period, it is determined that the action at this time is a walking state, and the electrical stimulation mode is started to control the depth electrode groups 30B and 30C. Give electrical stimulation to ST.

值得說明的是,在將本發明所提供的動作監控感測器植入人體腦部時,即已先確認方位定位,如此可知道各個電極的方位,以利於控制與偵測人體動作。 It is worth noting that when the motion monitoring sensor provided by the present invention is implanted into the human brain, the orientation has been confirmed first, so that the orientation of each electrode can be known to facilitate control and detection of human body motion.

請參閱圖13所示,其呈現人體於同方向動作下所產生腦組織形變而引致之阻抗變化量與位移量呈線性關係。例如,當人體位移1毫米時,阻抗變化值約為0.55千歐;當人體位移2毫米時,阻抗變化值約為1.2千歐。 Please refer to Figure 13, which shows that the amount of impedance change caused by the deformation of the brain tissue caused by the human body's movement in the same direction is linearly related to the amount of displacement. For example, when the human body is displaced by 1 mm, the impedance change value is approximately 0.55 kiloohms; when the human body is displaced by 2 mm, the impedance change value is approximately 1.2 kiloohms.

請參閱圖14所示,其呈現人體於同方向動作下所產生腦組織形變而引致之阻抗變化量與腦組織壓縮量呈線性關係。例如,腦組織壓縮率為10%時,阻抗變化值約為8歐姆;腦組織壓縮率為40%時,阻抗變化值約為30歐姆。 Please refer to Figure 14, which shows that the amount of impedance change caused by the brain tissue deformation caused by the human body's movement in the same direction is linearly related to the amount of brain tissue compression. For example, when the brain tissue compression rate is 10%, the impedance change value is about 8 ohms; when the brain tissue compression rate is 40%, the impedance change value is about 30 ohms.

圖13及圖14說明本發明利用人體位移及腦組織壓縮偵測阻抗變化值以提供人體腦部電刺激的工作原理確實具有可行性。 Figures 13 and 14 illustrate that the working principle of the present invention using human body displacement and brain tissue compression to detect impedance changes to provide electrical stimulation of the human brain is indeed feasible.

請參閱圖15所示實施例,動作監控感測器100A包含一本體10、一導電區20、一組深度電極組30A及一組平面電極組40。 Referring to the embodiment shown in FIG. 15 , the motion monitoring sensor 100A includes a body 10 , a conductive area 20 , a depth electrode group 30A and a planar electrode group 40 .

請參閱圖15所示,當人體平行於第一方位D1與第三方位D3移動時(例如水平前後移動時),第一平面電極FE1與深度電極組30A之第一深度電極DE1產生一第一阻抗變化量△Z1,第三平面電極FE3與深度電極組30A之第三深度電極DE3產生一第三阻抗變化量△Z3。由處理器比對第一阻抗變化量△Z1與第三阻抗變化量△Z3後,作為對腦組織202之電刺激控制之依據,進而控制深度電極組30A,以對周圍的腦組織202的神經纖維進行電刺激ST。在本實施例中,深度電極組30A中的電極亦可作為刺激電極,並提供電刺激ST。 Please refer to FIG. 15 . When the human body moves parallel to the first orientation D1 and the third orientation D3 (for example, when moving forward and backward horizontally), the first plane electrode FE1 and the first depth electrode DE1 of the depth electrode group 30A generate a first The third plane electrode FE3 and the third depth electrode DE3 of the depth electrode group 30A generate a third impedance change amount ΔZ3. After the processor compares the first impedance change amount ΔZ1 with the third impedance change amount ΔZ3, it is used as a basis for electrical stimulation control of the brain tissue 202, and then controls the depth electrode group 30A to stimulate the nerves of the surrounding brain tissue 202. Fibers are electrically stimulated ST. In this embodiment, the electrodes in the depth electrode group 30A can also serve as stimulation electrodes and provide electrical stimulation ST.

同理,當人體平行於第二方位D2與第四方位D4移動時(例如水平左右移動時),第二平面電極FE2與深度電極組30A之第二深度電極DE2產生一第二阻抗變化量△Z2,第四平面電極FE4與深度電極組30A之第四深度電極DE4產生一第四阻抗變化量△Z4。由處理器比對第二阻抗變化量△Z2與第四阻抗變化量△Z4後,作為對腦組織202之電刺激控制之依據,進而控制深度電極組30A,以對周圍的腦組織202的神經纖維進行電刺激ST。 In the same way, when the human body moves parallel to the second orientation D2 and the fourth orientation D4 (for example, when moving horizontally left and right), the second plane electrode FE2 and the second depth electrode DE2 of the depth electrode group 30A generate a second impedance change amount Δ. Z2, the fourth planar electrode FE4 and the fourth depth electrode DE4 of the depth electrode group 30A generate a fourth impedance change amount ΔZ4. After the processor compares the second impedance change amount ΔZ2 with the fourth impedance change amount ΔZ4, it is used as a basis for electrical stimulation control of the brain tissue 202, and then controls the depth electrode group 30A to stimulate the nerves of the surrounding brain tissue 202. Fibers are electrically stimulated ST.

請參閱圖16所示,當人體平行於軸心C10移動時(例如垂直上下移動時),第一平面電極FE1、第二平面電極FE2、第三平面電極FE3與第四平面電極FE4分別與深度電極組30A之第一深度電極DE1、第二 深度電極DE2、第三深度電極DE3與第四深度電極DE4產生一第五阻抗變化量△Z5。此外,導電區20與深度電極組30D的第一深度電極DE1、第二深度電極DE2、第三深度電極DE3與第四深度電極DE4產生一第六阻抗變化量△Z6。由處理器比對第五阻抗變化量△Z5與第六阻抗變化量△Z6,作為對腦組織202之電刺激控制之依據,進而控制深度電極組30A,以對周圍的腦組織202的神經纖維進行電刺激ST。 Please refer to Figure 16. When the human body moves parallel to the axis C10 (for example, when moving vertically up and down), the first planar electrode FE1, the second planar electrode FE2, the third planar electrode FE3 and the fourth planar electrode FE4 are respectively in contact with the depth. The first depth electrode DE1 and the second depth electrode DE1 of the electrode group 30A The depth electrode DE2, the third depth electrode DE3 and the fourth depth electrode DE4 generate a fifth impedance variation ΔZ5. In addition, the conductive area 20 and the first depth electrode DE1, the second depth electrode DE2, the third depth electrode DE3 and the fourth depth electrode DE4 of the depth electrode group 30D generate a sixth impedance variation ΔZ6. The processor compares the fifth impedance change amount ΔZ5 with the sixth impedance change amount ΔZ6 as a basis for electrical stimulation control of the brain tissue 202, and then controls the depth electrode group 30A to stimulate the nerve fibers of the surrounding brain tissue 202. Perform electrical stimulation ST.

要注意的是,圖1實施例具有四組深度電極組30A~30D,而圖15實施例僅具有一組深度電極組30A。根據以上說明可知,僅利用一組深度電極組30A即可達成本發明所欲達成之功效。無論利用一組深度電極組30A或四組深度電極組30A~30D,對於人體動作所產生的瞬間阻抗變化的偵測、對向同步時序性電壓量測、多通道的配對切換等方面的工作原理相同,可應用於對於人體連續動作的偵測並於適當的時機給予電刺激。依此類推,可採用二組、三組、或多於四組的深度電極組,可依實際所需而設計。 It should be noted that the embodiment of FIG. 1 has four depth electrode groups 30A˜30D, while the embodiment of FIG. 15 only has one depth electrode group 30A. According to the above description, it can be known that the desired effect of the present invention can be achieved by using only one depth electrode group 30A. Regardless of using one depth electrode group 30A or four depth electrode groups 30A~30D, the working principles include detection of instantaneous impedance changes caused by human body movements, opposite synchronous sequential voltage measurement, and multi-channel pairing switching. Similarly, it can be used to detect the continuous movements of the human body and provide electrical stimulation at the appropriate time. By analogy, two groups, three groups, or more than four groups of depth electrode groups can be used, which can be designed according to actual needs.

綜上所述,本發明所提供之作為電刺激控制之動作監控感測器,經由平面電極、深度電極與導電區量測腦組織於動作過程中產生形變所產生的瞬間阻抗變化,判斷患者動作的啟動或狀態的改變,以作為電刺激啟動時機的特徵判定,使原本對持續式電刺激反應不佳的患者在步態週期的切換點(例如,從坐姿轉換為站姿或轉身,腳跟觸地和離地時)才給予電刺激,因此可有效改善患者活動行走的能力。 To sum up, the action monitoring sensor provided by the present invention as an electrical stimulation control device measures the instantaneous impedance changes caused by the deformation of brain tissue during action through planar electrodes, depth electrodes and conductive areas, and determines the patient's actions. The start or change of state is used as a characteristic judgment of the start time of electrical stimulation, so that patients who originally had poor response to continuous electrical stimulation can be used at the switching point of the gait cycle (for example, switching from sitting to standing or turning, heel contact Electrical stimulation is only given when the patient is on or off the ground, so it can effectively improve the patient's ability to move and walk.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍 內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary skill in the relevant technical field will not deviate from the spirit and scope of the present invention. Some modifications and embellishments may be made, so the scope of protection of the present invention shall be determined by the appended patent application scope.

100:動作監控感測器 100:Motion monitoring sensor

10:本體 10:Ontology

20:導電區 20: Conductive area

30A~30D:深度電極組 30A~30D: Depth electrode group

40:平面電極組 40: Planar electrode group

41:基材 41:Substrate

411:第一面 411: Side 1

412:第二面 412:Second side

42:孔洞 42:hole

43:微結構 43:Microstructure

C10:軸心 C10: Axis

D1:第一方位 D1: first position

D2:第二方位 D2: Second position

D3:第三方位 D3: Third position

D4:第四方位 D4: The fourth position

DE1:第一深度電極 DE1: first depth electrode

DE2:第二深度電極 DE2: Second depth electrode

DE3:第三深度電極 DE3: The third depth electrode

DE4:第四深度電極 DE4: The fourth depth electrode

FE1:第一平面電極 FE1: first plane electrode

FE2:第二平面電極 FE2: Second plane electrode

FE3:第三平面電極 FE3: third plane electrode

FE4:第四平面電極 FE4: The fourth plane electrode

W1:第一導線 W1: first wire

W2:第二導線 W2: Second wire

W20:導電導線 W20: Conductive wire

Claims (14)

一種動作監控感測器,設置於人體之腦組織,適於與一處理器連接,該動作監控感測器包含: 一本體,具有一軸心,該本體沿該軸心具有相對二軸向端部; 一導電區,設置於該本體之其中一該軸向端部,該導電區連接一導電導線; 至少一深度電極組,該深度電極組包含四個深度電極,該四個深度電極環繞該軸心設置於該本體之表面,該四個深度電極分別對應於四個方位,每一該深度電極連接一第一導線;以及 一平面電極組,包括一基材與四個平面電極,該基材具有相對之一第一面與一第二面,該基材藉由該第二面設置於該本體相對於該導電區之另一該軸向端部,該四個平面電極環繞該軸心設置於該基材,該四個平面電極分別對應於該四個方位,每一該平面電極連接一第二導線; 將電流經由該導電導線、各該第一導線及各該第二導線分別導入該導電區、各該深度電極與各該平面電極,當該人體的動作改變時,由該處理器比對該深度電極組與該平面電極組及/或該導電區所產生之阻抗變化量,作為對該人體之該腦組織之電刺激控制之依據。 An action monitoring sensor is provided in the brain tissue of the human body and is suitable for connection with a processor. The action monitoring sensor includes: A body has an axis, and the body has two opposite axial ends along the axis; A conductive area is provided at one of the axial ends of the body, and the conductive area is connected to a conductive wire; At least one depth electrode group. The depth electrode group includes four depth electrodes. The four depth electrodes are arranged on the surface of the body around the axis. The four depth electrodes respectively correspond to four directions. Each depth electrode is connected to a first conductor; and A planar electrode group includes a base material and four planar electrodes. The base material has an opposite first surface and a second surface. The base material is disposed on the body relative to the conductive area through the second surface. At the other axial end, the four planar electrodes are arranged on the base material around the axis, the four planar electrodes respectively correspond to the four directions, and each of the planar electrodes is connected to a second wire; Current is introduced into the conductive area, each depth electrode and each plane electrode respectively through the conductive wire, each first wire and each second wire. When the movement of the human body changes, the processor compares the depth The amount of impedance change produced by the electrode group, the planar electrode group and/or the conductive area serves as the basis for electrical stimulation control of the brain tissue of the human body. 如請求項1之動作監控感測器,其中該基材具有一孔洞平行於該軸向貫穿該基材,該些平面電極環繞該孔洞設置於該基材。The motion monitoring sensor of claim 1, wherein the base material has a hole penetrating the base material parallel to the axial direction, and the planar electrodes are arranged on the base material surrounding the hole. 如請求項2之動作監控感測器,其中各該第一導線、各該第二導線與該導電導線分別由該本體與該基材通過該孔洞穿設而出。Such as the motion monitoring sensor of claim 2, wherein each of the first wires, each of the second wires and the conductive wire are respectively penetrated from the body and the base material through the hole. 如請求項1之動作監控感測器,其中該基材之該第二面設有微結構。The motion monitoring sensor of claim 1, wherein the second surface of the substrate is provided with microstructures. 如請求項4之動作監控感測器,其中該微結構凸出該基材之高度等於或大於50微米(μm)。For example, the motion monitoring sensor of claim 4, wherein the height of the microstructure protruding from the substrate is equal to or greater than 50 micrometers (μm). 如請求項1之動作監控感測器,其中該四個方位包括一第一方位、一第二方位、一第三方位與一第四方位,該第一方位、該第二方位、該第三方位與該第四方位垂直於該軸心且以該軸心為中心等角度放射延伸,該第一方位與該第三方位對稱相對於該軸心之兩側,該第二方位與該第四方位對稱相對於該軸心之另兩側,該第一方位位於該第二方位與該第四方位之間;該四個深度電極包括分別朝向該第一方位、該第二方位、該第三方位與該第四方位的第一深度電極、第二深度電極、第三深度電極與第四深度電極,以及,該四個平面電極包括分別朝向該第一方位、該第二方位、該第三方位與該第四方位的第一平面電極、第二平面電極、第三平面電極與第四平面電極。The motion monitoring sensor of claim 1, wherein the four directions include a first direction, a second direction, a third direction and a fourth direction, and the first direction, the second direction, the third direction The orientation and the fourth orientation are perpendicular to the axis and extend radially at equal angles with the axis as the center. The first orientation and the third orientation are symmetrical with respect to both sides of the axis, and the second orientation and the fourth orientation The orientation is symmetrical with respect to the other two sides of the axis, and the first orientation is between the second orientation and the fourth orientation; the four depth electrodes include electrodes facing the first orientation, the second orientation, and the third orientation respectively. The first depth electrode, the second depth electrode, the third depth electrode and the fourth depth electrode are oriented in the same direction as the fourth direction, and the four planar electrodes include electrodes facing the first direction, the second direction and the third depth electrode respectively. The first planar electrode, the second planar electrode, the third planar electrode and the fourth planar electrode are in the fourth orientation. 如請求項6之動作監控感測器,其中該人體平行於該第一方位與該第三方位移動時,該第一平面電極與該深度電極組之該第一深度電極產生一第一阻抗變化量,該第三平面電極與該深度電極組之該第三深度電極產生一第三阻抗變化量,由該處理器比對該第一阻抗變化量與該第三阻抗變化量,作為對該人體之該腦組織之電刺激控制之依據。The motion monitoring sensor of claim 6, wherein when the human body moves parallel to the first direction and the third direction, the first plane electrode and the first depth electrode of the depth electrode group produce a first impedance change. The third plane electrode and the third depth electrode of the depth electrode group generate a third impedance change amount, and the processor compares the first impedance change amount with the third impedance change amount, as a result for the human body The basis for electrical stimulation control of the brain tissue. 如請求項6之動作監控感測器,其中該人體平行於該第二方位與該第四方位移動時,該第二平面電極與該深度電極組之該第二深度電極產生一第二阻抗變化量,該第四平面電極與該深度電極組之該第四深度電極產生一第四阻抗變化量,由該處理器比對該第二阻抗變化量與該第四阻抗變化量,作為對該人體之該腦組織之電刺激控制之依據。The motion monitoring sensor of claim 6, wherein when the human body moves parallel to the second direction and the fourth direction, the second plane electrode and the second depth electrode of the depth electrode group produce a second impedance change. The fourth plane electrode and the fourth depth electrode of the depth electrode group generate a fourth impedance change amount, and the processor compares the second impedance change amount with the fourth impedance change amount, as a result for the human body The basis for electrical stimulation control of the brain tissue. 如請求項6之動作監控感測器,其中該人體平行於該軸心移動時,該第一平面電極、該第二平面電極、該第三平面電極與該第四平面電極分別與該深度電極組之該第一深度電極、該第二深度電極、該第三深度電極與該第四深度電極產生一第五阻抗變化量,導電區與該深度電極組的該第一深度電極、該第二深度電極、該第三深度電極與該第四深度電極產生一第六阻抗變化量,由處理器比對該第五阻抗變化量與該第六阻抗變化量,作為對該人體之該腦組織之電刺激控制之依據。The motion monitoring sensor of claim 6, wherein when the human body moves parallel to the axis, the first planar electrode, the second planar electrode, the third planar electrode and the fourth planar electrode are respectively in contact with the depth electrode. The first depth electrode, the second depth electrode, the third depth electrode and the fourth depth electrode of the group generate a fifth impedance change amount, and the conductive area and the first depth electrode, the second depth electrode of the depth electrode group The depth electrode, the third depth electrode and the fourth depth electrode generate a sixth impedance change, and the processor compares the fifth impedance change and the sixth impedance change as a result of the brain tissue of the human body. The basis for electrical stimulation control. 如請求項1之動作監控感測器,其中該基材之該第一面設有一固定件,該固定件適於設置於該人體之頭骨,該腦組織位於該頭骨內。The motion monitoring sensor of claim 1, wherein the first surface of the base material is provided with a fixing member, and the fixing member is suitable for being placed on the skull of the human body, and the brain tissue is located in the skull. 如請求項10之動作監控感測器,其中該固定件具有一通道提供各該第一導線、各該第二導線及該導電導線延伸穿設出該固定件且連通至該頭骨外部。The motion monitoring sensor of claim 10, wherein the fixing member has a channel for providing each of the first wires, each of the second wires and the conductive wires to extend out of the fixing member and be connected to the outside of the skull. 如請求項1之動作監控感測器,其中該基材呈扁平圓形,該基材之最大直徑等於或小於10毫米(mm)。Such as the motion monitoring sensor of claim 1, wherein the base material is flat and circular, and the maximum diameter of the base material is equal to or less than 10 millimeters (mm). 如請求項1之動作監控感測器,其中該基材之材質為矽膠或熱塑性聚胺酯(Thermoplastic Polyurethane,TPU)其中之一。For example, the motion monitoring sensor of claim 1, wherein the material of the base material is one of silicone or thermoplastic polyurethane (TPU). 如請求項1之動作監控感測器,其具有四組該深度電極組,該四組深度電極組平行於該軸心設置於該本體,各該深度電極組之該四個深度電極分別對應於該四個方位,部分的該些深度電極組作為刺激電極,以對該人體之該腦組織進行電刺激。Such as the motion monitoring sensor of claim 1, which has four groups of depth electrode groups, the four groups of depth electrode groups are arranged on the body parallel to the axis, and the four depth electrodes of each depth electrode group respectively correspond to The four directions and part of the depth electrode groups are used as stimulation electrodes to electrically stimulate the brain tissue of the human body.
TW111142544A 2021-12-28 2022-11-08 Movement monitor sensor TWI822447B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/089,203 US20230201598A1 (en) 2021-12-28 2022-12-27 Movement monitor sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163294133P 2021-12-28 2021-12-28
US63/294,133 2021-12-28

Publications (2)

Publication Number Publication Date
TW202325354A TW202325354A (en) 2023-07-01
TWI822447B true TWI822447B (en) 2023-11-11

Family

ID=88147810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142544A TWI822447B (en) 2021-12-28 2022-11-08 Movement monitor sensor

Country Status (1)

Country Link
TW (1) TWI822447B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263225B1 (en) * 1994-02-09 2001-07-17 University Of Iowa Research Foundation Stereotactic electrode assembly
CN106725371A (en) * 2016-12-30 2017-05-31 北京品驰医疗设备有限公司 A kind of lesions located in deep brain bleeding detecting system of many batteries
US20180071530A1 (en) * 2016-09-12 2018-03-15 Medtronic, Inc. Identification of compromised components in a medical system
US20180153474A1 (en) * 2014-10-03 2018-06-07 Woodwelding Ag Medical device, apparatus, and surgical method
CN213075633U (en) * 2020-06-05 2021-04-30 武汉励石医疗科技有限责任公司 Biological impedance measuring circuit and biological impedance measuring device of multi-electrode point electrode slice

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263225B1 (en) * 1994-02-09 2001-07-17 University Of Iowa Research Foundation Stereotactic electrode assembly
US20180153474A1 (en) * 2014-10-03 2018-06-07 Woodwelding Ag Medical device, apparatus, and surgical method
US20180071530A1 (en) * 2016-09-12 2018-03-15 Medtronic, Inc. Identification of compromised components in a medical system
CN106725371A (en) * 2016-12-30 2017-05-31 北京品驰医疗设备有限公司 A kind of lesions located in deep brain bleeding detecting system of many batteries
CN213075633U (en) * 2020-06-05 2021-04-30 武汉励石医疗科技有限责任公司 Biological impedance measuring circuit and biological impedance measuring device of multi-electrode point electrode slice

Also Published As

Publication number Publication date
TW202325354A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US11324945B2 (en) Neural interface system
US20210052898A1 (en) Implantable neuro-stimulation device
Ferro et al. Electronic and ionic materials for neurointerfaces
Park et al. Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice
Schiavone et al. Guidelines to study and develop soft electrode systems for neural stimulation
EP2582289B1 (en) Pdms-based stretchable multi-electrode and chemotrode array for epidural and subdural neuronal recording, electrical stimulation and drug delivery
Cheung Implantable microscale neural interfaces
Li et al. Bioinspired prosthetic interfaces
US20120265279A1 (en) Sensing device for indicating posture of patient implanted with a neurostimulation device
CN101222949A (en) Apparatus and method for coupling implanted electrodes to nervous tissue
Muthuswamy et al. Electrostatic microactuators for precise positioning of neural microelectrodes
Ghane-Motlagh et al. A review of microelectrode array technologies: design and implementation challenges
Gabran et al. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation
Tooker et al. Microfabricated polymer-based neural interface for electrical stimulation/recording, drug delivery, and chemical sensing-development
Wang et al. Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode
TWI822447B (en) Movement monitor sensor
Kim et al. Materials and structural designs for neural interfaces
KR101158775B1 (en) Nerval element using nano-wire and cuff
Wang et al. Flexible multichannel electrodes for acute recording in nonhuman primates
Fomani et al. Development and characterization of multisite three-dimensional microprobes for deep brain stimulation and recording
US20230201598A1 (en) Movement monitor sensor
Gabran et al. High-density intracortical microelectrode arrays with multiple metallization layers for fine-resolution neuromonitoring and neurostimulation
US20100076521A1 (en) Electrical stimulation system and method for generating virtual channels
Hughes Insinuating electronics in the brain
Henderson Implanted intracortical electrodes as chronic neural interfaces to the central nervous system