TWI822190B - Ultrasonic transducing module and ultrasonic probe - Google Patents
Ultrasonic transducing module and ultrasonic probe Download PDFInfo
- Publication number
- TWI822190B TWI822190B TW111126810A TW111126810A TWI822190B TW I822190 B TWI822190 B TW I822190B TW 111126810 A TW111126810 A TW 111126810A TW 111126810 A TW111126810 A TW 111126810A TW I822190 B TWI822190 B TW I822190B
- Authority
- TW
- Taiwan
- Prior art keywords
- ultrasonic transducer
- ultrasonic
- piezoelectric
- micromachined
- wave
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 24
- 230000002463 transducing effect Effects 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 9
- 239000010408 film Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical group [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
Images
Landscapes
- Transducers For Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本發明是有關於一種換能器及探頭,且特別是有關於一種超聲波換能模組及超聲波探頭。The present invention relates to a transducer and a probe, and in particular, to an ultrasonic transducer module and an ultrasonic probe.
超聲波換能器是在超聲波頻率範圍內,實現聲能和電能相互轉換的換能器。超聲波換能器主要可分為三類:1.發射器;2.接收器;以及3.收發兩用型換能器。用來發射超聲波的換能器稱為發射器,當換能器處於發射狀態時,將電能轉換為機械能,再轉換為聲能。用來接收聲波的換能器稱為接收器,當換能器處於接收狀態時,將聲能轉換為機械能,再轉換為電能。在有些情況下,換能器既可用作發射器,又可用作接收器,稱為收發兩用型換能器。收發兩用型換能器是超聲波技術的核心內容和關鍵技術之一,廣泛應用於無損檢測、醫學影像、超聲波顯微鏡、指紋識別及物聯網等領域。Ultrasonic transducer is a transducer that realizes mutual conversion of sound energy and electrical energy within the ultrasonic frequency range. Ultrasonic transducers can be mainly divided into three categories: 1. Transmitter; 2. Receiver; and 3. Transceiver transducer. The transducer used to emit ultrasonic waves is called a transmitter. When the transducer is in the transmitting state, it converts electrical energy into mechanical energy and then into sound energy. The transducer used to receive sound waves is called a receiver. When the transducer is in the receiving state, it converts sound energy into mechanical energy and then into electrical energy. In some cases, the transducer can be used as both a transmitter and a receiver, which is called a transceiver. Transceiver transducers are the core content and one of the key technologies of ultrasonic technology, and are widely used in non-destructive testing, medical imaging, ultrasonic microscopes, fingerprint recognition, and the Internet of Things.
傳統的超聲波換能器在檢測人體時,因應待偵測的組識或部位的不同(例如心臟、頸動脈、腹部…等)需求,所使用的超聲波的頻率及解析度也會不同。此時,每當換不同的部位來作超聲波影像檢測時,往往需要更換不同的超聲波換能器,如此會造成使用上的不便及器材成本的增加。When traditional ultrasonic transducers detect the human body, the frequency and resolution of the ultrasonic waves used will be different depending on the different components or parts to be detected (such as the heart, carotid artery, abdomen, etc.). At this time, whenever different parts are used for ultrasonic image detection, it is often necessary to replace different ultrasonic transducers, which will cause inconvenience in use and increase equipment costs.
本發明提供一種超聲波換能模組,其具有較廣泛的功能。The invention provides an ultrasonic transducer module, which has a wide range of functions.
本發明提供一種超聲波探頭,其具有較廣泛的功能。The invention provides an ultrasonic probe, which has a wide range of functions.
本發明的一實施例提出一種超聲波換能模組,包括一基底、一壓電式超聲波換能器(piezoelectric ultrasonic transducer)及一微機械超聲波換能器(micromachined ultrasonic transducer)。壓電式超聲波換能器配置於基底上,微機械超聲波換能器配置於壓電式超聲波換能器上。壓電式超聲波換能器配置於基底與微機械超聲波換能器之間,壓電式超聲波換能器所發出的超聲波穿透微機械超聲波換能器而傳遞至外界。An embodiment of the present invention provides an ultrasonic transducer module, which includes a substrate, a piezoelectric ultrasonic transducer and a micromachined ultrasonic transducer. The piezoelectric ultrasonic transducer is arranged on the substrate, and the micromachined ultrasonic transducer is arranged on the piezoelectric ultrasonic transducer. The piezoelectric ultrasonic transducer is arranged between the substrate and the micromachined ultrasonic transducer, and the ultrasonic waves emitted by the piezoelectric ultrasonic transducer penetrate the micromachined ultrasonic transducer and are transmitted to the outside world.
本發明的一實施例提出一種超聲波探頭,包括一手持握把、一壓電式超聲波換能器及一微機械超聲波換能器。手持握把具有一第一端與一第二端,壓電式超聲波換能器配置於手持握把的第一端上,微機械超聲波換能器配置於壓電式超聲波換能器上。壓電式超聲波換能器與微機械超聲波換能器中較靠近第二端之一者所發出的超聲波穿透壓電式超聲波換能器與微機械超聲波換能器中另一較遠離第二端者而傳遞至外界。An embodiment of the present invention provides an ultrasonic probe, which includes a hand grip, a piezoelectric ultrasonic transducer, and a micromachined ultrasonic transducer. The handheld grip has a first end and a second end, the piezoelectric ultrasonic transducer is disposed on the first end of the handgrip, and the micromechanical ultrasonic transducer is disposed on the piezoelectric ultrasonic transducer. The ultrasonic wave emitted by the one of the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer that is closer to the second end penetrates the other of the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer that is farther away from the second end. The correct ones are passed to the outside world.
在本發明的實施例的超聲波換能模組與超聲波探頭中,採用了堆疊的壓電式超聲波換能器與微機械超聲波換能器,而壓電式超聲波換能器與微機械超聲波換能器可以作不同的超聲波感測或輸出。因此,本發明的實施例的超聲波換能模組與超聲波探頭具有較廣泛的功能。In the ultrasonic transducer module and ultrasonic probe of the embodiment of the present invention, stacked piezoelectric ultrasonic transducers and micro-machined ultrasonic transducers are used, and the piezoelectric ultrasonic transducers and micro-machined ultrasonic transducers are The device can perform different ultrasonic sensing or output. Therefore, the ultrasonic transducer module and ultrasonic probe according to the embodiment of the present invention have a wider range of functions.
圖1為本發明的一實施例的超聲波探頭的爆炸示意圖,而圖2A為圖1中的超聲波換能模組的一實施例的剖面示意圖,其中圖2A中的超聲波換能模組的基底沒有繪示出來,基底可參照圖1所繪示。請參照圖1與圖2A,本實施例的超聲波探頭100包括一手持握把110、一壓電式超聲波換能器300及一微機械超聲波換能器400。手持握把110具有一第一端112與一第二端114,壓電式超聲波換能器300配置於手持握把110的第一端112上,微機械超聲波換能器400配置於壓電式超聲波換能器300上。壓電式超聲波換能器300與微機械超聲波換能器400中較靠近第二端114之一者(在圖1與圖2A中例如是壓電式超聲波換能器300)所發出的超聲波302穿透壓電式超聲波換能器300與微機械超聲波換能器400中另一較遠離第二端114者(在圖1與圖2A中例如是微機械超聲波換能器400)而傳遞至外界。Figure 1 is an exploded schematic diagram of an ultrasonic probe according to an embodiment of the present invention, and Figure 2A is a cross-sectional schematic diagram of an embodiment of the ultrasonic transducer module in Figure 1, in which the base of the ultrasonic transducer module in Figure 2A has no To illustrate, the substrate can be referred to as shown in Figure 1 . Referring to FIGS. 1 and 2A , the
在本實施例中,壓電式超聲波換能器300配置於手持握把110與微機械超聲波換能器400之間。然而,在其他實施例中,也可以是微機械超聲波換能器400配置於手持握把110與壓電式超聲波換能器300之間。在本實施例中,手持握把110的第一端112上可設有一超聲波換能模組200,超聲波換能模組200包括一基底210、上述壓電式超聲波換能器300及上述微機械超聲波換能器400。壓電式超聲波換能器300配置於基底210上,微機械超聲波換能器400配置於壓電式超聲波換能器300上。壓電式超聲波換能器300配置於基底210與微機械超聲波換能器400之間,壓電式超聲波換能器300所發出的超聲波302穿透微機械超聲波換能器400而傳遞至外界。In this embodiment, the piezoelectric
在本實施例中,微機械超聲波換能器400例如為電容式微機械超聲波換能器(capacitive micromachined ultrasonic transducer, CMUT),以微機電製程技術製作的微型元件,其製作於矽基體上(silicon substrate)、玻璃(glass)或可撓性基體上,例如SU-8厚膜光阻、有機矽(Polydimethylsiloxane, PDMS)或聚醯亞胺(Polyimide, PI)等,而壓電式超聲波換能器300例如為鋯鈦酸鉛(lead zirconium titanate, PZT)超聲波換能器或單晶超聲波換能器。此外,在本實施例中,微機械超聲波換能器400為薄膜式微機械超聲波換能器,而壓電式超聲波換能器300呈片狀。在一實施例中,微機械超聲波換能器400的厚度T1是落在1微米至10微米的範圍內。In this embodiment, the micromachined
在本實施例中,壓電式超聲波換能器300呈弧形。此外,在本實施例中,微機械超聲波換能器400得具有可撓性,因此,微機械超聲波換能器400可隨著壓電式超聲波換能器300呈現弧形,而壓電式超聲波換能器300與微機械超聲波換能器400配置於基底210的弧形表面,如此可以有效擴大感測的範圍。然而,在另一實施例中,壓電式超聲波換能器300也可以呈平面狀,而微機械超聲波換能器400也可以呈平面狀。In this embodiment, the piezoelectric
在本實施例的超聲波換能模組200與超聲波探頭100中,採用了堆疊的壓電式超聲波換能器300與微機械超聲波換能器400,而壓電式超聲波換能器300與微機械超聲波換能器400可以作不同的超聲波感測或輸出。因此,本實施例的超聲波換能模組200與超聲波探頭100具有較廣泛的功能。In the
在本實施例中,壓電式超聲波換能器300包括一壓電式層330、一第一電極310及一第二電極320。壓電式層330的材質例如為鋯鈦酸鉛,壓電式層330配置於第一電極310與第二電極320之間。當第一電極310與第二電極320之間被施加電壓差時,壓電式層330會振動而發出超聲波。另一方面,當來自外界的超聲波傳遞至壓電式層330而振動壓電式層330時,第一電極310與第二電極320之間的電壓會因壓電效應而產生變化,控制器220可感測及分析第一電極310與第二電極320之間的電壓變化,進而達成對外來超聲波的感測功能。壓電式層330及第一電極310與第二電極320的其中之一電極可分割成多個單元,以形成多個陣元。或者,在另一實施例中,壓電式層330、第一電極310與第二電極320也可以不分割,而形成單一陣元。In this embodiment, the piezoelectric
在本實施例中,微機械超聲波換能器400包括一擋牆440、一第三電極410、一第四電極420及一薄膜450。擋牆440形成有多個微空腔430,微空腔430位於第三電極410與第四電極420之間,薄膜450跨越微空腔430之上,而第四電極420配置於薄膜450上。薄膜450例如為可撓膜,其可受力變形。當對第三電極410與第四電極420施加電壓變化時,會因為第三電極410與第四電極420之間的電力線變化,而使得薄膜450振動,而發出超聲波。另一方面,當第三電極410與第四電極420之間施加適當的電壓時,外界的超聲波傳遞至薄膜450而使薄膜450產生振動,使第三電極410與第四電極420輸出具有變化的電流訊號。控制器220可控制、感測及分析第三電極410與第四電極420之間的電訊號,進而達成對外發出超聲波以及超聲波的感測功能。此外,第四電極420可隨著微空腔430分割成多個單元,以形成多個陣元。微機械超聲波換能器400可以是相控陣型換能器(phase array transducer)、直線形或弧形換能器。In this embodiment, the micromachined
請參照圖2A,超聲波換能模組200更包括控制器220,電性連接至壓電式超聲波換能器300與微機械超聲波換能器400,例如是電性連接至第一電極310、第二電極320、第三電極410及第四電極420。控制器220用以命令壓電式超聲波換能器300發出超聲波302,超聲波302穿透微機械超聲波換能器400而傳遞至一待測物50,待測物50將超聲波302反射成一反射波52,且微機械超聲波換能器400接收反射波52。如此一來,便可藉由微機械超聲波換能器400感測到待測物50。如此之超聲波換能模組200可以用來作為超聲波刀、電燒刀、雷射針灸、光療等熱監控。舉例而言,壓電式超聲波換能器300可作為高強度聚焦超音波治療系統(high intensity focused ultrasound therapeutic system, HIFU),例如為單一陣元的換能器,而微機械超聲波換能器400可作為用以觀測超聲波影像的感測陣列(即多陣元)。Referring to FIG. 2A, the
在本實施例中,超聲波換能模組200更包括一匹配層230,配置於壓電式超聲波換能器300與微機械超聲波換能器400之間,如此可以幫助降低超聲波在壓電式超聲波換能器300與微機械超聲波換能器400之間傳遞時所遇到的聲阻。此外,在一實施例中,壓電式超聲波換能器300所發出的超聲波302有大於90%的能量穿透微機械超聲波換能器400,而不會造成太多的能量損耗。In this embodiment, the
圖2B是圖2A的超聲波換能模組的另一應用模式的剖面示意圖。請參照圖2B,在本實施例的超聲波換能模組200中,控制器220用以命令壓電式超聲波換能器300發出一第一超聲波(即超聲波302),第一超聲波穿透微機械超聲波換能器400而傳遞至待測物50,待測物50將第一超聲波反射成一第一反射波(即反射波52),且壓電式超聲波換能器300接收第一反射波。此外,控制器220用以命令微機械超聲波換能器400發出一第二超聲波(即超聲波402),第二超聲波傳遞至待測物50,待測物50將第二超聲波反射成一第二反射波(即反射波54),且微機械超聲波換能器400接收第二反射波。FIG. 2B is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in FIG. 2A . Please refer to FIG. 2B. In the
本實施例的超聲波換能模組200可作為多用途整合的超聲波換能模組。舉例而言,壓電式超聲波換能器300可為直線形換能器或弧形換能器,而微機械超聲波換能器400可為相控陣型換能器或二維陣列換能器。此外,壓電式超聲波換能器300的陣元的節距(pitch)可相同於或不同於微機械超聲波換能器400的陣元的節距。此外,當壓電式超聲波換能器300與微機械超聲波換能器400皆為弧形換能器時,兩者的曲率中心可以相同或接近。超聲波換能模組200可以達到診斷與治療合一的效果,例如可以做到膠原蛋白的定位、給藥打破泡泡與血腦屏障。或者,在穿刺應用時,可以利用壓電式超聲波換能器300觀察深度較深的組織,而微機械超聲波換能器400可以用以觀察深度較淺的組織,且第一超聲波與第二超聲波的頻率可以不相同。The
圖2C是圖2A的超聲波換能模組的又一應用模式的剖面示意圖。請參照圖2C,在本實施例的超聲波換能模組200中,控制器220用以命令壓電式超聲波換能器300發出一第一超聲波(即超聲波302),第一超聲波穿透微機械超聲波換能器400而傳遞至一待測物50。此外,控制器220用以命令微機械超聲波換能器400發出一第二超聲波(即超聲波402),第二超聲波傳遞至待測物50。待測物50將第二超聲波反射成一反射波54,且微機械超聲波換能器400接收反射波54。Figure 2C is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in Figure 2A. Please refer to FIG. 2C. In the
本實施例的超聲波換能模組200可做到破壞性治療定位,以取代一部分的斷層掃描電腦斷層掃描(computer tomography, CT)或磁振造影(magnetic resonance imaging, MRI)的功能。舉例而言,壓電式超聲波換能器300可作為高強度聚焦或非聚焦超音波治療系統,例如可作為海福超聲波刀(HIFU),其可為單一陣元或排成陣列的多陣元換能器,而微機械超聲波換能器400可具有排成一維陣列或二維陣列的陣元,其可執行即時病兆的標定。The
圖3為本發明的另一實施例的超聲波換能模組的剖面示意圖。請參照圖3,本實施例的超聲波換能模組200a類似圖2A的超聲波換能模組200,而兩者的差異如下所述。在本實施例的超聲波換能模組200a中,微機械超聲波換能器400a為壓電式微機械超聲波換能器(piezoelectric micromachined ultrasonic transducers, PMUT),其包括擋牆440、第三電極410、第四電極420、薄膜450及壓電式薄膜460。擋牆440形成有多個微空腔430,第三電極410與第四電極420皆位於微空腔430的上方,薄膜450跨越微空腔430之上,而第三電極410配置於薄膜450上。壓電式薄膜460配置於第三電極410上,且第四電極420配置於壓電式薄膜460上。當對第三電極410與第四電極420施加電壓變化時,會使壓電式薄膜460產生振動,並使得薄膜450振動,而發出超聲波。另一方面,當外界的超聲波傳遞至壓電式薄膜460而使其產生振動時,第三電極410與第四電極420之間的電壓會因為壓電效應而產生變化,而使第三電極410與第四電極420輸出具有變化的電壓訊號。控制器220可感測及分析第三電極410與第四電極420之間的電壓變化,進而達成對外來超聲波的感測功能。此外,壓電式薄膜460及第三電極410與第四電極420中的其中一電極可隨著微空腔430分割成多個單元,以形成多個陣元。Figure 3 is a schematic cross-sectional view of an ultrasonic transducer module according to another embodiment of the present invention. Please refer to Figure 3. The
更進一步地,壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者中至少之一者可用以發送超聲波訊號,而壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者中至少之一者亦可用以接收超聲波訊號,而且壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者所發送及/或接收的超聲波訊號可彼此溝通,來達到各個超聲波之應用。Furthermore, at least one of the piezoelectric
綜上所述,在本發明的實施例的超聲波換能模組與超聲波探頭中,採用了堆疊的壓電式超聲波換能器與微機械超聲波換能器,而壓電式超聲波換能器與微機械超聲波換能器可以作不同的超聲波感測或輸出。因此,本發明的實施例的超聲波換能模組與超聲波探頭具有較廣泛的功能。To sum up, in the ultrasonic transducer module and ultrasonic probe of the embodiment of the present invention, a stacked piezoelectric ultrasonic transducer and a micromachined ultrasonic transducer are used, and the piezoelectric ultrasonic transducer and Micromachined ultrasonic transducers can perform different ultrasonic sensing or output. Therefore, the ultrasonic transducer module and ultrasonic probe according to the embodiment of the present invention have a wider range of functions.
50:待測物
52、54:反射波
100:超聲波探頭
110:手持握把
112:第一端
114:第二端
200、200a:超聲波換能模組
210:基底
220:控制器
230:匹配層
300:壓電式超聲波換能器
302、402:超聲波
310:第一電極
320:第二電極
330:壓電式層
400、400a:微機械超聲波換能器
410:第三電極
420:第四電極
430:微空腔
440:擋牆
450:薄膜
460:壓電式薄膜
50:Object to be tested
52, 54: Reflected wave
100: Ultrasonic probe
110:Hand-held grip
112:First end
114:
圖1為本發明的一實施例的超聲波探頭的爆炸示意圖。 圖2A為圖1中的超聲波換能模組的一實施例的剖面示意圖。 圖2B是圖2A的超聲波換能模組的另一應用模式的剖面示意圖。 圖2C是圖2A的超聲波換能模組的又一應用模式的剖面示意圖。 圖3為本發明的另一實施例的超聲波換能模組的剖面示意圖。 Figure 1 is an exploded schematic diagram of an ultrasonic probe according to an embodiment of the present invention. FIG. 2A is a schematic cross-sectional view of an embodiment of the ultrasonic transducer module in FIG. 1 . FIG. 2B is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in FIG. 2A . Figure 2C is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in Figure 2A. Figure 3 is a schematic cross-sectional view of an ultrasonic transducer module according to another embodiment of the present invention.
100:超聲波探頭 100: Ultrasonic probe
110:手持握把 110:Hand-held grip
112:第一端 112:First end
114:第二端 114:Second end
200:超聲波換能模組 200: Ultrasonic transducer module
210:基底 210: Base
300:壓電式超聲波換能器 300: Piezoelectric ultrasonic transducer
400:微機械超聲波換能器 400: Micromachined ultrasonic transducer
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111126810A TWI822190B (en) | 2022-07-18 | 2022-07-18 | Ultrasonic transducing module and ultrasonic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111126810A TWI822190B (en) | 2022-07-18 | 2022-07-18 | Ultrasonic transducing module and ultrasonic probe |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI822190B true TWI822190B (en) | 2023-11-11 |
TW202404536A TW202404536A (en) | 2024-02-01 |
Family
ID=89722411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111126810A TWI822190B (en) | 2022-07-18 | 2022-07-18 | Ultrasonic transducing module and ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI822190B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112839591A (en) * | 2018-10-19 | 2021-05-25 | 奥林巴斯株式会社 | Ultrasonic probe and ultrasonic endoscope |
CN114652344A (en) * | 2016-06-20 | 2022-06-24 | 蝴蝶网络有限公司 | Universal ultrasound device and related apparatus and methods |
-
2022
- 2022-07-18 TW TW111126810A patent/TWI822190B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114652344A (en) * | 2016-06-20 | 2022-06-24 | 蝴蝶网络有限公司 | Universal ultrasound device and related apparatus and methods |
CN112839591A (en) * | 2018-10-19 | 2021-05-25 | 奥林巴斯株式会社 | Ultrasonic probe and ultrasonic endoscope |
Also Published As
Publication number | Publication date |
---|---|
TW202404536A (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dangi et al. | A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs) | |
Joseph et al. | Applications of capacitive micromachined ultrasonic transducers: A comprehensive review | |
US8698377B2 (en) | Dual-mode piezocomposite ultrasonic transducer | |
JP5589826B2 (en) | Ultrasonic sensor | |
CN111250376B (en) | Multi-frequency self-focusing micro-mechanical ultrasonic transducer | |
Chen et al. | PMN-PT single-crystal high-frequency kerfless phased array | |
Sammoura et al. | An analytical solution for curved piezoelectric micromachined ultrasonic transducers with spherically shaped diaphragms | |
KR101915255B1 (en) | Method of manufacturing the ultrasonic probe and the ultrasonic probe | |
Moisello et al. | PMUT and CMUT devices for biomedical applications: A review | |
JP2008073391A (en) | Ultrasonic diagnostic apparatus | |
TWI822190B (en) | Ultrasonic transducing module and ultrasonic probe | |
JP5834679B2 (en) | Ultrasonic probe and ultrasonic diagnostic imaging apparatus | |
Gao et al. | Design of polymer-based PMUT array for multi-frequency ultrasound imaging | |
WO2022210887A1 (en) | Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus | |
US20240019406A1 (en) | Ultrasonic transducing module and ultrasonic probe | |
JP5682762B2 (en) | Piezoelectric device and ultrasonic probe | |
JP2020115940A (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
CN113438987B (en) | Acoustic coupling interface | |
WO2022210851A1 (en) | Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device | |
Ledesma et al. | Fully integrated pitch-matched AlScN PMUT-on-CMOS array for high resolution Ultrasound Images | |
JP6141713B2 (en) | Method for obtaining structural information inside a living body | |
JP5780347B2 (en) | Biopsy device | |
Cheng et al. | A miniature capacitive ultrasonic imager array | |
RU2769757C2 (en) | Ultrasonic converter and method of controlling it | |
JP6744769B2 (en) | Ultrasonic diagnostic apparatus and method for acquiring ultrasonic image inside living body |