TWI822190B - Ultrasonic transducing module and ultrasonic probe - Google Patents

Ultrasonic transducing module and ultrasonic probe Download PDF

Info

Publication number
TWI822190B
TWI822190B TW111126810A TW111126810A TWI822190B TW I822190 B TWI822190 B TW I822190B TW 111126810 A TW111126810 A TW 111126810A TW 111126810 A TW111126810 A TW 111126810A TW I822190 B TWI822190 B TW I822190B
Authority
TW
Taiwan
Prior art keywords
ultrasonic transducer
ultrasonic
piezoelectric
micromachined
wave
Prior art date
Application number
TW111126810A
Other languages
Chinese (zh)
Other versions
TW202404536A (en
Inventor
蔣富昇
Original Assignee
佳世達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳世達科技股份有限公司 filed Critical 佳世達科技股份有限公司
Priority to TW111126810A priority Critical patent/TWI822190B/en
Application granted granted Critical
Publication of TWI822190B publication Critical patent/TWI822190B/en
Publication of TW202404536A publication Critical patent/TW202404536A/en

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonic transducing module including a base, a piezoelectric ultrasonic transducer, and a micromachined ultrasonic transducer is provided. The piezoelectric ultrasonic transducer is disposed on the base. The micromachined ultrasonic transducer is disposed on the piezoelectric ultrasonic transducer. The piezoelectric ultrasonic transducer is disposed between the base and the micromachined ultrasonic transducer. An ultrasonic wave emitted by the piezoelectric ultrasonic transducer penetrates through the micromachined ultrasonic transducer and is then transmitted to the outside. An ultrasonic probe is also provided.

Description

超聲波換能模組及超聲波探頭Ultrasonic transducer module and ultrasonic probe

本發明是有關於一種換能器及探頭,且特別是有關於一種超聲波換能模組及超聲波探頭。The present invention relates to a transducer and a probe, and in particular, to an ultrasonic transducer module and an ultrasonic probe.

超聲波換能器是在超聲波頻率範圍內,實現聲能和電能相互轉換的換能器。超聲波換能器主要可分為三類:1.發射器;2.接收器;以及3.收發兩用型換能器。用來發射超聲波的換能器稱為發射器,當換能器處於發射狀態時,將電能轉換為機械能,再轉換為聲能。用來接收聲波的換能器稱為接收器,當換能器處於接收狀態時,將聲能轉換為機械能,再轉換為電能。在有些情況下,換能器既可用作發射器,又可用作接收器,稱為收發兩用型換能器。收發兩用型換能器是超聲波技術的核心內容和關鍵技術之一,廣泛應用於無損檢測、醫學影像、超聲波顯微鏡、指紋識別及物聯網等領域。Ultrasonic transducer is a transducer that realizes mutual conversion of sound energy and electrical energy within the ultrasonic frequency range. Ultrasonic transducers can be mainly divided into three categories: 1. Transmitter; 2. Receiver; and 3. Transceiver transducer. The transducer used to emit ultrasonic waves is called a transmitter. When the transducer is in the transmitting state, it converts electrical energy into mechanical energy and then into sound energy. The transducer used to receive sound waves is called a receiver. When the transducer is in the receiving state, it converts sound energy into mechanical energy and then into electrical energy. In some cases, the transducer can be used as both a transmitter and a receiver, which is called a transceiver. Transceiver transducers are the core content and one of the key technologies of ultrasonic technology, and are widely used in non-destructive testing, medical imaging, ultrasonic microscopes, fingerprint recognition, and the Internet of Things.

傳統的超聲波換能器在檢測人體時,因應待偵測的組識或部位的不同(例如心臟、頸動脈、腹部…等)需求,所使用的超聲波的頻率及解析度也會不同。此時,每當換不同的部位來作超聲波影像檢測時,往往需要更換不同的超聲波換能器,如此會造成使用上的不便及器材成本的增加。When traditional ultrasonic transducers detect the human body, the frequency and resolution of the ultrasonic waves used will be different depending on the different components or parts to be detected (such as the heart, carotid artery, abdomen, etc.). At this time, whenever different parts are used for ultrasonic image detection, it is often necessary to replace different ultrasonic transducers, which will cause inconvenience in use and increase equipment costs.

本發明提供一種超聲波換能模組,其具有較廣泛的功能。The invention provides an ultrasonic transducer module, which has a wide range of functions.

本發明提供一種超聲波探頭,其具有較廣泛的功能。The invention provides an ultrasonic probe, which has a wide range of functions.

本發明的一實施例提出一種超聲波換能模組,包括一基底、一壓電式超聲波換能器(piezoelectric ultrasonic transducer)及一微機械超聲波換能器(micromachined ultrasonic transducer)。壓電式超聲波換能器配置於基底上,微機械超聲波換能器配置於壓電式超聲波換能器上。壓電式超聲波換能器配置於基底與微機械超聲波換能器之間,壓電式超聲波換能器所發出的超聲波穿透微機械超聲波換能器而傳遞至外界。An embodiment of the present invention provides an ultrasonic transducer module, which includes a substrate, a piezoelectric ultrasonic transducer and a micromachined ultrasonic transducer. The piezoelectric ultrasonic transducer is arranged on the substrate, and the micromachined ultrasonic transducer is arranged on the piezoelectric ultrasonic transducer. The piezoelectric ultrasonic transducer is arranged between the substrate and the micromachined ultrasonic transducer, and the ultrasonic waves emitted by the piezoelectric ultrasonic transducer penetrate the micromachined ultrasonic transducer and are transmitted to the outside world.

本發明的一實施例提出一種超聲波探頭,包括一手持握把、一壓電式超聲波換能器及一微機械超聲波換能器。手持握把具有一第一端與一第二端,壓電式超聲波換能器配置於手持握把的第一端上,微機械超聲波換能器配置於壓電式超聲波換能器上。壓電式超聲波換能器與微機械超聲波換能器中較靠近第二端之一者所發出的超聲波穿透壓電式超聲波換能器與微機械超聲波換能器中另一較遠離第二端者而傳遞至外界。An embodiment of the present invention provides an ultrasonic probe, which includes a hand grip, a piezoelectric ultrasonic transducer, and a micromachined ultrasonic transducer. The handheld grip has a first end and a second end, the piezoelectric ultrasonic transducer is disposed on the first end of the handgrip, and the micromechanical ultrasonic transducer is disposed on the piezoelectric ultrasonic transducer. The ultrasonic wave emitted by the one of the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer that is closer to the second end penetrates the other of the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer that is farther away from the second end. The correct ones are passed to the outside world.

在本發明的實施例的超聲波換能模組與超聲波探頭中,採用了堆疊的壓電式超聲波換能器與微機械超聲波換能器,而壓電式超聲波換能器與微機械超聲波換能器可以作不同的超聲波感測或輸出。因此,本發明的實施例的超聲波換能模組與超聲波探頭具有較廣泛的功能。In the ultrasonic transducer module and ultrasonic probe of the embodiment of the present invention, stacked piezoelectric ultrasonic transducers and micro-machined ultrasonic transducers are used, and the piezoelectric ultrasonic transducers and micro-machined ultrasonic transducers are The device can perform different ultrasonic sensing or output. Therefore, the ultrasonic transducer module and ultrasonic probe according to the embodiment of the present invention have a wider range of functions.

圖1為本發明的一實施例的超聲波探頭的爆炸示意圖,而圖2A為圖1中的超聲波換能模組的一實施例的剖面示意圖,其中圖2A中的超聲波換能模組的基底沒有繪示出來,基底可參照圖1所繪示。請參照圖1與圖2A,本實施例的超聲波探頭100包括一手持握把110、一壓電式超聲波換能器300及一微機械超聲波換能器400。手持握把110具有一第一端112與一第二端114,壓電式超聲波換能器300配置於手持握把110的第一端112上,微機械超聲波換能器400配置於壓電式超聲波換能器300上。壓電式超聲波換能器300與微機械超聲波換能器400中較靠近第二端114之一者(在圖1與圖2A中例如是壓電式超聲波換能器300)所發出的超聲波302穿透壓電式超聲波換能器300與微機械超聲波換能器400中另一較遠離第二端114者(在圖1與圖2A中例如是微機械超聲波換能器400)而傳遞至外界。Figure 1 is an exploded schematic diagram of an ultrasonic probe according to an embodiment of the present invention, and Figure 2A is a cross-sectional schematic diagram of an embodiment of the ultrasonic transducer module in Figure 1, in which the base of the ultrasonic transducer module in Figure 2A has no To illustrate, the substrate can be referred to as shown in Figure 1 . Referring to FIGS. 1 and 2A , the ultrasonic probe 100 of this embodiment includes a handgrip 110 , a piezoelectric ultrasonic transducer 300 and a micromachined ultrasonic transducer 400 . The handheld grip 110 has a first end 112 and a second end 114. The piezoelectric ultrasonic transducer 300 is disposed on the first end 112 of the handheld grip 110. The micromachined ultrasonic transducer 400 is disposed on the piezoelectric ultrasonic transducer 110. On the ultrasonic transducer 300. The ultrasonic wave 302 emitted by one of the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer 400 that is closer to the second end 114 (for example, the piezoelectric ultrasonic transducer 300 in FIGS. 1 and 2A ) Penetrates the other one of the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer 400 that is farther away from the second end 114 (for example, the micromachined ultrasonic transducer 400 in FIGS. 1 and 2A ) and transmits it to the outside world. .

在本實施例中,壓電式超聲波換能器300配置於手持握把110與微機械超聲波換能器400之間。然而,在其他實施例中,也可以是微機械超聲波換能器400配置於手持握把110與壓電式超聲波換能器300之間。在本實施例中,手持握把110的第一端112上可設有一超聲波換能模組200,超聲波換能模組200包括一基底210、上述壓電式超聲波換能器300及上述微機械超聲波換能器400。壓電式超聲波換能器300配置於基底210上,微機械超聲波換能器400配置於壓電式超聲波換能器300上。壓電式超聲波換能器300配置於基底210與微機械超聲波換能器400之間,壓電式超聲波換能器300所發出的超聲波302穿透微機械超聲波換能器400而傳遞至外界。In this embodiment, the piezoelectric ultrasonic transducer 300 is disposed between the handgrip 110 and the micromachined ultrasonic transducer 400 . However, in other embodiments, the micromachined ultrasonic transducer 400 may also be disposed between the handgrip 110 and the piezoelectric ultrasonic transducer 300 . In this embodiment, an ultrasonic transducer module 200 can be disposed on the first end 112 of the handheld handle 110. The ultrasonic transducer module 200 includes a substrate 210, the above-mentioned piezoelectric ultrasonic transducer 300 and the above-mentioned micro machine. Ultrasonic transducer 400. The piezoelectric ultrasonic transducer 300 is disposed on the substrate 210 , and the micromachined ultrasonic transducer 400 is disposed on the piezoelectric ultrasonic transducer 300 . The piezoelectric ultrasonic transducer 300 is disposed between the substrate 210 and the micromachined ultrasonic transducer 400. The ultrasonic waves 302 emitted by the piezoelectric ultrasonic transducer 300 penetrate the micromachined ultrasonic transducer 400 and are transmitted to the outside world.

在本實施例中,微機械超聲波換能器400例如為電容式微機械超聲波換能器(capacitive micromachined ultrasonic transducer, CMUT),以微機電製程技術製作的微型元件,其製作於矽基體上(silicon substrate)、玻璃(glass)或可撓性基體上,例如SU-8厚膜光阻、有機矽(Polydimethylsiloxane, PDMS)或聚醯亞胺(Polyimide, PI)等,而壓電式超聲波換能器300例如為鋯鈦酸鉛(lead zirconium titanate, PZT)超聲波換能器或單晶超聲波換能器。此外,在本實施例中,微機械超聲波換能器400為薄膜式微機械超聲波換能器,而壓電式超聲波換能器300呈片狀。在一實施例中,微機械超聲波換能器400的厚度T1是落在1微米至10微米的範圍內。In this embodiment, the micromachined ultrasonic transducer 400 is, for example, a capacitive micromachined ultrasonic transducer (CMUT), a micro-component manufactured using micro-electromechanical process technology, which is manufactured on a silicon substrate. ), glass or flexible substrate, such as SU-8 thick film photoresist, polydimethylsiloxane (PDMS) or polyimide (PI), etc., while the piezoelectric ultrasonic transducer 300 For example, it is a lead zirconium titanate (PZT) ultrasonic transducer or a single crystal ultrasonic transducer. In addition, in this embodiment, the micromachined ultrasonic transducer 400 is a film-type micromachined ultrasonic transducer, and the piezoelectric ultrasonic transducer 300 is in a sheet shape. In one embodiment, the thickness T1 of the micromachined ultrasonic transducer 400 falls within the range of 1 micron to 10 microns.

在本實施例中,壓電式超聲波換能器300呈弧形。此外,在本實施例中,微機械超聲波換能器400得具有可撓性,因此,微機械超聲波換能器400可隨著壓電式超聲波換能器300呈現弧形,而壓電式超聲波換能器300與微機械超聲波換能器400配置於基底210的弧形表面,如此可以有效擴大感測的範圍。然而,在另一實施例中,壓電式超聲波換能器300也可以呈平面狀,而微機械超聲波換能器400也可以呈平面狀。In this embodiment, the piezoelectric ultrasonic transducer 300 is in an arc shape. In addition, in this embodiment, the micromachined ultrasonic transducer 400 has flexibility. Therefore, the micromachined ultrasonic transducer 400 can assume an arc shape along with the piezoelectric ultrasonic transducer 300, and the piezoelectric ultrasonic transducer 300 can form an arc. The transducer 300 and the micromachined ultrasonic transducer 400 are disposed on the arc-shaped surface of the substrate 210, which can effectively expand the sensing range. However, in another embodiment, the piezoelectric ultrasonic transducer 300 may also be in a planar shape, and the micromachined ultrasonic transducer 400 may also be in a planar shape.

在本實施例的超聲波換能模組200與超聲波探頭100中,採用了堆疊的壓電式超聲波換能器300與微機械超聲波換能器400,而壓電式超聲波換能器300與微機械超聲波換能器400可以作不同的超聲波感測或輸出。因此,本實施例的超聲波換能模組200與超聲波探頭100具有較廣泛的功能。In the ultrasonic transducer module 200 and the ultrasonic probe 100 of this embodiment, a stacked piezoelectric ultrasonic transducer 300 and a micromachined ultrasonic transducer 400 are used, and the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer are The ultrasonic transducer 400 can perform different ultrasonic sensing or output. Therefore, the ultrasonic transducer module 200 and the ultrasonic probe 100 of this embodiment have wider functions.

在本實施例中,壓電式超聲波換能器300包括一壓電式層330、一第一電極310及一第二電極320。壓電式層330的材質例如為鋯鈦酸鉛,壓電式層330配置於第一電極310與第二電極320之間。當第一電極310與第二電極320之間被施加電壓差時,壓電式層330會振動而發出超聲波。另一方面,當來自外界的超聲波傳遞至壓電式層330而振動壓電式層330時,第一電極310與第二電極320之間的電壓會因壓電效應而產生變化,控制器220可感測及分析第一電極310與第二電極320之間的電壓變化,進而達成對外來超聲波的感測功能。壓電式層330及第一電極310與第二電極320的其中之一電極可分割成多個單元,以形成多個陣元。或者,在另一實施例中,壓電式層330、第一電極310與第二電極320也可以不分割,而形成單一陣元。In this embodiment, the piezoelectric ultrasonic transducer 300 includes a piezoelectric layer 330 , a first electrode 310 and a second electrode 320 . The piezoelectric layer 330 is made of, for example, lead zirconate titanate, and the piezoelectric layer 330 is disposed between the first electrode 310 and the second electrode 320 . When a voltage difference is applied between the first electrode 310 and the second electrode 320, the piezoelectric layer 330 will vibrate and emit ultrasonic waves. On the other hand, when ultrasonic waves from the outside are transmitted to the piezoelectric layer 330 and vibrate the piezoelectric layer 330 , the voltage between the first electrode 310 and the second electrode 320 will change due to the piezoelectric effect, and the controller 220 The voltage change between the first electrode 310 and the second electrode 320 can be sensed and analyzed to achieve the sensing function of external ultrasonic waves. The piezoelectric layer 330 and one of the first electrode 310 and the second electrode 320 can be divided into multiple units to form multiple array elements. Alternatively, in another embodiment, the piezoelectric layer 330, the first electrode 310 and the second electrode 320 may not be divided and form a single array element.

在本實施例中,微機械超聲波換能器400包括一擋牆440、一第三電極410、一第四電極420及一薄膜450。擋牆440形成有多個微空腔430,微空腔430位於第三電極410與第四電極420之間,薄膜450跨越微空腔430之上,而第四電極420配置於薄膜450上。薄膜450例如為可撓膜,其可受力變形。當對第三電極410與第四電極420施加電壓變化時,會因為第三電極410與第四電極420之間的電力線變化,而使得薄膜450振動,而發出超聲波。另一方面,當第三電極410與第四電極420之間施加適當的電壓時,外界的超聲波傳遞至薄膜450而使薄膜450產生振動,使第三電極410與第四電極420輸出具有變化的電流訊號。控制器220可控制、感測及分析第三電極410與第四電極420之間的電訊號,進而達成對外發出超聲波以及超聲波的感測功能。此外,第四電極420可隨著微空腔430分割成多個單元,以形成多個陣元。微機械超聲波換能器400可以是相控陣型換能器(phase array transducer)、直線形或弧形換能器。In this embodiment, the micromachined ultrasonic transducer 400 includes a blocking wall 440, a third electrode 410, a fourth electrode 420 and a thin film 450. The retaining wall 440 is formed with a plurality of microcavities 430. The microcavities 430 are located between the third electrode 410 and the fourth electrode 420. The film 450 spans over the microcavities 430, and the fourth electrode 420 is disposed on the film 450. The film 450 is, for example, a flexible film, which can be deformed by force. When a voltage change is applied to the third electrode 410 and the fourth electrode 420, the thin film 450 vibrates due to the change in the electric force line between the third electrode 410 and the fourth electrode 420, thereby emitting ultrasonic waves. On the other hand, when an appropriate voltage is applied between the third electrode 410 and the fourth electrode 420, the external ultrasonic wave is transmitted to the film 450 to cause the film 450 to vibrate, so that the output of the third electrode 410 and the fourth electrode 420 has a changing current signal. The controller 220 can control, sense and analyze the electrical signal between the third electrode 410 and the fourth electrode 420, thereby achieving the function of emitting ultrasonic waves and ultrasonic wave sensing to the outside. In addition, the fourth electrode 420 can be divided into multiple units along with the microcavity 430 to form multiple array elements. The micromachined ultrasonic transducer 400 may be a phase array transducer, a linear or arc-shaped transducer.

請參照圖2A,超聲波換能模組200更包括控制器220,電性連接至壓電式超聲波換能器300與微機械超聲波換能器400,例如是電性連接至第一電極310、第二電極320、第三電極410及第四電極420。控制器220用以命令壓電式超聲波換能器300發出超聲波302,超聲波302穿透微機械超聲波換能器400而傳遞至一待測物50,待測物50將超聲波302反射成一反射波52,且微機械超聲波換能器400接收反射波52。如此一來,便可藉由微機械超聲波換能器400感測到待測物50。如此之超聲波換能模組200可以用來作為超聲波刀、電燒刀、雷射針灸、光療等熱監控。舉例而言,壓電式超聲波換能器300可作為高強度聚焦超音波治療系統(high intensity focused ultrasound therapeutic system, HIFU),例如為單一陣元的換能器,而微機械超聲波換能器400可作為用以觀測超聲波影像的感測陣列(即多陣元)。Referring to FIG. 2A, the ultrasonic transducer module 200 further includes a controller 220, which is electrically connected to the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer 400, for example, electrically connected to the first electrode 310, the first electrode 310, and the first electrode 310. Two electrodes 320, a third electrode 410 and a fourth electrode 420. The controller 220 is used to command the piezoelectric ultrasonic transducer 300 to emit an ultrasonic wave 302. The ultrasonic wave 302 penetrates the micromachined ultrasonic transducer 400 and is transmitted to an object to be measured 50. The object to be measured 50 reflects the ultrasonic wave 302 into a reflected wave 52. , and the micromachined ultrasonic transducer 400 receives the reflected wave 52 . In this way, the object to be measured 50 can be sensed through the micromachined ultrasonic transducer 400 . In this way, the ultrasonic transducer module 200 can be used for thermal monitoring of ultrasonic knife, electric cautery knife, laser acupuncture, phototherapy, etc. For example, the piezoelectric ultrasonic transducer 300 can be used as a high intensity focused ultrasound therapeutic system (HIFU), such as a single element transducer, and the micromachined ultrasonic transducer 400 It can be used as a sensing array (ie, multiple array elements) for observing ultrasonic images.

在本實施例中,超聲波換能模組200更包括一匹配層230,配置於壓電式超聲波換能器300與微機械超聲波換能器400之間,如此可以幫助降低超聲波在壓電式超聲波換能器300與微機械超聲波換能器400之間傳遞時所遇到的聲阻。此外,在一實施例中,壓電式超聲波換能器300所發出的超聲波302有大於90%的能量穿透微機械超聲波換能器400,而不會造成太多的能量損耗。In this embodiment, the ultrasonic transducer module 200 further includes a matching layer 230 disposed between the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer 400, which can help reduce the frequency of ultrasonic waves in the piezoelectric ultrasonic transducer. The acoustic resistance encountered during transmission between the transducer 300 and the micromachined ultrasonic transducer 400. In addition, in one embodiment, more than 90% of the energy of the ultrasonic wave 302 emitted by the piezoelectric ultrasonic transducer 300 penetrates the micromachined ultrasonic transducer 400 without causing too much energy loss.

圖2B是圖2A的超聲波換能模組的另一應用模式的剖面示意圖。請參照圖2B,在本實施例的超聲波換能模組200中,控制器220用以命令壓電式超聲波換能器300發出一第一超聲波(即超聲波302),第一超聲波穿透微機械超聲波換能器400而傳遞至待測物50,待測物50將第一超聲波反射成一第一反射波(即反射波52),且壓電式超聲波換能器300接收第一反射波。此外,控制器220用以命令微機械超聲波換能器400發出一第二超聲波(即超聲波402),第二超聲波傳遞至待測物50,待測物50將第二超聲波反射成一第二反射波(即反射波54),且微機械超聲波換能器400接收第二反射波。FIG. 2B is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in FIG. 2A . Please refer to FIG. 2B. In the ultrasonic transducer module 200 of this embodiment, the controller 220 is used to command the piezoelectric ultrasonic transducer 300 to emit a first ultrasonic wave (ie, ultrasonic wave 302). The first ultrasonic wave penetrates the micromachine. The ultrasonic transducer 400 transmits the first ultrasonic wave to the object 50 under test. The object 50 reflects the first ultrasonic wave into a first reflected wave (ie, reflected wave 52), and the piezoelectric ultrasonic transducer 300 receives the first reflected wave. In addition, the controller 220 is used to command the micromachined ultrasonic transducer 400 to emit a second ultrasonic wave (ie, ultrasonic wave 402). The second ultrasonic wave is transmitted to the object under test 50, and the object under test 50 reflects the second ultrasonic wave into a second reflected wave. (ie, reflected wave 54), and the micromachined ultrasonic transducer 400 receives the second reflected wave.

本實施例的超聲波換能模組200可作為多用途整合的超聲波換能模組。舉例而言,壓電式超聲波換能器300可為直線形換能器或弧形換能器,而微機械超聲波換能器400可為相控陣型換能器或二維陣列換能器。此外,壓電式超聲波換能器300的陣元的節距(pitch)可相同於或不同於微機械超聲波換能器400的陣元的節距。此外,當壓電式超聲波換能器300與微機械超聲波換能器400皆為弧形換能器時,兩者的曲率中心可以相同或接近。超聲波換能模組200可以達到診斷與治療合一的效果,例如可以做到膠原蛋白的定位、給藥打破泡泡與血腦屏障。或者,在穿刺應用時,可以利用壓電式超聲波換能器300觀察深度較深的組織,而微機械超聲波換能器400可以用以觀察深度較淺的組織,且第一超聲波與第二超聲波的頻率可以不相同。The ultrasonic transducer module 200 of this embodiment can be used as a multi-purpose integrated ultrasonic transducer module. For example, the piezoelectric ultrasonic transducer 300 can be a linear transducer or a curved transducer, and the micromachined ultrasonic transducer 400 can be a phased array transducer or a two-dimensional array transducer. In addition, the pitch of the array elements of the piezoelectric ultrasonic transducer 300 may be the same as or different from the pitch of the array elements of the micromachined ultrasonic transducer 400 . In addition, when the piezoelectric ultrasonic transducer 300 and the micromechanical ultrasonic transducer 400 are both arc-shaped transducers, the centers of curvature of the two may be the same or close to each other. The ultrasonic transducer module 200 can achieve the effect of integrating diagnosis and treatment, for example, it can locate collagen and deliver drugs to break bubbles and blood-brain barriers. Alternatively, during puncture applications, the piezoelectric ultrasonic transducer 300 can be used to observe deeper tissue, and the micromechanical ultrasonic transducer 400 can be used to observe shallower tissue, and the first ultrasonic wave and the second ultrasonic wave The frequencies can be different.

圖2C是圖2A的超聲波換能模組的又一應用模式的剖面示意圖。請參照圖2C,在本實施例的超聲波換能模組200中,控制器220用以命令壓電式超聲波換能器300發出一第一超聲波(即超聲波302),第一超聲波穿透微機械超聲波換能器400而傳遞至一待測物50。此外,控制器220用以命令微機械超聲波換能器400發出一第二超聲波(即超聲波402),第二超聲波傳遞至待測物50。待測物50將第二超聲波反射成一反射波54,且微機械超聲波換能器400接收反射波54。Figure 2C is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in Figure 2A. Please refer to FIG. 2C. In the ultrasonic transducer module 200 of this embodiment, the controller 220 is used to command the piezoelectric ultrasonic transducer 300 to emit a first ultrasonic wave (ie, ultrasonic wave 302). The first ultrasonic wave penetrates the micromachines. The ultrasonic transducer 400 transmits the ultrasonic wave to an object 50 to be measured. In addition, the controller 220 is used to command the micromachined ultrasonic transducer 400 to emit a second ultrasonic wave (ie, the ultrasonic wave 402 ), and the second ultrasonic wave is transmitted to the object under test 50 . The object under test 50 reflects the second ultrasonic wave into a reflected wave 54 , and the micromechanical ultrasonic transducer 400 receives the reflected wave 54 .

本實施例的超聲波換能模組200可做到破壞性治療定位,以取代一部分的斷層掃描電腦斷層掃描(computer tomography, CT)或磁振造影(magnetic resonance imaging, MRI)的功能。舉例而言,壓電式超聲波換能器300可作為高強度聚焦或非聚焦超音波治療系統,例如可作為海福超聲波刀(HIFU),其可為單一陣元或排成陣列的多陣元換能器,而微機械超聲波換能器400可具有排成一維陣列或二維陣列的陣元,其可執行即時病兆的標定。The ultrasonic transducer module 200 of this embodiment can perform destructive treatment positioning to replace part of the functions of computer tomography (CT) or magnetic resonance imaging (MRI). For example, the piezoelectric ultrasonic transducer 300 can be used as a high-intensity focused or non-focused ultrasonic treatment system, such as a HIFU, which can be a single array element or multiple array elements arranged in an array. The micromachined ultrasonic transducer 400 may have array elements arranged in a one-dimensional array or a two-dimensional array, which can perform calibration of real-time disease symptoms.

圖3為本發明的另一實施例的超聲波換能模組的剖面示意圖。請參照圖3,本實施例的超聲波換能模組200a類似圖2A的超聲波換能模組200,而兩者的差異如下所述。在本實施例的超聲波換能模組200a中,微機械超聲波換能器400a為壓電式微機械超聲波換能器(piezoelectric micromachined ultrasonic transducers, PMUT),其包括擋牆440、第三電極410、第四電極420、薄膜450及壓電式薄膜460。擋牆440形成有多個微空腔430,第三電極410與第四電極420皆位於微空腔430的上方,薄膜450跨越微空腔430之上,而第三電極410配置於薄膜450上。壓電式薄膜460配置於第三電極410上,且第四電極420配置於壓電式薄膜460上。當對第三電極410與第四電極420施加電壓變化時,會使壓電式薄膜460產生振動,並使得薄膜450振動,而發出超聲波。另一方面,當外界的超聲波傳遞至壓電式薄膜460而使其產生振動時,第三電極410與第四電極420之間的電壓會因為壓電效應而產生變化,而使第三電極410與第四電極420輸出具有變化的電壓訊號。控制器220可感測及分析第三電極410與第四電極420之間的電壓變化,進而達成對外來超聲波的感測功能。此外,壓電式薄膜460及第三電極410與第四電極420中的其中一電極可隨著微空腔430分割成多個單元,以形成多個陣元。Figure 3 is a schematic cross-sectional view of an ultrasonic transducer module according to another embodiment of the present invention. Please refer to Figure 3. The ultrasonic transducer module 200a of this embodiment is similar to the ultrasonic transducer module 200 of Figure 2A, and the differences between the two are as follows. In the ultrasonic transducer module 200a of this embodiment, the micromachined ultrasonic transducer 400a is a piezoelectric micromachined ultrasonic transducer (PMUT), which includes a retaining wall 440, a third electrode 410, a Four electrodes 420, thin film 450 and piezoelectric thin film 460. The retaining wall 440 is formed with a plurality of micro cavities 430. The third electrode 410 and the fourth electrode 420 are both located above the micro cavities 430. The thin film 450 spans over the micro cavities 430, and the third electrode 410 is disposed on the thin film 450. . The piezoelectric film 460 is disposed on the third electrode 410 , and the fourth electrode 420 is disposed on the piezoelectric film 460 . When a voltage change is applied to the third electrode 410 and the fourth electrode 420, the piezoelectric film 460 will vibrate, causing the film 450 to vibrate and emit ultrasonic waves. On the other hand, when external ultrasonic waves are transmitted to the piezoelectric film 460 to cause it to vibrate, the voltage between the third electrode 410 and the fourth electrode 420 will change due to the piezoelectric effect, causing the third electrode 410 to vibrate. The fourth electrode 420 outputs a changing voltage signal. The controller 220 can sense and analyze the voltage change between the third electrode 410 and the fourth electrode 420 to achieve the sensing function of external ultrasonic waves. In addition, the piezoelectric film 460 and one of the third electrode 410 and the fourth electrode 420 can be divided into multiple units along with the microcavity 430 to form multiple array elements.

更進一步地,壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者中至少之一者可用以發送超聲波訊號,而壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者中至少之一者亦可用以接收超聲波訊號,而且壓電式超聲波換能器300與微機械超聲波換能器400、400a兩者所發送及/或接收的超聲波訊號可彼此溝通,來達到各個超聲波之應用。Furthermore, at least one of the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducers 400 and 400a can be used to send ultrasonic signals, and the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducer At least one of the transducers 400 and 400a can also be used to receive ultrasonic signals, and the ultrasonic signals sent and/or received by the piezoelectric ultrasonic transducer 300 and the micromachined ultrasonic transducers 400 and 400a can be mutually transmitted. Communicate to achieve various ultrasonic applications.

綜上所述,在本發明的實施例的超聲波換能模組與超聲波探頭中,採用了堆疊的壓電式超聲波換能器與微機械超聲波換能器,而壓電式超聲波換能器與微機械超聲波換能器可以作不同的超聲波感測或輸出。因此,本發明的實施例的超聲波換能模組與超聲波探頭具有較廣泛的功能。To sum up, in the ultrasonic transducer module and ultrasonic probe of the embodiment of the present invention, a stacked piezoelectric ultrasonic transducer and a micromachined ultrasonic transducer are used, and the piezoelectric ultrasonic transducer and Micromachined ultrasonic transducers can perform different ultrasonic sensing or output. Therefore, the ultrasonic transducer module and ultrasonic probe according to the embodiment of the present invention have a wider range of functions.

50:待測物 52、54:反射波 100:超聲波探頭 110:手持握把 112:第一端 114:第二端 200、200a:超聲波換能模組 210:基底 220:控制器 230:匹配層 300:壓電式超聲波換能器 302、402:超聲波 310:第一電極 320:第二電極 330:壓電式層 400、400a:微機械超聲波換能器 410:第三電極 420:第四電極 430:微空腔 440:擋牆 450:薄膜 460:壓電式薄膜 50:Object to be tested 52, 54: Reflected wave 100: Ultrasonic probe 110:Hand-held grip 112:First end 114:Second end 200, 200a: Ultrasonic transducer module 210: Base 220:Controller 230: Matching layer 300: Piezoelectric ultrasonic transducer 302, 402: Ultrasound 310: first electrode 320: Second electrode 330: Piezoelectric layer 400, 400a: Micromachined ultrasonic transducer 410:Third electrode 420:Fourth electrode 430:Microcavity 440: retaining wall 450:Thin film 460: Piezoelectric film

圖1為本發明的一實施例的超聲波探頭的爆炸示意圖。 圖2A為圖1中的超聲波換能模組的一實施例的剖面示意圖。 圖2B是圖2A的超聲波換能模組的另一應用模式的剖面示意圖。 圖2C是圖2A的超聲波換能模組的又一應用模式的剖面示意圖。 圖3為本發明的另一實施例的超聲波換能模組的剖面示意圖。 Figure 1 is an exploded schematic diagram of an ultrasonic probe according to an embodiment of the present invention. FIG. 2A is a schematic cross-sectional view of an embodiment of the ultrasonic transducer module in FIG. 1 . FIG. 2B is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in FIG. 2A . Figure 2C is a schematic cross-sectional view of another application mode of the ultrasonic transducer module in Figure 2A. Figure 3 is a schematic cross-sectional view of an ultrasonic transducer module according to another embodiment of the present invention.

100:超聲波探頭 100: Ultrasonic probe

110:手持握把 110:Hand-held grip

112:第一端 112:First end

114:第二端 114:Second end

200:超聲波換能模組 200: Ultrasonic transducer module

210:基底 210: Base

300:壓電式超聲波換能器 300: Piezoelectric ultrasonic transducer

400:微機械超聲波換能器 400: Micromachined ultrasonic transducer

Claims (15)

一種超聲波換能模組,包括:一基底;一壓電式超聲波換能器,配置於該基底上;以及一微機械超聲波換能器,配置於該壓電式超聲波換能器上,其中壓電式超聲波換能器配置於該基底與該微機械超聲波換能器之間,該壓電式超聲波換能器所發出的超聲波穿透該微機械超聲波換能器而傳遞至外界,該微機電超聲波換能器覆蓋配置該壓電式超聲波換能器之上。 An ultrasonic transducer module, including: a substrate; a piezoelectric ultrasonic transducer, configured on the substrate; and a micro-mechanical ultrasonic transducer, configured on the piezoelectric ultrasonic transducer, wherein the voltage An electrical ultrasonic transducer is disposed between the substrate and the micromachined ultrasonic transducer. The ultrasonic waves emitted by the piezoelectric ultrasonic transducer penetrate the micromachined ultrasonic transducer and are transmitted to the outside world. The microelectromechanical The ultrasonic transducer is configured to cover the piezoelectric ultrasonic transducer. 如請求項1所述的超聲波換能模組,其中該微機械超聲波換能器為電容式微機械超聲波換能器或壓電式微機械超聲波換能器。 The ultrasonic transducer module as claimed in claim 1, wherein the micromachined ultrasonic transducer is a capacitive micromachined ultrasonic transducer or a piezoelectric micromachined ultrasonic transducer. 如請求項1所述的超聲波換能模組,其中該微機械超聲波換能器為薄膜式微機械超聲波換能器。 The ultrasonic transducer module as claimed in claim 1, wherein the micro-machined ultrasonic transducer is a thin-film micro-machined ultrasonic transducer. 如請求項3所述的超聲波換能模組,其中該微機械超聲波換能器具有可撓性。 The ultrasonic transducer module as claimed in claim 3, wherein the micromachined ultrasonic transducer is flexible. 如請求項1所述的超聲波換能模組,其中該壓電式超聲波換能器呈弧形。 The ultrasonic transducer module as claimed in claim 1, wherein the piezoelectric ultrasonic transducer is arc-shaped. 如請求項1所述的超聲波換能模組,更包括一控制器,電性連接至該壓電式超聲波換能器與該微機械超聲波換能器,其中該控制器用以命令該壓電式超聲波換能器發出該超聲波,該超聲波穿透該微機械超聲波換能器而傳遞至一待測物,該 待測物將該超聲波反射成一反射波,且該微機械超聲波換能器接收該反射波。 The ultrasonic transducer module of claim 1 further includes a controller electrically connected to the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer, wherein the controller is used to command the piezoelectric ultrasonic transducer. The ultrasonic transducer emits the ultrasonic wave, and the ultrasonic wave penetrates the micromachined ultrasonic transducer and is transmitted to an object to be measured. The object under test reflects the ultrasonic wave into a reflected wave, and the micromechanical ultrasonic transducer receives the reflected wave. 如請求項1所述的超聲波換能模組,更包括一控制器,電性連接至該壓電式超聲波換能器與該微機械超聲波換能器,其中該控制器用以命令該壓電式超聲波換能器發出一第一超聲波,該第一超聲波穿透該微機械超聲波換能器而傳遞至一待測物,該待測物將該第一超聲波反射成一第一反射波,且該壓電式超聲波換能器接收該第一反射波,該控制器用以命令該微機械超聲波換能器發出一第二超聲波,該第二超聲波傳遞至該待測物,該待測物將該第二超聲波反射成一第二反射波,且該微機械超聲波換能器接收該第二反射波。 The ultrasonic transducer module of claim 1 further includes a controller electrically connected to the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer, wherein the controller is used to command the piezoelectric ultrasonic transducer. The ultrasonic transducer emits a first ultrasonic wave. The first ultrasonic wave penetrates the micromachined ultrasonic transducer and is transmitted to an object to be measured. The object to be measured reflects the first ultrasonic wave into a first reflected wave, and the pressure The electrical ultrasonic transducer receives the first reflected wave, and the controller is used to command the micro-mechanical ultrasonic transducer to emit a second ultrasonic wave. The second ultrasonic wave is transmitted to the object under test, and the object under test transmits the second ultrasonic wave. The ultrasonic wave is reflected into a second reflected wave, and the micromechanical ultrasonic transducer receives the second reflected wave. 如請求項1所述的超聲波換能模組,更包括一控制器,電性連接至該壓電式超聲波換能器與該微機械超聲波換能器,其中該控制器用以命令該壓電式超聲波換能器發出一第一超聲波,該第一超聲波穿透該微機械超聲波換能器而傳遞至一待測物,該控制器用以命令該微機械超聲波換能器發出一第二超聲波,該第二超聲波傳遞至該待測物,該待測物將該第二超聲波反射成一反射波,且該微機械超聲波換能器接收該反射波。 The ultrasonic transducer module of claim 1 further includes a controller electrically connected to the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer, wherein the controller is used to command the piezoelectric ultrasonic transducer. The ultrasonic transducer emits a first ultrasonic wave. The first ultrasonic wave penetrates the micro-machined ultrasonic transducer and is transmitted to an object to be measured. The controller is used to command the micro-machined ultrasonic transducer to emit a second ultrasonic wave. The second ultrasonic wave is transmitted to the object to be measured, the object to be measured reflects the second ultrasonic wave into a reflected wave, and the micromachined ultrasonic transducer receives the reflected wave. 一種超聲波探頭,包括:一手持握把,具有一第一端與一第二端;一壓電式超聲波換能器,配置於該手持握把的該第一端上;以及 一微機械超聲波換能器,配置於該壓電式超聲波換能器上,其中該壓電式超聲波換能器與該微機械超聲波換能器中較靠近該第二端之一者所發出的超聲波穿透該壓電式超聲波換能器與該微機械超聲波換能器中較遠離該第二端之一者而傳遞至外界,該壓電式超聲波換能器與該微機械超聲波換能器中較遠離該第二端之一者覆蓋配置該壓電式超聲波換能器與該微機械超聲波換能器中較靠近該第二端之一者之上。 An ultrasonic probe includes: a handgrip having a first end and a second end; a piezoelectric ultrasonic transducer disposed on the first end of the handgrip; and A micro-machined ultrasonic transducer, configured on the piezoelectric ultrasonic transducer, wherein the piezoelectric ultrasonic transducer and the micro-machined ultrasonic transducer emit a sound that is closer to the second end. The ultrasonic wave penetrates the one of the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer that is farther away from the second end and is transmitted to the outside world. The piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer The one farther away from the second end covers the piezoelectric ultrasonic transducer and the one closer to the second end of the micromechanical ultrasonic transducer. 如請求項9所述的超聲波探頭,其中該微機械超聲波換能器為電容式微機械超聲波換能器或壓電式微機械超聲波換能器。 The ultrasonic probe according to claim 9, wherein the micromachined ultrasonic transducer is a capacitive micromachined ultrasonic transducer or a piezoelectric micromachined ultrasonic transducer. 如請求項9所述的超聲波探頭,其中該微機械超聲波換能器為薄膜式微機械超聲波換能器。 The ultrasonic probe according to claim 9, wherein the micro-machined ultrasonic transducer is a thin-film micro-machined ultrasonic transducer. 如請求項9所述的超聲波探頭,其中該微機械超聲波換能器具有可撓性。 The ultrasonic probe according to claim 9, wherein the micromachined ultrasonic transducer is flexible. 如請求項9所述的超聲波探頭,其中該該壓電式超聲波換能器呈弧形。 The ultrasonic probe according to claim 9, wherein the piezoelectric ultrasonic transducer is arc-shaped. 如請求項9所述的超聲波探頭,其中該壓電式超聲波換能器配置於該手持握把與該微機械超聲波換能器之間。 The ultrasonic probe of claim 9, wherein the piezoelectric ultrasonic transducer is disposed between the hand grip and the micro-mechanical ultrasonic transducer. 如請求項14所述的超聲波探頭,更包括一控制器,電性連接至該壓電式超聲波換能器與該微機械超聲波換能器,其中該控制器用以命令該壓電式超聲波換能器發出該超聲波,該超聲波穿透該微機械超聲波換能器而傳遞至一待測物,該 待測物將該超聲波反射成一反射波,且該微機械超聲波換能器接收該反射波。 The ultrasonic probe according to claim 14, further comprising a controller electrically connected to the piezoelectric ultrasonic transducer and the micromachined ultrasonic transducer, wherein the controller is used to command the piezoelectric ultrasonic transducer The device emits the ultrasonic wave, and the ultrasonic wave penetrates the micromachined ultrasonic transducer and is transmitted to an object to be measured. The object under test reflects the ultrasonic wave into a reflected wave, and the micromechanical ultrasonic transducer receives the reflected wave.
TW111126810A 2022-07-18 2022-07-18 Ultrasonic transducing module and ultrasonic probe TWI822190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111126810A TWI822190B (en) 2022-07-18 2022-07-18 Ultrasonic transducing module and ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111126810A TWI822190B (en) 2022-07-18 2022-07-18 Ultrasonic transducing module and ultrasonic probe

Publications (2)

Publication Number Publication Date
TWI822190B true TWI822190B (en) 2023-11-11
TW202404536A TW202404536A (en) 2024-02-01

Family

ID=89722411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111126810A TWI822190B (en) 2022-07-18 2022-07-18 Ultrasonic transducing module and ultrasonic probe

Country Status (1)

Country Link
TW (1) TWI822190B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839591A (en) * 2018-10-19 2021-05-25 奥林巴斯株式会社 Ultrasonic probe and ultrasonic endoscope
CN114652344A (en) * 2016-06-20 2022-06-24 蝴蝶网络有限公司 Universal ultrasound device and related apparatus and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652344A (en) * 2016-06-20 2022-06-24 蝴蝶网络有限公司 Universal ultrasound device and related apparatus and methods
CN112839591A (en) * 2018-10-19 2021-05-25 奥林巴斯株式会社 Ultrasonic probe and ultrasonic endoscope

Also Published As

Publication number Publication date
TW202404536A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
Dangi et al. A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs)
Joseph et al. Applications of capacitive micromachined ultrasonic transducers: A comprehensive review
US8698377B2 (en) Dual-mode piezocomposite ultrasonic transducer
JP5589826B2 (en) Ultrasonic sensor
CN111250376B (en) Multi-frequency self-focusing micro-mechanical ultrasonic transducer
Chen et al. PMN-PT single-crystal high-frequency kerfless phased array
Sammoura et al. An analytical solution for curved piezoelectric micromachined ultrasonic transducers with spherically shaped diaphragms
KR101915255B1 (en) Method of manufacturing the ultrasonic probe and the ultrasonic probe
Moisello et al. PMUT and CMUT devices for biomedical applications: A review
JP2008073391A (en) Ultrasonic diagnostic apparatus
TWI822190B (en) Ultrasonic transducing module and ultrasonic probe
JP5834679B2 (en) Ultrasonic probe and ultrasonic diagnostic imaging apparatus
Gao et al. Design of polymer-based PMUT array for multi-frequency ultrasound imaging
WO2022210887A1 (en) Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus
US20240019406A1 (en) Ultrasonic transducing module and ultrasonic probe
JP5682762B2 (en) Piezoelectric device and ultrasonic probe
JP2020115940A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
CN113438987B (en) Acoustic coupling interface
WO2022210851A1 (en) Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device
Ledesma et al. Fully integrated pitch-matched AlScN PMUT-on-CMOS array for high resolution Ultrasound Images
JP6141713B2 (en) Method for obtaining structural information inside a living body
JP5780347B2 (en) Biopsy device
Cheng et al. A miniature capacitive ultrasonic imager array
RU2769757C2 (en) Ultrasonic converter and method of controlling it
JP6744769B2 (en) Ultrasonic diagnostic apparatus and method for acquiring ultrasonic image inside living body