TWI822018B - Optimizing method for deployment of charging stations and planning system for charging stations - Google Patents
Optimizing method for deployment of charging stations and planning system for charging stations Download PDFInfo
- Publication number
- TWI822018B TWI822018B TW111116378A TW111116378A TWI822018B TW I822018 B TWI822018 B TW I822018B TW 111116378 A TW111116378 A TW 111116378A TW 111116378 A TW111116378 A TW 111116378A TW I822018 B TWI822018 B TW I822018B
- Authority
- TW
- Taiwan
- Prior art keywords
- charging
- stations
- energy consumption
- total
- charging pile
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000005265 energy consumption Methods 0.000 claims abstract description 58
- 238000005457 optimization Methods 0.000 claims description 43
- 238000011156 evaluation Methods 0.000 claims description 33
- 238000004364 calculation method Methods 0.000 claims description 18
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 2
- 239000000969 carrier Substances 0.000 claims 1
- 230000002354 daily effect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明涉及電動載具的充電站,尤其涉及在進行電動載具的充電站的部署時採用的優化方法,以及實施優化方法的規劃系統。 The present invention relates to charging stations for electric vehicles, and in particular to an optimization method used when deploying charging stations for electric vehicles, and a planning system for implementing the optimization method.
隨著科技進步以及環保意識抬頭,各式電動載具漸漸地普及化。 With the advancement of science and technology and the rise of environmental awareness, various electric vehicles have gradually become popular.
對於電動載具而言,最重要的問題是能源服務(例如充電)的便利性,因此,如何於環境中部署能源服務裝置(例如充電站),實至關重要。對於站點的部署者來說,如何在有限的成本下挑選最適當的位置,以部署適當數量的充電站,是一門很大的學問。 For electric vehicles, the most important issue is the convenience of energy services (such as charging). Therefore, how to deploy energy service devices (such as charging stations) in the environment is really crucial. For site deployers, how to select the most appropriate location to deploy an appropriate number of charging stations at a limited cost is a big knowledge.
然而,目前市場上可見的站點評估方法及系統在進行站點的評估時,所考量的參數不夠全面。例如,大部分的評估系統都是向營運中的營運商取得大量電動載具及充電站的營運模型及歷史數據來進行分析,藉此,依據實際營運狀況來評估新的充電站的建議部署位置。然而,上述方法對於尚不具有營運模型或是尚未開啟營運的公司來說,無法使用。 However, the site evaluation methods and systems currently available on the market do not consider comprehensive parameters when evaluating sites. For example, most evaluation systems obtain a large number of operating models and historical data of electric vehicles and charging stations from operating operators for analysis, thereby evaluating the proposed deployment locations of new charging stations based on actual operating conditions. . However, the above method cannot be used for companies that do not yet have an operating model or have not yet started operations.
再者,前述的充電站主要是實際部署在城市中,供城市中存在的電動載具進行使用。然而,不同的城市具有不同的交通特性(例如道路狀況、交通號誌數量等),因此營運商也需要針對不同的城市提供不同的營運情境。上述評估系統一般不會針對不同的城市進行各別評估,並且不會考量城市的交通特性,因此評估結果容易不符合各個城市中的電動載具的實際需求。 Furthermore, the aforementioned charging stations are mainly actually deployed in cities for use by electric vehicles existing in the city. However, different cities have different traffic characteristics (such as road conditions, number of traffic signals, etc.), so operators also need to provide different operating scenarios for different cities. The above-mentioned evaluation system generally does not conduct separate evaluations for different cities, and does not consider the traffic characteristics of the city. Therefore, the evaluation results may not meet the actual needs of electric vehicles in each city.
本發明的主要目的,在於提供一種充電站的部署之優化方法以及充電站的規劃系統,係將營運區域內的交通特性做為評估參數之一,藉此計算能夠符合電動載具實際所需的充電站的站點數量。 The main purpose of the present invention is to provide an optimization method for the deployment of charging stations and a planning system for charging stations. The traffic characteristics in the operating area are used as one of the evaluation parameters, thereby calculating the actual needs of electric vehicles. Number of charging stations.
為了達成上述的目的,本發明的充電站的部署之優化方法包括下列步驟:a)取得一營運區域內的複數電動載具的一載具物理參數;b)取得該營運區域內使用的一充電樁的一充電樁規格;c)取得該營運區域內的一預期營運情境;d)依據該載具物理參數及該營運情境計算該營運區域內的一總能耗;e)依據該總能耗及該充電樁規格決定該營運區域內所需的一充電站的一站點數量;及f)基於該營運區域內的所有潛在站點及該站點數量決定該營運區域中的該充電站。 In order to achieve the above goals, the optimization method for charging station deployment of the present invention includes the following steps: a) Obtaining a vehicle physical parameter of a plurality of electric vehicles in an operating area; b) Obtaining a charging station used in the operating area Specifications of a charging pile for the pile; c) Obtain an expected operating situation in the operating area; d) Calculate a total energy consumption in the operating area based on the physical parameters of the vehicle and the operating situation; e) Based on the total energy consumption And the specification of the charging pile determines the number of charging stations required in the operating area; and f) determines the charging station in the operating area based on all potential sites in the operating area and the number of sites.
為了達成上述的目的,本發明的充電站的規劃系統包括: 一輸入單元,用以指定一營運區域,並取得該營運區域內的複數電動載具的一載具物理參數、該營運區域內的一充電樁的一充電樁規格及該營運區域內採用的一預期營運情境;處理單元,連接該輸入單元,並且包括:一總能耗評估模組,依據該載具物理參數及該營運情境計算該營運區域內的一總能耗;及一站點數量評估模組,依據該總能耗及該充電樁規格決定該營運區域內所需的一充電站的一站點數量;及一輸出單元,連接該處理單元,輸出該站點數量,其中該站點數量被用來與該營運區域內的所有潛在站點共同決定該營運區域內的複數該充電站。 In order to achieve the above objectives, the charging station planning system of the present invention includes: An input unit is used to designate an operation area and obtain a vehicle physical parameter of a plurality of electric vehicles in the operation area, a charging pile specification of a charging pile in the operation area and a charging pile used in the operation area. The expected operating scenario; the processing unit is connected to the input unit and includes: a total energy consumption assessment module that calculates a total energy consumption in the operating area based on the physical parameters of the vehicle and the operating scenario; and a site quantity assessment module A module determines the number of charging stations required in the operating area based on the total energy consumption and the specifications of the charging pile; and an output unit is connected to the processing unit and outputs the number of stations, where the station The quantity is used together with all potential sites within the operating area to determine the plurality of charging stations within the operating area.
本發明考量營運區域中的電動載具的載具物理參數以及預期營運情境,藉此決定營運區域內所需的充電站的站點數量。由於考量了營運區域內獨特的交通特性,因此可確保所決定的站點數量能夠滿足營運區域中的電動載具的實際充電需求。 This invention considers the vehicle physical parameters of the electric vehicle in the operation area and the expected operation situation, thereby determining the number of charging stations required in the operation area. Taking into account the unique traffic characteristics within the operating area, it is ensured that the number of stations determined can meet the actual charging needs of electric vehicles in the operating area.
1:規劃系統 1: Planning system
11:處理單元 11: Processing unit
111:資料預處理模組 111:Data preprocessing module
112:總能耗評估模組 112:Total energy consumption assessment module
113:站點數量評估模組 113: Site quantity evaluation module
114:服務範圍群組生成模組 114: Service scope group generation module
115:選站模組 115:Site selection module
12:輸入單元 12:Input unit
13:輸出單元 13:Output unit
2:資料來源伺服器 2:Data source server
3:站點配置資訊 3: Site configuration information
4:營運區域 4: Operation area
41:道路 41:Road
42:交通號誌 42: Traffic Signal
5:充電站 5: Charging station
6:服務範圍群組 6: Service scope group
7:電動載具 7: Electric vehicles
8:潛在站點 8:Potential sites
80:服務範圍 80:Service scope
91:第一服務範圍群組 91: First service scope group
91:第二服務範圍群組 91: Second service scope group
93:第三服務範圍群組 93:Third service scope group
94:第四服務範圍群組 94: The fourth service scope group
95:第五服務範圍群組 95: The fifth service scope group
R1:路徑 R1: path
S20~S30:計算步驟 S20~S30: Calculation steps
S40~S46:計算步驟 S40~S46: Calculation steps
S50~S64:部署步驟 S50~S64: Deployment steps
圖1為本發明的規劃系統的方塊圖的具體實施例。 Figure 1 is a block diagram of a specific embodiment of the planning system of the present invention.
圖2為本發明的優化方法的流程圖的具體實施例。 Figure 2 is a specific embodiment of the flow chart of the optimization method of the present invention.
圖3為本發明的充電站部署示意圖的第一具體實施例。 Figure 3 is a first specific embodiment of the charging station deployment schematic diagram of the present invention.
圖4為本發明的交通號誌示意圖的具體實施例。 Figure 4 is a specific embodiment of the traffic signal schematic diagram of the present invention.
圖5為本發明的交通延滯成本的計算流程圖的具體實施例。 Figure 5 is a specific embodiment of the traffic delay cost calculation flow chart of the present invention.
圖6為本發明的部署方法的流程圖的具體實施例。 Figure 6 is a specific embodiment of the flow chart of the deployment method of the present invention.
圖7為本發明的服務範圍示意圖的具體實施例。 Figure 7 is a specific embodiment of a schematic diagram of the service scope of the present invention.
圖8為本發明的服務範圍群組示意圖的具體實施例。 Figure 8 is a specific embodiment of a schematic diagram of a service scope group of the present invention.
圖9為本發明的充電站部署示意圖的第二具體實施例。 Figure 9 is a second specific embodiment of the charging station deployment schematic diagram of the present invention.
茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 A preferred embodiment of the present invention is described in detail below with reference to the drawings.
本發明揭露了一種充電站的部署之優化方法(下面將於說明書中簡稱為優化方法)。本發明的優化方法主要用於對充電站的部署方法進行優化,使得充電站的部署結果能夠更符合特定區域的實際需求。 The present invention discloses an optimization method for the deployment of charging stations (hereinafter referred to as the optimization method in the specification). The optimization method of the present invention is mainly used to optimize the deployment method of charging stations, so that the deployment results of charging stations can better meet the actual needs of specific areas.
具體地,前述部署方法被執行於對一個指定的營運區域中已知能夠使用的多個潛在站點進行分析與評估,藉此挑選出其中最適當的多個站點來部署為實際營運時的充電站。 Specifically, the aforementioned deployment method is performed by analyzing and evaluating multiple potential sites that are known to be usable in a designated operating area, thereby selecting the most appropriate sites among them for deployment in actual operations. Charging station.
一般來說,在透過上述部署方法來挑選充電站時,部署者僅能依據成本考量或是過往營運搜集的歷史資料來預設一個要部署的站點數量。然而,每一個營運區域皆有不同的特性,部署者依其主觀意思所設定的站點數量,可能會不符合營運區域的實際需求。 Generally speaking, when selecting charging stations through the above deployment methods, the deployer can only preset the number of stations to be deployed based on cost considerations or historical data collected from past operations. However, each operating area has different characteristics, and the number of sites set by the deployer based on his subjective wishes may not meet the actual needs of the operating area.
本發明的優化方法是在使用上述部署方法對營運區域中的多個潛在站點進行分析與評估時,先基於營運區域的特性(例如交通負荷、電動載具參數、充電樁參數、營運情境等)來決定一個適當的站點數量。於實際挑選以及部署時,部署者可以在營運區域中的所有已知潛在站點中挑選複數充電站,並且令充電站的數量符合由優化方法所決定的站點數量。藉此,在符合部署者的成 本考量的前提下,令實際建置的充電站的數量能夠滿足營運區域中的電動載具的實際需求。 The optimization method of the present invention is to use the above deployment method to analyze and evaluate multiple potential sites in the operation area, first based on the characteristics of the operation area (such as traffic load, electric vehicle parameters, charging pile parameters, operation scenarios, etc. ) to determine an appropriate number of sites. During actual selection and deployment, the deployer can select multiple charging stations from all known potential sites in the operation area, and make the number of charging stations comply with the number of sites determined by the optimization method. In this way, in line with the deployer’s Under the premise of this consideration, the number of charging stations actually built can meet the actual needs of electric vehicles in the operating area.
例如,前述營運區域可為一個特定的城市。部署者經實際探查營運區域後,可能發現一千個潛在站點,這些潛在站點指的是地理環境符合(例如能夠配電)、持有人願意與部署者合作、能夠承租或購買等的位置。並且,藉由本發明的優化方法進行評估,可得出需在營運區域中部署至少一百個充電站,才能夠滿足營運區域中的所有電動載具的充電需求。 For example, the aforementioned operating area may be a specific city. After the deployer actually explores the operation area, he may find a thousand potential sites. These potential sites refer to locations that meet the geographical environment (such as being able to distribute electricity), the holder is willing to cooperate with the deployer, and can be rented or purchased, etc. . Moreover, through evaluation using the optimization method of the present invention, it can be concluded that at least one hundred charging stations need to be deployed in the operating area to meet the charging needs of all electric vehicles in the operating area.
承上,部署者再藉由前述部署方法來於一千個潛在站點中挑選出能構成最大充電效益的一百個充電站,使得這些充電站每日所能提供的充電能力,可以滿足營運區域內所有電動載具每日所需補充的電能(即,每日消耗的電能)。 Following the above, the deployer uses the aforementioned deployment method to select a hundred charging stations that can constitute the greatest charging efficiency among a thousand potential sites, so that the daily charging capacity provided by these charging stations can meet the operational needs. The daily replenishment of electric energy required by all electric vehicles in the area (i.e., the daily consumption of electric energy).
值得一提的是,本發明的技術方案是在部署者實際部署充電站前,先藉由優化方法決定營運區域內應部署的充電站數量,並且再藉由部署方法挑選這些充電站的部署位置。換句話說,本發明的優化方法以及部署方法不需要使用充電站開始營運後所搜集的即時資料以及歷史資料。 It is worth mentioning that the technical solution of the present invention is that before the deployer actually deploys charging stations, he first determines the number of charging stations that should be deployed in the operating area through an optimization method, and then selects the deployment locations of these charging stations through a deployment method. In other words, the optimization method and deployment method of the present invention do not require the use of real-time data and historical data collected after the charging station starts operating.
首請參閱圖1,為本發明的規劃系統的方塊圖的具體實施例。本發明的優化方法主要可透過一個規劃系統1來實現。具體地,規劃系統1可以經過設定,同時執行本發明的優化方法以及後述之部署方法(容後詳述)。
First, please refer to FIG. 1 , which is a block diagram of a specific embodiment of the planning system of the present invention. The optimization method of the present invention can mainly be realized through a
如圖1所示,規劃系統1主要可具有處理單元11,以及與處理單元11連接的輸入單元12及輸出單元13。處理單元11基於規劃系統1所要實現的功能,至少包括有資料預處理模組111、總能耗評估模組112、站點數量評估模組113、服務範圍群組生成模組114及選站模組115,但不以此為限。
As shown in FIG. 1 , the
輸入單元12可為人機介面(例如鍵盤、滑鼠、觸控板等)、有線傳輸介面(例如USB傳輸埠)或無線傳輸介面(例如Wi-Fi傳輸單元、藍牙傳輸單元等)。規劃系統1透過輸入單元12來接收執行優化方法及部署方法所需的各種資料。
The
於一實施例中,規劃系統1可透過輸入單元12接受部署者的設定。例如,部署者可使用輸入單元12指定要進行部署的營運區域(例如特定城市)、設定即將進入營運區域中使用的電動載具的數量、電動載具的載具物理參數、預計設置於充電站中的充電樁的規格、將於營運區域內採用的營運情境等。
In one embodiment, the
於另一實施例中,規劃系統1可透過輸入單元12連接資料來源伺服器2,並從資料來源伺服器2接收優化方法與部署方法所需的資料。例如,規劃系統1可從資料來源伺服器2接收營運區域的交通網路資料、交通號誌資料、目標對象分佈資料等,但不加以限定。
In another embodiment, the
於一實施例中,處理單元11中的多個模組111-115可為硬體模組。例如,各個模組111-115可分別以處理器、微控制單元(Micro Control Unit,MCU)、現場可編程邏輯閘陣列(Field Programmable Gate Array,FPGA)、系統單晶片(System on Chip,SoC)等來分別實現。
In one embodiment, the plurality of modules 111 - 115 in the
於另一實施例中,處理單元11可為處理器、中央處理單元(Central Processing Unit,CPU)、圖形處理單元(Graphic Processing Unit,GPU)或微控制單元,並且處理單元11中的多個模組111-115可為軟體模組。本實施例中,處理單元11中記錄有電腦可執行程式碼,當處理單元11執行了電腦可執行程式碼後,可依據所能實現的功能來將電腦可執行程式碼虛擬模擬為前述多個模
組111-115(例如各個模組111-115分別對應至電腦可執行程式碼中的多個副程式)。惟,上述僅為本發明的部分實施範例,但並不以此為限。
In another embodiment, the
輸出單元13可為有線傳輸介面、無線傳輸介面或顯示裝置,不加以限定。規劃系統1使用本發明的優化方法決定營運區域中應部署的站點數量後,可以選擇性地透過輸出單元13來輸出。藉此,規劃系統1或部署者可以基於營運區域中的所有潛在站點以及所決定並輸出的站點數量來決定營運區域內的複數充電站(容後詳述)。並且,規劃系統1透過前述部署方法挑選出符合需求的多個充電站後,亦可選擇性地透過輸出單元13來輸出站點配置資訊3。站點配置資訊3可包括多個充電站的文字資訊或圖像資訊。部署者可基於站點配置資訊3來於營運區域中實際建置充電站。
The
請同時參閱圖1至圖2,其中圖2為本發明的優化方法的流程圖的具體實施例。本發明的優化方法用於在部署者指定了一個營運區域後,依據營運區域的特性來決定應該部署在營運區域中的充電站的站點數量。藉此,可以針對部署方法中對於應部署站點的設定無法符合營運區域的需求的問題進行優化。因此,圖2的方法對於後續要執行的部署方法來說,屬於一種優化方法。 Please refer to Figures 1 to 2 at the same time, where Figure 2 is a specific embodiment of the flow chart of the optimization method of the present invention. The optimization method of the present invention is used to determine the number of charging stations that should be deployed in the operation area based on the characteristics of the operation area after the deployer designates an operation area. In this way, the problem in the deployment method that the settings of the sites to be deployed cannot meet the needs of the operating area can be optimized. Therefore, the method in Figure 2 is an optimization method for the subsequent deployment method.
圖2所示的優化方法可以應用於如圖1所示的規劃系統1。要使用本發明的優化方法來決定一個營運區域中的充電站的應部署數量,首先由規劃系統1藉由輸入單元12接受部署者的操作,以指定一個營運區域(例如一個特定的城市)。並且,規劃系統1取得營運區域內的複數電動載具的載具物理參數(步驟S20)、取得將於營運區域內使用的充電樁的充電樁規格(步驟S22)、並取得部署者將於營運區域內實施的預期營運情境(步驟S24)。具體地,規劃系統1
可透過處理單元11的資料預處理模組111接收上述資料,並且將上述資料轉換成處理單元11中的各個模組112-115能夠使用並處理的資料格式。
The optimization method shown in Figure 2 can be applied to the
於一實施例中,前述載具物理參數、充電樁規格與預期營運情境包含了已知資訊,規劃系統1可透過輸入單元12自資料來源伺服器2中讀取這些已知資訊。於一實施例中,前述載具物理參數、充電樁規格與預期營運情境包含了部署者的輸入資料,規劃系統1可透過輸入單元12接受部署者的設定。
In one embodiment, the aforementioned vehicle physical parameters, charging pile specifications and expected operating scenarios include known information, and the
舉例來說,前述載具物理參數可包括營運區域內的載具總量,以及電動載具的平均行駛距離(每日)、平均行駛時間(每日)、平均能耗、電池容量、電池電壓等資訊,前述充電樁規格可包括充電效率以及各個充電站的充電樁設置數量等資訊,前述預期營運情境可包括各個充電站的營運時間(每日)以及營運區域中的額外充電樁的可負荷載具數量(每日)。惟,上述僅為本發明的一個具體實施範例,但並不以上述為限。 For example, the aforementioned vehicle physical parameters may include the total number of vehicles in the operating area, as well as the average driving distance (daily), average driving time (daily), average energy consumption, battery capacity, and battery voltage of electric vehicles. and other information. The aforementioned charging pile specifications may include information such as charging efficiency and the number of charging piles installed at each charging station. The aforementioned expected operating scenarios may include the operating hours (daily) of each charging station and the load capacity of additional charging piles in the operating area. Number of vehicles (daily). However, the above is only a specific implementation example of the present invention, but is not limited to the above.
於一實施例中,規劃系統1主要是針對商務使用的電動載具來決定充電站的站點數量,因此營運區域內的電動載具,指的是商務使用(例如租賃或物流等)的電動載具。於此實施例中,電動載具的載具總量、每日平均行駛距離及每日平均行駛時間等參數,以及各個充電站的每日營運時間,及營運區域中的額外充電樁的每日可負荷載具數量,皆可基於商務計劃而作為已知的輸入參數。換句話說,本發明的優化方法所採用的載具物理參數以及預期營運情境,皆為部署者在實際部署充電站前規劃好的參數,而非在充電站部署完成並啟用後所搜集的即時資料與歷史資料。
In one embodiment, the
另外,電動載具的平均能耗、電池容量及電池電壓以及充電樁的充電效率等參數,為電動載具與充電樁製造完成時即為已知的資訊。 In addition, parameters such as the average energy consumption, battery capacity and battery voltage of electric vehicles, as well as the charging efficiency of charging piles, are information that is known when the electric vehicles and charging piles are manufactured.
步驟S24後,規劃系統1藉由處理單元11的總能耗評估模組112取得載具物理參數及營運情境,並且依據載具物理參數及營運情境計算營運區域內的總能耗(步驟S26)。具體地,總能耗評估模組112於步驟S26中計算的是營運區域內的電動載具每日需要被充電站填補的能耗的總量。接著,處理單元11藉由站點數量評估模組113依據總能耗以及充電樁規格,決定營運區域內所需的充電站的站點數量(步驟S28)。
After step S24, the
步驟S28後,規劃系統1可輸出已決定的站點數量,如此一來,規劃系統1可以啟動處理單元11中的服務範圍群組生成模組114以及選站模組115,以基於營運區域內的所有潛在站點以及所決定的站點數量來決定並部署充電站(步驟S30)。
After step S28, the
請同時參閱圖1至圖3,其中圖3為本發明的充電站部署示意圖的第一具體實施例。圖3揭露了一個營運區域4。於圖3的實施例中,規劃系統1會藉由處理單元11中的服務範圍群組生成模組114對營運區域4中的所有潛在站點進行分析,以將所有潛在站點規劃為多個服務範圍群組6(容後詳述)。並且規劃系統1藉由處理單元11中的選站模組115對來於各個服務範圍群組6中挑選一或多個適當的充電站5,並且令所有充電站5的總數相等於站點數量評估模組113決定的站點數量。
Please refer to FIGS. 1 to 3 at the same time, where FIG. 3 is a first specific embodiment of the charging station deployment diagram of the present invention. Figure 3 reveals an
回到圖2。步驟S26中所計算的總能耗,指的是營運區域4內的所有電動載具每日所消耗的能耗的總和,而這些能耗由營運區域中的充電站所填補。值得一提的是,營運區域4內的充電樁,可包括一般充電樁以及額外充電樁。
Back to Figure 2. The total energy consumption calculated in step S26 refers to the sum of the daily energy consumption of all electric vehicles in the
於一實施例中,一般充電樁指的是快充充電樁,額外充電樁指的是慢充充電樁,其中慢充充電樁的充電效率小於快充充電樁的充電效率。於另一實施例中,一般充電樁指的是設置在各個充電站5中的充電樁,額外充電樁指的是家用充電樁。
In one embodiment, the general charging pile refers to a fast charging charging pile, and the additional charging pile refers to a slow charging charging pile, where the charging efficiency of the slow charging charging pile is lower than the charging efficiency of the fast charging charging pile. In another embodiment, the general charging piles refer to the charging piles installed in each charging
本發明中,額外充電樁主要的用途是在營運時間(例如每日8小時)以外的時間提供電動載具進行充電,例如若額外充電樁為家用充電樁,則駕駛人可於下班後,於家中使用家用充電樁來為電動載具進行充電。由上述說明可看出,額外充電樁的充電情境與一般充電樁不同(例如需要充電一整個晚上)。本發明的優化方法特別在用於商務用途的電動載具及充電站上,因此上述計算所得的總能耗,較佳地由一般充電樁來供應能源,而前述的額外充電樁所提供的充電效能則被排除在前述總能耗的計算基礎之外。 In the present invention, the main purpose of the additional charging pile is to provide electric vehicles for charging outside of operating hours (e.g., 8 hours a day). For example, if the additional charging pile is a home charging pile, the driver can charge the electric vehicle after get off work. Use household charging piles at home to charge electric vehicles. It can be seen from the above description that the charging situation of additional charging piles is different from that of ordinary charging piles (for example, it needs to be charged all night). The optimization method of the present invention is particularly applicable to electric vehicles and charging stations used for business purposes. Therefore, the total energy consumption calculated above is preferably supplied by general charging piles, and the charging provided by the aforementioned additional charging piles Performance is excluded from the calculation basis of the total energy consumption mentioned above.
具體地,上述步驟S26計算營運區域4內的所有電動載具每日的總能耗,由於部分的電動載具可以透過額外充電樁來進行充電,因此總能耗評估模組112可將載具總量扣除額外充電樁的可負荷的載具數量後,再計算剩餘的電動載具的總能耗。
Specifically, the above-mentioned step S26 calculates the daily total energy consumption of all electric vehicles in the
具體地,總能耗評估模組112在步驟S26中可依據下列第一公式來計算營運區域4內每日的總能耗:EC total =EC EV ×d×(nEV-nEV sc );其中,ECtotal為營運區域4內每日的總能耗,ECEV為電動載具的平均能耗,d為電動載具的每日平均行駛距離,nEV為營運區域4內的電動載具的載具總量,nEVsc為額外充電樁的可負荷載具數量。透過上述第一公式,總能耗評估模組112可以計算出營運區域4內每日的總能耗。換句話說,
當部署者在營運區域4內部署充電站5時,需確保這些充電站5可以滿足此總能耗。
Specifically, in step S26, the total energy
承上,在總能耗評估模組112計算出前述總能耗後,站點數量評估模組113即可決定要滿足上述總能耗所需的充電站5的站點數量。具體地,站點數量評估模組113於步驟S28中可依據下列第二公式來計算營運區域4內所需的充電站5的站點數量:nCP ;其中,nCP為營運區域4內所需的充電樁總數,ECtotal為營運區域4內的總能耗,hs為充電站5的營運時間(小時),hr為電動載具的平均行駛時間,Scp為充電樁的充電效率。其中,若一個充電站5內僅配置一個充電樁,則營運區域4內所需的充電樁的充電樁總數,即相等於營運區域4內所需的充電站5的站點數量。
Following the above, after the total energy
具體地,由於電動載具在行駛期間無法進行充電作業,因此上述第二公式將充電站5的營運時間(hs)減去電動載具的平均行駛時間(hr),以計算營運區域4在每日的營運時間內,每小時所需提供的能量。這個能量再除上充電樁的充電效率(Scp),即為營運區域4所需的最少充電樁數量(nCP)。
Specifically, since the electric vehicle cannot perform charging operations during driving, the above-mentioned second formula subtracts the average driving time ( hr ) of the electric vehicle from the operating time (h s ) of the charging
值得一提的是,於部分情況下各個充電站5可配置一個以上的充電樁。於此情況下,站點數量評估模組113在步驟S28中可結合第二公式以及下列第三公式來計算營運區域4內所需的充電站5的站點數量:
透過第二公式及第三公式,規劃系統1可以將營運區域4中的每日總能耗轉換為可提供這些能量的充電站數量。藉此,部署者可以進一步基於規劃系統1所決定的站點數量,於營運區域4中進行充電站5的挑選與實際部署。
Through the second formula and the third formula, the
如前文所述,本發明的優化方法主要是用來決定為商務使用的電動載具提供充電服務的充電站的站點數量,因此部署者可以在實際進行商務使用前就先對上述參數進行設定。下面將以一個實施例來對上述的第一公式、第二公式及第三公式做進一步的詳細說明。 As mentioned above, the optimization method of the present invention is mainly used to determine the number of charging stations that provide charging services for electric vehicles for commercial use. Therefore, the deployer can set the above parameters before actual commercial use. . The above-mentioned first formula, second formula and third formula will be further described in detail below with an embodiment.
本實施例用於決定商務使用的充電站5的站點數量,故將充電站5的營運時間設定為每日8小時,以符合平均上班時間。並且,本實施例依據商務使用的合理性將營運區域4中的載具總量設定為1000台(例如為營運區域4中的物流人員的總數),並且依據營運區域4的特徵與商務使用特性,將電動載具的每日平均行駛距離設定為100公里,每日平均行駛時間為2.5小時。例如,物流人員每日上班8小時,其中2.5小時為實際駕駛電動載具的時間,剩餘5.5小時為理貨、搬貨、行政、休息及為電動載具進行充電的時間。
This embodiment is used to determine the number of charging
值得一提的是,上述充電效率的單位為C-rate,其中1C的充電效率指每小時對應特定電池能力可充50安時(50Ah/h)(例如對應上述容量為50安時的電池),而0.7C的充電效率指每小時可充35安時(35Ah/h)。C-rate為本技術領域中常用的計算單位,於此不再贅述。 It is worth mentioning that the unit of the above charging efficiency is C-rate, where the charging efficiency of 1C refers to the 50 Ah/h that can be charged per hour corresponding to a specific battery capacity (for example, corresponding to the battery with the above capacity of 50 Ah/h) , and the charging efficiency of 0.7C means that it can charge 35 Ah/h per hour. C-rate is a commonly used calculation unit in this technical field and will not be described again here.
基於本實施例所使用的上述參數,總能耗評估模組112可經過第一公式計算出營運區域4中的總能耗為24960(Ah):EC total =EC EV (0.416)×d(100)×(nEV(1000)-nEV sc (400))=24960。
Based on the above parameters used in this embodiment, the total energy
值得一提的是,本發明中的額外充電樁可例如為部署者預期設置在充電站5中的慢充充電樁,或是預期販售給使用者在家裡使用的家用充電樁。因此,額外充電樁的可負荷載具數量可依據預期的設置/販售目標來設定,並作為已知參數。
It is worth mentioning that the additional charging piles in the present invention may be, for example, slow charging charging piles that the deployer expects to install in the charging
接著,站點數量評估模組113可經過第二公式計算得出營運區域4中所需的充電樁總數為最少130根:
由於充電樁總數必須大於所估算的數值,並且必須為整數,因此規劃系統1可計算出充電樁總數最少須為130根。
Since the total number of charging piles must be greater than the estimated value and must be an integer,
再接著,站點數量評估模組113可經過第三公式計算出營運區域4中所需的充電站5的站點數量為最少130站:
透過本發明的優化方法,規劃系統1可以計算出若要滿足營運區域4中所有電動載具的每日能耗需求(扣除可透過額外充電樁滿足的部分電動載具),則營運區域4中至少需設置130個充電站5。在完成了上述評估動作後,規劃系統1再於營運區域4內已知的所有潛在站點中,決定位置、效益較合適的130個充電站5,並且進行實際部署。
Through the optimization method of the present invention, the
值得一提的是,上述實施例僅考量了營運區域4中的部分交通特性,但是並未考量道路上的交通號誌(例如紅燈),以及電動載具因為交通號誌而造成的交通延滯成本。
It is worth mentioning that the above embodiment only takes into account some of the traffic characteristics in the
具體地,由於在停等紅燈時,駕駛人不能為電動載具進行充電,因此在納入交通號誌做為評估參數的情況下,電動載具的平均行車時間應加上交通延滯成本。藉由將營運區域4中的交通號誌做為強化因子,可進一步優化圖2所示的各步驟的評估結果。
Specifically, since drivers cannot charge electric vehicles while waiting for a red light, when traffic signals are included as evaluation parameters, the average driving time of electric vehicles should be added to the traffic delay cost. By using traffic signals in
請同時參閱圖1至圖4,其中圖4為本發明的交通號誌示意圖的具體實施例。於圖4的實施例中,前述資料來源伺服器2可例如為開放街圖(OpenStreetMap,OSM)資料庫,開放街圖資料庫中記錄了營運區域4的交通資料。透過從資料來源伺服器2取得的資料,規劃系統1可以建構出營運區域4的地圖,並且此地圖中描繪了營運區域4的道路41以及交通號誌42的設置位置。
Please refer to FIGS. 1 to 4 simultaneously, where FIG. 4 is a schematic diagram of a traffic signal according to a specific embodiment of the present invention. In the embodiment of FIG. 4 , the aforementioned
駕駛人於營運區域4內駕駛電動載具7時,可能會在不同道路41上遭遇不同數量的交通號誌42,並且每個交通號誌42在尖峰時段(例如上下班時間)與離峰時段(例如非上下班時間)的停等時間可能都不相同。於圖4的實施例中,當電動載具7沿著一條特定路徑R1行駛並前往一個目標的充電站5時,總共遭遇四個交通號誌42。
When drivers drive
具體地,本發明的優化方法在計算不同營運區域4所需的充電站5的站點數量時,皆可採用相同的計算參數。然而,不同營運區域4所具備的交通狀況各不相同。例如,部分營運區域4的交通號誌數量較少、部分營運區域4的交通號誌的平均停等時間較長等。
Specifically, the optimization method of the present invention can use the same calculation parameters when calculating the number of charging
請同時參閱圖1至圖5,其中圖5為本發明的交通延滯成本的計算流程圖的具體實施例。要計算營運區域4內的交通延滯成本,首先規劃系統1的處理單元11從資料來源伺服器2(例如上述開放街圖資料庫)取得營運區域4的交通號誌資料(步驟S40),藉此獲得交通號誌對應的預估停等時間(步驟S42)。
Please refer to FIGS. 1 to 5 at the same time, where FIG. 5 is a specific embodiment of the traffic delay cost calculation flow chart of the present invention. To calculate the traffic delay cost in the
前述預估停等時間,可例如為營運區域4內的所有交通號誌於尖峰時間以及離峰時間的停等時間的平均值。並且,一般在道路41上遭遇紅燈時,通常不會從頭等到尾,因此於步驟S42中,處理單元11可以對預估停等時間進行參數微調(例如將上述平均值再除以2),以令計算所得的預估停等時間
更符合現實。於一實施例中,前述預估停等時間可以從營運區域4的政府公報、實測數據來直接取得,但不以此為限。
The aforementioned estimated waiting time may be, for example, the average of the waiting times of all traffic signals in the
接著,處理單元11計算營運區域4中的複數關鍵路徑的平均等待號誌數量(步驟S44)。具體地,前述關鍵路徑指的營運區域4中可滿足預設的評估條件的路徑。例如,將從一個充電站5出發並可以行駛超過2公里的路徑,或是可以以時速40公里的速度行駛3公鐘以上的路徑,定義為上述關鍵路徑。本發明中,處理單元11於步驟S44中可以藉由部署者實際統計,或是藉由所取得的交通號誌資料結合地圖資訊進行計算,以獲得營運區域4內的各條關鍵路徑上的號誌數量,進而計算上述平均等待號誌數量。
Next, the
步驟S44後,處理單元11即可依據預估停等時間以及平均等待號誌數量來計算交通延滯成本(步驟S46)。如前文所述,停等紅燈所造成的交通延滯成本,將會延長電動載具的平均行駛時間。因此,站點數量評估模組113在透過上述第二公式計算充電站5的站點數量時,需將交通延滯成本添加到平均行駛時間中。換句話說,第二公式中的hr為平均行駛時間與交通延滯成本的總和。
After step S44, the
以營運區域4中的每一個交通號誌的預估停等時間為77秒為例,若處理單元11以參數0.5對預估停等時間進行微調,並且關鍵路徑的平均等待號誌數量為20個,則可計算出前述交通延滯成本為77×0.5×20=770(s)=0.214(h)。藉此,站點數量評估模組113可以透過第二公式重新計算充電樁總數為:
由上述第二公式可看出,在考量了因為交通號誌所帶來的交通延滯成本後,營運區域4中所需的充電樁總數由最少130根增加為最少135根。藉此,本發明的優化方法所決定的充電站5的站點數量將會更符合電動載具7在營運區域4中的實際需求。
It can be seen from the second formula above that after taking into account the traffic delay cost caused by traffic signals, the total number of charging piles required in
如上所述,本發明的規劃系統1可以基於優化方法決定所得的站點數量來進一步執行部署方法,藉此將所需的充電站5實際部署到營運區域4中。
As mentioned above, the
續請參閱圖1至圖7,其中圖6為本發明的部署方法的流程圖的具體實施例,圖7為本發明的服務範圍示意圖的具體實施例。處理單元11在透過站點數量評估模組113完成了營運區域4中所需的充電站5的站點數量的計算後,接著透過服務範圍群組生成模組114取得營運區域4中的所有潛在站點8的站點資訊(步驟S50),並且取得營運區域4中的目標對象分佈資料(步驟S52)。
Please continue to refer to Figures 1 to 7. Figure 6 is a specific embodiment of the flow chart of the deployment method of the present invention, and Figure 7 is a specific embodiment of the service scope schematic diagram of the present invention. After the
如上所述,本發明的優化方法的評估對象是商務使用(例如租賃、外送、物流等)的充電站5,也就是說,電動載具7所提供的服務的目標對象為人。於此實施例中,前述目標對象分佈資料可例如為人口分佈資料,前述資料來源伺服器2可包括官方的統計處資料庫,服務範圍群組生模組114可經由輸入單元12來從資料來源伺服器2接收人口分佈資料。
As mentioned above, the evaluation object of the optimization method of the present invention is the charging
接著,服務範圍群組生成模組114計算營運區域4中的各個潛在站點8間的最短路徑(步驟S54)。值得一提的是,服務範圍群組生成模組114主要可基於營運區域4的交通網路資料來尋找各個潛在站點8間的最短路徑,因此最短路徑會對應至地理資訊中所記載的實際道路,而不一定為直線。其中,
交通網路資料可從資料來源伺服器2來取得。除了最短路徑外,服務範圍群組生成模組114還會依據預設的評估條件來計算各個潛在站點8各自的服務範圍80(步驟S56)。
Next, the service range
於一實施例中,服務範圍群組生成模組114在驟S56中是計算從一個潛在站點8出發,沿著多條可行駛路徑分別移動一預定移動距離(例如2公里)後抵達的多個極限位置,或是沿著多條可行駛路徑分別依據一預定速度(例如時速40公里)行駛一預定移動時間(例如3分鐘)後抵達的多個極限位置。並且,服務範圍群組生成模組114依據這些極限位置做凸包計算(Convex hull),以產生此潛在站點8的服務範圍80。
In one embodiment, in step S56, the service range
於計算出所有潛在站點8各自的服務範圍80後,服務範圍群組生成模組114基於複數最短路徑以及複數服務範圍80進行運算,以將營運區域4中的所有潛在站點8規劃成複數個服務範圍群組(例如圖8所示的服務範圍群組6)(步驟S58)。
After calculating the
請同時參閱圖1至圖8,其中圖8為本發明的服務範圍群組示意圖的具體實施例。如圖8所示,服務範圍群組生成模組114規劃的複數服務範圍群組6分別包括了營運區域4內的一或多個不同的潛在站點8。
Please refer to FIGS. 1 to 8 at the same time, where FIG. 8 is a specific embodiment of a schematic diagram of a service scope group of the present invention. As shown in FIG. 8 , the plurality of
於一實施例中,服務範圍群組生成模組114在步驟S58中,主要是基於最短路徑及服務範圍80執行分群(Clustering)演算法(或謂非監督式學習演算法(Unsupervised Learning)),以對複數潛在站點8進行分群,並將複數潛在站點8規劃為多個服務範圍群組6。
In one embodiment, in step S58, the service range
值得一提的是,服務範圍群組生成模組114主要可將各個潛在站點8的服務範圍80的平均重疊率(Average Overlap Rate(%))做為分群演算法的分群目標。
It is worth mentioning that the service range
以階層式分群(Hierarchical Clustering)演算法執行分群為例,於一實施例中,服務範圍群組生成模組114令分群後的各個服務範圍群組6中的多個潛在站點8的服務範圍80的平均重疊率最高。於另一實施例中,服務範圍群組生成模組114令分群後的各個服務範圍群組6中的多個潛在站點8的服務範圍80的平均重疊率大於一個預設門檻值。
Taking the hierarchical clustering algorithm to perform clustering as an example, in one embodiment, the service range
服務範圍群組生成模組114持續進行運算,並且在確認特定數量的群組(例如70個)時這些服務範圍80的平均重疊率最高,或是可超過預設門檻值(例如為70%)時,服務範圍群組生成模組114可輸出此分群結果,做為前述多個服務範圍群組6。
The service range
於圖8的實施例中,規劃系統1將營運區域4中的所有潛在站點8規劃成五個服務範圍群組6,並且這五個服務範圍群組6的服務範圍80的平均重疊率可以達到最高,或是可以達到部署者預設的門檻值。
In the embodiment of FIG. 8 , the
上述的階層式分群演算法為所屬技術領域中的常用分群手段,於此不再贅述。除了階層式分群演算法外,於其他實施例中,亦可使用K-means演算法、Density-based Spatial Clustering of Applications with Noise(DBSCAN)演算法等來將複數潛在站點8規劃成多個群組,但不以此為限。
The above-mentioned hierarchical grouping algorithm is a common grouping method in the technical field, and will not be described again here. In addition to the hierarchical grouping algorithm, in other embodiments, the K-means algorithm, Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, etc. can also be used to plan the plurality of
本發明的部署方法的主要目的,是在複數潛在站點8中挑選出符合優化方法所決定的站點數量且使用效益最高的多個充電站5,其中充電站5的數量必定少於潛在站點8的數量。本發明的部署方法透過上述步驟S58將服
務範圍80重疊率高的多個潛在站點8規劃在同一個服務範圍群組6中,藉此歸納出各個範圍中互補或互相競爭的多個潛在站點8。規劃系統1從各個服務範圍群組6中進行充電站5的挑選時,可以確保挑選出來的多個充電站5能夠提供較佳的服務效益。
The main purpose of the deployment method of the present invention is to select a plurality of charging
回到圖6。步驟S58後,服務範圍群組生成模組114進一步依據前述目標對象分佈資料來分別計算各個服務範圍群組6所涵蓋的目標對象數(步驟S60)。具體地,服務範圍群組生成模組114在步驟S60中分別計算各個服務範圍群組6中的所有潛在站點8的服務範圍80,並計算這些服務範圍80總共涵蓋了多少的目標對象數。所涵蓋的目標對象數越多,代表這個服務範圍群組6中應該部署的充電站5的數量越多。
Return to Figure 6. After step S58, the service scope
以目標對象分佈資料為人口分佈資料為例。當一個服務範圍群組6中可涵蓋的人口數越多,代表這個服務範圍群組6中應該部署的充電站5的數量越多。
Take the target object distribution data as population distribution data as an example. When the population that can be covered in a
步驟S60後,規劃系統1進一步透過處理單元11的選站模組115來計算各個服務範圍群組6各自的應部署站數。
After step S60 , the
具體地,選站模組115主要是基於在前述步驟S30輸出的站點數量,以及各個服務範圍群組6各自涵蓋的目標對象數,來分別設定各個服務範圍群組6中的充電站5的應部署站數(步驟S62)。其中,所有服務範圍群組6的應部署站數的總和,應相同於站點數量評估模組113所決定的站點數量。
Specifically, the
值得一提的是,各個服務範圍群組6的應部署站數分別為一個大於或等於零的整數。部署方法是基於目標對象數的多寡來決定應部署站
數,若一個服務範圍群組6所涵蓋的目標對象數較少,選站模組115計算出的應部署站數有可能為零。
It is worth mentioning that the number of stations that should be deployed in each
請同時參閱圖1至圖9,其中圖9為本發明的充電站部署示意圖的第二具體實施例。選站模組115於步驟S62中是基於各個服務範圍群組6所涵蓋的目標對象數來計算應部署站數。換句話說,各個服務範圍群組6的應部署站數係與所涵蓋的目標對象數正相關,而與各個服務範圍群組6所覆蓋的面積大小無直接關聯。
Please refer to FIGS. 1 to 9 at the same time, where FIG. 9 is a second specific embodiment of the charging station deployment schematic diagram of the present invention. In step S62, the
於圖9的實施例中,第一服務範圍群組91的應部署站數為四站,第二服務範圍群組92的應部署站數為零站,第三服務範圍群組93的應部署站數為兩站,第四服務範圍群組94的應部署站數為一站,第五服務範圍群組95的應部署站數為一站。其中,第二服務範圍群組92所涵蓋的目標對象數過少,因此應部署站數為零。
In the embodiment of FIG. 9 , the number of sites that should be deployed in the first
本發明中,選站模組115需要從複數潛在站點8中挑選出來的充電站5的數量,即為站點數量評估模組113所決定的站點數量。因此,選站模組115可以基於下列第四公式來分別計算各個服務範圍群組6的應部署站數:
如上所述,在營運區域4中的目標對象的總數已知,且營運區域4中所需的充電站5的站點總數也已確定的情況下,服務範圍群組6所涵蓋的目標對象數越多,其應部署站數就會越多。
As mentioned above, when the total number of target objects in the
於步驟S62後,選站模組115依據應部署站數來分別從各個服務範圍群組6所包含的多個潛在站點8中挑選要被部署的一或多個充電站
5(步驟S64)。其中,各個服務範圍群組6中被挑選出來的充電站5的數量,相同於選站模組115在步驟S62中計算所得的應部署站數。
After step S62, the
於一實施例中,選站模組115於步驟S64中是對各個服務範圍群組6分別進行迭代計算。在應部署站數非零的情況下,選站模組115對服務範圍群組6中的多個潛在站點8進行迭代計算,使得所挑選的一或多個充電站5的服務範圍80能夠涵蓋最多的目標對象數。
In one embodiment, the
舉例來說,若一個服務範圍群組6包含十個潛在站點8且應部署站數為一,則選站模組115於步驟S64中直接挑選涵蓋了最多目標對象數的潛在站點8做為此服務範圍群組6的充電站5。若一個服務範圍群組6的應部署站數為二,則選站模組115於步驟S64中對這十個潛在站點8進行迭代計算,以挑選出服務範圍80加總後可以涵蓋最多的目標對象數的兩個潛在站點8,以做為此服務範圍群組6的充電站5。本發明中,選站模組115於步驟S64中係對每一個服務範圍群組6分別執行一次上述迭代計算,以分別挑選各個服務範圍群組6內的一或多個充電站5。
For example, if a
步驟S64後,規劃系統1即可藉由輸出單元13輸出站點配置資訊3。前述站點配置資訊3記錄了營運區域4中應部署的充電站5的總數,以及各個充電站5的部署地點。藉此,部署者可以基於規劃系統1的評估結果,實際於營運區域4中部署充電站5。
After step S64, the
本發明的優化方法考量了不同區域(例如城市)的交通特性,並且將快充、慢充的充電樁進行分流,同時依據商務使用的預期行為及預期路線來決定所需的充電站的站點數量。如此一來,可以令充電站的部署方法的計算結果更為符合指定區域中的電動載具的實際需求。 The optimization method of the present invention considers the traffic characteristics of different areas (such as cities), and shunts fast charging and slow charging charging piles. At the same time, the required charging station sites are determined based on the expected behavior and expected routes of business use. quantity. In this way, the calculation results of the charging station deployment method can be more in line with the actual needs of electric vehicles in the designated area.
以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above descriptions are only preferred specific examples of the present invention, which do not limit the patent scope of the present invention. Therefore, all equivalent changes made by applying the content of the present invention are equally included in the scope of the present invention, and are hereby stated. bright.
S20~S30:計算步驟 S20~S30: Calculation steps
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111116378A TWI822018B (en) | 2022-04-29 | 2022-04-29 | Optimizing method for deployment of charging stations and planning system for charging stations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111116378A TWI822018B (en) | 2022-04-29 | 2022-04-29 | Optimizing method for deployment of charging stations and planning system for charging stations |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202343357A TW202343357A (en) | 2023-11-01 |
TWI822018B true TWI822018B (en) | 2023-11-11 |
Family
ID=89720608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111116378A TWI822018B (en) | 2022-04-29 | 2022-04-29 | Optimizing method for deployment of charging stations and planning system for charging stations |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI822018B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102880921B (en) * | 2012-10-16 | 2016-08-10 | 山东电力集团公司电力科学研究院 | A kind of electric automobile charging station Optimization Method for Location-Selection |
CN107176048A (en) * | 2017-06-07 | 2017-09-19 | 深圳巴士集团股份有限公司公共汽车分公司 | A kind of charging system of electric vehicle parking |
US10083413B2 (en) * | 2015-04-08 | 2018-09-25 | Sap Se | Optimized placement of electric vehicle charging stations |
CN113837663A (en) * | 2021-10-29 | 2021-12-24 | 国网江苏省电力有限公司扬州供电分公司 | Electric vehicle charging pile site selection method and device |
-
2022
- 2022-04-29 TW TW111116378A patent/TWI822018B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102880921B (en) * | 2012-10-16 | 2016-08-10 | 山东电力集团公司电力科学研究院 | A kind of electric automobile charging station Optimization Method for Location-Selection |
US10083413B2 (en) * | 2015-04-08 | 2018-09-25 | Sap Se | Optimized placement of electric vehicle charging stations |
CN107176048A (en) * | 2017-06-07 | 2017-09-19 | 深圳巴士集团股份有限公司公共汽车分公司 | A kind of charging system of electric vehicle parking |
CN113837663A (en) * | 2021-10-29 | 2021-12-24 | 国网江苏省电力有限公司扬州供电分公司 | Electric vehicle charging pile site selection method and device |
Also Published As
Publication number | Publication date |
---|---|
TW202343357A (en) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dandl et al. | Comparing future autonomous electric taxis with an existing free-floating carsharing system | |
Hwang et al. | System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment | |
TWI638328B (en) | Electricity demand prediction device, electricity supply system, method of predicting electricity demand, program , electricity supply menage device | |
CN104021667B (en) | Integrate subscription services and the taxi dispatching system called a taxi in real time and scheduling method | |
WO2019165616A1 (en) | Signal light control method, related device, and system | |
US11183065B2 (en) | Lotless storage of vehicle inventory | |
US20220410750A1 (en) | System and method for smart charging management of electric vehicle fleets | |
Li et al. | Improving the electrification rate of the vehicle miles traveled in Beijing: A data-driven approach | |
Cilio et al. | Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets | |
Hörl | Implementation of an autonomous taxi service in a multi-modal traffic simulation using MATSim | |
CN113935181B (en) | Train simulation operation optimization system construction method based on matched passenger flow | |
Bekli et al. | Enhancing the performance of one-way electric carsharing systems through the optimum deployment of fast chargers | |
Zwick et al. | Shifts in perspective: Operational aspects in (non-) autonomous ride-pooling simulations | |
CN106130110B (en) | The electric taxi charging station constant volume method on trip ground is selected based on stratified probability | |
TWI822018B (en) | Optimizing method for deployment of charging stations and planning system for charging stations | |
Araldo et al. | Implementation & policy applications of AMOD in multi-modal activity-driven agent-based urban simulator simmobility | |
CN117057158A (en) | Electric automobile charging load simulation method considering cellular automata and space-time travel | |
KR20130082876A (en) | System for managing road traffic based on virtual simulation | |
Shen et al. | Strategic Charging Infrastructure Deployment for Electric Vehicles | |
Decker | Electric vehicle charging and routing management via multi-infrastructure data fusion | |
Mohan | Technology Policy Challenges of Electric and Automated Vehicles | |
Husarek et al. | Modeling Charging Infrastructure Requirements to Achieve a Holistic E-Mobility Integration in Regional Energy Systems | |
Wang et al. | Simulating one-way electric carsharing systems with a multi-agent model | |
Barth et al. | Evaluating Energy Efficiency Opportunities from Connected and Automated Vehicle Deployments Coupled with Shared Mobility in California | |
CN113268709A (en) | Urban electric vehicle charging demand prediction method and system based on intelligent agent simulation |