TWI821024B - System and method for controlling autonomous mobile robot - Google Patents

System and method for controlling autonomous mobile robot Download PDF

Info

Publication number
TWI821024B
TWI821024B TW111143965A TW111143965A TWI821024B TW I821024 B TWI821024 B TW I821024B TW 111143965 A TW111143965 A TW 111143965A TW 111143965 A TW111143965 A TW 111143965A TW I821024 B TWI821024 B TW I821024B
Authority
TW
Taiwan
Prior art keywords
autonomous mobile
server device
mobile robot
navigation
local server
Prior art date
Application number
TW111143965A
Other languages
Chinese (zh)
Other versions
TW202421388A (en
Inventor
林傳凱
Original Assignee
泰科動力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰科動力股份有限公司 filed Critical 泰科動力股份有限公司
Priority to TW111143965A priority Critical patent/TWI821024B/en
Application granted granted Critical
Publication of TWI821024B publication Critical patent/TWI821024B/en
Publication of TW202421388A publication Critical patent/TW202421388A/en

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A system and a method for controlling autonomous mobile robot are provided. An autonomous mobile robot wirelessly transmits sensing data to a local server device. The local server device uses the sensing data to perform a positioning operation and a navigation operation of the autonomous mobile robot, and generates and wirelessly transmits a navigation control command. The autonomous mobile robot receives the navigation control command from the local server device, and moves according to the navigation control command. The local server device provides actual state information of the autonomous mobile robot to the cloud server device. The cloud server device simulates virtual state information of the autonomous mobile robot according to a robot mathematical model of the autonomous mobile robot. When the actual state information does not match the virtual state information, the cloud server device performs a navigation correction operation.

Description

自主移動機器人控制系統與方法Autonomous mobile robot control system and method

本發明是有關於一種機器人控制方法,且特別是有關於一種自主移動機器人控制系統與方法。 The present invention relates to a robot control method, and in particular, to an autonomous mobile robot control system and method.

隨著科技進,自動引導車(Automated Guided Vehicle,AGV)逐漸演化成彈性、靈活、能獨立自主航行的自主移動機器人(Autonomous Mobile Robot,AMR)。兩者最大的差異在於,自動引導車需要軌道、磁條和反光條等等物件來協助載具於固定路線上移動,但自主移動機器人則是利用各式感測技術與機器視覺來實現自主導航。由此可見,自主移動機器人的特色在於不僅具有機動性和獨立性,更可大幅減少固定裝置如軌道、磁軌或輸送帶等的佈建成本。像是,自主移動機器人可在倉儲中心或製造工廠中運輸貨品或物料。隨著製造業與物流業的搬運需求日漸上升與缺工的可能性,自主移動機器人的應用不僅可確保工廠或物流 中心的生產與出貨順利完成,更可有效地提昇製造或運輸效率。 With the advancement of technology, Automated Guided Vehicles (AGVs) have gradually evolved into autonomous mobile robots (Autonomous Mobile Robots, AMRs) that are flexible, flexible, and capable of independent navigation. The biggest difference between the two is that automated guided vehicles require rails, magnetic strips, reflective strips and other objects to assist the vehicle in moving on fixed routes, but autonomous mobile robots use various sensing technologies and machine vision to achieve autonomous navigation. . It can be seen that the characteristics of autonomous mobile robots are that they are not only maneuverable and independent, but also can significantly reduce the construction cost of fixed devices such as tracks, magnetic tracks or conveyor belts. For example, autonomous mobile robots can transport goods or materials in warehouse centers or manufacturing plants. With the increasing handling demand and the possibility of labor shortage in the manufacturing and logistics industries, the application of autonomous mobile robots can not only ensure that factories or logistics The center's production and shipment are successfully completed, which can effectively improve manufacturing or transportation efficiency.

目前來說,自主移動機器人的定位與導航運算一般是由自主移動機器人的計算機裝置來負責運作。然而,由於定位與導航運算的計算複雜度高且計算量較龐大,因此對於自主移動機器人的硬體規格要求也相對提高。若自主移動機器人的硬體運算能力不理想,可能導致自主移動機器人的定位與導航運算無法即時完成運算,因而無法實現自主移動機器人的自主導航。因此,當要佈署大量的自主移動機器人於工作場域時,若每一台自主移動機器人的硬體成本都很高,將導致整體佈署成本相當高而不符現實需求。此外,自主移動機器人的工作場域可能存在種種不可預期因素,這些因素將導致自主移動機器人的自主導航穩定度受到影響,甚至讓自主移動機器人無法順利完成任務。 Currently, the positioning and navigation calculations of autonomous mobile robots are generally performed by the computer device of the autonomous mobile robot. However, due to the high computational complexity and large amount of calculations involved in positioning and navigation operations, the hardware specification requirements for autonomous mobile robots are also relatively high. If the hardware computing capability of the autonomous mobile robot is not ideal, the positioning and navigation calculations of the autonomous mobile robot may not be completed immediately, and thus the autonomous navigation of the autonomous mobile robot cannot be realized. Therefore, when a large number of autonomous mobile robots are deployed in the workplace, if the hardware cost of each autonomous mobile robot is very high, the overall deployment cost will be very high and does not meet the actual needs. In addition, there may be various unpredictable factors in the working field of autonomous mobile robots. These factors will affect the stability of autonomous navigation of autonomous mobile robots, and even prevent autonomous mobile robots from successfully completing tasks.

有鑑於此,本發明提出一種自主移動機器人控制系統與方法,其可解決上述技術問題。 In view of this, the present invention proposes an autonomous mobile robot control system and method, which can solve the above technical problems.

本發明實施例提供一種自主移動機器人控制系統,其包括雲端伺服器裝置、本地伺服器裝置,以及至少一自主移動機器人。本地伺服器裝置可通訊地連接雲端伺服器裝置。至少一自主移動機器人無線連接本地伺服器裝置,並將感測資料無線傳輸給本地伺服器裝置。本地伺服器裝置利用感測資料執行至少一自主移動機器人的定位操作與導航操作,並產生與無線傳輸導航控制 指令。至少一自主移動機器人自本地伺服器裝置接收導航控制指令,而根據導航控制指令移動。本地伺服器裝置將至少一自主移動機器人的實際狀態資訊提供給雲端伺服器裝置。雲端伺服器裝置根據至少一自主移動機器人的機器人數學模型模擬至少一自主移動機器人的虛擬狀態資訊。當實際狀態資訊與虛擬狀態資訊不相符時,雲端伺服器裝置執行導航修正操作。 Embodiments of the present invention provide an autonomous mobile robot control system, which includes a cloud server device, a local server device, and at least one autonomous mobile robot. The local server device can communicatively connect to the cloud server device. At least one autonomous mobile robot is wirelessly connected to the local server device and wirelessly transmits sensing data to the local server device. The local server device uses the sensing data to perform positioning operations and navigation operations of at least one autonomous mobile robot, and generates and wirelessly transmits navigation control instruction. At least one autonomous mobile robot receives navigation control instructions from the local server device and moves according to the navigation control instructions. The local server device provides actual status information of at least one autonomous mobile robot to the cloud server device. The cloud server device simulates the virtual state information of at least one autonomous mobile robot based on the robot mathematical model of the at least one autonomous mobile robot. When the actual status information does not match the virtual status information, the cloud server device performs a navigation correction operation.

本發明實施例提供一種自主移動機器人控制方法,適用於自主移動機器人控制系統。自主移動機器人控制系統包括雲端伺服器裝置、本地伺服器裝置,以及至少一自主移動機器人。所述方法包括下列步驟。透過至少一自主移動機器人將感測資料無線傳輸給本地伺服器裝置。透過本地伺服器裝置利用感測資料執行至少一自主移動機器人的定位操作與導航操作,並透過本地伺服器裝置產生與無線傳輸導航控制指令。透過至少一自主移動機器人自本地伺服器裝置接收導航控制指令,而根據導航控制指令移動。透過本地伺服器裝置將至少一自主移動機器人的實際狀態資訊提供給雲端伺服器裝置。透過雲端伺服器裝置根據至少一自主移動機器人的機器人數學模型模擬至少一自主移動機器人的虛擬狀態資訊。當實際狀態資訊與虛擬狀態資訊不相符時,透過雲端伺服器裝置執行導航修正操作。 Embodiments of the present invention provide an autonomous mobile robot control method, which is suitable for autonomous mobile robot control systems. The autonomous mobile robot control system includes a cloud server device, a local server device, and at least one autonomous mobile robot. The method includes the following steps. The sensing data is wirelessly transmitted to the local server device through at least one autonomous mobile robot. The sensing data is used to perform the positioning operation and navigation operation of at least one autonomous mobile robot through the local server device, and the navigation control instructions are generated and wirelessly transmitted through the local server device. Navigation control instructions are received from the local server device through at least one autonomous mobile robot, and the robot moves according to the navigation control instructions. Provide actual status information of at least one autonomous mobile robot to the cloud server device through the local server device. The virtual state information of at least one autonomous mobile robot is simulated through the cloud server device according to the robot mathematical model of the at least one autonomous mobile robot. When the actual status information does not match the virtual status information, the navigation correction operation is performed through the cloud server device.

基於上述,於本發明的實施例中,本地伺服器裝置可根據自主移動機器人提供的感測資料來執行自主移動機器人的定位操作與導航操作,而自主移動機器人可從本地伺服器裝置接收導 航控制指令來進行移動。基此,自主移動機器人的計算硬體無須負責計算量龐大且計算複雜的定位與導航運算,從而大幅降低佈署多台自主移動機器人的成本。另外,於自主移動機器人的移動過程中,自主移動機器人的實際狀態資訊可經由本地伺服器裝置提供至雲端伺服器裝置,而雲端伺服器裝置可利用機器人數學模型模擬自主移動機器人的虛擬狀態資訊。雲端伺服器裝置可比較實際狀態資訊與虛擬狀態資訊來決定是否執行導航修正操作。基此,當自主移動機器人遭遇不可預期因素影響而未如預期運作,雲端伺服器裝置可透過導航修正操作協助自主移動機器人盡速恢復正常運作,從而有效提高自主移動機器人的穩定性與可靠性。 Based on the above, in embodiments of the present invention, the local server device can perform the positioning operation and navigation operation of the autonomous mobile robot according to the sensing data provided by the autonomous mobile robot, and the autonomous mobile robot can receive guidance from the local server device. Navigation control instructions to move. Based on this, the computing hardware of autonomous mobile robots does not need to be responsible for huge and complex positioning and navigation operations, thereby significantly reducing the cost of deploying multiple autonomous mobile robots. In addition, during the movement of the autonomous mobile robot, the actual status information of the autonomous mobile robot can be provided to the cloud server device through the local server device, and the cloud server device can use the robot mathematical model to simulate the virtual status information of the autonomous mobile robot. The cloud server device can compare the actual status information with the virtual status information to decide whether to perform the navigation correction operation. Based on this, when the autonomous mobile robot encounters unexpected factors and fails to operate as expected, the cloud server device can assist the autonomous mobile robot to resume normal operation as soon as possible through navigation correction operations, thereby effectively improving the stability and reliability of the autonomous mobile robot.

10:自主移動機器人控制系統 10:Autonomous mobile robot control system

110:雲端伺服器裝置 110:Cloud server installation

120:本地伺服器裝置 120:Local server device

130:自主移動機器人 130:Autonomous mobile robot

111,121,131:儲存裝置 111,121,131:Storage device

112,122:網路模組 112,122:Network module

113,123,133:處理器 113,123,133: Processor

124,134:無線通訊模組 124,134: Wireless communication module

N1:網路 N1:Internet

132:感測器 132: Sensor

135:移動裝置 135:Mobile device

1211:定位模組 1211: Positioning module

1212:導航模組 1212:Navigation module

1213:地圖模組 1213:Map module

1214:管理模組 1214:Management module

1111:智慧決策模組 1111:Smart decision-making module

1112:運行狀態模擬模組 1112: Running state simulation module

1113:地圖管理模組 1113:Map management module

1114:實際狀態資訊管理模組 1114: Actual status information management module

S210~S260、S410~S490、S510~S590、S602~S620:步驟 S210~S260, S410~S490, S510~S590, S602~S620: steps

圖1是依照本發明一實施例的自主移動機器人控制系統的示意圖。 Figure 1 is a schematic diagram of an autonomous mobile robot control system according to an embodiment of the present invention.

圖2是依照本發明一實施例的自主移動機器人控制方法的流程圖。 Figure 2 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention.

圖3A是依照本發明一實施例的本地伺服器裝置的軟體功能模組的示意圖。 FIG. 3A is a schematic diagram of a software function module of a local server device according to an embodiment of the present invention.

圖3B是依照本發明一實施例的本地伺服器裝置的軟體功能模組的示意圖。 FIG. 3B is a schematic diagram of a software function module of a local server device according to an embodiment of the present invention.

圖4是依照本發明一實施例的自主移動機器人控制方法的流 程圖。 Figure 4 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention. Process map.

圖5是依照本發明一實施例的自主移動機器人控制方法的流程圖。 Figure 5 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention.

圖6是依照本發明一實施例的自主移動機器人控制方法的流程圖。 Figure 6 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法與系統的範例。 Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. Rather, these embodiments are merely examples of methods and systems within the scope of the patent application of the present invention.

圖1是依照本發明一實施例的自主移動機器人控制系統的示意圖。請參照圖1,自主移動機器人控制系統10包括雲端伺服器裝置110、本地伺服器裝置120,以及至少一自主移動機器人130。須說明的是,儘管圖1示出3個自主移動機器人130,但自主移動機器人的數目在本發明中是不受限制的,其可視實際需求而設置。 Figure 1 is a schematic diagram of an autonomous mobile robot control system according to an embodiment of the present invention. Referring to FIG. 1 , the autonomous mobile robot control system 10 includes a cloud server device 110 , a local server device 120 , and at least one autonomous mobile robot 130 . It should be noted that although FIG. 1 shows three autonomous mobile robots 130, the number of autonomous mobile robots is not limited in the present invention and can be set according to actual needs.

雲端伺服器裝置110為具有運算能力與連網能力的電子設備。雲端伺服器裝置110可包括(但不限於)儲存裝置111、網路模組112,以及處理器113。處理器113可存取與執行儲存裝置111中的指令、模組或程式,以執行本揭露所描述的自主移動機器 人控制方法的一個或多個操作。 The cloud server device 110 is an electronic device with computing capabilities and networking capabilities. The cloud server device 110 may include (but is not limited to) a storage device 111, a network module 112, and a processor 113. The processor 113 can access and execute instructions, modules or programs in the storage device 111 to execute the autonomous mobile machine described in this disclosure. One or more operations of a human control method.

於一些實施例中,雲端伺服器裝置110可以由雲運算平台的一或多台雲端機器來實現,上述雲運算平台可以是本領域已知的任何雲運算平台,例如亞馬遜網路服務(Amazon Web Services,AWS)、Microsoft Azure、GOOGLE CLOUD或其他雲運算平台。雲端伺服器裝置110可利用網路模組112連接至網路N1,以透過網路N1實現資料傳輸。網路模組112可包括有線收發器或無線收發器。 In some embodiments, the cloud server device 110 can be implemented by one or more cloud machines of a cloud computing platform. The cloud computing platform can be any cloud computing platform known in the art, such as Amazon Web Services (Amazon Web Services). Services, AWS), Microsoft Azure, GOOGLE CLOUD or other cloud computing platforms. The cloud server device 110 can utilize the network module 112 to connect to the network N1 to realize data transmission through the network N1. Network module 112 may include a wired transceiver or a wireless transceiver.

本地伺服器裝置120為具有運算能力與連網能力的電子設備。本地伺服器裝置120可包括(但不限於)儲存裝置121、網路模組122,處理器123,以及無線通訊模組124。處理器123可存取與執行儲存裝置121中的指令、模組或程式,以執行本揭露所描述的自主移動機器人控制方法的一個或多個操作。 The local server device 120 is an electronic device with computing capabilities and networking capabilities. The local server device 120 may include (but is not limited to) a storage device 121, a network module 122, a processor 123, and a wireless communication module 124. The processor 123 can access and execute instructions, modules or programs in the storage device 121 to perform one or more operations of the autonomous mobile robot control method described in this disclosure.

於一些實施例中,本地伺服器裝置120可利用網路模組122連接至網路N1,以透過網路N1實現資料傳輸。網路模組122可包括有線收發器或無線收發器。換言之,本地伺服器裝置120可經由網路N1可通訊地連接至雲端伺服器裝置110。網路N1可以包括多種無線及/或有線網路中的任何一種。例如,網路N1可以包括公共及/或私有網路、區域網路及/或廣域網路等的任何組合。此外,網路N1可以利用一種或多種有線及/或無線通信技術。在一些實施例中,網路N1可以包括例如蜂巢或其他行動網路、無線區域網路(WLAN)、無線廣域網路(WWAN)及/或網際網路。 舉例而言,網路N1可包括長期演進技術(LTE)無線網路、第五代(5G)無線網路(亦稱為新無線電(NR)無線網路或5G NR無線網路)、Wi-Fi WLAN或網際網路。 In some embodiments, the local server device 120 may utilize the network module 122 to connect to the network N1 to implement data transmission through the network N1. Network module 122 may include a wired transceiver or a wireless transceiver. In other words, the local server device 120 can be communicatively connected to the cloud server device 110 via the network N1. Network N1 may include any of a variety of wireless and/or wired networks. For example, network N1 may include any combination of public and/or private networks, local area networks, and/or wide area networks, etc. Additionally, network N1 may utilize one or more wired and/or wireless communication technologies. In some embodiments, network N1 may include, for example, a cellular or other mobile network, a wireless local area network (WLAN), a wireless wide area network (WWAN), and/or the Internet. For example, the network N1 may include a Long Term Evolution (LTE) wireless network, a fifth generation (5G) wireless network (also known as a new radio (NR) wireless network or a 5G NR wireless network), Wi-Fi Fi WLAN or Internet.

於一些實施例中,無線通訊模組124可包括天線與無線收發器,以實現無線資料傳輸。須說明的是,於不同實施例中,無線通訊模組124與網路模組112可以是相同或相異的通訊元件。本地伺服器裝置120可利用無線通訊模組124接收來自自主移動機器人130的資料,並可利用無線通訊模組124傳送資料至自主移動機器人130。 In some embodiments, the wireless communication module 124 may include an antenna and a wireless transceiver to implement wireless data transmission. It should be noted that in different embodiments, the wireless communication module 124 and the network module 112 may be the same or different communication components. The local server device 120 can use the wireless communication module 124 to receive data from the autonomous mobile robot 130 and can use the wireless communication module 124 to transmit data to the autonomous mobile robot 130 .

自主移動機器人130可於在作業環境中移動,其可為任意形式之自主移動機器人,例如淺伏型自主移動機器人、叉車型自主移動機器人,或拖掛型自主移動機器人等等。自主移動機器人130可包括(但不限於)儲存裝置131、感測器132、處理器133、無線通訊模組134,以及移動裝置135。處理器133可存取與執行儲存裝置131中的指令、模組或程式,以執行本揭露所描述的自主移動機器人控制方法的一個或多個操作。 The autonomous mobile robot 130 can move in the working environment, and it can be any form of autonomous mobile robot, such as a low-voltage autonomous mobile robot, a forklift-type autonomous mobile robot, or a trailer-type autonomous mobile robot, etc. The autonomous mobile robot 130 may include (but is not limited to) a storage device 131, a sensor 132, a processor 133, a wireless communication module 134, and a mobile device 135. The processor 133 can access and execute instructions, modules or programs in the storage device 131 to perform one or more operations of the autonomous mobile robot control method described in this disclosure.

於一些實施例中,感測器132可包括慣性感測器(例如加速度感測器、陀螺儀或磁力儀)、光達感測裝置、影像感測器、紅外線感測器、超音波感測器、車輪編碼器、其它類型的感測器或其組合。感測器132具有感測環境資訊或機器人運動狀態的能力,其所產生的感測資料可用於自主移動機器人130的定位、導航與地圖建構。 In some embodiments, the sensor 132 may include an inertial sensor (such as an acceleration sensor, a gyroscope or a magnetometer), a lidar sensing device, an image sensor, an infrared sensor, or an ultrasonic sensor. encoder, wheel encoder, other type of sensor, or a combination thereof. The sensor 132 has the ability to sense environmental information or the robot's motion state, and the sensing data generated by it can be used for positioning, navigation and map construction of the autonomous mobile robot 130 .

自主移動機器人130無線連接本地伺服器裝置120。於一些實施例中,無線通訊模組134可包括天線與無線收發器,以實現無線資料傳輸。自主移動機器人130可利用無線通訊模組134接收來自本地伺服器裝置120的資料,並可利用無線通訊模組134傳送資料至本地伺服器裝置120。無線通訊模組134與無線通訊模組124可支援同一無線通訊標準,而透過佈建於作業環境的無線區域網路來相互通訊。舉例而言,無線通訊模組134與無線通訊模組124可支援5G通訊標準,而透過佈建於作業環境的5G專網來相互通訊。 The autonomous mobile robot 130 is wirelessly connected to the local server device 120 . In some embodiments, the wireless communication module 134 may include an antenna and a wireless transceiver to implement wireless data transmission. The autonomous mobile robot 130 can use the wireless communication module 134 to receive data from the local server device 120 and can use the wireless communication module 134 to transmit data to the local server device 120 . The wireless communication module 134 and the wireless communication module 124 can support the same wireless communication standard and communicate with each other through a wireless local area network deployed in the operating environment. For example, the wireless communication module 134 and the wireless communication module 124 can support the 5G communication standard and communicate with each other through a 5G private network deployed in the operating environment.

於一些實施例中,移動裝置135具有移動能力,使自主移動機器人130可自行於地面上移動。於一些實施例中,移動裝置135為具有車輪的機電裝置,電力可驅動馬達來帶動車輪轉動,以使自主移動機器人130能藉由車輪轉動而得以於地面上自行移動。 In some embodiments, the mobile device 135 has mobility capabilities so that the autonomous mobile robot 130 can move on the ground by itself. In some embodiments, the mobile device 135 is an electromechanical device with wheels, and electricity can drive a motor to drive the wheels to rotate, so that the autonomous mobile robot 130 can move on the ground by itself through wheel rotation.

本文中,儲存裝置(例如儲存裝置111、121、131)可用以儲存指令、程式碼、軟體模組等等資料,其可以是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其他類似裝置、積體電路或其組合。 In this article, storage devices (such as storage devices 111, 121, 131) can be used to store instructions, program codes, software modules, etc., and can be any type of fixed or removable random access memory (random access memory). memory (RAM), read-only memory (ROM), flash memory (flash memory), hard disk or other similar device, integrated circuit, or combination thereof.

本文中,處理器(例如處理器113、123、133)可以是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或 特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、影像訊號處理器(image signal processor,ISP)、圖形處理器(graphics processing unit,GPU)或其他類似裝置、積體電路或其組合。 Here, the processor (such as the processors 113, 123, 133) may be a central processing unit (CPU), an application processor (AP), or other programmable general-purpose or Special purpose microprocessor (microprocessor), digital signal processor (DSP), image signal processor (ISP), graphics processing unit (GPU) or other similar devices, products body circuit or combination thereof.

圖2是依照本發明一實施例的自主移動機器人控制方法的流程圖,而圖2的方法流程可以由圖1之自主移動機器人控制系統10來實現。為使本發明的概念更易於理解,以下將另輔以圖3A與圖3B作說明。圖3A是依照本發明一實施例的本地伺服器裝置的軟體功能模組的示意圖。圖3B是依照本發明一實施例的本地伺服器裝置的軟體功能模組的示意圖。如圖3A與圖3B所示,儲存裝置121與儲存裝置111可分別記錄有多個軟體模組。 FIG. 2 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention, and the method flow of FIG. 2 can be implemented by the autonomous mobile robot control system 10 of FIG. 1 . In order to make the concept of the present invention easier to understand, FIG. 3A and FIG. 3B will be supplemented for explanation below. FIG. 3A is a schematic diagram of a software function module of a local server device according to an embodiment of the present invention. FIG. 3B is a schematic diagram of a software function module of a local server device according to an embodiment of the present invention. As shown in FIG. 3A and FIG. 3B , the storage device 121 and the storage device 111 may respectively record multiple software modules.

於步驟S210,由至少一自主移動機器人130將感測資料無線傳輸給本地伺服器裝置120。具體而言,感測器132可感測環境資訊或機器人運動狀態,且自主移動機器人130可透過無線通訊模組134將感測資料傳輸給本地伺服器裝置120。上述感測資料例如是慣性感測資料、光達感測資料、測距資料,或影像感測資料等等。 In step S210, at least one autonomous mobile robot 130 wirelessly transmits the sensing data to the local server device 120. Specifically, the sensor 132 can sense environmental information or the robot's motion state, and the autonomous mobile robot 130 can transmit the sensed data to the local server device 120 through the wireless communication module 134 . The above-mentioned sensing data is, for example, inertial sensing data, lidar sensing data, ranging data, or image sensing data, etc.

於步驟S220,由本地伺服器裝置120利用感測資料執行至少一自主移動機器人130的定位操作與導航操作,並由本地伺服器裝置120產生與無線傳輸導航控制指令。於一些實施例中,本地伺服器裝置120可利同時定位與地圖構建(Simultaneous localization and mapping,SLAM)技術而依據感測資料執行自主 移動機器人130的定位操作與導航操作。亦即,本地伺服器裝置120可根據自主移動機器人130提供的感測資料執行SLAM演算法,以獲取自主移動機器人130的定位位置並產生導航控制指令。上述導航控制指令用以控制自主移動機器人130的移動方向、移動速度或移動距離等等。本地伺服器裝置120可透過無線通訊模組124傳送導航控制指令至自主移動機器人130。 In step S220, the local server device 120 uses the sensing data to perform positioning operations and navigation operations of at least one autonomous mobile robot 130, and the local server device 120 generates and wirelessly transmits navigation control instructions. In some embodiments, the local server device 120 may utilize simultaneous localization and mapping (SLAM) technology to perform autonomous processing based on sensing data. Positioning operation and navigation operation of the mobile robot 130. That is, the local server device 120 can execute the SLAM algorithm according to the sensing data provided by the autonomous mobile robot 130 to obtain the positioning position of the autonomous mobile robot 130 and generate navigation control instructions. The above-mentioned navigation control instructions are used to control the moving direction, moving speed or moving distance of the autonomous mobile robot 130, etc. The local server device 120 can transmit navigation control instructions to the autonomous mobile robot 130 through the wireless communication module 124 .

如圖3A所示,本地伺服器裝置120的定位模組1211可利用感測資料執行自主移動機器人130的定位操作。本地伺服器裝置120的導航模組1212可利用感測資料執行自主移動機器人130的導航操作。本地伺服器裝置120的地圖模組1213可根據感測資料建立作業環境的環境地圖與/或記錄作業環境的環境地圖。 As shown in FIG. 3A , the positioning module 1211 of the local server device 120 can use the sensing data to perform the positioning operation of the autonomous mobile robot 130 . The navigation module 1212 of the local server device 120 may utilize the sensing data to perform navigation operations of the autonomous mobile robot 130 . The map module 1213 of the local server device 120 can create an environmental map of the working environment and/or record the environmental map of the working environment based on the sensing data.

於步驟S230,由至少一自主移動機器人130自本地伺服器裝置120接收導航控制指令,而根據導航控制指令移動。詳細而言,自主移動機器人130可根據導航控制指令來控制移動裝置135,以使自主移動機器人130可沿著導航路徑往目的地移動。由此可見,自主移動機器人130無須負責定位操作與導航操作的龐大運算,而是根據本地伺服器裝置120提供的導航控制指令來移動。因此,自主移動機器人130的硬體成本可以降低,使大量自主移動機器人130的部署可更符合現實需求。 In step S230, at least one autonomous mobile robot 130 receives a navigation control instruction from the local server device 120 and moves according to the navigation control instruction. In detail, the autonomous mobile robot 130 can control the mobile device 135 according to the navigation control instruction, so that the autonomous mobile robot 130 can move to the destination along the navigation path. It can be seen that the autonomous mobile robot 130 does not need to be responsible for the huge calculations of positioning operations and navigation operations, but moves according to the navigation control instructions provided by the local server device 120 . Therefore, the hardware cost of the autonomous mobile robot 130 can be reduced, so that the deployment of a large number of autonomous mobile robots 130 can be more in line with actual needs.

於步驟S240,由本地伺服器裝置120將至少一自主移動機器人130的實際狀態資訊提供給雲端伺服器裝置110。自主移動機器人130的實際狀態資訊可包括自主移動機器人130的機器運 行參數與/或感測器132的感測資料。舉例而言,自主移動機器人130的實際狀態資訊可包括電流準位、電壓準位、即時移動速度,即時角速度、車輪轉動量、慣性感測資料或其組合。 In step S240, the local server device 120 provides actual status information of at least one autonomous mobile robot 130 to the cloud server device 110. The actual status information of the autonomous mobile robot 130 may include the machine operation of the autonomous mobile robot 130. row parameters and/or sensing data of the sensor 132 . For example, the actual status information of the autonomous mobile robot 130 may include current level, voltage level, real-time moving speed, real-time angular speed, wheel rotation amount, inertial sensing data or a combination thereof.

具體而言,於自主移動機器人130的移動過程中,自主移動機器人130可自行收集實際狀態資訊,並透過無線通訊模組134將實際狀態資訊回報給本地伺服器裝置120。對應的,本地伺服器裝置120可經由網路N1將自主移動機器人130的實際狀態資訊傳送至雲端伺服器裝置110。如圖3A所示,本地伺服器裝置120的管理模組1214可接收並管理各個自主移動機器人130的實際狀態資訊,並將各個自主移動機器人130的實際狀態資訊傳送至雲端伺服器裝置110。如圖3B所示,雲端伺服器裝110的實際狀態資訊管理模組1114可自本地伺服器裝置120接收自主移動機器人130的實際狀態資訊,並管理自主移動機器人130的實際狀態資訊。 Specifically, during the movement of the autonomous mobile robot 130, the autonomous mobile robot 130 can collect actual status information by itself and report the actual status information to the local server device 120 through the wireless communication module 134. Correspondingly, the local server device 120 can transmit the actual status information of the autonomous mobile robot 130 to the cloud server device 110 via the network N1. As shown in FIG. 3A , the management module 1214 of the local server device 120 can receive and manage the actual status information of each autonomous mobile robot 130 , and transmit the actual status information of each autonomous mobile robot 130 to the cloud server device 110 . As shown in FIG. 3B , the actual status information management module 1114 of the cloud server device 110 can receive the actual status information of the autonomous mobile robot 130 from the local server device 120 and manage the actual status information of the autonomous mobile robot 130 .

於步驟S250,由雲端伺服器裝置110根據至少一自主移動機器人130的機器人數學模型模擬至少一自主移動機器人130的虛擬狀態資訊。自主移動機器人130的機器人數學模型事先建立並儲存於雲端伺服器裝置110,其可包括自主移動機器人130的動力學模型或狀態空間模型等等。機器人數學模型可由一或多個數學函式組成。在給定模型輸入資料的情況下,機器人數學模型可產生模擬出自主移動機器人130的虛擬狀態資訊。自主移動機器人130的虛擬狀態資訊可包括虛擬電流準位、虛擬電壓準位、 虛擬移動速度,虛擬角速度、虛擬車輪轉動量、虛擬慣性感測值或其組合。換言之,在確定導航路徑之後,自主移動機器人130於移動途中的虛擬狀態資訊可利用機器人數學模型來估測出來。 In step S250 , the cloud server device 110 simulates the virtual state information of the at least one autonomous mobile robot 130 according to the robot mathematical model of the at least one autonomous mobile robot 130 . The robot mathematical model of the autonomous mobile robot 130 is established in advance and stored in the cloud server device 110, which may include a dynamic model or a state space model of the autonomous mobile robot 130, etc. A robot mathematical model can be composed of one or more mathematical functions. Given the model input data, the robot mathematical model can generate virtual state information that simulates the autonomous mobile robot 130 . The virtual status information of the autonomous mobile robot 130 may include virtual current level, virtual voltage level, Virtual moving speed, virtual angular velocity, virtual wheel rotation amount, virtual inertia sensing value or a combination thereof. In other words, after determining the navigation path, the virtual state information of the autonomous mobile robot 130 during movement can be estimated using the robot mathematical model.

如圖3B所示,雲端伺服器裝110的運行狀態模擬模組1112可利用預先建立好的機器人數學模型模擬與估測自主移動機器人130的虛擬狀態資訊。雲端伺服器裝110的地圖管理模組1113可記錄作業環境的環境地圖,其可用於產生自主移動機器人130的虛擬狀態資訊。 As shown in FIG. 3B , the running state simulation module 1112 of the cloud server device 110 can use a pre-established robot mathematical model to simulate and estimate the virtual state information of the autonomous mobile robot 130 . The map management module 1113 of the cloud server 110 can record the environment map of the operating environment, which can be used to generate virtual state information of the autonomous mobile robot 130 .

於步驟S260,當實際狀態資訊與虛擬狀態資訊不相符時,由雲端伺服器裝置110執行導航修正操作。如圖3B所示,雲端伺服器裝置110的智慧決策模組1111可比較實際狀態資訊與虛擬狀態資訊來偵測自主移動機器人130是否發生不可預期的錯誤行為。當偵測到自主移動機器人130發生不可預期的錯誤行為時,智慧決策模組1111可執行導航修正操作。舉例而言,當自主移動機器人130被人員不小心踢到或因為場地因素打滑時,自主移動機器人130會產生不如預期的位移或不如預期的運行狀態。對應的,雲端伺服器裝置110可因為實際狀態資訊與虛擬狀態資訊不相符而啟動執行導航修正操作,致使自主移動機器人130不至於發生迷航的情況。 In step S260, when the actual status information does not match the virtual status information, the cloud server device 110 performs a navigation correction operation. As shown in FIG. 3B , the intelligent decision-making module 1111 of the cloud server device 110 can compare the actual state information and the virtual state information to detect whether the autonomous mobile robot 130 has unexpected erroneous behavior. When detecting that the autonomous mobile robot 130 has unexpected erroneous behavior, the intelligent decision-making module 1111 can perform navigation correction operations. For example, when the autonomous mobile robot 130 is accidentally kicked by a person or slips due to site factors, the autonomous mobile robot 130 may produce undesirable displacement or unsatisfactory operating status. Correspondingly, the cloud server device 110 can initiate a navigation correction operation because the actual state information does not match the virtual state information, so that the autonomous mobile robot 130 will not get lost.

於一些實施例中,當雲端伺服器裝置110執行導航修正操作,雲端伺服器裝置110控制本地伺服器裝置120重新估測自主移動機器人130的位置資訊。也就是說,當偵測到自主移動機 器人130發生不可預期的錯誤行為時,本地伺服器裝置120可根據自主移動機器人130提供的感測資料重新估測自主移動機器人130的位置資訊,以使自主移動機器人130可盡快恢復正常工作狀態,例如使自主移動機器人130從當前位置回到先前規劃的導航路徑上。又或者,於一些實施例中,雲端伺服器裝置110可利用人工智慧模型而依據實際狀態資訊決定導航修正操作,以根據人工智慧模型執行路線更改、任務調整或其他調整操作。基此,雲端伺服器裝置110可即時偵測出自主移動機器人130發生不可預期的問題,並透過導航修正操作來使自主移動機器人130盡快回到正常運作狀態,確保自主移動機器人130的運作可靠性。 In some embodiments, when the cloud server device 110 performs a navigation correction operation, the cloud server device 110 controls the local server device 120 to re-estimate the position information of the autonomous mobile robot 130 . That is, when an autonomous mobile machine is detected When the robot 130 behaves unexpectedly, the local server device 120 can re-estimate the position information of the autonomous mobile robot 130 based on the sensing data provided by the autonomous mobile robot 130, so that the autonomous mobile robot 130 can return to normal working status as soon as possible. , for example, causing the autonomous mobile robot 130 to return to the previously planned navigation path from the current location. Or, in some embodiments, the cloud server device 110 can use an artificial intelligence model to determine navigation correction operations based on actual status information, so as to perform route changes, task adjustments, or other adjustment operations based on the artificial intelligence model. Based on this, the cloud server device 110 can detect unexpected problems in the autonomous mobile robot 130 in real time, and use navigation correction operations to return the autonomous mobile robot 130 to normal operation as soon as possible to ensure the operational reliability of the autonomous mobile robot 130 .

圖4是依照本發明一實施例的自主移動機器人控制方法的流程圖,而圖4的方法流程可以由圖1之自主移動機器人控制系統10來實現。 FIG. 4 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention, and the method flow of FIG. 4 can be implemented by the autonomous mobile robot control system 10 of FIG. 1 .

於步驟S410,由雲端伺服器裝置110根據任務內容調度至少一自主移動機器人130其中之一執行任務。詳細而言,任務內容可包括目的地、任務類型或搬運目標物等等。雲端伺服器裝置110可根據任務內容選定適合的自主移動機器人130來執行任務。 In step S410, the cloud server device 110 schedules one of the at least one autonomous mobile robot 130 to perform the task according to the task content. In detail, the task content may include destination, task type or moving target object, etc. The cloud server device 110 can select a suitable autonomous mobile robot 130 to perform the task according to the task content.

於步驟S420,由雲端伺服器裝置110根據一任務的任務內容決定至少一自主移動機器人130的導航資訊,並將至少一自主移動機器人130的導航資訊提供給本地伺服器裝置120。於後續步驟中,本地伺服器裝置120可根據導航資訊執行至少一自主移 動機器人130的導航操作。詳細來說,導航資訊可包括起點、目的地、中途停靠點、禁行區域、可行走區域或最佳路徑等等。當本地伺服器裝置120執行導航操作時候,本地伺服器裝置120可根據導航資訊決定導航路徑,並命令被調度的自主移動機器人130沿著導航路徑移動。 In step S420, the cloud server device 110 determines the navigation information of at least one autonomous mobile robot 130 according to the task content of a task, and provides the navigation information of the at least one autonomous mobile robot 130 to the local server device 120. In subsequent steps, the local server device 120 may perform at least one autonomous migration based on the navigation information. navigation operation of the mobile robot 130. Specifically, navigation information may include starting points, destinations, stopping points, prohibited areas, walkable areas, or best routes, etc. When the local server device 120 performs a navigation operation, the local server device 120 may determine a navigation path based on the navigation information and instruct the scheduled autonomous mobile robot 130 to move along the navigation path.

於步驟S430,由至少一自主移動機器人130將感測資料無線傳輸給本地伺服器裝置120。於步驟S440,由本地伺服器裝置120利用感測資料執行至少一自主移動機器人130的定位操作與導航操作,並由本地伺服器裝置120產生與無線傳輸導航控制指令。 In step S430, at least one autonomous mobile robot 130 wirelessly transmits the sensing data to the local server device 120. In step S440, the local server device 120 uses the sensing data to perform positioning operations and navigation operations of at least one autonomous mobile robot 130, and the local server device 120 generates and wirelessly transmits navigation control instructions.

於步驟S450,由至少一自主移動機器人130自本地伺服器裝置120接收導航控制指令,而根據導航控制指令移動。於步驟S460,由本地伺服器裝置120將至少一自主移動機器人130的實際狀態資訊提供給雲端伺服器裝置110。於步驟S470,由雲端伺服器裝置110根據至少一自主移動機器人130的機器人數學模型模擬至少一自主移動機器人130的虛擬狀態資訊。步驟S410~步驟S470的詳細實施內容已於前述實施例說明,於此不再贅述。 In step S450, at least one autonomous mobile robot 130 receives the navigation control instruction from the local server device 120 and moves according to the navigation control instruction. In step S460, the local server device 120 provides actual status information of at least one autonomous mobile robot 130 to the cloud server device 110. In step S470, the cloud server device 110 simulates the virtual state information of the at least one autonomous mobile robot 130 according to the robot mathematical model of the at least one autonomous mobile robot 130. The detailed implementation contents of steps S410 to S470 have been described in the previous embodiments and will not be described again here.

於步驟S480,由雲端伺服器裝110判斷實際狀態資訊與虛擬狀態資訊是否相符。舉例而言,雲端伺服器裝110可判斷實際狀態資訊與虛擬狀態資訊之間的差距是否大於門檻值。若實際狀態資訊與虛擬狀態資訊之間的差距大於門檻值,可判定實際狀態資訊與虛擬狀態資訊不相符。反之,若實際狀態資訊與虛擬狀 態資訊之間的差距未大於門檻值,可判定實際狀態資訊與虛擬狀態資訊相符。舉例而言,若自主移動機器人130的即時移動速度與機器人數學模型所模擬出來的虛擬移動速度之間的差距大於門檻值,雲端伺服器裝110可判定實際狀態資訊與虛擬狀態資訊不相符,代表有不可預期的狀況發生。 In step S480, the cloud server device 110 determines whether the actual status information matches the virtual status information. For example, the cloud server device 110 may determine whether the difference between the actual status information and the virtual status information is greater than a threshold. If the difference between the actual state information and the virtual state information is greater than the threshold, it can be determined that the actual state information and the virtual state information do not match. On the contrary, if the actual status information and the virtual status If the difference between the state information is not greater than the threshold, it can be determined that the actual state information is consistent with the virtual state information. For example, if the difference between the real-time moving speed of the autonomous mobile robot 130 and the virtual moving speed simulated by the robot's mathematical model is greater than the threshold value, the cloud server device 110 may determine that the actual status information does not match the virtual status information, which means Something unexpected happens.

若步驟S480判斷為否,於步驟S490,當實際狀態資訊與虛擬狀態資訊不相符時,由雲端伺服器裝置110執行導航修正操作。步驟S490的詳細實施內容已於前述實施例說明,於此不再贅述。 If the determination in step S480 is negative, in step S490, when the actual status information does not match the virtual status information, the cloud server device 110 performs a navigation correction operation. The detailed implementation content of step S490 has been described in the previous embodiments and will not be described again here.

圖5是依照本發明一實施例的自主移動機器人控制方法的流程圖,而圖5的方法流程可以由圖1之自主移動機器人控制系統10來實現。 FIG. 5 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention, and the method flow of FIG. 5 can be implemented by the autonomous mobile robot control system 10 of FIG. 1 .

於步驟S510,由至少一自主移動機器人130將感測資料無線傳輸給本地伺服器裝置120。於步驟S520,由本地伺服器裝置120利用感測資料執行至少一自主移動機器人130的定位操作與導航操作,並由本地伺服器裝置120產生與無線傳輸導航控制指令。於步驟S530,由至少一自主移動機器人130自本地伺服器裝置120接收導航控制指令,而根據導航控制指令移動。 In step S510, at least one autonomous mobile robot 130 wirelessly transmits the sensing data to the local server device 120. In step S520, the local server device 120 uses the sensing data to perform positioning operations and navigation operations of at least one autonomous mobile robot 130, and the local server device 120 generates and wirelessly transmits navigation control instructions. In step S530, at least one autonomous mobile robot 130 receives the navigation control instruction from the local server device 120 and moves according to the navigation control instruction.

於步驟S540,由本地伺服器裝置120將至少一自主移動機器人130的實際狀態資訊提供給雲端伺服器裝置110。於步驟S550,由雲端伺服器裝置110根據至少一自主移動機器人130的機器人數學模型模擬至少一自主移動機器人130的虛擬狀態資 訊。於步驟S560,當實際狀態資訊與虛擬狀態資訊不相符時,由雲端伺服器裝置110執行導航修正操作。步驟S510~步驟S560的詳細實施內容已於前述實施例說明,於此不再贅述。 In step S540, the local server device 120 provides actual status information of at least one autonomous mobile robot 130 to the cloud server device 110. In step S550, the cloud server device 110 simulates the virtual state data of the at least one autonomous mobile robot 130 according to the robot mathematical model of the at least one autonomous mobile robot 130. News. In step S560, when the actual status information does not match the virtual status information, the cloud server device 110 performs a navigation correction operation. The detailed implementation contents of steps S510 to S560 have been described in the previous embodiments and will not be described again here.

須特別說明的是,於步驟S570,由至少一自主移動機器人130經由本地伺服器裝置120回報感測資料與機器運行參數給雲端伺服器裝置110。於自主移動機器人130的運行過程中,自主移動機器人130收集感測器13產生的感測資料與機器運行參數,並透過本地伺服器裝置120將感測資料與機器運行參數回報給雲端伺服器裝置110。機器運行參數可包括電流準位、電壓準位、即時移動速度,或即時角速度等等。 It should be noted that in step S570, at least one autonomous mobile robot 130 reports sensing data and machine operating parameters to the cloud server device 110 through the local server device 120. During the operation of the autonomous mobile robot 130, the autonomous mobile robot 130 collects sensing data and machine operating parameters generated by the sensor 13, and reports the sensing data and machine operating parameters to the cloud server device through the local server device 120. 110. Machine operating parameters may include current level, voltage level, real-time movement speed, or real-time angular velocity, etc.

於步驟S580,由雲端伺服器裝置110根據感測資料與機器運行參數檢測至少一自主移動機器人130的健康狀態。於一些實施例中,雲端伺服器裝置110可將自主移動機器人130的感測資料與機器運行參數輸入至機器學習模型來預估自主移動機器人130的健康狀態。舉例而言,機器學習模型可輸出自主移動機器人130的評估健康分數。經訓練完成的機器學習模型可紀錄於雲端伺服器裝置110。 In step S580, the cloud server device 110 detects the health status of at least one autonomous mobile robot 130 based on the sensing data and machine operating parameters. In some embodiments, the cloud server device 110 can input the sensing data and machine operating parameters of the autonomous mobile robot 130 into the machine learning model to estimate the health status of the autonomous mobile robot 130 . For example, the machine learning model may output an assessed health score of the autonomous mobile robot 130 . The trained machine learning model can be recorded in the cloud server device 110 .

於步驟S590,由雲端伺服器裝置110根據至少一自主移動機器人130的健康狀態停止至少一自主移動機器人130運行或提供保養通知。當自主移動機器人130的健康狀態符合保養警示條件,雲端伺服器裝置110提供關聯於自主移動機器人130的保養通知給管理者。舉例而言,雲端伺服器裝置110可將保養通知 提供給本地伺服器裝置120或管理者的電腦或手機。當自主移動機器人130的健康狀態符合停止運作條件,雲端伺服器裝置110可透過本地伺服器裝置120控制自主移動機器人130停止運行。 In step S590, the cloud server device 110 stops the operation of the at least one autonomous mobile robot 130 or provides a maintenance notification according to the health status of the at least one autonomous mobile robot 130. When the health status of the autonomous mobile robot 130 meets the maintenance warning conditions, the cloud server device 110 provides a maintenance notification related to the autonomous mobile robot 130 to the administrator. For example, the cloud server device 110 can notify the maintenance Provided to the local server device 120 or the administrator's computer or mobile phone. When the health status of the autonomous mobile robot 130 meets the conditions for stopping operation, the cloud server device 110 can control the autonomous mobile robot 130 to stop running through the local server device 120 .

舉例而言,當自主移動機器人130的評估健康分數小於第一門檻值,雲端伺服器裝置110可提供保養通知。當自主移動機器人130的評估健康分數小於第二門檻值,雲端伺服器裝置110可停止自主移動機器人130繼續運行。第一門檻值相異於第二門檻值。 For example, when the assessed health score of the autonomous mobile robot 130 is less than the first threshold, the cloud server device 110 may provide a maintenance notification. When the evaluated health score of the autonomous mobile robot 130 is less than the second threshold, the cloud server device 110 may stop the autonomous mobile robot 130 from continuing to run. The first threshold value is different from the second threshold value.

圖6是依照本發明一實施例的自主移動機器人控制方法的流程圖,而圖6的方法流程可以由圖1之自主移動機器人控制系統10來實現。 FIG. 6 is a flow chart of an autonomous mobile robot control method according to an embodiment of the present invention, and the method flow of FIG. 6 can be implemented by the autonomous mobile robot control system 10 of FIG. 1 .

於步驟S602,由至少一自主移動機器人130其中一者於作業環境中移動,並由本地伺服器裝置120根據至少一自主移動機器人130其中一者提供的感測資料建立作業環境的環境地圖。詳細來說,本地伺服器裝置120可控制某一自主移動機器人130於作業環境中沿著一掃描路徑移動,以根據控制此自主移動機器人130提供的感測資料與SLAM技術來建立與繪製作業環境的環境地圖。 In step S602, one of the at least one autonomous mobile robot 130 moves in the working environment, and the local server device 120 establishes an environment map of the working environment based on the sensing data provided by one of the at least one autonomous mobile robot 130. Specifically, the local server device 120 can control an autonomous mobile robot 130 to move along a scanning path in the operating environment, so as to establish and draw the operating environment based on the sensing data and SLAM technology provided by controlling the autonomous mobile robot 130 environmental map.

於步驟S604,由本地伺服器裝置120將作業環境的環境地圖上傳至雲端伺服器裝置110。雲端伺服器裝置110將紀錄作業環境的環境地圖。 In step S604, the local server device 120 uploads the environment map of the operating environment to the cloud server device 110. The cloud server device 110 will record the environment map of the operating environment.

於步驟S606,由雲端伺服器裝置110於環境地圖中設定 多個站點,並將多個站點的站點資訊提供給本地伺服器裝置120。具體而言,管理者可透過雲端伺服器裝置110於環境地圖中設定多個站點。這些站點可包括充電站點或作業站點等等。管理者完成站點設定之後,雲端伺服器裝置110可將多個站點的站點資訊提供給本地伺服器裝置120。由此可見,即便管理者沒有位於作業環境現場,還是可透過雲端伺服器裝置110遠端佈署作業環境中的站點。並且,這些站點資訊可由本地伺服器裝置120管理的所有自主移動機器人130來共用,因此管理者也無須重複地針對每一台自主移動機器人130執行站點設定的流程。 In step S606, the cloud server device 110 sets the environment map multiple sites, and provide site information of the multiple sites to the local server device 120. Specifically, the administrator can set multiple sites in the environment map through the cloud server device 110 . These stations may include charging stations or work stations, among others. After the administrator completes the site settings, the cloud server device 110 can provide site information of multiple sites to the local server device 120 . It can be seen that even if the administrator is not located at the working environment site, the site in the working environment can still be deployed remotely through the cloud server device 110 . Moreover, these site information can be shared by all autonomous mobile robots 130 managed by the local server device 120, so the administrator does not need to repeatedly perform the site setting process for each autonomous mobile robot 130.

於步驟S608,由本地伺服器裝置120調整環境地圖來產生適用於至少一自主移動機器人130其中另一者的另一環境地圖。具體而言,基於某一台自主移動機器人130實際於作業環境中進行空間感測而產生的環境地圖可透過本地伺服器裝置120來一併用於其他自主移動機器人130。如此一來,管理者無須逐一操控大量的自主移動機器人130於作業環境中實際行走來建立各個自主移動機器人130的環境地圖,大幅簡化建立環境地圖的流程。 In step S608, the local server device 120 adjusts the environment map to generate another environment map suitable for the other one of the at least one autonomous mobile robot 130. Specifically, the environment map generated based on a certain autonomous mobile robot 130 actually performing spatial sensing in the working environment can be used for other autonomous mobile robots 130 through the local server device 120 . In this way, managers do not need to control a large number of autonomous mobile robots 130 one by one to actually walk in the working environment to establish an environmental map for each autonomous mobile robot 130, which greatly simplifies the process of establishing an environmental map.

此外,由於每一台自主移動機器人130存在製造公差,因此本地伺服器裝置120可調整某一台自主移動機器人130所建立的環境地圖來產生另一台自主移動機器人130的另一環境地圖。本地伺服器裝置120可根據另一台自主移動機器人130的誤差資訊來進行地圖調整,而誤差資訊(例如感測器132的高度或角度等等)可透過事前的機器人校正程序來得知。如此一來,在 大幅簡化建圖流程的情況下,本地伺服器裝置120依然可產生適用於每一台自主移動機器人130的環境地圖。 In addition, since each autonomous mobile robot 130 has manufacturing tolerances, the local server device 120 can adjust the environment map established by a certain autonomous mobile robot 130 to generate another environment map of another autonomous mobile robot 130 . The local server device 120 can perform map adjustment based on the error information of another autonomous mobile robot 130, and the error information (such as the height or angle of the sensor 132, etc.) can be learned through a prior robot calibration procedure. In this way, in While greatly simplifying the mapping process, the local server device 120 can still generate an environment map suitable for each autonomous mobile robot 130 .

於步驟S610,由至少一自主移動機器人130將感測資料無線傳輸給本地伺服器裝置120。於步驟S612,由本地伺服器裝置120利用感測資料執行至少一自主移動機器人130的定位操作與導航操作,並由本地伺服器裝置120產生與無線傳輸導航控制指令。於一些實施例中,本地伺服器裝置120可根據環境地圖執行至少一自主移動機器人130其中一者的定位操作與導航操作。此外,本地伺服器裝置120可根據另一環境地圖執行至少一自主移動機器人其中另一者的定位操作與導航操作。 In step S610, at least one autonomous mobile robot 130 wirelessly transmits the sensing data to the local server device 120. In step S612, the local server device 120 uses the sensing data to perform positioning operations and navigation operations of at least one autonomous mobile robot 130, and the local server device 120 generates and wirelessly transmits navigation control instructions. In some embodiments, the local server device 120 can perform positioning operations and navigation operations of at least one of the autonomous mobile robots 130 according to the environment map. In addition, the local server device 120 can perform positioning operations and navigation operations of at least one other of the autonomous mobile robots according to another environment map.

於步驟S614,由至少一自主移動機器人130自本地伺服器裝置120接收導航控制指令,而根據導航控制指令移動。於步驟S616,由本地伺服器裝置120將至少一自主移動機器人130的實際狀態資訊提供給雲端伺服器裝置110。於步驟S618,由雲端伺服器裝置110根據至少一自主移動機器人130的機器人數學模型模擬至少一自主移動機器人130的虛擬狀態資訊。於步驟S620,當實際狀態資訊與虛擬狀態資訊不相符時,由雲端伺服器裝置110執行導航修正操作。步驟S610~步驟S520的詳細實施內容已於前述實施例說明,於此不再贅述。 In step S614, at least one autonomous mobile robot 130 receives the navigation control instruction from the local server device 120 and moves according to the navigation control instruction. In step S616, the local server device 120 provides actual status information of at least one autonomous mobile robot 130 to the cloud server device 110. In step S618, the cloud server device 110 simulates the virtual state information of the at least one autonomous mobile robot 130 according to the robot mathematical model of the at least one autonomous mobile robot 130. In step S620, when the actual status information does not match the virtual status information, the cloud server device 110 performs a navigation correction operation. The detailed implementation contents of steps S610 to S520 have been described in the previous embodiments and will not be described again here.

綜上所述,於本發明實施例中,由於自主移動機器人的定位操作與導航操作由本地伺服器裝置負責執行,因此可降低對於自主移動機器人的硬體成本要求,使自主移動機器人的大量部 署可更符合現實需求。此外,透過比對機器人數學模型所模擬的虛擬狀態資訊與自主移動機器人於真實物理環境中的實際狀態資訊,雲端伺服器裝置可即時偵測出自主移動機器人是否發生不可預期問題,並據以執行導航修操作而使自主移動機器人可盡快恢復正常運作狀態。基此,可大幅提高自主移動機器人的可靠性與穩定性。除此之外,雲端伺服器裝置可即時偵測自主移動機器人的健康狀態,並提供適當的應對措施,進而可延長自主移動機器人的使用壽命以及避免意外發生。並且,本發明實施例可實現遠端同步部署多台自主移動機器人的功能,進而大幅提昇部署多台自主移動機器人的便利性與效率。 In summary, in embodiments of the present invention, since the positioning operation and navigation operation of the autonomous mobile robot are performed by the local server device, the hardware cost requirements for the autonomous mobile robot can be reduced, and a large number of parts of the autonomous mobile robot can be The department can be more in line with actual needs. In addition, by comparing the virtual state information simulated by the robot's mathematical model with the actual state information of the autonomous mobile robot in the real physical environment, the cloud server device can instantly detect whether unexpected problems occur in the autonomous mobile robot and execute accordingly. Navigation repair operation so that the autonomous mobile robot can return to normal operation as soon as possible. Based on this, the reliability and stability of autonomous mobile robots can be greatly improved. In addition, the cloud server device can detect the health status of the autonomous mobile robot in real time and provide appropriate countermeasures, thereby extending the service life of the autonomous mobile robot and avoiding accidents. Moreover, embodiments of the present invention can realize the function of remotely synchronously deploying multiple autonomous mobile robots, thereby greatly improving the convenience and efficiency of deploying multiple autonomous mobile robots.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

S210~S260:步驟 S210~S260: steps

Claims (16)

一種自主移動機器人控制系統,包括:一雲端伺服器裝置;一本地伺服器裝置,連接所述雲端伺服器裝置;以及至少一自主移動機器人,無線連接所述本地伺服器裝置,並將感測資料無線傳輸給所述本地伺服器裝置,其中所述本地伺服器裝置利用所述感測資料執行所述至少一自主移動機器人的一定位操作與一導航操作,並產生與無線傳輸一導航控制指令,所述至少一自主移動機器人自所述本地伺服器裝置接收所述導航控制指令,而根據所述導航控制指令移動,其中所述本地伺服器裝置將所述至少一自主移動機器人的實際狀態資訊提供給所述雲端伺服器裝置,所述雲端伺服器裝置根據所述至少一自主移動機器人的機器人數學模型模擬所述至少一自主移動機器人的虛擬狀態資訊,當所述實際狀態資訊與所述虛擬狀態資訊不相符時,所述雲端伺服器裝置執行一導航修正操作,其中透過所述至少一自主移動機器人其中一者於一作業環境中移動,所述本地伺服器裝置根據所述至少一自主移動機器人其中所述一者提供的所述感測資料建立所述作業環境的一環境地圖,所述本地伺服器裝置調整所述環境地圖來產生適用於所述至 少一自主移動機器人其中另一者的另一環境地圖,所述本地伺服器裝置根據所述另一環境地圖執行所述至少一自主移動機器人其中所述另一者的所述定位操作與所述導航操作。 An autonomous mobile robot control system, including: a cloud server device; a local server device connected to the cloud server device; and at least one autonomous mobile robot wirelessly connected to the local server device and sending sensing data wirelessly transmitting to the local server device, wherein the local server device uses the sensing data to perform a positioning operation and a navigation operation of the at least one autonomous mobile robot, and generates and wirelessly transmits a navigation control instruction, The at least one autonomous mobile robot receives the navigation control instruction from the local server device and moves according to the navigation control instruction, wherein the local server device provides actual status information of the at least one autonomous mobile robot. To the cloud server device, the cloud server device simulates the virtual state information of the at least one autonomous mobile robot according to the robot mathematical model of the at least one autonomous mobile robot. When the actual state information and the virtual state When the information does not match, the cloud server device performs a navigation correction operation, wherein one of the at least one autonomous mobile robot moves in an operating environment, and the local server device performs a navigation correction operation according to the at least one autonomous mobile robot. The sensing data provided by the one establishes an environmental map of the operating environment, and the local server device adjusts the environmental map to generate a map suitable for the operating environment. Another environment map of at least one of the other autonomous mobile robots, the local server device performs the positioning operation and the positioning operation of the other of the at least one autonomous mobile robot according to the other environment map Navigation operations. 如請求項1所述的自主移動機器人控制系統,其中所述雲端伺服器裝置根據一任務的任務內容決定所述至少一自主移動機器人的導航資訊,並將所述至少一自主移動機器人的所述導航資訊提供給所述本地伺服器裝置,致使所述本地伺服器裝置根據所述導航資訊執行所述至少一自主移動機器人的所述導航操作。 The autonomous mobile robot control system according to claim 1, wherein the cloud server device determines the navigation information of the at least one autonomous mobile robot according to the task content of a task, and transfers the navigation information of the at least one autonomous mobile robot to Navigation information is provided to the local server device, causing the local server device to perform the navigation operation of the at least one autonomous mobile robot according to the navigation information. 如請求項2所述的自主移動機器人控制系統,其中所述本地伺服器裝置根據所述導航資訊決定一導航路徑,且所述雲端伺服器裝置根據所述任務內容調度所述至少一自主移動機器人其中之一執行所述任務。 The autonomous mobile robot control system of claim 2, wherein the local server device determines a navigation path based on the navigation information, and the cloud server device schedules the at least one autonomous mobile robot based on the task content One of them performs said task. 如請求項1所述的自主移動機器人控制系統,其中當所述雲端伺服器裝置執行所述導航修正操作,所述雲端伺服器裝置控制所述本地伺服器裝置重新估測所述至少一自主移動機器人的位置資訊。 The autonomous mobile robot control system of claim 1, wherein when the cloud server device performs the navigation correction operation, the cloud server device controls the local server device to re-estimate the at least one autonomous movement The robot’s location information. 如請求項1所述的自主移動機器人控制系統,所述至少一自主移動機器人經由所述本地伺服器裝置回報所述感測資料與一機器運行參數給所述雲端伺服器裝置,其中所述雲端伺服器裝置根據所述感測資料與所述機器運行參數檢測所述至少一自主移動機器人的健康狀態。 As in the autonomous mobile robot control system of claim 1, the at least one autonomous mobile robot reports the sensing data and a machine operating parameter to the cloud server device via the local server device, wherein the cloud server The server device detects the health status of the at least one autonomous mobile robot based on the sensing data and the machine operating parameters. 如請求項5所述的自主移動機器人控制系統,其中所述雲端伺服器裝置根據所述至少一自主移動機器人的健康狀態停止所述至少一自主移動機器人運行或提供一保養通知。 The autonomous mobile robot control system according to claim 5, wherein the cloud server device stops the operation of the at least one autonomous mobile robot or provides a maintenance notification according to the health status of the at least one autonomous mobile robot. 如請求項1所述的自主移動機器人控制系統,其中所述本地伺服器裝置根據所述環境地圖執行所述至少一自主移動機器人其中所述一者的所述定位操作與所述導航操作。 The autonomous mobile robot control system according to claim 1, wherein the local server device performs the positioning operation and the navigation operation of the one of the at least one autonomous mobile robot according to the environment map. 如請求項7所述的自主移動機器人控制系統,其中所述本地伺服器裝置將所述作業環境的所述環境地圖上傳至所述雲端伺服器裝置,所述雲端伺服器裝置於所述環境地圖中設定多個站點,並將所述多個站點的站點資訊提供給所述本地伺服器裝置。 The autonomous mobile robot control system of claim 7, wherein the local server device uploads the environment map of the operating environment to the cloud server device, and the cloud server device is located on the environment map Multiple sites are set in the server, and site information of the multiple sites is provided to the local server device. 一種自主移動機器人控制方法,適用於一自主移動機器人控制系統,其中所述自主移動機器人控制系統包括雲端伺服器裝置、本地伺服器裝置,以及至少一自主移動機器人,所述方法包括:由所述至少一自主移動機器人將感測資料無線傳輸給所述本地伺服器裝置;由所述本地伺服器裝置利用所述感測資料執行所述至少一自主移動機器人的一定位操作與一導航操作,並由所述本地伺服器裝置產生與無線傳輸一導航控制指令;由所述至少一自主移動機器人自所述本地伺服器裝置接收所述導航控制指令,而根據所述導航控制指令移動;由所述本地伺服器裝置將所述至少一自主移動機器人的實際 狀態資訊提供給所述雲端伺服器裝置;由所述雲端伺服器裝置根據所述至少一自主移動機器人的機器人數學模型模擬所述至少一自主移動機器人的虛擬狀態資訊;以及當所述實際狀態資訊與所述虛擬狀態資訊不相符時,由所述雲端伺服器裝置執行一導航修正操作,所述方法還包括:由所述至少一自主移動機器人其中一者於一作業環境中移動,並由所述本地伺服器裝置根據所述至少一自主移動機器人其中所述一者提供的所述感測資料建立所述作業環境的一環境地圖;以及由所述本地伺服器裝置調整所述環境地圖來產生適用於所述至少一自主移動機器人其中另一者的另一環境地圖,其中所述本地伺服器裝置根據所述另一環境地圖執行所述至少一自主移動機器人其中所述另一者的所述定位操作與所述導航操作。 An autonomous mobile robot control method, suitable for an autonomous mobile robot control system, wherein the autonomous mobile robot control system includes a cloud server device, a local server device, and at least one autonomous mobile robot, the method includes: At least one autonomous mobile robot wirelessly transmits sensing data to the local server device; the local server device uses the sensing data to perform a positioning operation and a navigation operation of the at least one autonomous mobile robot, and A navigation control command is generated and wirelessly transmitted by the local server device; the at least one autonomous mobile robot receives the navigation control command from the local server device and moves according to the navigation control command; by the at least one autonomous mobile robot The local server device stores the actual data of the at least one autonomous mobile robot The status information is provided to the cloud server device; the cloud server device simulates the virtual status information of the at least one autonomous mobile robot according to the robot mathematical model of the at least one autonomous mobile robot; and when the actual status information When it is inconsistent with the virtual state information, the cloud server device performs a navigation correction operation. The method further includes: moving one of the at least one autonomous mobile robot in an operating environment, and using the The local server device establishes an environmental map of the operating environment based on the sensing data provided by the one of the at least one autonomous mobile robot; and the local server device adjusts the environmental map to generate Another environment map suitable for the other one of the at least one autonomous mobile robot, wherein the local server device executes the other one of the at least one autonomous mobile robot according to the another environment map. Positioning operations and the navigation operations. 如請求項9所述的自主移動機器人控制方法,所述方法更包括:由所述雲端伺服器裝置根據一任務的任務內容決定所述至少一自主移動機器人的導航資訊,並將所述至少一自主移動機器人的所述導航資訊提供給所述本地伺服器裝置,其中由所述本地伺服器裝置利用所述感測資料執行所述至少一自主移動機器人的所述定位操作與所述導航操作的步驟包括: 由所述本地伺服器裝置根據所述導航資訊執行所述至少一自主移動機器人的所述導航操作。 The method for controlling an autonomous mobile robot as described in claim 9, further comprising: determining, by the cloud server device, the navigation information of the at least one autonomous mobile robot according to the task content of a task, and sending the at least one The navigation information of the autonomous mobile robot is provided to the local server device, wherein the local server device uses the sensing data to perform the positioning operation and the navigation operation of the at least one autonomous mobile robot. Steps include: The local server device performs the navigation operation of the at least one autonomous mobile robot according to the navigation information. 如請求項10所述的自主移動機器人控制方法,其中所述方法更包括:由所述雲端伺服器裝置根據所述任務內容調度所述至少一自主移動機器人其中之一執行所述任務;以及由所述本地伺服器裝置根據所述導航資訊決定一導航路徑。 The autonomous mobile robot control method according to claim 10, wherein the method further includes: scheduling one of the at least one autonomous mobile robot to perform the task according to the task content by the cloud server device; and The local server device determines a navigation path based on the navigation information. 如請求項9所述的自主移動機器人控制方法,其中當所述實際狀態資訊與所述虛擬狀態資訊不相符時,由所述雲端伺服器裝置執行所述導航修正操作的步驟包括:當所述實際狀態資訊與所述虛擬狀態資訊不相符,由所述雲端伺服器裝置控制所述本地伺服器裝置重新估測所述至少一自主移動機器人的位置資訊。 The autonomous mobile robot control method according to claim 9, wherein when the actual state information does not match the virtual state information, the step of performing the navigation correction operation by the cloud server device includes: when the If the actual state information does not match the virtual state information, the cloud server device controls the local server device to re-estimate the position information of the at least one autonomous mobile robot. 如請求項9所述的自主移動機器人控制方法,所述方法更包括:由所述至少一自主移動機器人經由所述本地伺服器裝置回報所述感測資料與一機器運行參數給所述雲端伺服器裝置;以及由所述雲端伺服器裝置根據所述感測資料與所述機器運行參數檢測所述至少一自主移動機器人的健康狀態。 The method for controlling an autonomous mobile robot according to claim 9, further comprising: reporting the sensing data and a machine operating parameter to the cloud server by the at least one autonomous mobile robot via the local server device. and the cloud server device detects the health status of the at least one autonomous mobile robot based on the sensing data and the machine operating parameters. 如請求項13所述的自主移動機器人控制方法,所述方法更包括:由所述雲端伺服器裝置根據所述至少一自主移動機器人的健 康狀態停止所述至少一自主移動機器人運行或提供一保養通知。 The method for controlling an autonomous mobile robot according to claim 13, further comprising: using the cloud server device to control the autonomous mobile robot according to the health of the at least one autonomous mobile robot. The health state stops the operation of the at least one autonomous mobile robot or provides a maintenance notification. 如請求項9所述的自主移動機器人控制方法,其中所述本地伺服器裝置根據所述環境地圖執行所述至少一自主移動機器人其中所述一者的所述定位操作與所述導航操作。 The autonomous mobile robot control method according to claim 9, wherein the local server device performs the positioning operation and the navigation operation of the one of the at least one autonomous mobile robot according to the environment map. 如請求項15所述的自主移動機器人控制方法,所述方法更包括:由所述本地伺服器裝置將所述作業環境的所述環境地圖上傳至所述雲端伺服器裝置;以及由所述雲端伺服器裝置於所述環境地圖中設定多個站點,並將所述多個站點的站點資訊提供給所述本地伺服器裝置。 The autonomous mobile robot control method according to claim 15, the method further includes: uploading the environment map of the operating environment to the cloud server device by the local server device; and uploading the environment map of the operating environment to the cloud server device by the cloud server The server device sets multiple sites in the environment map and provides site information of the multiple sites to the local server device.
TW111143965A 2022-11-17 2022-11-17 System and method for controlling autonomous mobile robot TWI821024B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111143965A TWI821024B (en) 2022-11-17 2022-11-17 System and method for controlling autonomous mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111143965A TWI821024B (en) 2022-11-17 2022-11-17 System and method for controlling autonomous mobile robot

Publications (2)

Publication Number Publication Date
TWI821024B true TWI821024B (en) 2023-11-01
TW202421388A TW202421388A (en) 2024-06-01

Family

ID=89722238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143965A TWI821024B (en) 2022-11-17 2022-11-17 System and method for controlling autonomous mobile robot

Country Status (1)

Country Link
TW (1) TWI821024B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402225A (en) * 2011-11-23 2012-04-04 中国科学院自动化研究所 Method for realizing localization and map building of mobile robot at the same time
TW201947191A (en) * 2018-05-11 2019-12-16 新加坡商賽思托機器人有限公司 A system and method for managing a plurality of vehicles
TW202023463A (en) * 2018-09-06 2020-07-01 南韓商Lg電子股份有限公司 Plurality of autonomous mobile robots and controlling method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402225A (en) * 2011-11-23 2012-04-04 中国科学院自动化研究所 Method for realizing localization and map building of mobile robot at the same time
TW201947191A (en) * 2018-05-11 2019-12-16 新加坡商賽思托機器人有限公司 A system and method for managing a plurality of vehicles
TW202023463A (en) * 2018-09-06 2020-07-01 南韓商Lg電子股份有限公司 Plurality of autonomous mobile robots and controlling method for the same

Similar Documents

Publication Publication Date Title
US11225275B2 (en) Method, system and apparatus for self-driving vehicle obstacle avoidance
US10994748B2 (en) Transportation network infrastructure for autonomous vehicle decision making
KR102118278B1 (en) Coordinating multiple agents under sparse networking
CN206643937U (en) A kind of intelligent distribution robot
WO2021022728A1 (en) Control system of land-air amphibious unmanned vehicle
US20200218253A1 (en) Advanced control system with multiple control paradigms
JP2019516185A (en) Sensor Trajectory Planning for Vehicles
US20180306589A1 (en) Landmark Placement for Localization
US20110135189A1 (en) Swarm intelligence-based mobile robot, method for controlling the same, and surveillance robot system
JP6907525B2 (en) Indoor position detection and navigation system for moving objects, indoor position detection and navigation methods, and indoor position detection and navigation programs
TWI680364B (en) Coach apparatus and cooperative operation controlling method for coach-driven multi-robot cooperative operation system
US11188753B2 (en) Method of using a heterogeneous position information acquisition mechanism in an operating space and robot and cloud server implementing the same
CN109407653A (en) A kind of indoor universal multiple mobile robot algorithm checking system
US20240103518A1 (en) Autonomous mobile device and warehouse logistics system
TWI823581B (en) Robots and control methods
CN114755373B (en) Air pollution source early warning positioning method based on multi-robot formation
CN111776942A (en) Tire crane running control system, method and device and computer equipment
CN112797986B (en) Intelligent logistics robot positioning system and method based on unmanned autonomous technology
TWI821024B (en) System and method for controlling autonomous mobile robot
EP3633955B1 (en) An apparatus, method and computer program for controlling wireless network capacity
TW202421388A (en) System and method for controlling autonomous mobile robot
CN116627140A (en) Multi-robot cooperative obstacle avoidance method and system
Krieger et al. Integration of scaled real-world testbeds with digital twins for future ai-enabled 6g networks
CN113219974A (en) Automatic navigation robot multi-machine obstacle avoidance method, system, medium and equipment
JP2021165875A (en) Control platform and control method