TWI819927B - Optical element and manufacturing method of optical element - Google Patents

Optical element and manufacturing method of optical element Download PDF

Info

Publication number
TWI819927B
TWI819927B TW111148814A TW111148814A TWI819927B TW I819927 B TWI819927 B TW I819927B TW 111148814 A TW111148814 A TW 111148814A TW 111148814 A TW111148814 A TW 111148814A TW I819927 B TWI819927 B TW I819927B
Authority
TW
Taiwan
Prior art keywords
lens
light
longitudinal section
layer
size
Prior art date
Application number
TW111148814A
Other languages
Chinese (zh)
Other versions
TW202416559A (en
Inventor
李慶良
賴俊豪
黃建中
Original Assignee
大陸商弘凱光電(江蘇)有限公司
弘凱光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商弘凱光電(江蘇)有限公司, 弘凱光電股份有限公司 filed Critical 大陸商弘凱光電(江蘇)有限公司
Application granted granted Critical
Publication of TWI819927B publication Critical patent/TWI819927B/en
Publication of TW202416559A publication Critical patent/TW202416559A/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Eyeglasses (AREA)

Abstract

本發明的實施例提供了光元件及光元件的製造方法,通過獲取晶粒尺寸、透鏡尺寸及可視角度,計算第一數值及第二數值,第一數值為晶粒尺寸與透鏡尺寸的比例,第二數值與可視角度之間為多項式關係,並且第二數值表示光元件的出光光強分佈從軸對稱分佈到非軸對稱分佈的臨界值,當第一數值大於第二數值時,透鏡層選擇非軸對稱光學透鏡,當第一數值小於或等於第二數值時,透鏡層選擇軸對稱光學透鏡。本發明通過確定選擇標準,便於對透鏡層類型進行選擇,可以增加光元件封裝效率。Embodiments of the present invention provide optical elements and manufacturing methods of optical elements. By obtaining the grain size, lens size and viewing angle, the first numerical value and the second numerical value are calculated. The first numerical value is the ratio of the grain size to the lens size. There is a polynomial relationship between the second numerical value and the viewing angle, and the second numerical value represents the critical value of the light intensity distribution of the optical element from an axially symmetric distribution to a non-axially symmetrical distribution. When the first numerical value is greater than the second numerical value, the lens layer selects For non-axisymmetric optical lenses, when the first value is less than or equal to the second value, the lens layer selects an axisymmetric optical lens. By determining the selection criteria, the present invention facilitates the selection of the lens layer type and can increase the optical element packaging efficiency.

Description

光元件及光元件的製造方法Optical element and manufacturing method of optical element

本發明屬於發光二極體技術領域,尤其涉及光元件及光元件的製造方法。 The present invention belongs to the technical field of light-emitting diodes, and in particular relates to optical elements and manufacturing methods of optical elements.

目前,為滿足高光輻射瓦數和高驅動電流的需求,晶粒尺寸通常都需30mil以上,對於封裝尺寸更小的發光二極體,封裝尺寸變小導致一次光學透鏡尺寸也需變小,當一次光學透鏡尺寸與晶粒尺寸趨近時,由於光線入射角的變化,光強分佈會由軸對稱變成非軸對稱,造成能量分散,進而導致光強分佈的中心強度下降。在現有技術中,一般正常封裝採用的是例如半球形透鏡的對稱光學透鏡,對於一些特殊的封裝,為了保證光強分佈的軸對稱性,也有採用特殊形狀的透鏡。但是目前對於透鏡的使用類型沒有高效率的選擇方法,只能通過晶粒尺寸對透鏡進行適應性的選用,使光強分佈不可控。 At present, in order to meet the needs of high optical radiation wattage and high driving current, the die size usually needs to be above 30mil. For light-emitting diodes with smaller package sizes, the smaller package size causes the primary optical lens size to also need to be smaller. When When the size of the primary optical lens approaches the size of the crystal grain, due to changes in the incident angle of light, the light intensity distribution will change from axial symmetry to non-axial symmetry, resulting in energy dispersion and a decrease in the center intensity of the light intensity distribution. In the existing technology, symmetrical optical lenses such as hemispherical lenses are generally used for normal packaging. For some special packages, in order to ensure the axial symmetry of the light intensity distribution, special-shaped lenses are also used. However, there is currently no efficient selection method for the type of lens to be used. The only way to adaptively select the lens is through the grain size, making the light intensity distribution uncontrollable.

本發明實施例的目的在於提供一種光元件及光元件的製造方法,旨在解決目前對於透鏡層使光強分佈不可控的問題。 The purpose of embodiments of the present invention is to provide an optical element and a manufacturing method of the optical element, aiming to solve the current problem of uncontrollable light intensity distribution in the lens layer.

為實現上述目的,本發明採用的技術方案是:第一方面,提供一種光元件,包括: 發光晶粒,所述發光晶粒具有用以連接基板的下表面及與所述下表面相對的上表面,所述上表面呈矩形且具有相對的第一邊及第二邊,所述發光晶粒具有晶粒尺寸,所述晶粒尺寸為所述第一邊及所述第二邊在縱剖面上的距離,所述縱剖面垂直所述第一邊及通過所述發光晶粒的晶粒中心軸線;以及透鏡封裝體,所述透鏡封裝體包括透鏡層,所述透鏡層為非軸對稱光學透鏡,所述透鏡層覆蓋所述發光晶粒的所述上表面,所述透鏡層具有面對所述發光晶粒的底部,所述底部具有相對的第三邊及第四邊,所述透鏡層具有透鏡尺寸,所述透鏡尺寸為所述第三邊及所述第四邊在所述縱剖面上的距離,所述光元件具有可視角度,所述可視角度為x,所述晶粒尺寸與所述透鏡尺寸的比例為y,其中:y>-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964。 In order to achieve the above object, the technical solution adopted by the present invention is: firstly, an optical element is provided, including: a luminescent die, the luminescent die has a lower surface for connecting the substrate and an upper surface opposite to the lower surface. surface, the upper surface is rectangular and has opposite first and second sides, and the luminescent crystal grains have a grain size, and the grain size is the length of the first side and the second side in the longitudinal section. distance on the surface, the longitudinal section is perpendicular to the first side and passes through the central axis of the luminescent die; and a lens package, the lens package includes a lens layer, and the lens layer is a non-axisymmetric optical Lens, the lens layer covers the upper surface of the luminescent die, the lens layer has a bottom facing the luminescent die, the bottom has opposite third and fourth sides, the lens The layer has a lens size, the lens size is the distance between the third side and the fourth side on the longitudinal section, the optical element has a viewing angle, the viewing angle is x, and the grain size The ratio to the lens size is y, where: y>-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1×10 -3 x 2 -5.6×10 -2 x +0.6964.

較佳地,所述非軸對稱光學透鏡為類方形透鏡,所述類方形透鏡具有透鏡中心軸線,所述類方形透鏡的所述底部具有沿第一方向延伸的所述第三邊和所述第四邊及沿第二方向延伸的第五邊和第六邊,所述第一方向垂直所述第二方向,所述透鏡中心軸線垂直所述第一方向及所述第二方向,所述類方形透鏡在第一縱剖面上具有第一自由曲線,所述第一縱剖面通過所述透鏡中心軸線且垂直所述第一方向,所述類方形透鏡在第二縱剖面上具有第二自由曲線,所述第二縱剖面通過所述透鏡中心軸線及垂直所述第二方向。 Preferably, the non-axisymmetric optical lens is a quasi-square lens, the quasi-square lens has a lens central axis, and the bottom of the quasi-square lens has the third side extending along the first direction and the The fourth side and the fifth side and the sixth side extending along the second direction, the first direction is perpendicular to the second direction, the central axis of the lens is perpendicular to the first direction and the second direction, the The quasi-square lens has a first free curve on a first longitudinal section, the first longitudinal section passes through the central axis of the lens and is perpendicular to the first direction, and the quasi-square lens has a second free curve on a second longitudinal section. Curve, the second longitudinal section passes through the central axis of the lens and is perpendicular to the second direction.

較佳地,所述第一縱剖面及所述第二縱剖面將所述類方形透鏡切割為四個突起區塊,所述突起區塊具有曲面,所述曲面朝遠離所述透鏡層的所述底部方向凸出,相鄰兩所述曲面為鏡射關係。 Preferably, the first longitudinal section and the second longitudinal section cut the quasi-square lens into four protruding blocks, the protruding blocks have curved surfaces, and the curved surfaces face the direction away from the lens layer. The bottom direction is convex, and the two adjacent curved surfaces are in a mirroring relationship.

第二方面,提供另一種光元件,包括:發光晶粒,所述發光晶粒具有用以連接基板的下表面及與所述下表面相對的上表面,所述上表面呈矩形且具有相對的第一邊及第二邊,所述發光晶粒具有晶粒尺寸,所述晶粒尺寸為所述第一邊及所述第二邊在縱剖面上的距離,所述縱剖面垂直所述第一邊及通過所述發光晶粒的晶粒中心軸線;以及透鏡封裝體,所述透鏡封裝體包括透鏡層,所述透鏡層為軸對稱光學透鏡,所述透鏡層覆蓋所述發光晶粒的所述上表面,所述透鏡層具有面對所述發光晶粒的底部,所述底部具有相對的第三邊及第四邊,所述透鏡層具有透鏡尺寸,所述透鏡尺寸為所述第三邊及所述第四邊在所述縱剖面上的距離,所述光元件具有可視角度,所述可視角度為x,所述晶粒尺寸與所述透鏡尺寸的比例為y,其中:y

Figure 111148814-A0305-02-0004-1
-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964。 In a second aspect, another optical element is provided, including: a luminescent die, the luminescent die having a lower surface for connecting to a substrate and an upper surface opposite to the lower surface, the upper surface being rectangular and having opposite The first side and the second side, the luminescent grain has a grain size, the grain size is the distance between the first side and the second side on a longitudinal section, and the longitudinal section is perpendicular to the first side. One side and the central axis of the die passing through the light-emitting die; and a lens package, the lens package includes a lens layer, the lens layer is an axially symmetric optical lens, and the lens layer covers the light-emitting die. On the upper surface, the lens layer has a bottom facing the luminescent die, the bottom has opposite third sides and fourth sides, the lens layer has a lens size, and the lens size is the third The distance between the three sides and the fourth side on the longitudinal section, the optical element has a viewing angle, the viewing angle is x, and the ratio of the grain size to the lens size is y, where: y
Figure 111148814-A0305-02-0004-1
-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1×10 -3 x 2 -5.6 × 10 -2 x +0.6964.

較佳地,所述軸對稱光學透鏡為半球形透鏡。 Preferably, the axially symmetric optical lens is a hemispherical lens.

較佳地,所述光元件還包括所述基板,所述發光晶粒設於所述基板上且電連接所述基板,所述透鏡封裝體還包括透光層,所述透光層設於所述基板上且包覆所述發光晶粒,所述透鏡層緊鄰所述透光層。 Preferably, the optical element further includes the substrate, the light-emitting die is disposed on the substrate and is electrically connected to the substrate, the lens package further includes a light-transmitting layer, the light-transmitting layer is provided on The light-emitting crystal grain is coated on the substrate, and the lens layer is adjacent to the light-transmitting layer.

較佳地,所述光元件還包括螢光粉,所述螢光粉分散於所述透鏡封裝體中,所述透鏡層與所述透光層為一體成形。 Preferably, the optical element further includes phosphor, the phosphor is dispersed in the lens package, and the lens layer and the light-transmitting layer are integrally formed.

協力廠商面,提供一種光元件的製造方法,包括如下步驟:獲取光元件的可視角度、發光晶粒的晶粒尺寸及透鏡封裝體包含的透鏡尺寸,所述光元件包括所述發光晶粒及所述透鏡封裝體,所述透鏡封裝體包括 透鏡層,所述透鏡封裝體用以封裝所述發光晶粒,其中,所述發光晶粒具有用以連接基板的下表面及與所述下表面相對的上表面,所述上表面呈矩形且具有相對的第一邊及第二邊,所述晶粒尺寸為所述第一邊及所述第二邊在縱剖面上的距離,所述縱剖面垂直所述第一邊及通過所述發光晶粒的晶粒中心軸線,所述透鏡層用以覆蓋所述發光晶粒的所述上表面,所述透鏡層具有面對所述發光晶粒的底部,所述底部具有相對的第三邊及第四邊,所述透鏡尺寸為所述第三邊及所述第四邊在所述縱剖面上的距離;計算第一數值,所述第一數值為所述晶粒尺寸與所述透鏡尺寸的比例;計算第二數值,所述第二數值與所述可視角度之間為多項式關係,並且所述第二數值表示所述光元件的出光光強分佈從軸對稱分佈到非軸對稱分佈的臨界值;以及當所述第一數值大於所述第二數值時,所述透鏡層選擇非軸對稱光學透鏡;當所述第一數值小於或等於所述第二數值時,所述透鏡層選擇軸對稱光學透鏡。 In terms of third parties, a manufacturing method of an optical element is provided, which includes the following steps: obtaining the viewing angle of the optical element, the grain size of the luminescent die, and the lens size contained in the lens package. The optical element includes the luminescent die and The lens package includes Lens layer, the lens package is used to encapsulate the light-emitting die, wherein the light-emitting die has a lower surface for connecting to the substrate and an upper surface opposite to the lower surface, the upper surface is rectangular and It has an opposite first side and a second side, and the grain size is the distance between the first side and the second side on a longitudinal section, the longitudinal section is perpendicular to the first side and passes through the light emitting The central axis of the crystal grain, the lens layer is used to cover the upper surface of the light-emitting crystal grain, the lens layer has a bottom facing the light-emitting crystal grain, the bottom has an opposite third side and the fourth side, the lens size is the distance between the third side and the fourth side on the longitudinal section; calculate a first value, the first value is the grain size and the lens The ratio of the size; calculate a second numerical value, the second numerical value is a polynomial relationship with the viewing angle, and the second numerical value represents the light intensity distribution of the light element from an axially symmetrical distribution to a non-axially symmetrical distribution a critical value; and when the first value is greater than the second value, the lens layer selects a non-axisymmetric optical lens; when the first value is less than or equal to the second value, the lens layer Choose an axially symmetric optical lens.

較佳地,所述非軸對稱光學透鏡為類方形透鏡,所述類方形透鏡具有透鏡中心軸線,所述類方形透鏡的所述底部具有沿第一方向延伸的所述第三邊和所述第四邊及沿第二方向延伸的第五邊和第六邊,所述第一方向垂直所述第二方向,所述透鏡中心軸線垂直所述第一方向及所述第二方向,所述類方形透鏡在第一縱剖面上具有第一自由曲線,所述第一縱剖面通過所述透鏡中心軸線且垂直所述第一方向,所述類方形透鏡在第二縱剖面上具有第二自由曲線,所述第二縱剖面通過所述透鏡中心軸線及垂直所述第二方向。 Preferably, the non-axisymmetric optical lens is a quasi-square lens, the quasi-square lens has a lens central axis, and the bottom of the quasi-square lens has the third side extending along the first direction and the The fourth side and the fifth side and the sixth side extending along the second direction, the first direction is perpendicular to the second direction, the central axis of the lens is perpendicular to the first direction and the second direction, the The quasi-square lens has a first free curve on a first longitudinal section, the first longitudinal section passes through the central axis of the lens and is perpendicular to the first direction, and the quasi-square lens has a second free curve on a second longitudinal section. Curve, the second longitudinal section passes through the central axis of the lens and is perpendicular to the second direction.

較佳地,所述多項式關係為: y=-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964,其中,y為所述第二數值,x為所述可視角度。 Preferably, the polynomial relationship is: y=-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1×10 -3 x 2 -5.6×10 -2 x +0.6964, where y is the second value and x is the viewing angle.

本發明的有益效果在於:本發明的實施例通過獲取晶粒尺寸、透鏡尺寸及可視角度,計算第一數值及第二數值,第一數值為晶粒尺寸與透鏡尺寸的比例,第二數值與可視角度之間為多項式關係,並且第二數值表示光元件的出光光強分佈從軸對稱分佈到非軸對稱分佈的臨界值,當第一數值大於第二數值時,透鏡層選擇非軸對稱光學透鏡對發光晶粒進行封裝,當第一數值小於或等於第二數值時,透鏡層選擇軸對稱光學透鏡對發光晶粒進行封裝。通過確定選擇標準,便於對透鏡層類型進行選擇,可以增加光元件封裝效率。當晶粒與透鏡層的邊緣逐漸接近,由於自由曲面的曲率可以變大,晶粒發出的光可以與類方形透鏡的交點處的切面垂直,對光線的彙聚能力較強,使中心強度增加,並且晶粒邊緣發出的光線在透鏡層的折射下,也有向中心彙聚的能力,進而使光強分佈可控。 The beneficial effect of the present invention is that: the embodiment of the present invention calculates the first numerical value and the second numerical value by obtaining the crystal grain size, lens size and viewing angle. The first numerical value is the ratio of the crystal grain size to the lens size, and the second numerical value is the ratio of the crystal grain size to the lens size. There is a polynomial relationship between the viewing angles, and the second value represents the critical value of the light intensity distribution of the optical element from an axisymmetric distribution to a non-axisymmetric distribution. When the first value is greater than the second value, the lens layer selects non-axisymmetric optics. The lens encapsulates the luminescent die. When the first value is less than or equal to the second value, the lens layer selects an axisymmetric optical lens to encapsulate the luminescent die. By determining the selection criteria to facilitate the selection of lens layer types, the efficiency of optical component packaging can be increased. When the edge of the crystal grain and the lens layer gradually approaches, since the curvature of the free-form surface can become larger, the light emitted by the crystal grain can be perpendicular to the tangent plane at the intersection of the quasi-square lens, which has a strong ability to gather light and increases the center intensity. Moreover, the light emitted from the edge of the crystal grain also has the ability to converge toward the center under the refraction of the lens layer, thereby making the light intensity distribution controllable.

1:光元件 1: Optical components

21:基板 21:Substrate

200:透鏡層 200: Lens layer

201:透鏡封裝體 201: Lens package

202:透光層 202: Translucent layer

21:基板 21:Substrate

210:類方形透鏡 210: Quasi-square lens

2101:突起區塊 2101:Protruding block

2103:第三邊 2103:Third side

2104:第四邊 2104:Fourth side

2105:第五邊 2105:Fifth side

2106:第六邊 2106:Sixth side

2107:第一縱剖面 2107:First longitudinal section

2108:第二縱剖面 2108: Second longitudinal section

230:半球形透鏡 230: Hemispherical lens

300:發光晶粒 300: Luminous crystal grains

401:第一方向 401:First direction

402:第二方向 402:Second direction

L:晶粒尺寸 L: grain size

R:透鏡尺寸 R: lens size

S101~S105:步驟 S101~S105: steps

為了更清楚地說明本發明實施例中的技術方案,下面將對實施例或示範性技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本發明所屬技術領域中具有通常知識者來講,在不付出具進步性改變的前提下,還可以根據這些附圖獲得其它的附圖。 In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments or exemplary technologies will be briefly introduced below. Obviously, the drawings in the following description are only illustrative of the present invention. For some embodiments, for those with ordinary knowledge in the technical field to which the present invention belongs, other drawings can be obtained based on these drawings without making any progressive changes.

圖1為本發明的實施例的步驟示意圖; 圖2為本發明的實施例的晶粒封裝的內部結構示意圖;圖3為本發明的實施例的類方形透鏡的俯視圖;圖4為本發明的實施例的類方形透鏡的側視圖;以及圖5為本發明的實施例的半球形透鏡的側圖。 Figure 1 is a schematic diagram of the steps of an embodiment of the present invention; FIG. 2 is a schematic diagram of the internal structure of a chip package according to an embodiment of the present invention; FIG. 3 is a top view of a quasi-square lens according to an embodiment of the present invention; FIG. 4 is a side view of a quasi-square lens according to an embodiment of the present invention; and FIG. 5 is a side view of the hemispherical lens according to the embodiment of the present invention.

為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,並不用於限定本發明。 In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.

需說明的是,當部件被稱為“固定於”或“設置於”另一個部件,它可以直接在另一個部件上或者間接在該另一個部件上。當一個部件被稱為是“連接於”另一個部件,它可以是直接或者間接連接至該另一個部件上。術語“上”、“下”、“左”、“右”等指示的方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本發明的限制,對於本發明所屬技術領域中具有通常知識者而言,可以根據具體情況理解上述術語的具體含義。術語“第一”、“第二”僅用於便於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明技術特徵的數量。“多個”的含義是兩個或兩個以上,除非另有明確具體的限定。 It should be noted that when a component is referred to as being "fixed to" or "disposed on" another component, it can be directly on the other component or indirectly on the other component. When a component is referred to as being "connected to" another component, it may be directly or indirectly connected to the other component. The orientation or positional relationship indicated by the terms "upper", "lower", "left", "right", etc. are based on the orientation or positional relationship shown in the drawings. They are only for convenience of description and do not indicate or imply the device to which they are referred. Or elements must have specific orientations, be constructed and operated in specific orientations, and therefore cannot be construed as limitations to the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can understand the specific meanings of the above terms according to specific circumstances. The terms "first" and "second" are only used for convenience of description and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of technical features. "Plural" means two or more, unless otherwise expressly and specifically limited.

請參考圖1至圖4,在本發明的實施方式中,透鏡層200可以選用PMMA(聚甲基丙烯酸甲酯)、矽膠、PC(聚碳酸酯)、玻璃或其他材料,材料均為光學級。並且下文中描述的透鏡層200為一次透鏡,其中,一次透鏡是直接 封裝或者粘合在發光晶粒300(LED晶片)上並與發光晶粒300成為一個整體,發光晶粒300的理論發光角度是360度,但實際上發光晶粒300在基板21上固定及進行封裝,所以發光晶粒300的最大發光角度一般為180度,另外發光晶粒300發出的還具備一些雜散光線,所以需要進行一次透鏡進行封裝,通過一次透鏡彙聚發光晶粒300發出的光線。 Please refer to Figures 1 to 4. In the embodiment of the present invention, the lens layer 200 can be made of PMMA (polymethylmethacrylate), silicone, PC (polycarbonate), glass or other materials, all of which are optical grade. . And the lens layer 200 described below is a primary lens, wherein the primary lens is directly Encapsulated or bonded on the light-emitting chip 300 (LED chip) and integrated with the light-emitting chip 300. The theoretical light-emitting angle of the light-emitting chip 300 is 360 degrees, but in fact, the light-emitting chip 300 is fixed and processed on the substrate 21 packaging, so the maximum luminous angle of the luminescent die 300 is generally 180 degrees. In addition, the luminescent die 300 also emits some stray light, so a primary lens is required for packaging, and the primary lens collects the light emitted by the luminescent die 300.

在本文中,橫截面指的是當透鏡層200穩定放置於水平面上時,與水平面相平行的各個面,而縱剖面是與橫截面垂直的平面。另外,在本發明中,通過發光晶粒300與透鏡層200配合進行光學原理說明時,發光晶粒300應正常連接於基板21上並能正常發光(可參照現有技術中晶粒的連接),不應視作本發明公開不充分。 In this article, the cross section refers to each plane parallel to the horizontal plane when the lens layer 200 is stably placed on the horizontal plane, and the longitudinal section is a plane perpendicular to the cross section. In addition, in the present invention, when the optical principle is explained through the cooperation of the light-emitting die 300 and the lens layer 200, the light-emitting die 300 should be normally connected to the substrate 21 and be able to emit light normally (refer to the connection of the die in the prior art). This disclosure should not be construed as insufficient.

第一方面,請參考圖2,提供一種光元件1,其包括:發光晶粒300和透鏡封裝體201。發光晶粒300具有用以連接基板21的下表面及與下表面相對的上表面,上表面呈矩形且具有相對的第一邊及第二邊,發光晶粒300具有晶粒尺寸L,晶粒尺寸L為第一邊及第二邊在縱剖面上的距離,縱剖面垂直第一邊及通過發光晶粒300的晶粒中心軸線。 In the first aspect, please refer to FIG. 2 to provide an optical element 1, which includes: a light-emitting die 300 and a lens package 201. The luminescent die 300 has a lower surface for connecting to the substrate 21 and an upper surface opposite to the lower surface. The upper surface is rectangular and has opposite first and second sides. The luminescent die 300 has a die size L. Dimension L is the distance between the first side and the second side on a longitudinal section, and the longitudinal section is perpendicular to the first side and the central axis of the die passing through the luminescent die 300 .

透鏡封裝體201包括透鏡層200,透鏡層200為非軸對稱光學透鏡,透鏡層200覆蓋發光晶粒300的上表面,意即透鏡層200為一次透鏡,透鏡層200具有面對發光晶粒300的底部,底部具有相對的第三邊2103及第四邊2104,透鏡層200具有透鏡尺寸R,透鏡尺寸R為第三邊2103及第四邊2104在縱剖面上的距離。 The lens package 201 includes a lens layer 200. The lens layer 200 is a non-axisymmetric optical lens. The lens layer 200 covers the upper surface of the luminescent die 300, which means that the lens layer 200 is a primary lens. The lens layer 200 has a surface facing the luminescent die 300. The bottom has opposite third sides 2103 and fourth sides 2104. The lens layer 200 has a lens size R, and the lens size R is the distance between the third side 2103 and the fourth side 2104 in the longitudinal section.

透鏡封裝體201可以理解的是,光元件1具有可視角度,可視角度為x{單位為度(°)},晶粒尺寸L{單位為公釐(mm)}與透鏡尺寸R{單位為公釐(mm)}的比例為y,y大於可視角度的多項式數值,具體關係為:y>-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964。 The lens package 201 can be understood that the optical element 1 has a viewing angle, the viewing angle is The ratio of centimeters (mm)} is y, and y is greater than the polynomial value of the viewing angle. The specific relationship is: y>-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1 ×10 -3 x 2 -5.6×10 -2 x +0.6964.

本實施例的一種光元件1,通過獲取光元件1的可視角度,並建立可視角度的多項式,在本實施例的光1的晶粒尺寸L與透鏡尺寸R的比例大於可視角度的多項式數值時,為使光1的光強分佈呈軸對稱,此時透鏡層200需為非軸對稱光學透鏡,光元件1的光強分佈呈軸對稱時將有利於後續應用或二次光學的設計。 In the optical element 1 of this embodiment, by obtaining the viewing angle of the optical element 1 and establishing a polynomial of the viewing angle, when the ratio of the grain size L and the lens size R of the light 1 in this embodiment is greater than the polynomial value of the viewing angle , in order to make the light intensity distribution of light 1 axially symmetrical, the lens layer 200 needs to be a non-axisymmetric optical lens. When the light intensity distribution of optical element 1 is axially symmetrical, it will be beneficial to subsequent applications or secondary optical design.

請參考圖1至圖4,本發明通過晶粒尺寸L與透鏡尺寸R的比例判斷發光晶粒300與透鏡層200的尺寸接近程度,當發光晶粒300的邊緣與透鏡層200的邊緣逐漸接近,透鏡層200為非軸對稱光學透鏡時,透鏡層200的自由曲面的曲率可以變大,對光線的彙聚能力較強,使中心強度增加,並且晶粒邊緣發出的光線在透鏡層200的折射下,也有向中心彙聚的能力,進而使光強分佈可控。 Please refer to Figures 1 to 4. The present invention determines the size proximity of the luminescent die 300 and the lens layer 200 through the ratio of the die size L to the lens size R. When the edge of the luminescent die 300 and the edge of the lens layer 200 gradually approach When the lens layer 200 is a non-axisymmetric optical lens, the curvature of the free-form surface of the lens layer 200 can be increased, and the light gathering ability is stronger, so that the center intensity is increased, and the light emitted from the edge of the crystal grain is refracted by the lens layer 200 It also has the ability to converge toward the center, thereby making the light intensity distribution controllable.

請參考圖3及圖4,較佳地,非軸對稱光學透鏡為類方形透鏡210,類方形透鏡210具有透鏡中心軸線,類方形透鏡210的底部具有沿第一方向401延伸的第三邊2103和第四邊2104及沿第二方向402延伸的第五邊2105和第六邊2106,第一方向401垂直第二方向402,透鏡中心軸線垂直第一方向401及第二方向402,類方形透鏡210在第一縱剖面2107上具有第一自由曲線,第一縱剖面2107通過透鏡中心軸線且垂直第一方向401,類方形透鏡210在第二縱剖面 2108上具有第二自由曲線,第二縱剖面2108通過透鏡中心軸線及垂直第二方向402,第一自由曲線及第二自由曲線例如皆為朝遠離透鏡層200的底部方向凸起,以增加對光線的彙聚能力。第一自由曲線的曲率與第二自由曲線的曲率可以變化,從而可以將發光晶粒300的光進行適應性的彙聚,加強光強分佈的集中度與對稱性。示例性地,第一自由曲線與第二自由曲線相同,且均為抛物線,抛物線具有足夠大的曲率半徑。 Please refer to Figures 3 and 4. Preferably, the non-axisymmetric optical lens is a quasi-square lens 210. The quasi-square lens 210 has a lens central axis. The bottom of the quasi-square lens 210 has a third side 2103 extending along the first direction 401. and the fourth side 2104 and the fifth side 2105 and the sixth side 2106 extending along the second direction 402, the first direction 401 is perpendicular to the second direction 402, the central axis of the lens is perpendicular to the first direction 401 and the second direction 402, a quasi-square lens 210 has a first free curve on the first longitudinal section 2107, which passes through the central axis of the lens and is perpendicular to the first direction 401. The quasi-square lens 210 has a first free curve on the second longitudinal section. 2108 has a second free curve, and the second longitudinal section 2108 passes through the central axis of the lens and the perpendicular second direction 402. For example, the first free curve and the second free curve are both convex in a direction away from the bottom of the lens layer 200 to increase the contrast. The ability to gather light. The curvature of the first free curve and the curvature of the second free curve can be changed, so that the light of the luminescent die 300 can be adaptively converged and the concentration and symmetry of the light intensity distribution can be enhanced. For example, the first free curve and the second free curve are the same, and both are parabolas, and the parabolas have a sufficiently large radius of curvature.

可以理解,類方形透鏡210的底部輪廓為類似矩形(例如將正方形的邊替換為具有一定曲率的弧線,即第三邊2103、第四邊2104、第五邊2105及第六邊2106)。 It can be understood that the bottom profile of the square-like lens 210 is similar to a rectangle (for example, the sides of the square are replaced by arcs with a certain curvature, namely the third side 2103, the fourth side 2104, the fifth side 2105 and the sixth side 2106).

較佳地,第一縱剖面2107及第二縱剖面2108將類方形透鏡210切割為四個突起區塊2101,突起區塊2101具有曲面,曲面朝遠離透鏡層200的底部方向凸出,相鄰兩曲面為鏡射關係,從而可以將發光晶粒300的光進行適應性的彙聚,加強光強分佈的集中度與對稱性。 Preferably, the first longitudinal section 2107 and the second longitudinal section 2108 cut the quasi-square lens 210 into four protruding blocks 2101. The protruding blocks 2101 have curved surfaces, and the curved surfaces protrude toward the direction away from the bottom of the lens layer 200. The two adjacent curved surfaces are in a mirroring relationship, so that the light of the luminescent crystal grain 300 can be adaptively converged and the concentration and symmetry of the light intensity distribution can be enhanced.

請參考圖1至圖4,第二方面,提供另一種光元件1,包括:發光晶粒300和透鏡封裝體201。發光晶粒300具有用以連接基板21的下表面及與下表面相對的上表面,上表面呈矩形且具有相對的第一邊及第二邊,發光晶粒300具有晶粒尺寸L,晶粒尺寸L為第一邊及第二邊在縱剖面上的距離,縱剖面垂直第一邊及通過發光晶粒300的晶粒中心軸線。 Please refer to FIGS. 1 to 4 . In a second aspect, another optical element 1 is provided, including: a light-emitting die 300 and a lens package 201 . The luminescent die 300 has a lower surface for connecting to the substrate 21 and an upper surface opposite to the lower surface. The upper surface is rectangular and has opposite first and second sides. The luminescent die 300 has a die size L. Dimension L is the distance between the first side and the second side on a longitudinal section, and the longitudinal section is perpendicular to the first side and the central axis of the die passing through the luminescent die 300 .

透鏡封裝體201包括透鏡層200,透鏡層200為軸對稱光學透鏡,透鏡層200覆蓋發光晶粒300的上表面,意即透鏡層200為一次透鏡,透鏡層200具有面對發光晶粒300的底部,底部具有相對的第三邊2103及第四邊2104,透鏡層 200具有透鏡尺寸R,透鏡尺寸R為第三邊2103及第四邊2104在縱剖面上的距離。 The lens package 201 includes a lens layer 200. The lens layer 200 is an axially symmetrical optical lens. The lens layer 200 covers the upper surface of the luminescent die 300, which means that the lens layer 200 is a primary lens. The lens layer 200 has a surface facing the luminescent die 300. Bottom, the bottom has opposite third side 2103 and fourth side 2104, lens layer 200 has a lens size R, which is the distance between the third side 2103 and the fourth side 2104 in the longitudinal section.

透鏡封裝體201可以理解的是,光元件1具有可視角度,可視角度為x,晶粒尺寸L與透鏡尺寸R的比例為y,y小於或等於可視角度的多項式數值,具體關係為:y

Figure 111148814-A0305-02-0011-2
-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964。 It can be understood from the lens package 201 that the optical element 1 has a viewing angle, the viewing angle is x, the ratio of the grain size L to the lens size R is y, y is less than or equal to the polynomial value of the viewing angle, and the specific relationship is: y
Figure 111148814-A0305-02-0011-2
-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1×10 -3 x 2 -5.6 × 10 -2 x +0.6964.

本實施例的一種光元件1,通過獲取光元件1的可視角度,並建立可視角度的多項式,在本實施例的光1的晶粒尺寸L與透鏡尺寸R的比例小於或等於可視角度的多項式數值時,為使光1的光強分佈呈軸對稱,此時透鏡層200需為軸對稱光學透鏡,光元件1的光強分佈呈軸對稱時將有利於後續應用或二次光學的設計。 In the optical element 1 of this embodiment, by obtaining the viewing angle of the optical element 1 and establishing a polynomial of the viewing angle, the ratio of the grain size L and the lens size R of the light 1 in this embodiment is less than or equal to the polynomial of the viewing angle. In order to make the light intensity distribution of light 1 axially symmetrical, the lens layer 200 needs to be an axially symmetrical optical lens. When the light intensity distribution of optical element 1 is axially symmetrical, it will be beneficial to subsequent applications or secondary optical design.

本發明通過晶粒尺寸L與透鏡尺寸R的比例判斷發光晶粒300與透鏡層200的尺寸接近程度,當發光晶粒300的邊緣與透鏡層200的邊緣逐漸遠離,透鏡層200為軸對稱光學透鏡時,透鏡層200的自由曲面的曲率可以變大,對光線的彙聚能力較強,使中心強度增加,並且晶粒邊緣發出的光線在透鏡層200的折射下,也有向中心彙聚的能力,進而使光強分佈可控。 The present invention determines the size proximity of the luminescent die 300 and the lens layer 200 through the ratio of the die size L to the lens size R. When the edge of the luminescent die 300 and the edge of the lens layer 200 gradually move away, the lens layer 200 is axially symmetrical. When the lens is used, the curvature of the free-form surface of the lens layer 200 can be increased, and the light gathering ability is strong, so that the center intensity is increased, and the light emitted from the edge of the crystal grain also has the ability to converge toward the center under the refraction of the lens layer 200. This makes the light intensity distribution controllable.

較佳地,請參考圖5,軸對稱光學透鏡為半球形透鏡230。半球形透鏡230的縱剖面形狀為半圓形。半球形透鏡230加工簡單,資源豐富並能很好的適配正方形的發光晶粒300。 Preferably, please refer to FIG. 5 , the axially symmetric optical lens is a hemispherical lens 230 . The hemispherical lens 230 has a longitudinal cross-sectional shape of a semicircle. The hemispherical lens 230 is simple to process, has abundant resources, and can be well adapted to the square light-emitting die 300 .

較佳地,請參考圖2,光元件1還包括基板21,發光晶粒300設於基板21上且電連接基板21,透鏡封裝體201還包括透光層202,透光層202設於基板21 上且包覆發光晶粒300,透鏡層200緊鄰透光層202。可以理解,透光層202的設置可以保護發光晶粒300避免損傷。 Preferably, please refer to Figure 2. The optical element 1 also includes a substrate 21. The light-emitting die 300 is provided on the substrate 21 and is electrically connected to the substrate 21. The lens package 201 also includes a light-transmitting layer 202. The light-transmitting layer 202 is provided on the substrate. twenty one The light-emitting die 300 is coated on the chip, and the lens layer 200 is adjacent to the light-transmitting layer 202 . It can be understood that the arrangement of the light-transmitting layer 202 can protect the light-emitting die 300 from damage.

較佳地,光元件1還包括螢光粉,螢光粉分散於透鏡封裝體201中,透鏡層200與透光層202為一體成形,透過於透鏡封裝體201中設置螢光粉,光元件1可發出均勻的白光。 Preferably, the optical element 1 also includes phosphor, and the phosphor is dispersed in the lens package 201. The lens layer 200 and the light-transmitting layer 202 are integrally formed. Through the phosphor disposed in the lens package 201, the optical element 1 can emit uniform white light.

協力廠商面,請參閱圖1至圖3,本發明實施例提供了一種光元件的製造方法,其用於製備光元件1,所述光元件1的製造方法包括如下步驟: For third parties, please refer to Figures 1 to 3. An embodiment of the present invention provides a manufacturing method of an optical element, which is used to prepare an optical element 1. The manufacturing method of the optical element 1 includes the following steps:

S101:提供光元件1的設計架構,光元件1包括發光晶粒300及透鏡封裝體201,透鏡封裝體201用以封裝發光晶粒300,透鏡封裝體201包括透鏡層200;發光晶粒300具有用以連接基板21的下表面及與下表面相對的上表面,上表面呈矩形且具有相對的第一邊及第二邊,晶粒尺寸為第一邊及第二邊在縱剖面上的距離,縱剖面垂直第一邊及通過發光晶粒300的晶粒中心軸線,透鏡層200用以覆蓋發光晶粒300的上表面,透鏡層200具有面對發光晶粒300的底部,底部具有相對的第三邊2103及第四邊2104,透鏡尺寸為第三邊2103及第四邊2104在縱剖面上的距離; S101: Provide the design structure of the optical element 1. The optical element 1 includes a light-emitting die 300 and a lens package 201. The lens package 201 is used to package the light-emitting die 300. The lens package 201 includes a lens layer 200; the light-emitting die 300 has It is used to connect the lower surface of the substrate 21 and the upper surface opposite to the lower surface. The upper surface is rectangular and has an opposite first side and a second side. The grain size is the distance between the first side and the second side in the longitudinal section. , the longitudinal section is perpendicular to the first side and passes through the central axis of the luminescent die 300. The lens layer 200 is used to cover the upper surface of the luminescent die 300. The lens layer 200 has a bottom facing the luminescent die 300, and the bottom has an opposite The third side 2103 and the fourth side 2104, the lens size is the distance between the third side 2103 and the fourth side 2104 in the longitudinal section;

S102:獲取光元件1的可視角度x、發光晶粒300的晶粒尺寸L及透鏡封裝體201包含的透鏡層200的透鏡尺寸R。 S102: Obtain the viewing angle x of the optical element 1, the grain size L of the light-emitting chip 300, and the lens size R of the lens layer 200 included in the lens package 201.

請參閱圖1至圖3,其中,晶粒尺寸L指的是發光晶粒300的幾何尺寸,例如發光晶粒300的上表面為正方形時,晶粒尺寸L為正方形的邊長,透鏡尺寸R指的是透鏡層200的幾何尺寸,例如當透鏡層200為半球形透鏡230時,透鏡尺寸R為半球形透鏡230的底部的直徑,可視角度(view angle)x指的是光元件1的光束角(beam angle)的值。 Please refer to FIGS. 1 to 3 , where the grain size L refers to the geometric size of the luminescent grain 300 . For example, when the upper surface of the luminescent grain 300 is a square, the grain size L is the side length of the square, and the lens size R refers to the geometric size of the lens layer 200. For example, when the lens layer 200 is a hemispherical lens 230, the lens size R is the diameter of the bottom of the hemispherical lens 230, and the viewing angle (view angle) x refers to the light beam of the optical element 1 The value of the beam angle.

S103:計算第一數值,其中第一數值為晶粒尺寸L與透鏡尺寸R的比例,即L/R。 S103: Calculate the first value, where the first value is the ratio of the grain size L to the lens size R, that is, L/R.

可以理解,第一數值表徵的是發光晶粒300與透鏡層200的接近程度。 It can be understood that the first numerical value represents the proximity between the luminescent die 300 and the lens layer 200 .

請參閱圖1至圖3,以半球形透鏡230舉例說明,當晶粒尺寸L遠小於半球形透鏡230尺寸時,可以認為發光晶粒300處於半球形透鏡230的球心位置,出射光線大多與半球形透鏡230的表面距離相等,大多數出射光線與半球形透鏡230的交點處的切面垂直,發光晶粒300發出的大部分光是位於半球形透鏡230的中心軸附近,從而保證出射光的中心強度。 Please refer to FIGS. 1 to 3 , taking the hemispherical lens 230 as an example. When the grain size L is much smaller than the size of the hemispherical lens 230 , it can be considered that the luminescent grain 300 is at the center of the hemispherical lens 230 , and most of the emitted light rays are at the center of the hemispherical lens 230 . The surface distances of the hemispherical lenses 230 are equal, and most of the outgoing light rays are perpendicular to the intersection point of the hemispherical lenses 230. Most of the light emitted by the luminous crystal grain 300 is located near the central axis of the hemispherical lens 230, thereby ensuring that the outgoing light is Center strength.

但是當發光晶粒300與透鏡層200的邊緣逐漸接近時,由於透鏡的曲率並未相應發生變化,發光晶粒300發出的少部分光與半球形透鏡230的交點處的切面垂直,半球形透鏡230對光線的彙聚能力較弱,使中心強度下降並且發光晶粒300邊緣發出的光線在透鏡層200的折射下,光線分佈散亂不均。 However, when the edges of the light-emitting die 300 and the lens layer 200 gradually approach, since the curvature of the lens does not change accordingly, a small part of the light emitted by the light-emitting die 300 is perpendicular to the tangential plane at the intersection of the hemispherical lens 230. The hemispherical lens 230 has a weak ability to gather light, which causes the central intensity to decrease and the light emitted from the edge of the luminous die 300 to be refracted by the lens layer 200, causing the light distribution to be scattered and uneven.

顯然現有技術中未出現能判定這種現象的判斷標準,只能通過光線分佈關係調整透鏡層200形狀,再通過實驗進行驗證選擇,不僅使光強分佈不可控,而且會導致光模組封裝效率變低。 Obviously, there is no judgment standard that can determine this phenomenon in the existing technology. The shape of the lens layer 200 can only be adjusted based on the light distribution relationship, and then verified and selected through experiments. This not only makes the light intensity distribution uncontrollable, but also affects the packaging efficiency of the optical module. become lower.

S104:計算第二數值,其中第二數值與可視角度x之間為多項式關係,需要說明的是,第二數值表徵的是在設計的光元件1的可視角度不變的情況下,由於晶粒尺寸L與透鏡尺寸R的比例變化,導致經一次透鏡後光元件1的出光光強分佈從軸對稱分佈到非軸對稱分佈的臨界值。 S104: Calculate the second value, where the relationship between the second value and the viewing angle x is a polynomial. It should be noted that the second value represents the change in the viewing angle of the designed optical element 1 due to the The change in the ratio of the size L to the lens size R causes the light intensity distribution of the light element 1 after passing through the primary lens to change from an axially symmetrical distribution to a critical value of a non-axially symmetrical distribution.

S105:當第一數值大於第二數值時,所述透鏡層200選擇非軸對稱光學透鏡,以對發光晶粒300進行封裝;當第一數值小於或等於第二數值時,所述透鏡層200選擇軸對稱光學透鏡,以對發光晶粒300進行封裝。 S105: When the first value is greater than the second value, the lens layer 200 selects a non-axisymmetric optical lens to encapsulate the light-emitting die 300; when the first value is less than or equal to the second value, the lens layer 200 An axially symmetrical optical lens is selected to encapsulate the light emitting die 300 .

請參閱圖1至圖3,由於第一數值表徵的是發光晶粒300與透鏡層200的接近程度,第二數值表明的是經一次透鏡後光強分佈從對稱分佈到不對稱分佈的臨界值,而第二數值又與可視角度x之間為多項式關係,可以理解,當第一數值大於第二數值時,會導致光強分佈不對稱,而使用非軸對稱光學透鏡。當第一數值小於或等於第二數值時,由於並未發生光強分佈不對稱情況,依舊可以選擇軸對稱光學透鏡對發光晶粒300進行封裝。 Please refer to Figures 1 to 3. Since the first numerical value represents the proximity between the luminescent die 300 and the lens layer 200, the second numerical value represents the critical value of the light intensity distribution from symmetrical distribution to asymmetrical distribution after passing through a lens. , and the second value has a polynomial relationship with the viewing angle x. It can be understood that when the first value is greater than the second value, it will lead to asymmetric light intensity distribution and use a non-axisymmetric optical lens. When the first value is less than or equal to the second value, since the asymmetry of the light intensity distribution does not occur, an axisymmetric optical lens can still be selected to package the light-emitting die 300 .

請參閱圖1至圖3,本發明的實施例通過獲取晶粒尺寸L、透鏡尺寸R及可視角度x,對第一數值進行計算,通過第一數值可以判斷發光晶粒300與透鏡層200的接近程度,進而通過可視角度x計算第二數值,判斷在經一次透鏡後光強分佈從對稱分佈到不對稱分佈的臨界值,獲取可視角度x與第一數值之間的關係,並在第一數值大於第二數值時,選擇類方形透鏡210對發光晶粒300進行封裝,通過確定選擇標準,便於對透鏡層200類型進行選擇,可以增加光元件1封裝效率。當發光晶粒300與透鏡層200的邊緣逐漸接近,由於自由曲面的曲率可以變大,發光晶粒300發出的光可以與類方形透鏡210的交點處的切面垂直,對光線的彙聚能力較強,使中心強度增加,並且發光晶粒300邊緣發出的光線在透鏡層200的折射下,也有向中心彙聚的能力,進而使光強分佈可控。並且二次透鏡一般以對稱強度進行光學設計,類方形透鏡210設計對於應用端搭配二次透鏡使用不會產生問題。 Please refer to FIGS. 1 to 3 . In the embodiment of the present invention, the first numerical value is calculated by obtaining the grain size L, the lens size R and the viewing angle x. The first numerical value can be used to determine the relationship between the luminescent grain 300 and the lens layer 200 . degree of proximity, and then calculate the second value through the viewing angle x, determine the critical value of the light intensity distribution from symmetrical distribution to asymmetrical distribution after passing through the primary lens, obtain the relationship between the viewing angle When the value is greater than the second value, the quasi-square lens 210 is selected to package the light-emitting die 300. By determining the selection criteria, the type of the lens layer 200 can be easily selected, and the packaging efficiency of the optical element 1 can be increased. When the edge of the luminescent die 300 and the lens layer 200 gradually approaches, since the curvature of the free-form surface can become larger, the light emitted by the luminescent die 300 can be perpendicular to the cross section at the intersection of the quasi-square lens 210, and the ability to gather light is strong. , so that the center intensity is increased, and the light emitted from the edge of the light-emitting chip 300 also has the ability to converge toward the center under the refraction of the lens layer 200, thereby making the light intensity distribution controllable. Moreover, secondary lenses are generally optically designed with symmetrical strength. The quasi-square lens 210 design will not cause problems when used with secondary lenses on the application end.

在一實施例中,非軸對稱光學透鏡為類方形透鏡210,類方形透鏡210具有透鏡中心軸線,類方形透鏡210的底部具有沿第一方向401延伸的第三邊2103和第四邊2104及沿第二方向402延伸的第五邊2105和第六邊2106,第一方向401垂直第二方向402,透鏡中心軸線垂直第一方向401及第二方向402,類 方形透鏡210在第一縱剖面2107上具有第一自由曲線述第一縱剖面2107通過透鏡中心軸線且垂直第一方向401,類方形透鏡210在第二縱剖面2108上具有第二自由曲線,第二縱剖面2108通過透鏡中心軸線及垂直第二方向402。 In one embodiment, the non-axisymmetric optical lens is a quasi-square lens 210. The quasi-square lens 210 has a lens central axis. The bottom of the quasi-square lens 210 has a third side 2103 and a fourth side 2104 extending along the first direction 401 and The fifth side 2105 and the sixth side 2106 extend along the second direction 402, the first direction 401 is perpendicular to the second direction 402, the central axis of the lens is perpendicular to the first direction 401 and the second direction 402, etc. The square lens 210 has a first free curve on the first longitudinal section 2107, which passes through the central axis of the lens and is perpendicular to the first direction 401. The quasi-square lens 210 has a second free curve on the second longitudinal section 2108. The two longitudinal sections 2108 pass through the lens central axis and are perpendicular to the second direction 402 .

在一實施例中,前述多項式關係為:y=-6.69×10-10 x 5+2.40×10-7 x 4-3.26×10-5 x 3+2.1×10-3 x 2-5.6×10-2 x+0.6964,其中y為第二數值,x為可視角度。 In one embodiment, the aforementioned polynomial relationship is: y=-6.69×10 -10 x 5 +2.40×10 -7 x 4 -3.26×10 -5 x 3 +2.1×10 -3 x 2 -5.6×10 - 2 x +0.6964, where y is the second value and x is the viewing angle.

可以理解,此多項式具備適用性,可以根據不同的可視角度x進行第二數值y的計算,使用者能根據可視角度x的變換得到不同情況下的臨界值,判定標準簡單。 It can be understood that this polynomial has applicability and can calculate the second value y according to different viewing angles x. The user can obtain the critical value in different situations according to the transformation of the viewing angle x, and the judgment standard is simple.

舉例來說,當可視角度x為80°時,將其代入至上述多項式,第二數值y為0.3676,而當晶粒尺寸L為0.7mm及透鏡尺寸為1.7mm時,此時,第一數值大於第二數值y,可以判定出射光強分佈不對稱,應當使用類方形透鏡210改善此情況。 For example, when the viewing angle x is 80°, substitute it into the above polynomial, the second value y is 0.3676, and when the grain size L is 0.7mm and the lens size is 1.7mm, at this time, the first value If it is greater than the second value y, it can be determined that the outgoing light intensity distribution is asymmetrical, and the quasi-square lens 210 should be used to improve this situation.

以上僅為本發明的較佳實施例而已,並不用於限制本發明。對於本發明所屬技術領域的通常知識者來說,本發明可以有各種更改和變化。凡在本發明的精神和原則之內,所作的任何修改、等同替換、改進等,均應包含在本發明的申請專利範圍的範圍之內。 The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Various modifications and changes may be made to the present invention by those of ordinary skill in the art to which the present invention belongs. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the patent application of the present invention.

S101~S105:步驟 S101~S105: steps

Claims (10)

一種光元件,包括: 一發光晶粒,該發光晶粒具有用以連接一基板的一下表面及與該下表面相對的一上表面,該上表面呈矩形且具有相對的一第一邊及一第二邊,該發光晶粒具有一晶粒尺寸,該晶粒尺寸為該第一邊及該第二邊在縱剖面上的距離,該縱剖面垂直該第一邊及通過該發光晶粒的一晶粒中心軸線;以及 一透鏡封裝體,該透鏡封裝體包括一透鏡層,該透鏡層為一非軸對稱光學透鏡,該透鏡層覆蓋該發光晶粒的該上表面,該透鏡層具有面對該發光晶粒的一底部,該底部具有相對的一第三邊及一第四邊,該透鏡層具有一透鏡尺寸,該透鏡尺寸為該第三邊及該第四邊在該縱剖面上的距離, 該光元件具有一可視角度,該可視角度為x,該晶粒尺寸與該透鏡尺寸的比例為y,其中: An optical element, including: a luminescent chip, the luminescent chip has a lower surface for connecting to a substrate and an upper surface opposite to the lower surface, the upper surface is rectangular and has an opposite first side and an On the second side, the luminescent chip has a grain size, the grain size is the distance between the first side and the second side on a longitudinal section, the longitudinal section is perpendicular to the first side and passes through the luminescent chip. a die central axis; and a lens package, the lens package includes a lens layer, the lens layer is a non-axisymmetric optical lens, the lens layer covers the upper surface of the light-emitting die, the lens layer has a surface For a bottom of the luminescent chip, the bottom has a third side and a fourth side opposite to each other, and the lens layer has a lens size, and the lens size is on the longitudinal section of the third side and the fourth side. distance, the optical element has a viewing angle, the viewing angle is x, the ratio of the grain size to the lens size is y, where: . 如請求項1所述的光元件,該非軸對稱光學透鏡為一類方形透鏡,該類方形透鏡具有一透鏡中心軸線,該類方形透鏡的該底部具有沿一第一方向延伸的該第三邊和該第四邊及沿一第二方向延伸的一第五邊和一第六邊,該第一方向垂直該第二方向,該透鏡中心軸線垂直該第一方向及該第二方向,該類方形透鏡在一第一縱剖面上具有一第一自由曲線,該第一縱剖面通過該透鏡中心軸線且垂直該第一方向,該類方形透鏡在一第二縱剖面上具有一第二自由曲線,該第二縱剖面通過該透鏡中心軸線及垂直該第二方向。The optical element of claim 1, the non-axisymmetric optical lens is a square lens, the square lens has a lens central axis, the bottom of the square lens has the third side extending along a first direction and The fourth side and a fifth side and a sixth side extending along a second direction, the first direction is perpendicular to the second direction, the central axis of the lens is perpendicular to the first direction and the second direction, the square shape The lens has a first free curve on a first longitudinal section, the first longitudinal section passes through the central axis of the lens and is perpendicular to the first direction, and the square lens has a second free curve on a second longitudinal section, The second longitudinal section passes through the lens central axis and is perpendicular to the second direction. 如請求項2所述的光元件,該第一縱剖面及該第二縱剖面將該類方形透鏡切割為四個突起區塊,該突起區塊具有一曲面,該曲面朝遠離該透鏡層的該底部方向凸出,相鄰兩該曲面為鏡射關係。As for the optical element of claim 2, the first longitudinal section and the second longitudinal section cut the square lens into four protruding blocks, and the protruding blocks have a curved surface facing away from the lens layer. The bottom direction of the curve is convex, and the two adjacent curved surfaces are in a mirroring relationship. 一種光元件,包括: 一發光晶粒,該發光晶粒具有用以連接一基板的一下表面及與該下表面相對的一上表面,該上表面呈矩形且具有相對的一第一邊及一第二邊,該發光晶粒具有一晶粒尺寸,該晶粒尺寸為該第一邊及該第二邊在一縱剖面上的距離,該縱剖面垂直該第一邊及通過該發光晶粒的一晶粒中心軸線;以及 一透鏡封裝體,該透鏡封裝體包括一透鏡層,該透鏡層為一軸對稱光學透鏡,該透鏡層覆蓋該發光晶粒的該上表面,該透鏡層具有面對該發光晶粒的一底部,該底部具有相對的一第三邊及一第四邊,該透鏡層具有一透鏡尺寸,該透鏡尺寸為該第三邊及該第四邊在該縱剖面上的距離, 該光元件具有一可視角度,該可視角度為x,該晶粒尺寸與該透鏡尺寸的比例為y,其中: An optical element, including: a luminescent chip, the luminescent chip has a lower surface for connecting to a substrate and an upper surface opposite to the lower surface, the upper surface is rectangular and has an opposite first side and an On the second side, the luminescent chip has a grain size. The grain size is the distance between the first side and the second side on a longitudinal section. The longitudinal section is perpendicular to the first side and passes through the luminescent chip. a central axis of the die; and a lens package, the lens package includes a lens layer, the lens layer is an axially symmetric optical lens, the lens layer covers the upper surface of the light-emitting die, the lens layer has a surface facing A bottom of the light-emitting chip has a third side and a fourth side opposite to each other. The lens layer has a lens size. The lens size is the distance between the third side and the fourth side on the longitudinal section. distance, the optical element has a viewing angle, the viewing angle is x, and the ratio of the grain size to the lens size is y, where: . 如請求項4所述的光元件,該軸對稱光學透鏡為半球形透鏡。As for the optical element described in claim 4, the axially symmetrical optical lens is a hemispherical lens. 如請求項1或4所述的光元件,該光元件還包括該基板,該發光晶粒設於該基板上且電連接該基板,該透鏡封裝體還包括一透光層,該透光層設於該基板上且包覆該發光晶粒,該透鏡層緊鄰該透光層。The optical element according to claim 1 or 4, the optical element further includes the substrate, the light-emitting chip is disposed on the substrate and electrically connected to the substrate, the lens package further includes a light-transmitting layer, the light-transmitting layer The lens layer is disposed on the substrate and covers the light-emitting chip, and is adjacent to the light-transmitting layer. 如請求項6所述的光元件,該光元件還包括一螢光粉,該螢光粉分散於該透鏡封裝體中,該透鏡層與該透光層為一體成形。As claimed in claim 6, the optical element further includes a phosphor dispersed in the lens package, and the lens layer and the light-transmitting layer are integrally formed. 一種光元件的製造方法,包括如下步驟: 獲取一光元件的一可視角度、一發光晶粒的一晶粒尺寸及一透鏡封裝體包含的一透鏡尺寸,該光元件包括該發光晶粒及該透鏡封裝體,該透鏡封裝體包括一透鏡層,該透鏡封裝體用以封裝該發光晶粒,其中,該發光晶粒具有用以連接一基板的一下表面及與該下表面相對的一上表面,該上表面呈矩形且具有相對的一第一邊及一第二邊,該晶粒尺寸為該第一邊及該第二邊在一縱剖面上的距離,該縱剖面垂直該第一邊及通過該發光晶粒的一晶粒中心軸線,該透鏡層用以覆蓋該發光晶粒的該上表面,該透鏡層具有面對該發光晶粒的一底部,該底部具有相對的一第三邊及一第四邊,該透鏡尺寸為該第三邊及該第四邊在該縱剖面上的距離; 計算一第一數值,該第一數值為該晶粒尺寸與該透鏡尺寸的比例; 計算一第二數值,該第二數值與該可視角度之間為一多項式關係,並且該第二數值表示該光元件的出光光強分佈從軸對稱分佈到非軸對稱分佈的臨界值;以及 當該第一數值大於該第二數值時,該透鏡層選擇一非軸對稱光學透鏡;當該第一數值小於或等於該第二數值時,該透鏡層選擇一軸對稱光學透鏡。 A method for manufacturing optical components, including the following steps: Obtaining a viewing angle of an optical element, a grain size of a light-emitting chip, and a lens size included in a lens package, the light element includes the light-emitting die and the lens package, the lens package includes a lens layer, the lens package is used to encapsulate the light-emitting chip, wherein the light-emitting chip has a lower surface for connecting to a substrate and an upper surface opposite to the lower surface, the upper surface is rectangular and has an opposite A first side and a second side, the size of the die is the distance between the first side and the second side on a longitudinal section, the longitudinal section is perpendicular to the first side and passes through the center of a die of the luminescent die axis, the lens layer is used to cover the upper surface of the luminescent die, the lens layer has a bottom facing the luminescent die, the bottom has an opposite third side and a fourth side, the lens size is The distance between the third side and the fourth side on the longitudinal section; Calculate a first value, the first value being the ratio of the grain size to the lens size; Calculate a second value, there is a polynomial relationship between the second value and the viewing angle, and the second value represents the critical value of the light intensity distribution of the light element from an axisymmetric distribution to a non-axisymmetric distribution; and When the first value is greater than the second value, the lens layer selects a non-axisymmetric optical lens; when the first value is less than or equal to the second value, the lens layer selects an axisymmetric optical lens. 如請求項8所述的光元件的製造方法,該非軸對稱光學透鏡為一類方形透鏡,該類方形透鏡具有一透鏡中心軸線,該類方形透鏡的該底部具有沿一第一方向延伸的該第三邊和該第四邊及沿一第二方向延伸的一第五邊和一第六邊,該第一方向垂直該第二方向,該透鏡中心軸線垂直該第一方向及該第二方向,該類方形透鏡在一第一縱剖面上具有一第一自由曲線,該第一縱剖面通過該透鏡中心軸線且垂直該第一方向,該類方形透鏡在一第二縱剖面上具有一第二自由曲線,該第二縱剖面通過該透鏡中心軸線及垂直該第二方向。As claimed in claim 8, the non-axisymmetric optical lens is a square lens, the square lens has a lens central axis, and the bottom of the square lens has the third extending along a first direction. three sides and the fourth side and a fifth side and a sixth side extending along a second direction, the first direction is perpendicular to the second direction, and the central axis of the lens is perpendicular to the first direction and the second direction, The square lens has a first free curve on a first longitudinal section, the first longitudinal section passes through the central axis of the lens and is perpendicular to the first direction, and the square lens has a second longitudinal section on a second longitudinal section. Free curve, the second longitudinal section passes through the central axis of the lens and is perpendicular to the second direction. 如請求項8所述的光元件的製造方法,該多項式關係為, , 其中,y為該第二數值,x為該可視角度。 As for the manufacturing method of the optical element described in claim 8, the polynomial relationship is, , where y is the second value and x is the viewing angle.
TW111148814A 2022-10-09 2022-12-19 Optical element and manufacturing method of optical element TWI819927B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211226063.XA CN115832152A (en) 2022-10-09 2022-10-09 Optical device and method for manufacturing optical device
CN202211226063.X 2022-10-09

Publications (2)

Publication Number Publication Date
TWI819927B true TWI819927B (en) 2023-10-21
TW202416559A TW202416559A (en) 2024-04-16

Family

ID=85524391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111148814A TWI819927B (en) 2022-10-09 2022-12-19 Optical element and manufacturing method of optical element

Country Status (2)

Country Link
CN (1) CN115832152A (en)
TW (1) TWI819927B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203315A1 (en) * 2013-01-23 2014-07-24 Samsung Electronics Co., Ltd. Led lens and led package using the same
US20150276170A1 (en) * 2014-03-28 2015-10-01 Asahi Rubber Inc Light distribution lens
TW201541675A (en) * 2014-04-23 2015-11-01 Lite On Opto Technology Changzhou Co Ltd Chip-scale package LED structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203315A1 (en) * 2013-01-23 2014-07-24 Samsung Electronics Co., Ltd. Led lens and led package using the same
US20150276170A1 (en) * 2014-03-28 2015-10-01 Asahi Rubber Inc Light distribution lens
TW201541675A (en) * 2014-04-23 2015-11-01 Lite On Opto Technology Changzhou Co Ltd Chip-scale package LED structure

Also Published As

Publication number Publication date
TW202416559A (en) 2024-04-16
CN115832152A (en) 2023-03-21

Similar Documents

Publication Publication Date Title
JP4799341B2 (en) Lighting device
EP3043199A1 (en) Optical lens and light emitting module having the same
KR20060113980A (en) Reflective light coupler
KR102538448B1 (en) Light emitting module
CN100470853C (en) Novel alignment light emitting diode packaging construction
US20090045421A1 (en) Surface mount type light emitting diode package device
TWI479107B (en) Led light distributing lens and light source apparatus using the same
TW200809284A (en) LED package with encapsulated converging optical element
JP2019080065A (en) Light emitting device
JP2018531414A6 (en) Wide angle lens and optical assembly including the same
JP2018531414A (en) Wide angle lens and optical assembly including the same
US8662716B2 (en) Side-emitting optical elements and methods thereof
KR20170073237A (en) Optical lens, light emitting module and light unit having thereof
TWI582350B (en) Lens and light source module having the same
TWI819927B (en) Optical element and manufacturing method of optical element
TW200843151A (en) LED light source with converging extractor in an optical element
TW201316566A (en) Lighting module and lighting device thereof
TW201221826A (en) Light source for crystal lamp
EP1897150A2 (en) A light-emitting device and method for its design
KR20190021689A (en) Lighting module and light unit having thereof
JP2006196569A (en) Light emitting device
JP2004193451A (en) Light emitting diode
US20150340557A1 (en) Shaped led for enhanced light extraction efficiency
CN219203737U (en) VCSEL light-emitting device
US9534745B2 (en) Lens and LED unit using the same