TWI819117B - 光學對位檢測裝置及其檢測方法 - Google Patents

光學對位檢測裝置及其檢測方法 Download PDF

Info

Publication number
TWI819117B
TWI819117B TW108136709A TW108136709A TWI819117B TW I819117 B TWI819117 B TW I819117B TW 108136709 A TW108136709 A TW 108136709A TW 108136709 A TW108136709 A TW 108136709A TW I819117 B TWI819117 B TW I819117B
Authority
TW
Taiwan
Prior art keywords
light source
laser light
photodetector
intensity signal
beam splitter
Prior art date
Application number
TW108136709A
Other languages
English (en)
Other versions
TW202115461A (zh
Inventor
林翊涵
蔡姓賢
Original Assignee
陽程科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陽程科技股份有限公司 filed Critical 陽程科技股份有限公司
Priority to TW108136709A priority Critical patent/TWI819117B/zh
Publication of TW202115461A publication Critical patent/TW202115461A/zh
Application granted granted Critical
Publication of TWI819117B publication Critical patent/TWI819117B/zh

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Air Bags (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明為有關一種光學對位檢測裝置及其檢測方法,該檢測設備之光源發射器來投射雷射光源至非偏極化分光鏡,並利用非偏極化分光鏡來將雷射光源分光成第一雷射光源及第二雷射光源,且該第一雷射光源為投射至第一光檢測器,而該第二雷射光源為穿透過欲檢測之光學鏡片組,再投射至第二光檢測器,再利用演算法來使第一雷射光源的光源強度訊號與第二雷射光源的光源強度訊號計算出一個減少雜訊影響之光源強度訊號,其因非偏極化分光鏡可將雷射光源分光回授至第一光檢測器,所以可利用第一光檢測器的光源強度訊號來對第二光檢測器的光源強度訊號進行運算,以減少光源強度訊號中的低頻擾動、雜訊影響,進而提升光源強度訊號檢測時的準確度。

Description

光學對位檢測裝置及其檢測方法
本發明係提供一種光學對位檢測裝置及其檢測方法,尤指雷射光源可透過非偏極化分光鏡分光至第一光檢測器,所以可利用第一光檢測器的光源強度訊號來對第二光檢測器的光源強度訊號進行運算,以減少訊號中的低頻、雜訊影響,進而提升檢測時的準確度。
按,隨著科技時代的不斷進步與創新,許多日常生活中的事物也都隨著科技進步、而有顯著的改變,例如人們日常生活中觀看的電視或電影等,透過顯示螢幕呈現的影像,也由早期的二維平面影像(2D平面影像;Two Dimension),轉變成為三維立體影像(3D立體影像;Three Dimension),以滿足人們對於觀看影像時的立體視覺影像的不同感受,更隨著三維影像(3D立體影像)畫面所呈現立體視覺效果,則有許多業者利用3D立體影像,演變出各式不同的真實臨場感、身歷其境般的模擬影像境界,例如虛擬實境(Virtual Reality;VR)技術、擴增實境(Augmented Reality;AR)技術、混合實境(Mixed Reality;MR)技術或影像實境(Cinematic Reality;CR)技術等,成為目前應用在 各式遊戲、電視或電影等經常應用的技術,提供人們觀看3D立體影像的視覺觀感。
關於3D立體影像的呈現,係利用人們的二眼視差(Binocular Parallax)效應所形成,且二眼視差代表二眼因為所處位置不同、視角不同,即導致所見影像內容也略微不同的效應,最後由大腦將二眼所見不同影像予以融合,進而產生3D立體影像。
至於立體影像呈現的技術,大致可以區分成需配戴特殊設計眼鏡觀看的戴眼鏡式(Stereoscopic)或者不需配戴眼鏡的裸視觀看之裸眼式(Auto Stereoscopic),其中,關於戴眼鏡式的3D立體影像顯示技術,包括色差式〔即濾光眼鏡(Color Filter Glasses)〕、偏光式〔即偏光眼鏡(Polarizing Glasses)〕以及主動快門式〔即快門眼鏡(Shutter Glasses)〕等各種型式。
再者,偏光式眼鏡呈現的3D立體影像效果較佳,也不易受到觀看位置或角度等限制,仍被大多數業者所應用,然而,因偏光式眼鏡的穿透軸(穿透直線偏光的軸)容易產生傾斜現象,以致發生串擾(Cross talk),而使偏光式眼鏡的亮度發生變化、轉暗現象等缺失,所以偏光式眼鏡必須經過檢測、對位,以進行調整左、右鏡片的合適偏光角度、偏振方向等,以達到良好的3D立體影像顯示效果。
但是,偏光式眼鏡透過雷射進行檢測時,其雷射傳遞過程中容易受到外界環境(如:震動)的變化,而使雷射的波長產生低頻擾動、相位雜訊等干擾,以致於降低傳遞的品質,進而影響檢測時的準確度, 導致後續製造的產品不良率無法有效減少。
是以,要如何設法解決上述習用之缺失與不便,即為從事此行業之相關業者所亟欲研究改善之方向所在。
故,發明人有鑑於上述缺失,乃搜集相關資料,經由多方評估及考量,始設計出此種光學對位檢測裝置及其檢測方法的發明專利者。
本發明之主要目的乃在於該檢測設備之光源發射器來投射雷射光源至非偏極化分光鏡,並利用非偏極化分光鏡來將雷射光源分光成第一雷射光源及第二雷射光源,且該第一雷射光源為投射至第一光檢測器,而該第二雷射光源為穿透過欲檢測之光學鏡片組,再投射至第二光檢測器,即可利用演算法來將第一雷射光源的光源強度訊號與第二雷射光源的光源強度訊號進行計算,以計算出一個減少雜訊影響之光源強度訊號,其因檢測時為先行透過非偏極化分光鏡來將雷射光源分光回授至第一光檢測器,即可利用第一光檢測器所接收到光源強度訊號來對第二光檢測器所接收到光源強度訊號進行運算,以可減少光源強度訊號中的低頻擾動、雜訊影響,進而提升光源強度訊號檢測時的準確度及光學鏡片組中光軸定位角度計算時的準確度,藉此使該光學鏡片組能夠獲得合適的偏光方向、角度等,則於實際觀看3D影像時,能減少發生穿透軸傾斜、串擾等情況,從而達到增加應用時穩定性之目的。
1‧‧‧檢測設備
10‧‧‧雷射光源
101‧‧‧第一雷射光源
102‧‧‧第二雷射光源
11‧‧‧光源發射器
12‧‧‧非偏極化分光鏡
13‧‧‧第一光檢測器
14‧‧‧第二光檢測器
2‧‧‧光學鏡片組
21‧‧‧圓偏光片
22‧‧‧線偏光片
23‧‧‧波片
第一圖 係為本發明之示意圖。
第二圖 係為本發明之流程圖。
第三圖 係為本發明使用時之雷射光源強度數據圖。
為達成上述目的及功效,本發明所採用之技術手段及其構造,茲繪圖就本發明之較佳實施例詳加說明其特徵與功能如下,俾利完全瞭解。
請參閱第一、二、三圖所示,係為本發明之示意圖、流程圖及使用時之雷射光源強度數據圖,由圖中可清楚看出,本發明係包括檢測設備1及光學鏡片組2,其中:該檢測設備1為包括有光源發射器11、非偏極化分光鏡12(Non-Polarizing Beam Splitter;NPBS)、第一光檢測器13及第二光檢測器14,其中該光源發射器11一側設有可將光源發射器11投射的雷射光源10分光成第一雷射光源101及第二雷射光源102之非偏極化分光鏡12,且非偏極化分光鏡12相對於光源發射器11另二側處設有接收第一雷射光源101之第一光檢測器13,以及接收第二雷射光源102之第二光檢測器14。
該光學鏡片組2為設置於檢測設備1之非偏極化分光鏡12與第二光檢測器14之間,並供第二雷射光源102穿透,且包括有相鄰於非偏極化分光鏡12處之圓偏光片21,以及相鄰於第二光檢測器14處之線偏光片22,而圓偏光片21及線偏光片22之間設有波片23。
上述檢測設備1之光源發射器11可為雷射光之光源發射器11或其它光源型式之光源發射器11,以供光源發射器11可發射波長為532nm之綠光雷射光源,且功率可為20mw等,各種型式之雷射光源或是其它型式之光源。
再者,上述檢測設備1之第一光檢測器13及第二光檢測器14內部為包括有預設電路佈局、內建應用程式之處理器或晶片等,且該第一光檢測器13及第二光檢測器14為分別接收第一雷射光源101及第二雷射光源102,並可供計算第一雷射光源101及第二雷射光源102的光源強度。
然而,上述光學鏡片組2之線偏光片22可為含奈米級矽酸鈉之玻璃片(Nanoparticles in Sodium-Silicate Glass),而該光學鏡片組2之波片23可為供產生相位延遲1/4波長之波片23或其它相位延遲之波片23,且該波片23的材料可為結晶石英(Crystalline Quartz)。
當本發明實際使用時,係包括下列之步驟:
(A)係可先透過檢測設備1之光源發射器11來投射雷射光源10至非偏極化分光鏡12。
(B)該雷射光源10為穿透過非偏極化分光鏡12,並利用非偏極化分光鏡12來將雷射光源10分光成第一雷射光源101及第二雷射光源102,且該第一雷射光源101為投射至第一光檢測器13,而該第二雷射光源102為先穿透過光學鏡片組2,再投射至第二光 檢測器14。
(C)該第一光檢測器13及第二光檢測器14所分別接收到的光源強度訊號為利用演算法來進行減少訊號雜訊之運算,以使第一光檢測器13及第二光檢測器14的光源強度訊號計算出一個減少雜訊影響之光源強度訊號。
上述步驟(B)之光學鏡片組2為包括有圓偏光片21及線偏光片22,且該圓偏光片21及線偏光片22之間設有波片23,當非偏極化分光鏡12分光出第二雷射光源102依序穿透過圓偏光片21、波片23及線偏光片22後,便會投射到第二光檢測器14,以使第二光檢測器14接收到第二雷射光源102的光源強度訊號,便可於步驟(C)中計算出一個減少雜訊影響之光源強度訊號,並依據該減少雜訊影響之光源強度訊號來計算出波片23之光軸定位角度或線偏光片22的偏光角度。
再者,上述步驟(C)中之演算法為利用第一光檢測器13所接收到第一雷射光源101的光源強度訊號來除第二光檢測器14所接收到第二雷射光源102的光源強度訊號,以得到一個減少雜訊影響之光源強度訊號。
且上述檢測設備1之第一光檢測器13及第二光檢測器14較佳為可電性連接於電子裝置(如:工業電腦、桌上型電腦、筆記型電腦或其它具運算功能之電子裝置;圖中未示出),當第一光檢測器13及第二光檢測器14於步驟(C)接收到第一雷射光源101及第二雷射光源102的光源強度訊號時,即可傳輸到電子裝置,以透過電子裝置來進 行運算,藉此得到一個減少雜訊影響之光源強度訊號,並利用該減少雜訊影響之光源強度訊號來計算出波片23之光軸定位角度或線偏光片22的偏光角度。
當本發明於實際使用時,係可先透過檢測設備1之光源發射器11來投射雷射光源10至非偏極化分光鏡12,並利用非偏極化分光鏡12來將雷射光源10分光成第一雷射光源101及第二雷射光源102,且該第一雷射光源101為投射至第一光檢測器13,而該第二雷射光源102為穿透過欲檢測之光學鏡片組2,再投射至第二光檢測器14,即可將第一光檢測器13所接收到第一雷射光源101的光源強度訊號(如第三圖中之X)除第二光檢測器14所接收到第二雷射光源102的光源強度訊號(如第三圖中之Y),以計算出一個減少雜訊影響之光源強度訊號(如第三圖中之Z),其因檢測時為先行透過非偏極化分光鏡12來將雷射光源10分光回授至第一光檢測器13,即可利用第一光檢測器13所接收到光源強度訊號來對第二光檢測器14所接收到光源強度訊號進行運算,以可減少光源強度訊號中的低頻擾動、相位雜訊影響,進而提升光源強度訊號檢測時的準確度及光學鏡片組2中光軸定位角度計算時的準確度,藉此使該光學鏡片組2能夠獲得合適的偏光方向、角度等,則於實際觀看3D影像時,能減少發生穿透軸傾斜、串擾等情況,從而達到增加應用時穩定性之功效。
上所述僅為本發明之較佳實施例而已,非因此即侷限本發明之專利範圍,故舉凡運用本發明說明書及圖式內容所為之簡易修飾及等效結構變化,均應同理包含於本發明之專利範圍內,合予陳明。
綜上所述,本發明上述光學對位檢測裝置及其檢測方法於實際應用、實施時,為確實能達到其功效及目的,故本發明誠為一實用性優異之研發,為符合發明專利之申請要件,爰依法提出申請,盼 審委早日賜准本案,以保障發明人之辛苦研發、創設,倘若 鈞局審委有任何稽疑,請不吝來函指示,發明人定當竭力配合,實感德便。

Claims (9)

  1. 一種光學對位檢測裝置,係包括檢測設備及光學鏡片組,其中:該檢測設備為包括有光源發射器、非偏極化分光鏡、第一光檢測器及第二光檢測器,其中該光源發射器一側設有將光源發射器投射的雷射光源分光成第一雷射光源及第二雷射光源之非偏極化分光鏡,且非偏極化分光鏡相對於光源發射器另二側處設有接收第一雷射光源之第一光檢測器,以及接收第二雷射光源之第二光檢測器;該光學鏡片組為設置於檢測設備之非偏極化分光鏡與第二光檢測器之間,並供第二雷射光源穿透;以及該第一光檢測器及該第二光檢測器所分別接收到的光源強度訊號為利用一演算法來進行減少訊號雜訊之運算,以使該第一光檢測器及該第二光檢測器的光源強度訊號計算出一個減少雜訊影響之光源強度訊號,並利用該減少雜訊影響之光源強度訊號來計算出該光學鏡片組之一波片之光軸定位角度或線偏光片的偏光角度,而該演算法為利用該第一光檢測器所接收到該第一雷射光源的光源強度訊號來除以該第二光檢測器所接收到該第二雷射光源的光源強度訊號。
  2. 如申請專利範圍第1項所述之光學對位檢測裝置,其中該檢測設備之光源發射器為雷射光之光源發射器,而該光源發射器發射波長為532nm之綠光雷射光源,且功率為20mw。
  3. 如申請專利範圍第1項所述之光學對位檢測裝置,其中該光學鏡片組為包括有相鄰於非偏極化分光鏡處之圓偏光片,以及相鄰於第二光檢測器處之線偏光片,而圓偏光片及線偏光片之間設有該波片。
  4. 如申請專利範圍第3項所述之光學對位檢測裝置,其中該光學鏡片組之線偏光片為含奈米級矽酸鈉之玻璃片,而該光學鏡片組之波片為供產生相位延遲1/4波長之波片,且該波片的材料為結晶石英。
  5. 一種光學對位檢測裝置之檢測方法,係包括下列之步驟:(A)係先透過檢測設備之光源發射器來投射雷射光源至非偏極化分光鏡;(B)該雷射光源為穿透過非偏極化分光鏡,並利用非偏極化分光鏡來將雷射光源分光成第一雷射光源及第二雷射光源,且該第一雷射光源為投射至第一光檢測器,而該第二雷射光源為先穿透過光學鏡片組,再投射至第二光檢測器;(C)該第一光檢測器及第二光檢測器所分別接收到的光源強度訊號為利用演算法來進行減少訊號雜訊之運算,以使第一光檢測器及第二光檢測器的光源強度訊號計算出一個減少雜訊影響之光源強度訊號,並利用該減少雜訊影響之光源強度訊號來計算出波片之光軸定位角度或線偏光片的偏光角度,而該演算法為利用第一光檢測器所接收到第一雷射光源的光源強度訊號來除以第二光檢測器所接收到第二雷射光源的光源強度訊號。
  6. 如申請專利範圍第5項所述光學對位檢測裝置之檢測方法,其中該步驟(A)檢測設備之光源發射器為雷射光之光源發射器,而該光源發射器發射波長為532nm之綠光雷射光源,且功率為20mw。
  7. 如申請專利範圍第5項所述光學對位檢測裝置之檢測方法,其中該步驟(B)之光學鏡片組為包括有圓偏光片及線偏光片,且該圓偏光片 及線偏光片之間設有波片,當非偏極化分光鏡分光出第二雷射光源依序穿透過圓偏光片、波片及線偏光片後,便會投射到第二光檢測器,以使第二光檢測器接收到第二雷射光源的光源強度訊號,便於步驟(C)中計算出一個減少雜訊影響之光源強度訊號。
  8. 如申請專利範圍第7項所述光學對位檢測裝置之檢測方法,其中該光學鏡片組之線偏光片為含奈米級矽酸鈉之玻璃片,而該光學鏡片組之波片為供產生相位延遲1/4波長之波片,且該波片的材料為結晶石英。
  9. 如申請專利範圍第5項所述光學對位檢測裝置之檢測方法,其中該檢測設備之第一光檢測器及第二光檢測器為電性連接於電子裝置,當第一光檢測器及第二光檢測器於步驟(C)接收到第一雷射光源及第二雷射光源的光源強度訊號時,即傳輸到電子裝置,以透過電子裝置來進行運算,藉此得到一個減少雜訊影響之光源強度訊號。
TW108136709A 2019-10-09 2019-10-09 光學對位檢測裝置及其檢測方法 TWI819117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108136709A TWI819117B (zh) 2019-10-09 2019-10-09 光學對位檢測裝置及其檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108136709A TWI819117B (zh) 2019-10-09 2019-10-09 光學對位檢測裝置及其檢測方法

Publications (2)

Publication Number Publication Date
TW202115461A TW202115461A (zh) 2021-04-16
TWI819117B true TWI819117B (zh) 2023-10-21

Family

ID=76604336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136709A TWI819117B (zh) 2019-10-09 2019-10-09 光學對位檢測裝置及其檢測方法

Country Status (1)

Country Link
TW (1) TWI819117B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297898A1 (en) * 2007-05-31 2008-12-04 Alexander Samuel Martin Controlling light transmission in a vehicle with polarization and ellipticity adjustment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297898A1 (en) * 2007-05-31 2008-12-04 Alexander Samuel Martin Controlling light transmission in a vehicle with polarization and ellipticity adjustment

Also Published As

Publication number Publication date
TW202115461A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US10598945B1 (en) Multifocal system using pixel level polarization controllers and folded optics
US10545348B1 (en) Transmission improvement for flat lens based AR/VR glasses
US10690990B2 (en) Display device and display method
TWI410675B (zh) 3d影像顯示器、調準系統及其方法
WO2020215199A1 (zh) 一种表面缺陷检测系统及方法
CN105467605B (zh) 立体图像显示器
CN112902835A (zh) 光学对位检测装置及其检测方法
TWI819117B (zh) 光學對位檢測裝置及其檢測方法
US12019242B2 (en) Full-field metrology tool for waveguide combiners and meta-surfaces
JP6689426B1 (ja) 偏光位置合わせ検出装置及び検出方法
JP6570693B1 (ja) 光学位置合わせ検出方法
CN110389019A (zh) 光学对位检测装置及其检测方法
US20230209032A1 (en) Detection, analysis and correction of disparities in a display system utilizing disparity sensing port
TWI712824B (zh) 偏光對位檢測裝置及檢測方法
KR102241104B1 (ko) 편광 정렬 검사 장치 및 그 검사 방법
JP6689425B1 (ja) 偏光位置合わせ検出装置及び検出方法
CN111781169B (zh) 偏光对位检测装置及检测方法
JP2022537073A (ja) パネル位相差測定
KR20200134372A (ko) 편광 정렬 검사 장치 및 그 방법
TWI670541B (zh) 偏光對位檢測裝置及檢測方法
TWI662296B (zh) 光學對位檢測裝置及其檢測方法
JPH0862565A (ja) 液晶プロジェクター装置
Stefani et al. Low-loss filter for stereoscopic projection with LCD projectors
KR102003515B1 (ko) 무색의 패터닝 반파장 위상차판을 갖는 선편광 입체 표시 장치
US20150177529A1 (en) Three-dimensional eyeglasses