TWI818992B - Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method - Google Patents

Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method Download PDF

Info

Publication number
TWI818992B
TWI818992B TW108117948A TW108117948A TWI818992B TW I818992 B TWI818992 B TW I818992B TW 108117948 A TW108117948 A TW 108117948A TW 108117948 A TW108117948 A TW 108117948A TW I818992 B TWI818992 B TW I818992B
Authority
TW
Taiwan
Prior art keywords
phase shift
substrate
mask blank
shift layer
shift mask
Prior art date
Application number
TW108117948A
Other languages
Chinese (zh)
Other versions
TW202011108A (en
Inventor
小澤隆仁
寳田庸平
林賢利
八神高史
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW202011108A publication Critical patent/TW202011108A/en
Application granted granted Critical
Publication of TWI818992B publication Critical patent/TWI818992B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本發明之相位移光罩坯料係具有基板及形成於上述基板上之相位移層者,上述相位移層含有鉻及氧,上述相位移層之表面之算術平均高度之值為0.38nm以上。 The phase shift mask blank of the present invention has a substrate and a phase shift layer formed on the substrate. The phase shift layer contains chromium and oxygen. The arithmetic mean height of the surface of the phase shift layer is 0.38 nm or more.

Description

相位移光罩坯料、相位移光罩坯料之製造方法、相位移光罩、相位移光罩之製造方法、曝光方法、以及元件製造方法 Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method

本發明係關於一種相位移光罩坯料、相位移光罩、曝光方法、以及元件製造方法。 The invention relates to a phase shift mask blank, a phase shift mask, an exposure method, and an element manufacturing method.

已知有透明基板上形成有由氮氧化鉻構成之相位移層之相位移光罩(專利文獻1)。一直以來期望相位移光罩之品質之提昇。 There is known a phase shift mask in which a phase shift layer made of chromium oxynitride is formed on a transparent substrate (Patent Document 1). There has always been a desire to improve the quality of phase shift masks.

[先前技術文獻] [Prior technical literature]

[專利文獻] [Patent Document]

專利文獻1:日本專利特開2011-013283號公報 Patent Document 1: Japanese Patent Application Publication No. 2011-013283

根據本發明之第1態樣,相位移光罩坯料係具有基板及形成於上述基板上之相位移層者,上述相位移層含有鉻及氧,上述相位移層之表面之算術平均高度之值為0.38nm以上。 According to the first aspect of the present invention, the phase shift mask blank has a substrate and a phase shift layer formed on the substrate, the phase shift layer contains chromium and oxygen, and the value of the arithmetic mean height of the surface of the phase shift layer is 0.38nm or above.

根據本發明之第2態樣,相位移光罩坯料係具有基板及形成於上述基板上之相位移層者,上述相位移層含有鉻及氧,上述相位移層之表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04nm以上。 According to the second aspect of the present invention, the phase shift mask blank has a substrate and a phase shift layer formed on the substrate, the phase shift layer contains chromium and oxygen, and the value of the arithmetic mean height of the surface of the phase shift layer It is greater than the arithmetic mean height value of the surface of the above-mentioned substrate by more than 0.04nm.

根據本發明之第3態樣,相位移光罩係將第1或第2態樣之相位移光罩坯料之上述相位移層形成為既定之圖案狀者。 According to a third aspect of the present invention, the phase shift mask is formed by forming the phase shift layer of the phase shift mask blank of the first or second aspect into a predetermined pattern.

根據本發明之第4態樣,曝光方法係經由第3態樣之相位移光罩,對塗布有光阻劑之感光性基板進行曝光。 According to a fourth aspect of the present invention, the exposure method is to expose the photosensitive substrate coated with the photoresist through the phase shift mask of the third aspect.

根據本發明之第5態樣,元件之製造方法具有:曝光步驟,其係藉由第4態樣之曝光方法對上述感光性基板進行曝光;及顯影步驟,其係使上述經曝光之感光性基板顯影。 According to a fifth aspect of the present invention, a method for manufacturing an element includes: an exposure step of exposing the above-mentioned photosensitive substrate by the exposure method of the fourth aspect; and a development step of making the exposed photosensitive substrate Substrate development.

10:相位移光罩坯料 10: Phase shift mask blank

11:基板 11:Substrate

12:相位移層 12: Phase shift layer

12a:凹凸部 12a: Concave and convex parts

100:製造裝置 100: Manufacturing device

圖1係表示實施形態之相位移光罩坯料之構成例之圖。 FIG. 1 is a diagram showing an example of the structure of a phase shift mask blank according to the embodiment.

圖2係表示用以製造相位移光罩坯料所使用之製造裝置之一例之示意圖。 FIG. 2 is a schematic diagram showing an example of a manufacturing device used for manufacturing a phase shift mask blank.

圖3係表示針對實施例及比較例之相位移光罩坯料之測定結果之表。 FIG. 3 is a table showing measurement results of phase shift mask blanks of Examples and Comparative Examples.

圖4係說明使用實施例之相位移光罩坯料形成之光罩圖案之剖面之示意圖。 4 is a schematic diagram illustrating a cross-section of a mask pattern formed using a phase-shifted mask blank according to an embodiment.

圖5係表示經由相位移光罩對感光性基板進行曝光之情況之概念圖。 FIG. 5 is a conceptual diagram showing a state of exposing a photosensitive substrate through a phase shift mask.

圖6係表示比較例之相位移光罩坯料之構成例之圖。 FIG. 6 is a diagram showing an example of the structure of a phase shift mask blank according to a comparative example.

圖7係說明使用比較例之相位移光罩坯料形成之光罩圖案之剖面之示意圖。 7 is a schematic diagram illustrating a cross-section of a mask pattern formed using a phase-shifted mask blank of a comparative example.

(實施形態) (implementation form)

圖1係表示本實施形態之相位移光罩坯料10之構成例之圖。相位移光罩坯料10具備基板11與相位移層12。於本實施形態中,藉由濺鍍於基板11之表面形成相位移層12。此時,根據濺鍍之條件設定相位移層12中之含氧量(氧原子數濃度),藉此,如圖1所示,於相位移層12之表面形成既定位準(既定之算術平均高度) 之細微之凹凸(凹凸部12a)。 FIG. 1 is a diagram showing a structural example of a phase shift mask blank 10 according to this embodiment. The phase shift mask blank 10 includes a substrate 11 and a phase shift layer 12 . In this embodiment, the phase shift layer 12 is formed on the surface of the substrate 11 by sputtering. At this time, the oxygen content (oxygen atomic number concentration) in the phase shift layer 12 is set according to the sputtering conditions, thereby forming a predetermined alignment (predetermined arithmetic mean) on the surface of the phase shift layer 12 as shown in FIG. 1 high) fine unevenness (concave-convex portion 12a).

以下,針對本實施形態之相位移光罩坯料10進一步詳細地說明。 Hereinafter, the phase shift mask blank 10 of this embodiment will be described in further detail.

作為基板11之材料,例如使用合成石英玻璃。再者,基板11之材料並不限定於合成石英玻璃。相位移光罩係於製造FPD(Flat Panel Display,平板顯示器)等顯示用元件或LSI(Large Scale Integration,大型積體電路)等半導體元件時使用。基板11只要是於使用相位移光罩曝光晶圓等曝光對象基材之曝光步驟中,使曝光之光充分地透過者即可。 As a material of the substrate 11, for example, synthetic quartz glass is used. Furthermore, the material of the substrate 11 is not limited to synthetic quartz glass. Phase shift masks are used when manufacturing display components such as FPD (Flat Panel Display) or semiconductor components such as LSI (Large Scale Integration). The substrate 11 may be one that can sufficiently transmit exposure light during the exposure step of exposing a wafer or other exposure target base material using a phase shift mask.

相位移層12係利用包含鉻(Cr)及氧(O)之材料而以膜之形式形成於基板11之表面。本實施形態之相位移層12由以CrOCN為材料之膜構成。於相位移層12形成所需之圖案而成為相位移光罩。該圖案作為於曝光步驟中使照射之曝光之光之相位局部地變化之移相器發揮作用。 The phase shift layer 12 is formed in the form of a film on the surface of the substrate 11 using a material containing chromium (Cr) and oxygen (O). The phase shift layer 12 of this embodiment is composed of a film made of CrOCN. A required pattern is formed on the phase shift layer 12 to form a phase shift mask. This pattern functions as a phase shifter that locally changes the phase of irradiated exposure light in the exposure step.

經由具有形成為所需之厚度與所需圖案之相位移層12之相位移光罩,藉由曝光之光曝光元件用基板時,透過存在相位移層12之部分之光與透過不存在相位移層12之部分之光產生約180°之相位差(相位移量)。藉此,控制使照射至除曝光圖案區域以外之曝光之光之強度較低,提昇曝光圖案之對比度。其結果為,能夠降低曝光步驟中之不良率。 When the component substrate is exposed with exposure light through a phase shift mask having the phase shift layer 12 formed with a desired thickness and a desired pattern, the light transmitted through the portion where the phase shift layer 12 is present and the light transmitted through the portion without phase shift Part of the light in layer 12 produces a phase difference (phase shift amount) of approximately 180°. Thereby, the intensity of the exposure light irradiated to areas other than the exposure pattern area is controlled to be lower, thereby improving the contrast of the exposure pattern. As a result, the defective rate in the exposure step can be reduced.

上述中,記載以曝光之光之相位產生約180°之相位移量之方式設定相位移層12之厚度(膜厚)。然而,只要為曝光步驟中獲得所需之對比度之範圍內,則曝光之光之相位移量不限定於180°。再者,相位移層12可由單一膜構成,亦可將複數層膜積層而構成。 In the above description, it is described that the thickness (film thickness) of the phase shift layer 12 is set so that the phase of the exposure light generates a phase shift amount of approximately 180°. However, the phase shift amount of the exposure light is not limited to 180° as long as it is within the range required to obtain the required contrast in the exposure step. Furthermore, the phase shift layer 12 may be composed of a single film, or may be formed by laminating a plurality of films.

於相位移光罩坯料10之相位移層12形成所需圖案而成之相位移光罩例如係根據以下說明之順序製成。 The phase shift mask in which the required pattern is formed on the phase shift layer 12 of the phase shift mask blank 10 is produced, for example, according to the procedure described below.

於相位移層12之表面塗布光阻劑形成光阻層。向形成之光阻層照射雷射光、電子束或離子束等能量線描繪圖案。藉由使描繪有圖案之光阻層顯 影,去除描繪部分或非描繪部分,而於光阻層形成圖案。將形成有圖案之光阻層作為光罩,對相位移層12進行濕式蝕刻。藉由該濕式蝕刻,於相位移層12中形成(轉印)與光阻層中形成之圖案對應之形狀。去除光阻層完成相位移光罩。 A photoresist is coated on the surface of the phase shift layer 12 to form a photoresist layer. The formed photoresist layer is irradiated with energy lines such as laser light, electron beam or ion beam to draw a pattern. By making the patterned photoresist layer appear Shadow, remove the painted part or the non-painted part, and form a pattern on the photoresist layer. Using the patterned photoresist layer as a photomask, wet etching is performed on the phase shift layer 12 . Through this wet etching, a shape corresponding to the pattern formed in the photoresist layer is formed (transferred) in the phase shift layer 12 . Remove the photoresist layer to complete the phase shift mask.

本發明者等人調查相位移層12表面之算術平均高度與相位移層12之氧原子數濃度之相關關係,進而,針對使相位移層12上形成之光阻層進行圖案化時之相位移層12與光阻層之界面之情況進行調查。其結果為,獲得以下之見解。再者,本說明書中之算術平均高度為ISO25178所規定者。 The present inventors investigated the correlation between the arithmetic mean height of the surface of the phase shift layer 12 and the oxygen atom number concentration of the phase shift layer 12 , and further investigated the phase shift when patterning the photoresist layer formed on the phase shift layer 12 The interface between layer 12 and the photoresist layer was investigated. As a result, the following insights were obtained. Furthermore, the arithmetic mean height in this manual is that specified by ISO25178.

(1)本發明者等人發現,於相位移層12之表面之算術平均高度大於既定值之情形時,例如於為0.38nm以上之情形時,於使用此種相位移光罩坯料形成相位移層12之圖案之步驟中,相位移層12與光阻層之界面不會產生蝕刻液之滲透。 (1) The inventors found that when the arithmetic mean height of the surface of the phase shift layer 12 is greater than a predetermined value, for example, when it is 0.38 nm or more, phase shift is formed using this phase shift mask blank. During the patterning step of layer 12, the interface between the phase shift layer 12 and the photoresist layer will not allow penetration of the etching liquid.

可推定,於相位移層12之表面之算術平均高度大於既定值之情形時,能夠抑制相位移層12與光阻層之界面之蝕刻液之滲透,其原因在於,相位移層12之表面形成適度之粗糙度(凹凸),源於該粗糙度,光阻層與相位移層12之密接性變高為抑制蝕刻液之滲透之程度。 It can be inferred that when the arithmetic mean height of the surface of the phase shift layer 12 is greater than a predetermined value, the penetration of the etching liquid at the interface between the phase shift layer 12 and the photoresist layer can be suppressed. The reason is that the surface of the phase shift layer 12 is formed Due to the moderate roughness (concave-convex), the adhesion between the photoresist layer and the phase shift layer 12 becomes high enough to inhibit the penetration of the etching liquid.

(2)發現於相位移層12之表面之算術平均高度與基板11之表面之算術平均高度之差大於既定值之情形時,例如大0.04nm以上之情形,於使用此種相位移光罩坯料形成相位移層12之圖案之步驟中,相位移層12與光阻層之界面不產生蝕刻液之滲透。 (2) When it is found that the difference between the arithmetic mean height of the surface of the phase shift layer 12 and the arithmetic mean height of the surface of the substrate 11 is greater than a predetermined value, for example, it is greater than 0.04nm or more, when using this phase shift mask blank During the step of forming the pattern of the phase shift layer 12, the interface between the phase shift layer 12 and the photoresist layer does not allow penetration of the etching liquid.

(3)發現能夠按以下之方式於相位移層12之表面產生既定之算術平均高度之粗糙度(凹凸)。已知於藉由濺鍍形成相位移層12時,調整導入至濺鍍腔室內之氧之流量,相位移層12內包含既定量以上之氧,以此形成具有既定之算術平均高度之表面之相位移層12。即,本發明者等人發現,相位移層12之表面之凹凸圖案之算術平均高度與相位移層12之表面附近之氧原子數濃度或濃度分佈之間相關聯。 (3) It was found that roughness (roughness) of a predetermined arithmetic mean height can be generated on the surface of the phase shift layer 12 in the following manner. It is known that when the phase shift layer 12 is formed by sputtering, the flow rate of oxygen introduced into the sputtering chamber is adjusted, and the phase shift layer 12 contains more than a predetermined amount of oxygen, thereby forming a surface with a predetermined arithmetic mean height. Phase shift layer 12. That is, the present inventors discovered that there is a correlation between the arithmetic mean height of the uneven pattern on the surface of the phase shift layer 12 and the oxygen atom number concentration or concentration distribution near the surface of the phase shift layer 12 .

(4)本發明者等人發現,於相位移光罩坯料10中形成之相位移層12之表面中之氧原子數濃度大於既定值之情形時,不產生朝相位移層12與光阻層之界面之蝕刻液之滲透。 (4) The inventors found that when the concentration of the number of oxygen atoms in the surface of the phase shift layer 12 formed in the phase shift mask blank 10 is greater than a predetermined value, the phase shift layer 12 and the photoresist layer do not move toward each other. The penetration of etching liquid at the interface.

如上述(3)之見解,相位移層12之表面中之氧原子數濃度大於既定值之相位移層12,其表面之算術平均高度為上述既定值(例如0.38nm)以上,因此,具有適度之粗糙度(凹凸)。認為於此種相位移層12之表面形成光阻層之情形時,相位移層12與光阻層之密接性高,因此,濕式蝕刻時不產生朝相位移層12與光阻層之界面之蝕刻液之滲透。 As discussed in (3) above, if the phase shift layer 12 has a concentration of oxygen atoms on the surface that is greater than a predetermined value, the arithmetic mean height of the surface of the phase shift layer 12 is above the predetermined value (for example, 0.38 nm). Therefore, it has an appropriate The roughness (concave-convex). It is considered that when the photoresist layer is formed on the surface of the phase shift layer 12, the adhesion between the phase shift layer 12 and the photoresist layer is high. Therefore, the interface between the phase shift layer 12 and the photoresist layer does not occur during wet etching. Penetration of the etching liquid.

(5)已知於相位移光罩坯料10形成之相位移層12之內部中之氧原子數濃度自相位移層12之表面於深度方向上減少之情形時,不產生朝相位移層12與光阻層之界面之蝕刻液之滲透。列舉相位移層12之內部中之氧原子數濃度自相位移層12之表面於深度方向上減少之一例,例如,相位移層12之距表面深1.25nm之位置上之氧原子數濃度相對於相位移層12之距表面深85nm之位置上之氧原子數濃度的比為1.59以上之情形。 (5) It is known that when the number concentration of oxygen atoms in the interior of the phase shift layer 12 formed by the phase shift mask blank 10 decreases in the depth direction from the surface of the phase shift layer 12, the phase shift layer 12 and Penetration of etching liquid at the interface of the photoresist layer. An example of the oxygen atomic number concentration in the interior of the phase shift layer 12 decreasing in the depth direction from the surface of the phase shift layer 12 is given. For example, the oxygen atomic number concentration at a position 1.25 nm deep from the surface of the phase shift layer 12 is relative to The ratio of the oxygen atomic number concentration at the position 85 nm deep from the surface of the phase shift layer 12 is 1.59 or more.

以下,針對本實施形態之相位移光罩坯料10之製造方法之一例進行說明。 Hereinafter, an example of a method of manufacturing the phase shift mask blank 10 of this embodiment will be described.

(相位移光罩坯料製造方法) (Phase shift mask blank manufacturing method)

圖2係表示於本實施形態之相位移光罩坯料10之製造時,用以形成相位移層12所使用之製造裝置之一例之示意圖。圖2(a)係自上面觀察製造裝置100之內部之情形之示意圖,圖2(b)係自側面觀察製造裝置100之內部之情形之示意圖。圖2所示之製造裝置100係連續式(in-line)之濺鍍裝置,其具備:用以搬入用以形成相位移層12之基板11之腔室20、濺鍍腔室21及用以搬出形成相位移層12之基板11之腔室22。濺鍍腔室21中配置用以形成相位移層12之靶41。 FIG. 2 is a schematic diagram showing an example of a manufacturing device used to form the phase shift layer 12 when manufacturing the phase shift mask blank 10 of this embodiment. FIG. 2( a ) is a schematic view of the inside of the manufacturing device 100 when viewed from above, and FIG. 2( b ) is a schematic view of the inside of the manufacturing device 100 when viewed from the side. The manufacturing apparatus 100 shown in FIG. 2 is an in-line sputtering apparatus, which includes a chamber 20 for loading the substrate 11 for forming the phase shift layer 12, a sputtering chamber 21, and a sputtering chamber 21. The substrate 11 on which the phase shift layer 12 is formed is moved out of the chamber 22 . The target 41 for forming the phase shift layer 12 is disposed in the sputtering chamber 21 .

基板托盤30係能夠載置用以形成相位移層12之基板11之框狀之托盤,支承並載置基板11之外緣部分。基板11表面經研磨及洗淨,以形成相位移 層12之表面成為下側(朝下)之方式被基板托盤30載置。濺鍍裝置100中,如下述,維持使基板11之表面與靶41對向之狀態,一面使載置基板11之基板托盤30於用圖2之虛線箭頭25表示之方向上移動,一面於基板11之表面形成相位移層12。 The substrate tray 30 is a frame-shaped tray capable of placing the substrate 11 for forming the phase shift layer 12, and supports and places the outer edge portion of the substrate 11. The surface of the substrate 11 is ground and cleaned to form a phase shift The layer 12 is placed on the substrate tray 30 with the surface facing downward. In the sputtering apparatus 100, as described below, the substrate tray 30 on which the substrate 11 is placed is moved in the direction indicated by the dotted arrow 25 in FIG. 2 while maintaining the surface of the substrate 11 facing the target 41. A phase shift layer 12 is formed on the surface of 11 .

搬入用之腔室20、濺鍍腔室21以及搬出用之腔室22之各者之間設置未圖示之閘閥,各腔室藉由閘閥之開閉連通、阻斷。搬入用之腔室20、濺鍍腔室21以及搬出用之腔室22分別與未圖示之排氣裝置連接,排出各腔室內部之氣。 A gate valve (not shown) is provided between each of the loading chamber 20, the sputtering chamber 21, and the loading chamber 22, and each chamber is connected and blocked by the opening and closing of the gate valve. The carry-in chamber 20, the sputtering chamber 21, and the carry-out chamber 22 are respectively connected to an exhaust device (not shown) to exhaust the air inside each chamber.

又,各閘閥與靶41之間為使成膜前後之基板托盤30待機而設置充分之空間或其他之待機室(未圖示)。 In addition, a sufficient space or other waiting room (not shown) is provided between each gate valve and the target 41 to allow the substrate tray 30 to wait before and after film formation.

如上述,濺鍍腔室21之內部中設置有靶41。靶41係用以形成相位移層12之濺鍍靶,藉由包含鉻(Cr)之材料形成。具體而言,靶41之材料選自鉻、鉻之氧化物、鉻之氮化物、鉻之碳化物等中之至少1種。於本實施形態中,靶41選擇鉻。自未圖示之DC電源向濺鍍腔室21之靶41供給電力。 As described above, the target 41 is provided inside the sputtering chamber 21 . The target 41 is a sputtering target used to form the phase shift layer 12 and is formed of a material containing chromium (Cr). Specifically, the material of the target 41 is selected from at least one kind selected from the group consisting of chromium, chromium oxides, chromium nitrides, chromium carbides, and the like. In this embodiment, chromium is selected as the target 41. Power is supplied to the target 41 of the sputtering chamber 21 from a DC power supply (not shown).

濺鍍腔室21中設置將濺鍍用之氣體導入至濺鍍腔室21內之第1氣體流入口31以及第2氣體流入口32。第1氣體流入口31配置於靠近搬入用之腔室20之側,即,配置於相對於用虛線箭頭25表示之基板托盤30之行進方向之上游側。另一方面,第2氣體流入口32配置於靠近搬出用之腔室22之側,即,配置於相對於基板托盤30之行進方向之下游側。 The sputtering chamber 21 is provided with a first gas inlet 31 and a second gas inlet 32 for introducing gas for sputtering into the sputtering chamber 21 . The first gas inlet 31 is disposed on the side close to the loading chamber 20 , that is, on the upstream side with respect to the traveling direction of the substrate tray 30 indicated by the dotted arrow 25 . On the other hand, the second gas inlet 32 is disposed on the side close to the unloading chamber 22 , that is, on the downstream side with respect to the traveling direction of the substrate tray 30 .

於本實施形態中,作為相位移層12形成CrOCN膜。因此,濺鍍腔室21中,經由第1氣體流入口31,導入氮氣、二氧化碳等含碳之氣體、以及惰性氣體(於本實施形態中使用氬氣)之混合氣體。又,經由第2氣體流入口32,導入氧氣。 In this embodiment, a CrOCN film is formed as the phase shift layer 12 . Therefore, a mixed gas of a carbon-containing gas such as nitrogen and carbon dioxide, and an inert gas (argon gas is used in this embodiment) is introduced into the sputtering chamber 21 through the first gas inlet 31 . Furthermore, oxygen is introduced through the second gas inlet 32 .

基板11自搬入用之腔室20搬送至濺鍍腔室21,開始濺鍍。此時,由於自第1氣體流入口31導入氮氣、含碳之氣體、以及惰性氣體,故靠近濺鍍腔室21內之第1氣體流入口31之側,即,相對於基板11開始濺鍍之側中,該等氣體 之濃度相對較高。另一方面,由於自第2氣體流入口32導入氧氣,故靠近濺鍍腔室21內之第2氣體流入口32之側,即,相對於基板11之結束濺鍍之側中,氧之濃度相對較高。因此,於形成之CrOCN膜中,隨著基板11向右移動濺鍍持續,即,隨著膜厚變厚,氧原子數濃度變高。其結果為,靠近相位移層12之表面之側(最後堆積之側)中,相對較多地含有氧,另一方面,於靠近基板之側(初期堆積之側)中,含有之氧變少。以此方式形成之相位移層12之表面中形成既定之算術平均高度之粗糙度(凹凸)。相位移層12之表面之粗糙度(算術平均高度)能夠藉由調整自第1氣體流入口31及第2氣體流入口32導入之各氣體之流量而控制。 The substrate 11 is transferred from the loading chamber 20 to the sputtering chamber 21, and sputtering is started. At this time, since nitrogen gas, carbon-containing gas, and inert gas are introduced from the first gas inlet 31 , sputtering starts on the side close to the first gas inlet 31 in the sputtering chamber 21 , that is, with respect to the substrate 11 In the side, these gases The concentration is relatively high. On the other hand, since oxygen is introduced from the second gas inlet 32, the oxygen concentration on the side close to the second gas inlet 32 in the sputtering chamber 21, that is, on the side with respect to the substrate 11 where sputtering is completed, is relatively high. Therefore, in the formed CrOCN film, sputtering continues as the substrate 11 moves to the right, that is, as the film thickness becomes thicker, the oxygen atomic number concentration becomes higher. As a result, the side closer to the surface of the phase shift layer 12 (the side where the phase shift layer 12 is finally deposited) contains relatively more oxygen, while the side closer to the substrate (the side where the initial deposition occurs) contains less oxygen. . The surface of the phase shift layer 12 formed in this manner has a roughness (asperity) of a predetermined arithmetic mean height. The surface roughness (arithmetic mean height) of the phase shift layer 12 can be controlled by adjusting the flow rate of each gas introduced from the first gas inlet 31 and the second gas inlet 32 .

形成相位移層12之基板11被搬送至搬出用之腔室22。以此方式,於基板11之表面形成相位移層12,製作相位移光罩坯料10。 The substrate 11 on which the phase shift layer 12 is formed is transported to the unloading chamber 22 . In this way, the phase shift layer 12 is formed on the surface of the substrate 11 and the phase shift mask blank 10 is produced.

再者,靶41之材料與分別自第1氣體流入口31及第2氣體流入口32導入之氣體之種類可根據構成相位移層12之材料或組成適當選擇。又,濺鍍之方式可使用DC濺鍍、RF濺鍍等任一方式。 Furthermore, the material of the target 41 and the types of gases introduced from the first gas inlet 31 and the second gas inlet 32 can be appropriately selected according to the materials or compositions constituting the phase shift layer 12 . In addition, as the sputtering method, any method such as DC sputtering and RF sputtering can be used.

如上所述,本實施形態中,於藉由濺鍍形成相位移層12時,調整導入至濺鍍腔室21內之各氣體之流量(尤其是氧之流量)。藉此,調整相位移層12所含有之氧原子數,調整相位移層12表面之粗糙度(算術平均高度)。藉此,可充分地提高光阻層與相位移層12之密接性,能夠防止朝相位移層12與光阻層之界面之蝕刻液之滲透。又,能夠藉由使用本實施形態之相位移光罩坯料10製造相位移光罩,而精度較好地形成圖案。因此,能夠提昇相位移光罩之製造之良率。 As described above, in this embodiment, when the phase shift layer 12 is formed by sputtering, the flow rate of each gas introduced into the sputtering chamber 21 (especially the flow rate of oxygen) is adjusted. Thereby, the number of oxygen atoms contained in the phase shift layer 12 is adjusted, and the roughness (arithmetic mean height) of the surface of the phase shift layer 12 is adjusted. Thereby, the adhesion between the photoresist layer and the phase shift layer 12 can be fully improved, and the penetration of the etching liquid toward the interface between the phase shift layer 12 and the photoresist layer can be prevented. Furthermore, by manufacturing a phase shift mask using the phase shift mask blank 10 of this embodiment, a pattern can be formed with high accuracy. Therefore, the manufacturing yield of the phase shift mask can be improved.

若使用根據本實施形態之相位移光罩坯料10製造之相位移光罩對晶圓等曝光對象基材進行圖案曝光,則能夠降低曝光步驟中之電路圖案不良,能夠提昇積體度高之元件製造步驟中之良率。 If a phase shift mask manufactured according to the phase shift mask blank 10 of this embodiment is used to perform pattern exposure on an exposure target substrate such as a wafer, circuit pattern defects in the exposure step can be reduced, and components with high integration can be improved. Yield in manufacturing steps.

根據上述之實施形態,獲得以下之作用效果。 According to the above-mentioned embodiment, the following effects are obtained.

(1)相位移光罩坯料10具有基板11及形成於基板上之相位移層12,相位移 層12含有鉻及氧,相位移層12之表面之算術平均高度之值為0.38nm以上。於圖案曝光後對此種相位移光罩坯料10所塗布之光阻劑進行濕式蝕刻時,不產生蝕刻液滲透至相位移層12與光阻層之界面之現象。 (1) The phase shift mask blank 10 has a substrate 11 and a phase shift layer 12 formed on the substrate. The layer 12 contains chromium and oxygen, and the arithmetic mean height of the surface of the phase shift layer 12 is 0.38 nm or more. When the photoresist coated on the phase shift mask blank 10 is wet-etched after pattern exposure, the etching liquid will not penetrate into the interface between the phase shift layer 12 and the photoresist layer.

(2)相位移層12之內部(既定之深度)中之氧原子數濃度大於既定值。例如,相位移層12之距表面1.25nm之深度(下述)處之氧原子數濃度為42.6%以上。於圖案曝光後對於此種相位移光罩坯料10塗布之光阻劑進行濕式蝕刻時,不產生蝕刻液滲透至相位移層12與光阻層之界面之現象。 (2) The concentration of oxygen atoms in the interior of the phase shift layer 12 (predetermined depth) is greater than a predetermined value. For example, the oxygen atomic number concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 (described below) is 42.6% or more. When the photoresist coated on the phase shift mask blank 10 is wet-etched after pattern exposure, the etching liquid will not penetrate into the interface between the phase shift layer 12 and the photoresist layer.

(3)於使用本實施形態之相位移光罩坯料10製造相位移光罩之步驟中,圖案之邊緣部之相位移層12中不產生蝕刻液之滲透現象。即,不會因此種蝕刻液之滲透而於相位移層12產生傾斜面。因此,能夠提昇使用本實施形態之相位移光罩坯料10製造之相位移光罩之圖案精度,故能夠提昇相位移光罩之製造步驟之良率。習知存在因蝕刻液之滲透而於圖案之邊緣形成傾斜面,係良率降低之原因。藉由使用根據本實施形態之相位移光罩坯料10製造之相位移光罩進行曝光步驟,而能夠以高良率製造積體度高之元件。 (3) In the step of manufacturing a phase shift mask using the phase shift mask blank 10 of this embodiment, penetration of the etching liquid does not occur in the phase shift layer 12 at the edge of the pattern. That is, the penetration of the etching liquid does not cause an inclined surface in the phase shift layer 12 . Therefore, the pattern accuracy of the phase shift mask manufactured using the phase shift mask blank 10 of this embodiment can be improved, and therefore the yield of the manufacturing step of the phase shift mask can be improved. It is known that the penetration of etching liquid causes the formation of inclined surfaces at the edge of the pattern, which is the reason for the decrease in yield. By performing the exposure step using the phase shift mask manufactured according to the phase shift mask blank 10 of this embodiment, a high-density device can be manufactured with high yield.

(實施例1) (Example 1)

準備由合成石英玻璃構成之基板11。使用圖2所示之連續式之濺鍍裝置100,於該玻璃基板11之表面形成相位移層12。以下針對相位移層12之製造方法,進一步詳細地說明。 A substrate 11 made of synthetic quartz glass is prepared. The continuous sputtering device 100 shown in FIG. 2 is used to form the phase shift layer 12 on the surface of the glass substrate 11 . The manufacturing method of the phase shift layer 12 will be described in further detail below.

對濺鍍腔室21,自第1氣體流入口31導入氬氣(Ar)、二氧化碳(CO2)、氮氣(N2),自第2氣體流入口32導入氧(O2)。Ar、CO2、N2、O2之各氣體之流量分別設為240sccm、42sccm、135sccm、1.5sccm,以濺鍍腔室21內之壓力維持0.3Pa之方式控制各氣體之流量與排氣量。將濺鍍腔室21之DC電源之功率設定為9kW(控制功率固定),一面使基板11於虛線箭頭25之方向上移動,一面進行濺鍍,於基板11上以170nm之厚度形成由CrOCN構成之相位移層12, 製作相位移光罩坯料10。 Argon (Ar), carbon dioxide (CO 2 ), and nitrogen (N 2 ) are introduced into the sputtering chamber 21 from the first gas inlet 31 , and oxygen (O 2 ) is introduced from the second gas inlet 32 . The flow rates of each gas of Ar, CO 2 , N 2 , and O 2 are set to 240 sccm, 42 sccm, 135 sccm, and 1.5 sccm respectively. The flow rate and exhaust volume of each gas are controlled to maintain the pressure in the sputtering chamber 21 at 0.3 Pa. . The power of the DC power supply of the sputtering chamber 21 is set to 9kW (the control power is fixed), while the substrate 11 is moved in the direction of the dotted arrow 25, sputtering is performed, and CrOCN is formed on the substrate 11 to a thickness of 170 nm. The phase shift layer 12 is used to produce a phase shift mask blank 10 .

於以上述之順序製作之相位移光罩坯料10中,使相位移層12之表面之算術平均高度Sa於220μm×220μm之範圍內,藉由相干掃描式干涉儀(Zygo公司製造之NewView8000)測定。又,藉由X射線光電子光譜分析裝置(PHI公司製造之QuanteraII)測定相位移層12之深度方向之氧原子數濃度之分佈。 In the phase shift mask blank 10 produced by the above-mentioned procedures, the arithmetic mean height Sa of the surface of the phase shift layer 12 was measured in the range of 220 μm × 220 μm by a coherent scanning interferometer (NewView8000 manufactured by Zygo Corporation). . Furthermore, the distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 was measured using an X-ray photoelectron spectrometer (Quantera II manufactured by PHI Corporation).

利用X射線光電子光譜分析裝置所得之相位移層12之深度方向之氧原子數濃度之分佈之測定按以下之順序進行。準備藉由濺鍍於與基板11相同之合成石英玻璃基板之表面形成SiO2膜之參照用基板。將該參照用基板安裝於X射線光電子光譜分析裝置,利用X射線光電子光譜分析裝置所裝備之濺鍍離子槍對SiO2膜濺鍍並進行蝕刻。此時,求出SiO2膜之蝕刻時間與蝕刻量(蝕刻深度)之關係。其次,將實施例1中製作之相位移光罩坯料10安裝於X射線光電子光譜分析裝置,一面利用濺鍍離子槍對相位移層12進行濺鍍一面測定氧原子數濃度。此時,認為相位移層12之蝕刻時間與蝕刻深度之關係,與SiO2膜之蝕刻時間與蝕刻量(蝕刻深度)之關係相同。即,認為某個蝕刻時間之蝕刻深度,SiO2膜與相位移層12相同。基於該順序,獲得相位移層12之深度方向之氧原子數濃度分佈。 The distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 obtained by using the X-ray photoelectron spectrometer is measured in the following sequence. A reference substrate in which an SiO 2 film was formed on the surface of the same synthetic quartz glass substrate as the substrate 11 by sputtering was prepared. The reference substrate was mounted on an X-ray photoelectron spectrometer analyzer, and the SiO 2 film was sputtered and etched using a sputtering ion gun equipped with the X-ray photoelectron spectrometer analyzer. At this time, the relationship between the etching time and the etching amount (etching depth) of the SiO 2 film was determined. Next, the phase shift mask blank 10 produced in Example 1 was installed in an X-ray photoelectron spectrometer analyzer, and the oxygen atom number concentration was measured while sputtering the phase shift layer 12 using a sputtering ion gun. At this time, it is considered that the relationship between the etching time and the etching depth of the phase shift layer 12 is the same as the relationship between the etching time and the etching amount (etching depth) of the SiO 2 film. That is, it is considered that the SiO 2 film and the phase shift layer 12 have the same etching depth at a certain etching time. Based on this sequence, the oxygen atom number concentration distribution in the depth direction of the phase shift layer 12 is obtained.

利用X射線光電子光譜分析裝置所得之氧原子數濃度之測定,如上所述,一面藉由濺鍍離子槍對相位移層12進行蝕刻一面進行。藉由濺鍍離子槍蝕刻之範圍達到直徑數100μm之範圍,又,利用X射線光電子光譜分析裝置所得之氧原子數濃度之值,輸出相同之範圍之平均值。相位移層12之表面中形成有細微之凹凸,測定之氧原子數濃度考慮係藉由濺鍍離子槍對較多地包含此種表面之細微之凹凸之範圍之相位移層12蝕刻既定時間,而測定其範圍內之氧原子數濃度之平均值。本發明者等人針對將相位移層之形成步驟中之氧之流量設為零之比較例、設為1.5sccm之實施例1及設為3sccm之實施例2,測定上述之各種物理量。 The oxygen atomic number concentration obtained by the X-ray photoelectron spectrometer is measured as described above while etching the phase shift layer 12 with a sputtering ion gun. The etching range of the sputtering ion gun reaches a range of 100 μm in diameter, and the oxygen atom number concentration value obtained by the X-ray photoelectron spectrometer is used to output the average value of the same range. Fine unevenness is formed on the surface of the phase shift layer 12. The measured oxygen atomic number concentration is based on etching the phase shift layer 12 for a predetermined time by a sputtering ion gun in a range containing more of such fine unevenness on the surface. And measure the average value of the oxygen atomic number concentration within the range. The present inventors measured various physical quantities described above with respect to the comparative example in which the flow rate of oxygen in the formation step of the phase shift layer was set to zero, the Example 1 set to 1.5 sccm, and the Example 2 set to 3 sccm.

再者,相位移層12之最表面因環境氣體之吸附等而被污染之可能性高,故實際進行相位移層12中之組成分析時,考慮表面粗糙度之程度,較佳為一定程度去除最表面之相位移層。因此,於本案實施例中,將自最表面蝕刻至1.25nm之深度之位置之原子數濃度作為相位移層12之表面原子數濃度,但用以獲得表面組成之蝕刻深度並不限定於該值。 Furthermore, the uppermost surface of the phase shift layer 12 is highly likely to be contaminated due to adsorption of environmental gases, etc. Therefore, when actually analyzing the composition of the phase shift layer 12 , the degree of surface roughness is considered, and it is preferably removed to a certain extent. The most superficial phase shift layer. Therefore, in this embodiment, the atomic number concentration at the position etched from the outermost surface to a depth of 1.25 nm is used as the surface atomic number concentration of the phase shift layer 12 , but the etching depth used to obtain the surface composition is not limited to this value. .

將該測定結果示於圖3之表。根據圖3,實施例1中製作之相位移層12之表面之算術平均高度為0.402nm。又,相位移層12之表面之算術平均高度較基板11之表面之算術平均高度大0.04nm。進而,於該相位移層12中,距離表面1.25nm之深度處之氧原子數濃度為42.6%,距離表面85nm之深度位置處之氧原子數濃度為26.8%,又,距離表面1.25nm之深度處之氧原子數濃度相對於相位移層12之距表面85nm之深度處之氧原子數濃度之比為1.59。 The measurement results are shown in the table of FIG. 3 . According to FIG. 3 , the arithmetic mean height of the surface of the phase shift layer 12 produced in Example 1 is 0.402 nm. In addition, the arithmetic mean height of the surface of the phase shift layer 12 is 0.04 nm larger than the arithmetic mean height of the surface of the substrate 11 . Furthermore, in the phase shift layer 12, the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 42.6%, the oxygen atomic number concentration at a depth of 85 nm from the surface is 26.8%, and the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 26.8%. The ratio of the oxygen atomic number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.59.

將製作之相位移光罩坯料10進行UV洗淨10分鐘之後,進行15分鐘旋轉洗淨(磁共振洗淨、鹼性洗淨、毛刷洗淨、沖洗、旋轉乾燥),利用旋轉塗布機將光阻劑(Nagase chemtex股份有限公司製造之GRX-M237)塗布於相位移層12之表面,形成光阻層。使用光罩對準機,利用2μm間距之線與間隙之圖案曝光之後,進行顯影,部分地去除光阻層,形成抗蝕圖案。將該抗蝕圖案作為光罩,將形成有抗蝕圖案之相位移光罩坯料10浸漬於蝕刻液(林純藥工業股份有限公司製造之Pure Etch CR101)進行濕式蝕刻,藉此於相位移層12形成圖案。 The prepared phase shift mask blank 10 is UV cleaned for 10 minutes, then spin cleaned (magnetic resonance cleansing, alkaline cleaning, brush cleaning, rinsing, and spin drying) for 15 minutes, and is then coated with a spin coater. Photoresist (GRX-M237 manufactured by Nagase Chemtex Co., Ltd.) is coated on the surface of the phase shift layer 12 to form a photoresist layer. Using a mask aligner, the pattern of lines and gaps with a pitch of 2 μm is exposed, and then developed to partially remove the photoresist layer to form a resist pattern. Using this resist pattern as a photomask, the phase shift photomask blank 10 on which the resist pattern is formed is immersed in an etching solution (Pure Etch CR101 manufactured by Hayashi Pure Chemical Industries, Ltd.) to perform wet etching, thereby performing phase shift. Layer 12 forms a pattern.

形成圖案之後,將其割斷,利用掃描式電子顯微鏡(SEM)觀察圖案之剖面形狀,根據圖案之剖面形狀確認是否於光阻層與相位移層12之界面部分產生蝕刻液之滲透。確認於曝光實施例1中製作之相位移光罩坯料10中形成之光阻層之後,藉由濕式蝕刻於相位移層12形成圖案之情形時,未於光阻層與相位移層12之界面部分產生蝕刻液之滲透。 After the pattern is formed, it is cut, and a scanning electron microscope (SEM) is used to observe the cross-sectional shape of the pattern. Based on the cross-sectional shape of the pattern, it is confirmed whether penetration of the etching liquid occurs at the interface between the photoresist layer and the phase shift layer 12 . After confirming that after exposing the photoresist layer formed in the phase shift mask blank 10 produced in Example 1, and then forming a pattern on the phase shift layer 12 by wet etching, there is no difference between the photoresist layer and the phase shift layer 12. Penetration of etching liquid occurs at the interface.

(實施例2) (Example 2)

準備由與實施例1中使用之基板11相同之合成石英玻璃構成之基板11。形成相位移層12時,於實施例1中,將導入至濺鍍腔室21之氧(O2)之流量設為1.5sccm,但本實施例中將氧(O2)之流量設為3sccm,除此以外,以與實施例1相同之條件形成相位移層12。針對與實施例1相同之項目進行測定。將該測定結果示於圖3之表。 A substrate 11 made of the same synthetic quartz glass as the substrate 11 used in Example 1 was prepared. When forming the phase shift layer 12, in Example 1, the flow rate of oxygen (O 2 ) introduced into the sputtering chamber 21 was set to 1.5 sccm, but in this embodiment, the flow rate of oxygen (O 2 ) was set to 3 sccm. , except for this, the phase shift layer 12 was formed under the same conditions as in Example 1. The same items as in Example 1 were measured. The measurement results are shown in the table of FIG. 3 .

根據圖3,實施例2中製作之相位移層12之表面之算術平均高度之值為0.417nm。又,相位移層12之表面之算術平均高度較基板11之表面之算術平均高度大0.05nm。於該相位移層12中,距離表面1.25nm之深度處之氧原子數濃度為43.5%,距離表面85nm之深度位置處之氧原子數濃度為27.2%,又,距離表面1.25nm之深度處之氧原子數濃度相對於相位移層12之距表面85nm之深度處之氧原子數濃度之比為1.60。 According to FIG. 3 , the arithmetic mean height value of the surface of the phase shift layer 12 produced in Example 2 is 0.417 nm. In addition, the arithmetic mean height of the surface of the phase shift layer 12 is greater than the arithmetic mean height of the surface of the substrate 11 by 0.05 nm. In the phase shift layer 12, the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 43.5%, the oxygen atomic number concentration at a depth of 85 nm from the surface is 27.2%, and the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 27.2%. The ratio of the oxygen atomic number concentration to the oxygen atomic number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.60.

確認於實施例2中製作之相位移光罩坯料10形成光阻層之後,藉由濕式蝕刻於相位移層12形成圖案之情形時,未於光阻層與相位移層12之界面部分產生蝕刻液之滲透現象。 It was confirmed that after the photoresist layer was formed on the phase shift mask blank 10 produced in Example 2, when the pattern was formed on the phase shift layer 12 by wet etching, no formation occurred at the interface between the photoresist layer and the phase shift layer 12 Penetration phenomenon of etching liquid.

曝光根據實施例1、2製作之相位移光罩坯料10中形成之光阻層15之後,藉由濕式蝕刻形成圖案,將其割斷,藉由掃描式電子顯微鏡(SEM)觀察圖案剖面之情況,圖4係將該情況以示意的方式表示之圖。表示未於光阻層15與相位移層12之界面產生蝕刻液之滲透。 After exposing the photoresist layer 15 formed in the phase shift mask blank 10 produced according to Embodiments 1 and 2, a pattern is formed by wet etching, cut off, and the pattern cross-section is observed with a scanning electron microscope (SEM). , Figure 4 is a diagram schematically showing this situation. This means that there is no penetration of the etching liquid at the interface between the photoresist layer 15 and the phase shift layer 12 .

(比較例1) (Comparative example 1)

準備由與實施例1中使用之基板11相同之合成石英玻璃構成之基板51。於形成相位移層時不向濺鍍腔室21導入氧,即,使氧(O2)之導入量為0sccm,除此以外,以與實施例1相同之條件形成相位移層。即,於比較例1中,形成相位移層時不向濺鍍腔室21導入氧。圖6係表示比較例1中製作之相位移光罩坯料50之構成之示意圖。比較例1中製作之相位移光罩坯料50之相位移層52之表面中,未形 成既定之算術平均高度之表面粗糙度。比較例1之相位移光罩坯料50中,針對基板51之表面中形成之相位移層52,針對與實施例1相同之項目進行測定。 A substrate 51 made of the same synthetic quartz glass as the substrate 11 used in Example 1 was prepared. When forming the phase shift layer, oxygen was not introduced into the sputtering chamber 21 , that is, the introduction amount of oxygen (O 2 ) was 0 sccm. The phase shift layer was formed under the same conditions as in Example 1. That is, in Comparative Example 1, oxygen was not introduced into the sputtering chamber 21 when forming the phase shift layer. FIG. 6 is a schematic diagram showing the structure of the phase shift mask blank 50 produced in Comparative Example 1. The surface of the phase shift layer 52 of the phase shift mask blank 50 produced in Comparative Example 1 did not have a surface roughness of a predetermined arithmetic mean height. In the phase shift mask blank 50 of Comparative Example 1, the same items as those of Example 1 were measured for the phase shift layer 52 formed on the surface of the substrate 51 .

將測定結果示於圖3之表。根據圖3,比較例1中製作之相位移層52之表面之算術平均高度之值為0.359nm。又,於該相位移層52中,距離表面1.25nm之深度處之氧原子數濃度為42.1%,距離表面85nm之深度位置處之氧原子數濃度為31.8%,距離表面1.25nm之深度處之氧原子數濃度相對於距離相位移層52之表面85nm之深度處之氧原子數濃度之比為1.32。又,確認比較例1中製作之相位移層52中形成光阻層之相位移光罩坯料50於藉由濕式蝕刻於相位移層52形成圖案之情形時,於光阻層與相位移層52之界面部分產生蝕刻液之滲透。 The measurement results are shown in the table of Figure 3 . According to FIG. 3 , the arithmetic mean height value of the surface of the phase shift layer 52 produced in Comparative Example 1 is 0.359 nm. Furthermore, in the phase shift layer 52, the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 42.1%, the oxygen atomic number concentration at a depth of 85 nm from the surface is 31.8%, and the oxygen atomic number concentration at a depth of 1.25 nm from the surface is 31.8%. The ratio of the oxygen atomic number concentration to the oxygen atomic number concentration at a depth of 85 nm from the surface of the phase shift layer 52 is 1.32. Furthermore, it was confirmed that when the phase shift mask blank 50 in which the photoresist layer was formed in the phase shift layer 52 produced in Comparative Example 1 was patterned on the phase shift layer 52 by wet etching, there was a gap between the photoresist layer and the phase shift layer. The interface part of 52 produces the penetration of etching liquid.

於曝光藉由比較例1製作之相位移光罩坯料50中形成之光阻層55之後,藉由濕式蝕刻形成圖案,將其割斷,藉由掃描式電子顯微鏡(SEM)觀察圖案剖面之情況,圖7係以示意的方式表示該情況之圖。表示於相位移層52形成由於光阻層55與相位移層52之界面產生蝕刻液之滲透導致之傾斜面。 After exposing the photoresist layer 55 formed in the phase shift mask blank 50 produced in Comparative Example 1, a pattern was formed by wet etching, and then cut, and the pattern cross-section was observed with a scanning electron microscope (SEM). , Figure 7 is a diagram schematically showing this situation. It shows that the phase shift layer 52 is formed with an inclined surface caused by the penetration of the etching liquid at the interface between the photoresist layer 55 and the phase shift layer 52 .

產生此種傾斜面之相位移光罩因產生傾斜面而使得具有本來之膜厚之相位移層之面積變小,故曝光之光之相位移之功能減弱。其結果為,若使用此種相位移光罩於元件用基板形成電路圖案,則電路圖案之精度降低。因此,此種相位移光罩不適合元件之製造。 The phase-shift mask that generates such an inclined surface reduces the area of the phase-shift layer with the original film thickness due to the inclined surface, so the phase-shifting function of the exposed light is weakened. As a result, if such a phase shift mask is used to form a circuit pattern on a device substrate, the accuracy of the circuit pattern will be reduced. Therefore, this type of phase shift mask is not suitable for component manufacturing.

根據以上之實驗結果,相位移層12之算術表面粗糙度較佳為0.38nm以上。又,相位移層12之距表面之1.25nm之深度中之氧原子濃度較佳為42.6%以上。又,相位移層12之距表面1.25nm之深度中之氧原子濃度較佳為較85nm之深度中之氧原子濃度大,其比率較佳為大於1.59。 According to the above experimental results, the arithmetic surface roughness of the phase shift layer 12 is preferably above 0.38 nm. In addition, the oxygen atom concentration in the depth of 1.25 nm from the surface of the phase shift layer 12 is preferably 42.6% or more. In addition, the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 is preferably greater than the oxygen atom concentration at a depth of 85 nm, and the ratio is preferably greater than 1.59.

具有相關態樣之本實施形態之相位移光罩坯料存在濕式蝕刻時不易於光阻劑與相位移層之間滲透蝕刻液之傾向,能夠對光阻劑曝光時之曝光之光之圖案形成準確之光罩圖案。 The phase-shift mask blank of the present embodiment with related aspects has a tendency that the etching liquid does not easily penetrate between the photoresist and the phase-shift layer during wet etching, and can form a pattern of the exposure light when the photoresist is exposed. Accurate mask pattern.

只要為獲得所需之對比度性能之範圍內,則相位移層12之表面之算術平均高度並無特別限制。然而,若相位移層12之表面之算術平均高度變的過大,則相位移層12之表面中之曝光之光之散射變大,曝光圖案之邊緣上之銳度降低,故表面之算術平均高度Sa之上限值較佳設為1.0nm。 The arithmetic mean height of the surface of the phase shift layer 12 is not particularly limited as long as it is within the range to obtain the required contrast performance. However, if the arithmetic mean height of the surface of the phase shift layer 12 becomes too large, the scattering of the exposure light in the surface of the phase shift layer 12 becomes larger, and the sharpness on the edge of the exposure pattern is reduced, so the arithmetic mean height of the surface The upper limit of Sa is preferably 1.0 nm.

根據利用X射線光電子光譜分析裝置所得之原子數濃度之測定結果,於本實施形態中形成之利用CrOCN膜所得之相位移層12中,氧高於化學計量比。藉此,能夠提昇光阻層與相位移層12之密接性,抑制蝕刻液之滲透。例如,本實施形態中之相位移層12亦可由利用CrOCN(Cr:O:C:N=51:27:5:18原子%比)所得之膜形成。再者,於本說明書中,CrOCN膜之組成為化學計量比,指原子數比為Cr:O:C:N=1:1:1:1。 According to the measurement results of the atomic number concentration using an X-ray photoelectron spectrometer, in the phase shift layer 12 formed using the CrOCN film formed in this embodiment, oxygen is higher than the stoichiometric ratio. In this way, the adhesion between the photoresist layer and the phase shift layer 12 can be improved and the penetration of the etching liquid can be suppressed. For example, the phase shift layer 12 in this embodiment can also be formed of a film obtained by using CrOCN (Cr:O:C:N=51:27:5:18 atomic % ratio). Furthermore, in this specification, the composition of the CrOCN film is a stoichiometric ratio, which means that the atomic number ratio is Cr:O:C:N=1:1:1:1.

藉由研磨加工對相位移光罩坯料10之基板11之表面進行精加工。另一方面,相位移層12藉由濺鍍形成。因此,通常相位移層12表面之算術平均高度較基板11表面之算術平均高度大,但藉由使相位移層12表面之算術平均高度僅較基板11之算術平均高度大既定值,而能夠使此種相位移光罩坯料中形成之光阻劑圖案之密接性變良好。例如,藉由使相位移層12表面之算術平均高度較基板11表面之算術平均高度大0.04nm以上而獲得此種效果。就相位移層12之表面中之曝光之光之散射之觀點而言,相位移層12之表面之算術平均高度與基板11之表面之算術平均高度之差之上限值較佳設為1.0nm。 The surface of the substrate 11 of the phase shift mask blank 10 is finished by grinding. On the other hand, the phase shift layer 12 is formed by sputtering. Therefore, usually the arithmetic mean height of the surface of the phase shift layer 12 is greater than the arithmetic mean height of the surface of the substrate 11. However, by making the arithmetic mean height of the surface of the phase shift layer 12 only greater than the arithmetic mean height of the substrate 11 by a predetermined value, it can be achieved. The adhesion of the photoresist pattern formed in this phase shift mask blank becomes good. For example, this effect is obtained by making the arithmetic mean height of the surface of the phase shift layer 12 greater than the arithmetic mean height of the surface of the substrate 11 by more than 0.04 nm. From the viewpoint of scattering of exposure light in the surface of the phase shift layer 12 , the upper limit of the difference between the arithmetic mean height of the surface of the phase shift layer 12 and the arithmetic mean height of the surface of the substrate 11 is preferably set to 1.0 nm. .

以下之變形例亦為本發明之範圍內,亦能夠將變形例之一個或複數個與上述之實施形態組合。 The following modifications are also within the scope of the present invention, and one or a plurality of the modifications can be combined with the above-described embodiments.

(變形例1) (Modification 1)

上述之實施形態中,藉由濺鍍形成相位移層12時,調整導入至濺鍍腔室內之氧之流量,使相位移層12表面之算術平均高度為既定之範圍。然而,亦可取代調整導入至濺鍍腔室內之氧流量,而藉由於形成相位移層12後,對其表面進行乾式 蝕刻或濕式蝕刻,以既定之算術平均高度形成表面凹凸。藉此,能夠提昇此種相位移層12之表面中形成之光阻層與相位移層12之密接性。 In the above embodiment, when the phase shift layer 12 is formed by sputtering, the flow rate of oxygen introduced into the sputtering chamber is adjusted so that the arithmetic mean height of the surface of the phase shift layer 12 is within a predetermined range. However, instead of adjusting the oxygen flow rate introduced into the sputtering chamber, after the phase shift layer 12 is formed, the surface of the phase shift layer 12 is dry-processed. Etching or wet etching creates surface irregularities with a given arithmetic mean height. Thereby, the adhesion between the photoresist layer formed on the surface of the phase shift layer 12 and the phase shift layer 12 can be improved.

(變形例2) (Modification 2)

上述之實施形態及變形例中說明之相位移光罩坯料10能夠作為用以製作顯示裝置製造用、半導體製造用、印刷基板製造用之相位移光罩之相位移光罩坯料應用。再者,於用以製作顯示裝置製造用之相位移光罩之相位移光罩坯料之情形時,作為基板11,能夠使用520mm×800mm以上之尺寸之基板。又,基板11之厚度可為8~21mm。 The phase shift mask blank 10 described in the above embodiments and modifications can be used as a phase shift mask blank for manufacturing a phase shift mask for display device manufacturing, semiconductor manufacturing, and printed circuit board manufacturing. Furthermore, when a phase shift mask blank is used to produce a phase shift mask for display device manufacturing, a substrate having a size of 520 mm×800 mm or more can be used as the substrate 11 . In addition, the thickness of the substrate 11 can be 8~21mm.

(曝光裝置) (exposure device)

其次,作為使用根據實施例1、2製作之相位移光罩坯料10製作之相位移光罩之應用例,針對半導體製造或液晶面板製造之光微影步驟,參照圖5進行說明。曝光裝置500中配置使用根據實施例1、2製作之相位移光罩坯料10製作之相位移光罩513。又,曝光裝置500中安裝塗布有光阻劑之感光性基板515。 Next, as an application example of the phase shift mask produced using the phase shift mask blank 10 produced in Embodiments 1 and 2, the photolithography step of semiconductor manufacturing or liquid crystal panel manufacturing will be described with reference to FIG. 5 . The exposure device 500 is equipped with a phase shift mask 513 produced using the phase shift mask blank 10 produced in Examples 1 and 2. Furthermore, the photosensitive substrate 515 coated with the photoresist is mounted in the exposure device 500 .

曝光裝置500具備:光源LS、照明光學系統502、保持相位移光罩513之光罩支承台503、投影光學系統504、保持作為曝光對象物之感光性基板515之曝光對象物支承板505及使曝光對象物支承板505於水平面內移動之驅動機構506。自曝光裝置500之光源LS射出之曝光之光入射至照明光學系統502,調整為既定光束,照射至光罩支承台503所保持之相位移光罩513。通過相位移光罩513之光具有相位移光罩513所描繪之元件圖案之像,該光經由投影光學系統504照射至曝光對象物支承板505所保持之感光性基板515之既定位置。藉此,相位移光罩513之元件圖案之像得以於半導體晶圓或液晶面板等感光性基板515以既定倍率成像曝光。 The exposure device 500 includes a light source LS, an illumination optical system 502, a mask support base 503 that holds a phase shift mask 513, a projection optical system 504, an exposure object support plate 505 that holds a photosensitive substrate 515 that is an exposure object, and a user. A driving mechanism 506 for moving the exposure object support plate 505 in a horizontal plane. The exposure light emitted from the light source LS of the exposure device 500 enters the illumination optical system 502 , is adjusted to a predetermined light beam, and irradiates the phase shift mask 513 held by the mask support 503 . The light passing through the phase shift mask 513 has an image of the element pattern drawn by the phase shift mask 513, and the light is irradiated to a predetermined position of the photosensitive substrate 515 held by the exposure object support plate 505 through the projection optical system 504. Thereby, the image of the device pattern of the phase shift mask 513 can be image-exposed on the photosensitive substrate 515 such as a semiconductor wafer or a liquid crystal panel at a predetermined magnification.

能夠藉由使用實施形態之相位移光罩,而降低曝光步驟中之圖案不良,提昇曝光步驟中之良率。 By using the phase shift mask of the embodiment, pattern defects in the exposure step can be reduced and the yield in the exposure step can be improved.

上述中,對各種實施形態及變形例進行了說明,但本發明並不限定於該等內容。於本發明之技術的思想之範圍內研究之其他態樣亦包含於本發明之範圍內。 Various embodiments and modifications have been described above, but the present invention is not limited to these. Other aspects studied within the scope of the technical idea of the present invention are also included in the scope of the present invention.

以下之優先權基礎申請之發明內容作為引用文而併入本文。 The invention content of the following priority basic application is incorporated herein by reference.

日本專利申請2018年第172898號(2018年9月14日申請) Japanese Patent Application 2018 No. 172898 (filed on September 14, 2018)

10:相位移光罩坯料 10: Phase shift mask blank

11:基板 11:Substrate

12:相位移層 12: Phase shift layer

12a:凹凸部 12a: Concave and convex parts

Claims (42)

一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,且被使用於透過濕式蝕刻形成既定圖案的光罩,上述相位移層之表面之算術平均高度之值為0.38nm以上。 A phase shift mask blank, which has a substrate and a phase shift layer formed on the substrate, and is used to form a mask with a predetermined pattern through wet etching. The arithmetic mean height of the surface of the phase shift layer is 0.38. nm and above. 一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,上述相位移層之表面之算術平均高度之值為0.38nm以上,上述相位移層含有鉻及氧,不含矽。 A phase shift mask blank, which has a substrate and a phase shift layer formed on the substrate. The arithmetic mean height of the surface of the phase shift layer is more than 0.38 nm. The phase shift layer contains chromium and oxygen and does not contain silicon. . 如請求項1或2所述之相位移光罩坯料,其中,上述相位移層之表面之算術平均高度之值為0.402nm以上。 The phase shift mask blank according to claim 1 or 2, wherein the arithmetic mean height of the surface of the phase shift layer is 0.402 nm or more. 如請求項1或2所述之相位移光罩坯料,其中,上述相位移層之表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04nm以上。 The phase shift mask blank according to claim 1 or 2, wherein the arithmetic mean height of the surface of the phase shift layer is greater than the arithmetic mean height of the surface of the substrate by more than 0.04 nm. 如請求項2所述之相位移光罩坯料,其中,上述相位移光罩坯料被使用於透過濕式蝕刻形成既定圖案的光罩。 The phase shift mask blank according to claim 2, wherein the phase shift mask blank is used to form a mask with a predetermined pattern through wet etching. 一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,且被使用於透過濕式蝕刻形成既定圖案的光罩,上述相位移層之表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04nm以上。 A phase-shift mask blank, which has a substrate and a phase-shift layer formed on the substrate, and is used to form a mask with a predetermined pattern through wet etching. The arithmetic mean height of the surface of the phase-shift layer is greater than the above-mentioned The value of the arithmetic mean height of the surface of the substrate is greater than 0.04nm. 一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,上述相位移層之表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04nm以上,上述相位移層含有鉻及氧,不含矽。 A phase-shift mask blank, which has a substrate and a phase-shift layer formed on the substrate. The arithmetic mean height of the surface of the phase-shift layer is greater than the arithmetic mean height of the surface of the substrate by more than 0.04 nm. The above-mentioned The phase shift layer contains chromium and oxygen, but does not contain silicon. 如請求項1或6所述之相位移光罩坯料,其中,上述相位移層含有鉻及氧。 The phase shift mask blank according to claim 1 or 6, wherein the phase shift layer contains chromium and oxygen. 如請求項8所述之相位移光罩坯料,其中,上述相位移層不含矽。 The phase shift mask blank according to claim 8, wherein the phase shift layer does not contain silicon. 如請求項1、2、6、7中任一項所述之相位移光罩坯料,其中,上述相位移層係由CrOCN組成,CrOCN中之氧原子數濃度高於化學計量比。 The phase shift mask blank according to any one of claims 1, 2, 6, and 7, wherein the phase shift layer is composed of CrOCN, and the oxygen atomic number concentration in CrOCN is higher than the stoichiometric ratio. 如請求項1、2、6、7中任一項所述之相位移光罩坯料,其中,上述相位移層之距表面1.25nm之深度處之氧原子數濃度為42.6%以上。 The phase shift mask blank according to any one of claims 1, 2, 6, and 7, wherein the oxygen atom number concentration of the phase shift layer at a depth of 1.25 nm from the surface is 42.6% or more. 如請求項1、2、6、7中任一項所述之相位移光罩坯料,其中,上述相位移層之表面側之氧原子數濃度大於基板側之氧原子數濃度。 The phase shift mask blank according to any one of claims 1, 2, 6, and 7, wherein the oxygen atom number concentration on the surface side of the phase shift layer is greater than the oxygen atom number concentration on the substrate side. 如請求項1、2、6、7中任一項所述之相位移光罩坯料,其中,上述相位移層之距表面1.25nm之深度處之氧原子數濃度相對於上述相位移層之距表面85nm之深度處之氧原子數濃度的比為1.59以上。 The phase shift mask blank according to any one of claims 1, 2, 6, and 7, wherein the oxygen atom number concentration at a depth of 1.25 nm from the surface of the phase shift layer is relative to the distance of the phase shift layer The ratio of oxygen atomic number concentration at a depth of 85 nm on the surface is 1.59 or more. 一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,且被使用於透過濕式蝕刻形成既定圖案的光罩,上述相位移層含有鉻及氧,上述相位移層之表面側之氧原子數濃度大於上述相位移層之上述基板側之氧原子數濃度。 A phase shift mask blank, which has a substrate and a phase shift layer formed on the substrate, and is used to form a mask with a predetermined pattern through wet etching. The phase shift layer contains chromium and oxygen, and the phase shift layer contains The oxygen atomic number concentration on the surface side is greater than the oxygen atomic number concentration on the substrate side of the phase shift layer. 一種相位移光罩坯料,其具有基板及形成於上述基板上之相位移層,上述相位移層含有鉻及氧,不含矽,上述相位移層之表面側之氧原子數濃度大於上述相位移層之上述基板側之氧原子數濃度。 A phase shift photomask blank, which has a substrate and a phase shift layer formed on the substrate. The phase shift layer contains chromium and oxygen and does not contain silicon. The oxygen atom number concentration on the surface side of the phase shift layer is greater than the phase shift layer. The concentration of oxygen atoms on the substrate side of the layer. 如請求項14或15所述之相位移光罩坯料,其中, 上述相位移層係由CrOCN組成,CrOCN中之氧原子數濃度高於化學計量比。 The phase shift mask blank according to claim 14 or 15, wherein, The above-mentioned phase shift layer is composed of CrOCN, and the concentration of oxygen atoms in CrOCN is higher than the stoichiometric ratio. 如請求項14或15所述之相位移光罩坯料,其中,上述相位移層之距表面1.25nm之深度處之氧原子數濃度為42.6%以上。 The phase shift mask blank according to claim 14 or 15, wherein the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer is above 42.6%. 如請求項14或15所述之相位移光罩坯料,其中,上述相位移層之距表面1.25nm之深度處之氧原子數濃度相對於上述相位移層之距表面85nm之深度處之氧原子數濃度的比為1.59以上。 The phase shift mask blank according to claim 14 or 15, wherein the number concentration of oxygen atoms at a depth of 1.25 nm from the surface of the phase shift layer is relative to the number of oxygen atoms at a depth of 85 nm from the surface of the phase shift layer. The ratio of number concentration is 1.59 or more. 如請求項15所述之相位移光罩坯料,其中,上述相位移光罩坯料被使用於透過濕式蝕刻形成既定圖案的光罩。 The phase shift mask blank according to claim 15, wherein the phase shift mask blank is used to form a mask with a predetermined pattern through wet etching. 如請求項1、2、6、7、14、15中任一項所述之相位移光罩坯料,其中,上述基板之大小為520mm×800mm以上。 The phase shift mask blank according to any one of claims 1, 2, 6, 7, 14, and 15, wherein the size of the above-mentioned substrate is 520mm×800mm or more. 一種相位移光罩,其將請求項1至20中任一項所述之相位移光罩坯料之上述相位移層形成為既定之圖案狀。 A phase shift mask in which the phase shift layer of the phase shift mask blank according to any one of claims 1 to 20 is formed into a predetermined pattern. 一種曝光方法,其係經由如請求項21之相位移光罩,對塗布有光阻劑之感光性基板進行曝光。 An exposure method, which is to expose a photosensitive substrate coated with a photoresist through a phase shift mask as claimed in claim 21. 一種元件之製造方法,其具有:曝光步驟,藉由如請求項22之曝光方法對上述感光性基板進行曝光;及顯影步驟,使經曝光之上述感光性基板顯影。 A manufacturing method of an element, which includes: an exposure step of exposing the above-mentioned photosensitive substrate by the exposure method according to claim 22; and a development step of developing the exposed photosensitive substrate. 一種相位移光罩坯料之製造方法,其具備於基板上將相位移層成膜之成膜步驟,於上述成膜步驟中,在於上述基板上將上述相位移層成膜時,使被導入至對上述基板進行成膜之濺鍍腔室內之氧之濃度變化,以上述相位移層之表面之算術平均高度之值為0.38nm以上的方式於上述基板將上述相位移層成膜。 A method for manufacturing a phase shift mask blank, which includes a film forming step of forming a phase shift layer on a substrate. In the film forming step, when the phase shift layer is formed on the substrate, a film is introduced into The oxygen concentration in the sputtering chamber where the film is formed on the substrate changes, and the phase shift layer is formed on the substrate such that the arithmetic mean height of the surface of the phase shift layer is 0.38 nm or more. 如請求項24所述之相位移光罩坯料之製造方法,其中, 於上述成膜步驟中,將含有鉻及氧之上述相位移層成膜。 The manufacturing method of phase shift mask blank as described in claim 24, wherein, In the above film forming step, the above phase shift layer containing chromium and oxygen is formed into a film. 如請求項25所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,將不含矽之上述相位移層成膜。 The method for manufacturing a phase shift mask blank according to claim 25, wherein in the above film forming step, the above phase shift layer that does not contain silicon is formed into a film. 如請求項24至26中任一項所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,以如下方式於上述基板將上述相位移層成膜:上述相位移層之表面側之氧原子數濃度大於上述相位移層之上述基板側之氧原子數濃度。 The method for manufacturing a phase shift mask blank according to any one of claims 24 to 26, wherein in the film forming step, the phase shift layer is formed on the substrate in the following manner: The oxygen atomic number concentration on the surface side is greater than the oxygen atomic number concentration on the substrate side of the phase shift layer. 如請求項24至26中任一項所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,使用將氣體導入上述濺鍍腔室之第1氣體流入口與第2氣體流入口而於由搬送部所搬送之上述基板將上述相位移層成膜,上述第1氣體流入口,相對於上述第2氣體流入口而配置於由搬送部搬送上述基板之上游側。 The method for manufacturing a phase shift mask blank according to any one of claims 24 to 26, wherein in the film forming step, a first gas inlet and a second gas are used to introduce gas into the sputtering chamber. The inlet is used to form the phase shift layer on the substrate conveyed by the conveying unit, and the first gas inlet is disposed upstream of the substrate conveyed by the conveying unit with respect to the second gas inlet. 如請求項28所述之相位移光罩坯料之製造方法,其中,上述第1氣體流入口,相對上述第2氣體流入口,導入氧之濃度較低的氣體。 The method of manufacturing a phase shift mask blank according to claim 28, wherein a gas with a lower oxygen concentration is introduced into the first gas inlet relative to the second gas inlet. 如請求項24至26中任一項所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,以如下方式於上述基板將上述相位移層成膜:上述相位移層之表面之算術平均高度之值為0.402nm以上。 The method for manufacturing a phase shift mask blank according to any one of claims 24 to 26, wherein in the film forming step, the phase shift layer is formed on the substrate in the following manner: The value of the arithmetic mean height of the surface is above 0.402nm. 如請求項24至26中任一項所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,以如下方式於上述基板將上述相位移層成膜:上述相位移層之表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04 nm以上。 The method for manufacturing a phase shift mask blank according to any one of claims 24 to 26, wherein in the film forming step, the phase shift layer is formed on the substrate in the following manner: The value of the arithmetic mean height of the surface is greater than the value of the arithmetic mean height of the surface of the above substrate by 0.04 nm and above. 一種相位移光罩坯料之製造方法,其具備:於基板上將相位移層成膜之成膜步驟,以及對以上述成膜步驟成膜後之上述相位移層之表面,以上述表面之算術平均高度之值為0.402nm以上的方式進行濕式蝕刻或乾式蝕刻之蝕刻步驟。 A method for manufacturing a phase shift mask blank, which includes: a film forming step of forming a phase shift layer on a substrate, and a surface of the phase shift layer formed by the film forming step, using the arithmetic calculation method of the surface The etching step of wet etching or dry etching is performed such that the average height value is above 0.402nm. 一種相位移光罩坯料之製造方法,上述相位移光罩坯料被使用於透過濕式蝕刻形成既定圖案的光罩,上述相位移光罩坯料之製造方法具備:於基板上將相位移層成膜之成膜步驟,以及對以上述成膜步驟成膜後之上述相位移層之表面,以上述表面之算術平均高度之值為0.38nm以上的方式進行濕式蝕刻或乾式蝕刻之蝕刻步驟。 A method of manufacturing a phase shift mask blank. The phase shift mask blank is used to form a mask with a predetermined pattern through wet etching. The manufacturing method of the phase shift mask blank includes: forming a phase shift layer on a substrate. The film forming step, and the etching step of performing wet etching or dry etching on the surface of the phase shift layer formed by the above film forming step in such a manner that the arithmetic mean height of the surface is greater than 0.38 nm. 一種相位移光罩坯料之製造方法,其具備:於基板上將含有鉻及氧且不含矽的相位移層成膜之成膜步驟,以及對以上述成膜步驟成膜後之上述相位移層之表面,以上述表面之算術平均高度之值為0.38nm以上的方式進行濕式蝕刻或乾式蝕刻之蝕刻步驟。 A method for manufacturing a phase shift mask blank, which includes: a film forming step of forming a phase shift layer containing chromium and oxygen and not containing silicon on a substrate, and the above phase shift after the film is formed by the above film forming step The surface of the layer is subjected to an etching step of wet etching or dry etching in such a manner that the arithmetic mean height of the surface is above 0.38 nm. 如請求項33或34所述之相位移光罩坯料之製造方法,其中,於上述蝕刻步驟中,以如下方式進行蝕刻:上述表面之算術平均高度之值為0.402nm以上。 The method for manufacturing a phase shift mask blank according to claim 33 or 34, wherein in the etching step, etching is performed in the following manner: the arithmetic mean height of the surface is above 0.402 nm. 如請求項32至34中任一項所述之相位移光罩坯料之製造方法,其中,於上述蝕刻步驟中,以如下方式進行蝕刻:上述表面之算術平均高度之值較上述基板之表面之算術平均高度之值大0.04nm以上。 The method for manufacturing a phase shift mask blank according to any one of claims 32 to 34, wherein in the above etching step, etching is performed in the following manner: the value of the arithmetic mean height of the above surface is greater than the value of the surface of the above substrate. The value of the arithmetic mean height is greater than 0.04nm. 如請求項32或33所述之相位移光罩坯料之製造方法,其中,於上述成膜步驟中,將含有鉻及氧之上述相位移層成膜。 The method for manufacturing a phase shift mask blank according to claim 32 or 33, wherein in the above film forming step, the above phase shift layer containing chromium and oxygen is formed into a film. 如請求項37所述之相位移光罩坯料之製造方法,其中, 於上述成膜步驟中,將不含矽之上述相位移層成膜。 The manufacturing method of phase shift mask blank as described in claim 37, wherein, In the above film-forming step, the above-mentioned phase shift layer without silicon is formed into a film. 一種相位移光罩之製造方法,其具備使用請求項24至38中任一項所述之相位移光罩坯料之製造方法製造上述相位移光罩坯料之步驟,及於上述相位移層形成既定之圖案的圖案形成步驟。 A method for manufacturing a phase shift mask, which includes the steps of manufacturing the phase shift mask blank using the method for manufacturing a phase shift mask blank according to any one of claims 24 to 38, and forming a predetermined phase shift layer on the phase shift layer. The pattern forming steps of the pattern. 如請求項39所述之相位移光罩之製造方法,其中,上述圖案形成步驟中,透過濕式蝕刻於上述相位移層形成既定圖案。 The method of manufacturing a phase shift mask according to claim 39, wherein in the pattern forming step, a predetermined pattern is formed on the phase shift layer by wet etching. 一種曝光方法,其係經由使用如請求項39或40所述之相位移光罩之製造方法所獲得之相位移光罩,對塗布有光阻劑之感光性基板進行曝光。 An exposure method in which a photosensitive substrate coated with a photoresist is exposed using a phase shift mask obtained by the manufacturing method of a phase shift mask as described in claim 39 or 40. 一種元件之製造方法,其具有:曝光步驟,藉由如請求項41之曝光方法對上述感光性基板進行曝光;及顯影步驟,使經曝光之上述感光性基板顯影。 A method of manufacturing an element, which includes: an exposure step of exposing the above-mentioned photosensitive substrate by the exposure method according to claim 41; and a development step of developing the exposed photosensitive substrate.
TW108117948A 2018-09-14 2019-05-24 Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method TWI818992B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172898 2018-09-14
JPJP2018-172898 2018-09-14

Publications (2)

Publication Number Publication Date
TW202011108A TW202011108A (en) 2020-03-16
TWI818992B true TWI818992B (en) 2023-10-21

Family

ID=69777713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117948A TWI818992B (en) 2018-09-14 2019-05-24 Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method

Country Status (5)

Country Link
JP (1) JP7151774B2 (en)
KR (1) KR102582203B1 (en)
CN (1) CN112689796A (en)
TW (1) TWI818992B (en)
WO (1) WO2020054131A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372424A (en) * 2010-08-12 2012-03-14 Hoya株式会社 Substrate for masking base, masking base and method for manufacturing transferring mask
JP2016153889A (en) * 2015-02-16 2016-08-25 大日本印刷株式会社 Photomask, photomask blanks and manufacturing method of photomask
JP2018091889A (en) * 2016-11-30 2018-06-14 Hoya株式会社 Mask blank, production method for transfer mask, and production method for semiconductor device
TW201823851A (en) * 2016-09-28 2018-07-01 日商信越化學工業股份有限公司 Halftone phase shift mask blank and halftone phase shift mask
JP2018116263A (en) * 2017-01-16 2018-07-26 Hoya株式会社 Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279214A (en) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd Photomask blank and its manufacturing method, and photomask and its manufacturing method
JP5588633B2 (en) 2009-06-30 2014-09-10 アルバック成膜株式会社 Phase shift mask manufacturing method, flat panel display manufacturing method, and phase shift mask
JP6101646B2 (en) * 2013-02-26 2017-03-22 Hoya株式会社 Phase shift mask blank and manufacturing method thereof, phase shift mask and manufacturing method thereof, and display device manufacturing method
JP6324756B2 (en) * 2013-03-19 2018-05-16 Hoya株式会社 Phase shift mask blank and method for manufacturing the same, method for manufacturing phase shift mask, and method for manufacturing display device
JP6502143B2 (en) * 2015-03-27 2019-04-17 Hoya株式会社 Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP2017181545A (en) * 2016-03-28 2017-10-05 Hoya株式会社 Production method of photomask for manufacturing display device
JP6558326B2 (en) * 2016-08-23 2019-08-14 信越化学工業株式会社 Halftone phase shift mask blank manufacturing method, halftone phase shift mask blank, halftone phase shift mask, and thin film forming apparatus for photomask blank
JP6632950B2 (en) * 2016-09-21 2020-01-22 Hoya株式会社 Photomask blank, photomask blank manufacturing method, photomask manufacturing method using the same, and display device manufacturing method
JP2017033004A (en) * 2016-09-21 2017-02-09 Hoya株式会社 Photomask for manufacturing display device, method for manufacturing the photomask, method for pattern transfer, and method for manufacturing display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372424A (en) * 2010-08-12 2012-03-14 Hoya株式会社 Substrate for masking base, masking base and method for manufacturing transferring mask
JP2016153889A (en) * 2015-02-16 2016-08-25 大日本印刷株式会社 Photomask, photomask blanks and manufacturing method of photomask
TW201823851A (en) * 2016-09-28 2018-07-01 日商信越化學工業股份有限公司 Halftone phase shift mask blank and halftone phase shift mask
JP2018091889A (en) * 2016-11-30 2018-06-14 Hoya株式会社 Mask blank, production method for transfer mask, and production method for semiconductor device
JP2018116263A (en) * 2017-01-16 2018-07-26 Hoya株式会社 Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device

Also Published As

Publication number Publication date
CN112689796A (en) 2021-04-20
JP7151774B2 (en) 2022-10-12
JPWO2020054131A1 (en) 2021-08-30
KR102582203B1 (en) 2023-09-22
WO2020054131A1 (en) 2020-03-19
KR20210032534A (en) 2021-03-24
TW202011108A (en) 2020-03-16

Similar Documents

Publication Publication Date Title
TWI711876B (en) Photomask blank, method of manufacturing photomask blank, method of manufacturing photomask using them, and method of manufacturing display device
US7901842B2 (en) Photomask blank and method of producing the same, method of producing photomask, and method of producing semiconductor device
TWI676078B (en) Photomask blank, method of manufacturing photomask using same, and method of manufacturing display device
TWI554823B (en) Method of manufacturing a multi-tone photomask and pattern transfer method
TWI829153B (en) Blank mask, photomask using the same, and manufacture method of semiconductor device
TWI758324B (en) Mask substrate, phase shift mask, manufacturing method of phase shift mask, and manufacturing method of semiconductor device
JP2002169265A (en) Photomask blank and method of manufacturing photomask blank
JP7340057B2 (en) Photomask blank and photomask using the same
KR20070095262A (en) Half-tone phase shift blankmask, half-tone phase shift photomask and its manufacturing method
JP7514897B2 (en) Blank mask and photomask using same
TWI818992B (en) Phase shift mask blank, manufacturing method of phase shift mask blank, phase shift mask, manufacturing method of phase shift mask, exposure method, and component manufacturing method
TWI819769B (en) Blank mask and photomask using the same
TWI774840B (en) Mask blank and its manufacturing method, mask and its manufacturing method, exposure method, and device manufacturing method
JP7491984B2 (en) Blank mask and photomask using same
JP7539525B2 (en) Blank mask and photomask using same
TWI852522B (en) Blank mask, photomask and manufacturing method of semiconductor device
JP7479536B2 (en) Blank mask and photomask using same
JP7482187B2 (en) Blank mask and photomask using same
JP2023108598A (en) Mask blank, mask for transfer, method for producing mask for transfer and method for producing display device
KR20090068011A (en) Photomask and the method for fabricating the same