TWI818627B - 水質檢測方法 - Google Patents

水質檢測方法 Download PDF

Info

Publication number
TWI818627B
TWI818627B TW111126849A TW111126849A TWI818627B TW I818627 B TWI818627 B TW I818627B TW 111126849 A TW111126849 A TW 111126849A TW 111126849 A TW111126849 A TW 111126849A TW I818627 B TWI818627 B TW I818627B
Authority
TW
Taiwan
Prior art keywords
water quality
detection method
quality detection
measurement signal
sample
Prior art date
Application number
TW111126849A
Other languages
English (en)
Other versions
TW202405731A (zh
Inventor
李仕宇
顏毅廣
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW111126849A priority Critical patent/TWI818627B/zh
Application granted granted Critical
Publication of TWI818627B publication Critical patent/TWI818627B/zh
Publication of TW202405731A publication Critical patent/TW202405731A/zh

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本發明提供一種水質檢測方法,包括提供一可攜式感測器檢測一水質樣本得到的一量測訊號、將量測訊號輸入一混沌系統並得到包括至少一非線性特徵的一多維度訊號、依據非線性特徵對多維度訊號進行分類並產生一分類結果以及依據分類結果得出水質樣本中至少一特定離子的濃度值。

Description

水質檢測方法
本發明提供一種水質檢測方法,且特別是關於一種利用可攜式感測器及混沌系統對水質樣本進行檢測的水質檢測方法。
水是人類生活中不可或缺的必需品之一。一般而言,自來水廠在提供作為日常用水的自然水時,會將具有高氧化能力的化學物質(例如次氯酸鹽)添加至水中,藉以輔助消毒流程或維持消毒過的自來水中的氯離子濃度,使自來水在輸送到家庭的過程中能保持無菌的狀態,但上述的添加步驟卻也容易導致飲用水以及日常用水中的氯離子濃度超標。除此之外,一些例如井水、地下水等水源可能因為受到污染,而使得水中含有鈉、鎂、鉀、鈣、鋁以外的重金屬元素,這些元素即使濃度很低也無法透過生物降解,容易對人體造成極大的危害。因此,如何偵測水質中的游離元素或重金屬元素的濃度一直以來都是一個重要的課題。
目前實驗室中檢測氯離子以及重金屬離子的方法主要包括原子吸收光譜法(atomic absorption spectroscopy,AAS)、感應耦合電漿原子發射光譜法(inductively coupled plasma atomic emission spectroscopy,ICP-AES)、感應耦合電漿質譜儀法(inductively coupled plasma mass spectrometry,ICP-MS)、高效液相色譜儀法(high performance liquid chromatography,HPLC)以及酶抑制法(enzyme inhibition method)等等,這些分析方法雖然具有高靈敏度、高選擇性以及高準確 度的優勢,但分析所需的設備不僅昂貴且體積龐大,僅能由使用者將欲進行檢測的水質樣本輸入設備,因此無法進行現場勘驗,且每一次的檢測皆會對樣本產生破壞性的干涉,使得這些樣本無法再度利用。此外,上述設備在使用時皆需要專業人員進行操作,不僅檢測所需時間冗長且單次操作所需的費用不貲,以感應耦合電漿質譜儀法為例,每一樣本的單次操作費用約為新台幣五千至五萬元不等,這些缺點均大幅限制了目前水質檢測技術的應用。
發明人遂竭其心智悉心研究,進而研發出一種利用可攜式感測器及混沌系統對水質樣本進行檢測的水質檢測方法,以期達到實現現場勘驗、降低操作人員要求、降低檢測成本以及縮短檢測時間的效果。
本發明提供一種水質檢測方法,包括提供一可攜式感測器檢測一水質樣本得到的一量測訊號、將量測訊號輸入一混沌系統並得到包括至少一非線性特徵的一多維度訊號、依據非線性特徵對多維度訊號進行分類並產生一分類結果以及依據分類結果得出水質樣本中至少一特定離子的濃度值。
在一實施例中,上述的可攜式感測器包括相異的複數個感測分子層,且水質檢測方法還包括透過感測分子層分別量測至少一樣本溶液並得到至少一樣本訊號,其中樣本溶液包括至少一待測離子;將樣本訊號輸入混沌系統並建立一量測訊號資料庫;以及對分類結果與量測訊號資料庫進行計算比對。
在一實施例中,水質檢測方法還包括透過一模糊辨識系統或一類神經網路對多維度訊號與量測訊號資料庫進行計算比對。
在一實施例中,上述的待測離子為氯離子、鉛離子、汞離子或鎘離子,且感測分子層包括聚(3,4-亞乙基二氧噻吩)、聚(3,4-亞丙基二氧噻吩)、聚苯胺以及凝血酶結合適體的至少其中之一。
在一實施例中,上述的混沌系統為一Chen-Lee系統,且Chen-Lee系統與量測訊號之關係式如下所示:
Figure 111126849-A0305-02-0004-1
其中y 1,y 2,y 3分別為量測訊號在Chen-Lee系統的一狀態,
Figure 111126849-A0305-02-0004-3
,
Figure 111126849-A0305-02-0004-4
,
Figure 111126849-A0305-02-0004-5
分別為各狀態的微分值,且a,b,c,d分別為調整用參數。
在一實施例中,水質檢測方法還包括將各狀態的微分值輸入混沌系統進行複數次迭代並得到多維度訊號。
在一實施例中,上述的非線性特徵為各狀態之間的一差值,且水質檢測方法還包括定義至少一混沌吸引子、計算非線性特徵與混沌吸引子之間的一歐式距離以及當歐式距離小於等於一設定閾值時結束迭代。
在一實施例中,水質檢測方法還包括依據各差值的一基底向量定義一向量空間以及依據非線性特徵在向量空間中的一分布區域以及非線性特徵的一模態產生分類結果。
在一實施例中,水質檢測方法還包括對量測訊號進行預處理。
在一實施例中,上述的可攜式感測器包括一陣列式奈米力學感測晶片或一陣列式微懸臂樑結構。
藉此,本發明的水質檢測方法能在水質現場透過可攜式感測器檢測得到量測訊號,並將量測訊號輸入混沌系統,即可依據分類結果得出水質樣本中特定離子的濃度值,不僅毋需專業人員操作,亦能達到降低檢測成本以及縮短檢測時間的效果。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100:可攜式感測器
110:本體
120:奈米力學感測晶片
122:感測分子層
130:溫度感測器
140:酸鹼值感測器
S100~S620:步驟
圖1為本發明的水質檢測方法的一實施例的步驟流程圖。
圖2為應用於本發明的水質檢測方法的可攜式感測器的一實施例的立體示意圖。
圖3為針對(a)1~50ppm氯離子;(b)50~500ppm氯離子;以及(c)0.01~1000ppm鉛離子量測得到的樣本訊號的校正曲線示意圖。
圖4為將含有不同濃度鎘離子的水質樣本的量測訊號輸入混沌系統後得到的非線性特徵在向量空間中的映射模態示意圖。
圖5為將含有不同濃度鉛離子的水質樣本的量測訊號輸入混沌系統後得到的非線性特徵在向量空間中的映射模態示意圖。
有關本發明之前述及其它技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚地呈現。值得一提的是,以下實施例所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明,而非對本發明加以限制。此外,在下列的實施例中,相同或相似的元件將採用相同或相似的標號。
請參考圖1,圖1為本發明的水質檢測方法的一實施例的步驟流程圖。本實施例的水質檢測方法包括以下步驟:提供一可攜式感測器檢測一水質樣本得到的一量測訊號(步驟S100);將量測訊號輸入一混沌系統並得到包括至少一 非線性特徵的一多維度訊號(步驟S300);依據非線性特徵對多維度訊號進行分類並產生一分類結果(步驟S400);以及依據分類結果得出水質樣本中至少一特定離子的濃度值(步驟S500)。
詳細而言,本實施例的水質檢測方法適用於一可攜式感測器,使用者可自欲進行檢測的水域中提取少許的水質樣本,並藉由可攜式感測器進行檢測,或者也可以將可攜式感測器的感測元件浸潤於水域中直接進行檢測,本發明對此不加以限制。請參考圖2,圖2為應用於本發明的水質檢測方法的可攜式感測器的一實施例的立體示意圖,如圖2所示,本實施例的可攜式感測器100包括一本體110以及複數個奈米力學感測晶片120,且這些奈米力學感測晶片120的一端嵌設或固設於本體110的側壁上。換言之,這些奈米力學感測晶片120共同形成了一陣列式懸臂樑結構,用以感測水質樣本中的待測離子。
在本實施例中,各個奈米力學感測晶片120上分別配置有相異的感測分子層122,且各個感測分子層122例如是聚(3,4-亞乙基二氧噻吩)(PEDOT:PSS)、聚(3,4-亞乙基二氧噻吩)(PProDOT)、聚苯胺(PANI)等導電高分子或者是凝血酶結合適體(TBA)等生物分子,其中導電高分子結合了金屬以及半導體的光電性質,因此具有優良的聚合物加工特性以及機械性質,且可同時強化感測器的長期穩定性、訊號傳導增益以及辨識特異性等性質;而適體型生物分子在有限的尺寸範圍內對於奈米級的鉛、汞等金屬離子具有極高的靈敏度,且同時具有低抗原性、標的物多樣性以及高穩定度等優點,因此亦適合用於本實施例的感測分子層。然而,在其它可能的實施例中,感測分子層122也可以由一般的電化學電極、奈米金屬稜鏡體、光纖表面電漿共振、石英晶體等材料所組成或置換,本發明對此不加以限制。
除了材料的選用之外,如何將這些導電高分子或生物分子配置於奈米力學感測晶片120上也是一個重要的課題。在本實施例中,感測分子層122採用直接擠出塗布技術,並透過化學自我組裝橋接技術整合溫度控制而能夠均勻塗布或修飾於奈米力學感測晶片120形成的陣列式懸臂樑結構表面。相較於傳統的塗布方式,這樣的作法可減少塗布材料的浪費,且對於微型晶片的後處理步驟有著更大的兼容性。以PEDOT:PSS為例,導電高分子材料約以0.02mL/hr的流速經由管道幫浦流至夾持於三軸線性平台上的微型針管,同時欲進行塗布作業的感測晶片藉由電熱板以85℃的溫度加熱10分鐘,透過控制幫浦壓力改變材料流速、材料的固體含量、微型針管移動速度以及塗布的寬度,改變形成於感測晶片上的材料薄膜厚度。對於適體型生物分子,在塗布時會先將8-氫硫辛酸(8-mercaptooctanoic acid)自我組裝分子修飾在金層表面上,並將配置有上述自我組裝分子的金層的晶片浸泡於聚二甲基矽氧烷(PDMS)的化學反應槽內。在浸泡24小時後,使用去離子水沖洗晶片以除去未佈植的8-氫硫辛酸,再以1-乙基-3-(3-二甲基氨基丙基)碳二亞胺(3-[(ethylimino)methylidene]amino-N,N-dimethylpropan-1-amine,EDC)與N-羥基丁二醯亞胺(1-Hydroxy-2,5-pyrrolidinedione,NHS)活化已佈植的自我組裝層,接著再以1μM濃度的適體溶液透過滴管滴入化學反應槽內,並再度封蓋浸泡約4~5小時,最後再以去離子水沖洗即可完成具有生物分子的感測分子層122。
當奈米力學感測晶片120浸潤或接觸水質樣本時,檢測物(水中離子)會吸附於感測分子層122的表面或被感測分子層122吸收,從而引起表面自由能或塗層膨脹等變化,此時微懸臂樑結構將對應產生準靜態變形,從而產生量測訊號。較佳地,可攜式感測器100還包括一溫度感測器130以及一酸鹼值感測器 140,其中溫度感測器130以及酸鹼值感測器140可為單晶片型感測器,可在奈米力學感測晶片120檢測水質樣本時偵測水質樣本的溫度及酸鹼值,從而對量測訊號進行補償。
較佳地,水質檢測方法還包括以下步驟:透過感測分子層分別量測至少一樣本溶液並得到至少一樣本訊號,其中樣本溶液包括至少一待測離子(步驟S600);將樣本訊號輸入混沌系統並建立一量測訊號資料庫(步驟S610);以及對分類結果與量測訊號資料庫進行計算比對(步驟S620)。具體而言,各個感測分子層122對於欲進行檢測的待測離子具有專一性的反應,表一列出PEDOT:PSS、PANI、1,6-己二硫醇(HDT)、TBA適體以及未塗布感測分子或生物分子的金層(Au)對於氯離子、鉛離子、汞離子及鎘離子的反應有無(其中+號代表具有反應)。
Figure 111126849-A0305-02-0008-6
因此,在對實際的水質樣本進行檢測之前,使用者可先針對具有單一離子的溶液進行測試,並產生對應的樣本訊號。請參考圖3,圖3為針對(a)1~50ppm氯離子;(b)50~500ppm氯離子;以及(c)0.01~1000ppm鉛離子量測得到的樣本訊號的校正曲線示意圖。這些樣本訊號可預先輸入建立好的混沌系統並得到特定的輸出訊號,再將這些輸出訊號整合從而建立一量測訊號資料庫。之 後,當對真正欲進行檢測的水質樣本進行檢測而生成量測訊號時,透過比對量測訊號輸入混沌系統所得到的多維度訊號以及預先建立好的量測訊號資料庫,即可迅速得到分類結果並得知待測離子的濃度值。在本實施例中,為了有利於使用者辨識,樣本訊號以及多維度訊號皆經過影像化處理成為本發明所屬技術領域中具有通常知識者可藉由視覺辨識的資料,且比對的方式例如是透過影像使用的模糊辨識系統,或透過類神經網路的機械學習方式對兩者進行相似度比對。然而,在其它可能的實施例中,樣本訊號以及多維度訊號也可單純以數值的方式呈現,且比對的方式亦不限定於上述提及的辨識方法。
值得一提的是,上述的量測訊號資料庫可透過網路建立在雲端,且除了可攜式感測器100之外,本發明提供的水質檢測方法還具有專用的應用程式介面,其中應用程式介面包括使用者介面、樣本訊號或量測訊號校正用的演算系統、混沌系統以及比對訊號圖案用的演算系統,因此使用者可將上述的應用程式介面安裝於例如是手機、平板電腦或筆記型電腦等可攜式智慧型電子裝置,透過連網功能將檢測結果即時上傳至雲端空間與量測訊號資料庫進行比對,並透過使用者介面得知比對結果,因此可大幅縮短檢測所需的時間。
當水質中同時具有複數種待測離子時,各個奈米力學感測晶片120所偵測到的訊號為極度不規則且非線性的訊號,為了能放大水質樣本中待測離子對奈米力學感測晶片120的差異並建立出具有高辨識度的模態,本實施例的水質檢測方法採用混沌系統對可攜式感測器100得到的量測訊號進行演算處理。較佳地,量測訊號在進行演算處理前可進行預處理(步驟S200),其中訊號預處理包括但不限於平滑處理、等時段或不等時段間隔取樣、特定窗口濾波、放大訊號增益以及降噪處理等等。
在本實施例中,混沌系統為Chen-Lee系統,且Chen-Lee系統與量測訊號之關係式如下所示:
Figure 111126849-A0305-02-0010-7
其中y 1,y 2,y 3分別為量測訊號在該Chen-Lee系統的一狀態,例如是各感測分子層122對應的響應值,而
Figure 111126849-A0305-02-0010-8
,
Figure 111126849-A0305-02-0010-9
,
Figure 111126849-A0305-02-0010-10
分別為各狀態的微分值,且a,b,c,d分別為調整用參數。經實驗得知,當(a,b,c,d)=(5,-10,-3,-1/3)時,透過混沌系統驗算的量測訊號可呈現複雜且多元的混沌軌跡,因此可將不同狀態的原始化學訊號之間的微小誤差轉化為巨大的差異,並從中提取作為分類基準的非線性特徵。
當量測訊號輸入上述混沌系統時,可得到量測訊號各狀態的微分值,而為了建立足以進行辨識的模態,水質檢測方法還包括:將各狀態的微分值輸入混沌系統進行複數次迭代並得到多維度訊號(步驟S310)。換言之,演算得到的結果微分值將再次作為混沌系統的輸入訊號,使得訊號在迭代過程中逐漸呈現自我重複或自我延遲的情況。
在演算過程中,系統會將各狀態之間的差值(error)定義為對應於輸入量測訊號的非線性特徵,並依據非線性特徵自我重複或自我延遲的基準點定義至少一混沌吸引子(步驟S320)。因此,當狀態為N個時,將會對應N個非線性特徵具有N維資訊的混沌吸引子,且系統將會計算非線性特徵與混沌吸引子之間的歐式距離(即:
Figure 111126849-A0305-02-0010-11
,其中e i 為第i個非線性特徵的特徵值,a i 為混沌吸 引子的在第i維上的分量),當迭代過程中歐式距離小於等於使用者的一設定閾值時可結束迭代,並建構出具有至少一非線性特徵的一多維度訊號。
如同上文中所述,為了便於使用者辨識,水質檢測方法還可包括:依據各差值的一基底向量定義一向量空間;以及依據非線性特徵在向量空間中的一分布區域以及非線性特徵的一模態產生分類結果。請參考圖4及圖5,其中圖4為將含有不同濃度鎘離子的水質樣本的量測訊號輸入混沌系統後得到的非線性特徵在向量空間中的映射模態示意圖,而圖5為將含有不同濃度鉛離子的水質樣本的量測訊號輸入混沌系統後得到的非線性特徵在向量空間中的映射模態示意圖。如圖4及圖5所示,當量測的水質樣本中具有不同的待測離子,或是各待測離子對應的濃度不同時,多維度訊號的非線性特徵的對應影像的分布區域以及模態形狀都會具有明顯的差異。因此,依據這些非線性特徵可對產生的多維度訊號進行分類並產生一分類結果,並依據分類結果得出水質樣本中特定離子的濃度值,而當濃度值小於一臨界值時,即可判定檢測的水質樣本中不具有此待測離子。
相較於傳統的檢測方法,本實施例的水質檢測方法能透過可攜式感測器實現,因此可減少水質樣本取得不易且無法再度利用的問題。除此之外,使用者可在短時間(依據訊號複雜程度為數小時至半天不等)內透過混沌系統以及訊號比對得到待測離子的濃度值,因此不僅毋需專業人員操作,且可大幅降低檢測成本。
本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,上述實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。且應注 意的是,舉凡與上述實施例等效之變化與置換,均應視為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。
S100~S620:步驟

Claims (9)

  1. 一種水質檢測方法,包括:提供一可攜式感測器檢測一水質樣本得到的一量測訊號;將該量測訊號輸入一混沌系統並得到包括至少一非線性特徵的一多維度訊號,該混沌系統為一Chen-Lee系統,且該Chen-Lee系統與該量測訊號之關係式如下所示:
    Figure 111126849-A0305-02-0013-12
    其中y 1,y 2,y 3分別為該量測訊號在該Chen-Lee系統的一狀態,
    Figure 111126849-A0305-02-0013-13
    ,
    Figure 111126849-A0305-02-0013-14
    ,
    Figure 111126849-A0305-02-0013-15
    分別為各該狀態的微分值,且a,b,c,d分別為調整用參數;依據該至少一非線性特徵對該多維度訊號進行分類並產生一分類結果;以及依據該分類結果得出該水質樣本中至少一特定離子的濃度值。
  2. 如請求項1所述的水質檢測方法,其中該可攜式感測器包括相異的複數個感測分子層,且該水質檢測方法還包括:透過該複數個感測分子層分別量測至少一樣本溶液並得到至少一樣本訊號,其中該至少一樣本溶液包括至少一待測離子;將該至少一樣本訊號輸入該混沌系統並建立一量測訊號資料庫;以及對該分類結果與該量測訊號資料庫進行計算比對。
  3. 如請求項2所述的水質檢測方法,還包括:透過一模糊辨識系統或一類神經網路對該多維度訊號與該量測訊號資料庫進行計算比對。
  4. 如請求項2所述的水質檢測方法,其中該至少一待測離子為氯離子、鉛離子、汞離子或鎘離子,且該複數個感測分子層包括聚(3,4-亞乙基二氧噻吩)、聚(3,4-亞丙基二氧噻吩)、聚苯胺以及凝血酶結合適體的至少其中之一。
  5. 如請求項1所述的水質檢測方法,還包括:將各該狀態的微分值輸入該混沌系統進行複數次迭代並得到該多維度訊號。
  6. 如請求項5所述的水質檢測方法,其中該至少一非線性特徵為各該狀態之間的一差值,且該水質檢測方法還包括:定義至少一混沌吸引子;計算該至少一非線性特徵與該至少一混沌吸引子之間的一歐式距離;以及當該歐式距離小於等於一設定閾值時結束該複數次迭代。
  7. 如請求項6所述的水質檢測方法,還包括:依據各該差值的一基底向量定義一向量空間;以及依據該至少一非線性特徵在該向量空間中的一分布區域以及該至少一非線性特徵的一模態產生該分類結果。
  8. 如請求項1所述的水質檢測方法,還包括:對該量測訊號進行預處理。
  9. 如請求項1所述的水質檢測方法,其中該可攜式感測器包括一陣列式奈米力學感測晶片或一陣列式微懸臂樑結構。
TW111126849A 2022-07-18 2022-07-18 水質檢測方法 TWI818627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111126849A TWI818627B (zh) 2022-07-18 2022-07-18 水質檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111126849A TWI818627B (zh) 2022-07-18 2022-07-18 水質檢測方法

Publications (2)

Publication Number Publication Date
TWI818627B true TWI818627B (zh) 2023-10-11
TW202405731A TW202405731A (zh) 2024-02-01

Family

ID=89857499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111126849A TWI818627B (zh) 2022-07-18 2022-07-18 水質檢測方法

Country Status (1)

Country Link
TW (1) TWI818627B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9015003B2 (en) * 1998-12-17 2015-04-21 Hach Company Water monitoring system
CN106990060B (zh) * 2017-03-24 2018-08-03 四川碧朗科技有限公司 水质指标监测仪、云数据中心及系统、预测方法和水样识别方法
CN107992645B (zh) * 2017-10-30 2021-02-26 嘉兴学院 基于混沌-烟花混合算法的污水处理过程软测量建模方法
TWI746059B (zh) * 2020-07-15 2021-11-11 方達科技股份有限公司 用於優化污水處理設施效能之人工智慧輔助操作系統以及使用它之污水水質人工智慧優化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9015003B2 (en) * 1998-12-17 2015-04-21 Hach Company Water monitoring system
CN106990060B (zh) * 2017-03-24 2018-08-03 四川碧朗科技有限公司 水质指标监测仪、云数据中心及系统、预测方法和水样识别方法
CN107992645B (zh) * 2017-10-30 2021-02-26 嘉兴学院 基于混沌-烟花混合算法的污水处理过程软测量建模方法
TWI746059B (zh) * 2020-07-15 2021-11-11 方達科技股份有限公司 用於優化污水處理設施效能之人工智慧輔助操作系統以及使用它之污水水質人工智慧優化方法

Also Published As

Publication number Publication date
TW202405731A (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
Maity et al. High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material
JP5246741B2 (ja) 液体中の汚染物質を検出する装置及びそれを使用するためのシステム
Sheng et al. Electrochemical detection combined with machine learning for intelligent sensing of maleic hydrazide by using carboxylated PEDOT modified with copper nanoparticles
Bhalla et al. Dual-mode refractive index and charge sensing to investigate complex surface chemistry on nanostructures
Rotake et al. Fabrication, calibration, and preliminary testing of microcantilever‐based piezoresistive sensor for BioMEMS applications
Minh et al. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration
US20100282605A1 (en) Apparatus for Detecting Nano Particle Having Nano-Gap Electrode
Das et al. Signal processing for single biomolecule identification using nanopores: a review
Iwata et al. Application of neural network based regression model to gas concentration analysis of TiO2 nanotube-type gas sensors
Shamim TinyML model for classifying hazardous volatile organic compounds using low-power embedded edge sensors: Perfecting factory 5.0 using edge AI
TWI818627B (zh) 水質檢測方法
Huang et al. Few-shot learning-based, long-term stable, sensitive chemosensor for on-site colorimetric detection of Cr (VI)
Zhang et al. Fast measurement with chemical sensors based on sliding window sampling and mixed-feature extraction
Zanoni et al. Voltammetric Detection of Irbesartan by Molecularly Imprinted Polymer (MIP)-Modified Screen-Printed Electrodes
Archbold et al. Towards the implementation of isfet sensors for in-situ and real-time chemical analyses in soils: A practical review
Ruan et al. Selective detection of heavy metal ions by self assembled chemical field effect transistors
Wong et al. Nanoporous gold as a VOC sensor, based on nanoscale electrical phenomena and convolutional Neural Networks
Ciepiela et al. Principal components–based techniques in Voltammetric determination of Caffeic, Syringic and Vanillic acids
Plugotarenko et al. Comparative Analysis of Derivative Parameters of Chemoresistive Sensor Signals for Gas Concentration Estimation
Taylor et al. A decision framework reference for ISFET sensor-based electronic systems design for agriculture industry applications
Chen et al. Ion-step method for surface potential sensing of silicon nanowires
Chen Construction and Signal Feature Processing of Gold Nanobiosensors Based on the Internet of Things
Cioffi et al. Ion-beam sputtered palladium-fluoropolymer nano-composites as active layers for organic vapours sensors
Ward et al. Reduction in sensor response time using long short-term memory network forecasting
Molinara et al. A deep transfer learning approach to an effective classification of water pollutants from voltammetric characterizations