TWI818264B - Myocardial ischemia detection device and myocardial ischemia detection method - Google Patents

Myocardial ischemia detection device and myocardial ischemia detection method Download PDF

Info

Publication number
TWI818264B
TWI818264B TW110119295A TW110119295A TWI818264B TW I818264 B TWI818264 B TW I818264B TW 110119295 A TW110119295 A TW 110119295A TW 110119295 A TW110119295 A TW 110119295A TW I818264 B TWI818264 B TW I818264B
Authority
TW
Taiwan
Prior art keywords
human body
myocardial ischemia
qtc
chest
intervals
Prior art date
Application number
TW110119295A
Other languages
Chinese (zh)
Other versions
TW202245693A (en
Inventor
吳造中
羅孟宗
陳威宇
哈卓司
吳佳霖
Original Assignee
財團法人祺華教育基金會
吳佳霖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人祺華教育基金會, 吳佳霖 filed Critical 財團法人祺華教育基金會
Priority to TW110119295A priority Critical patent/TWI818264B/en
Priority to PCT/US2022/029576 priority patent/WO2022251003A1/en
Priority to CN202210543461.8A priority patent/CN115399778A/en
Publication of TW202245693A publication Critical patent/TW202245693A/en
Application granted granted Critical
Publication of TWI818264B publication Critical patent/TWI818264B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/36Detecting PQ interval, PR interval or QT interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/353Detecting P-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/355Detecting T-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/358Detecting ST segments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening

Abstract

一種心肌缺血檢測裝置,包含一量測單元及一處理單元。一種心肌缺血檢測方法包含一量測步驟、一擷取特徵步驟及一第一分析步驟。該量測步驟藉由該量測單元取得一人體的數個心電訊號。至少部分的該等心電訊號的量測位置對應該人體的左胸口。該擷取特徵步驟藉由該處理單元擷取每一心電訊號的QT間期,並據以計算數個分別對應人體的數個點位的特徵值。該第一分析步驟是比對該等特徵值中最低的至少一者對應的點位位置,以檢測心肌缺血位置。相對於現有以ST段的波形變化的分析方式,該等QT間期較不會受到噪訊與基線偏移的影響,能避免評估誤差。A myocardial ischemia detection device includes a measurement unit and a processing unit. A myocardial ischemia detection method includes a measurement step, a feature extraction step and a first analysis step. The measuring step obtains several ECG signals of a human body through the measuring unit. The measurement locations of at least part of the ECG signals correspond to the left chest of the human body. The feature extraction step uses the processing unit to capture the QT interval of each ECG signal, and calculates several feature values corresponding to several points on the human body based on this. The first analysis step is to compare the point position corresponding to at least one of the lowest feature values to detect the position of myocardial ischemia. Compared with the existing analysis method of waveform changes in the ST segment, these QT intervals are less affected by noise and baseline deviation, and can avoid evaluation errors.

Description

心肌缺血檢測裝置及心肌缺血檢測方法Myocardial ischemia detection device and myocardial ischemia detection method

本發明是有關於一種心電訊號的分析,特別是指一種心肌缺血檢測裝置及心肌缺血檢測方法。The present invention relates to an analysis of electrocardiogram signals, and in particular, to a myocardial ischemia detection device and a myocardial ischemia detection method.

維持心臟血液供給的三條冠狀動脈分別為冠狀動脈右支(RCA)、冠狀動脈左前下降支(LAD),及冠狀動脈左迴返支(LCX)。因應不同的動脈血管阻塞,所進行的醫療處置均有所不同。美國心臟學會律定心肌梗塞患者在到院後的90分鐘內應接受心導管治療,以減少病人心肌缺血的時間及死亡率,因此如何在最短的時間內評估是否有心肌缺血及心肌缺血位置是相當重要的 。The three coronary arteries that maintain blood supply to the heart are the right coronary artery (RCA), the left anterior descending coronary artery (LAD), and the left recurrent coronary artery (LCX). Different medical treatments are required for different arterial blood vessel obstructions. The American Heart Association stipulates that patients with myocardial infarction should receive cardiac catheterization within 90 minutes after arriving at the hospital to reduce the patient's myocardial ischemia time and mortality. Therefore, how to evaluate whether there is myocardial ischemia and myocardial ischemia in the shortest possible time? Location is quite important.

一般評估急性心肌缺血位置時,是透過十二導程心電圖進行評估。在評估時,醫療人員需要依據前胸導程(V1-V6)、下壁導程(II、III、aVF),及側壁/心尖導程(I、aVL、V5、V6)等不同組群導程的ST段的上升或下降波形變化情形綜合評估,由於在心肌缺血的早期往往ST段的變化並不明顯,因此在實務上要縮短評估時間實有一定的困難度。Generally, when assessing the location of acute myocardial ischemia, a twelve-lead electrocardiogram is used. During assessment, medical personnel need to conduct guidance based on different groups such as anterior chest leads (V1-V6), inferior wall leads (II, III, aVF), and lateral wall/apical leads (I, aVL, V5, V6). Comprehensive assessment of the rising or falling waveform changes of the ST segment in the course of the process. Since the changes in the ST segment are often not obvious in the early stage of myocardial ischemia, it is actually difficult to shorten the assessment time in practice.

此外,心電圖的ST段的波形變化很容易受到胸壁阻抗、噪訊與基線偏移的影響,因此也容易產生評估誤差。In addition, the waveform changes of the ST segment of the electrocardiogram are easily affected by chest wall impedance, noise and baseline deviation, so it is also easy to produce evaluation errors.

因此,本發明的目的,即在提供一種能克服至少一個先前技術缺點的的心肌缺血檢測裝置。Therefore, it is an object of the present invention to provide a myocardial ischemia detection device that overcomes at least one of the shortcomings of the prior art.

本發明的另一目的,即在提供一種能克服至少一個先前技術缺點的的心肌缺血檢測方法。Another object of the present invention is to provide a myocardial ischemia detection method that can overcome at least one of the shortcomings of the prior art.

於是,本發明心肌缺血檢測裝置,適用於一人體。該心肌缺血檢測裝置包含一量測單元,及一處理單元。Therefore, the myocardial ischemia detection device of the present invention is suitable for a human body. The myocardial ischemia detection device includes a measurement unit and a processing unit.

該量測單元包括四個肢導電極,及數個胸前電極。該等肢導電極及該等胸前電極適用於取得該人體的數個心電訊號。至少部分的該等胸前電極的量測位置對應該人體的左胸口。The measurement unit includes four limb electrodes and several chest electrodes. The limb conduction electrodes and the chest electrodes are suitable for obtaining several ECG signals of the human body. The measurement positions of at least part of the chest electrodes correspond to the left chest of the human body.

該處理單元訊號連接該量測單元並能接收該等心電訊號。該處理單元能擷取該等心電訊號的QT間期,並藉由該等QT間期計算數個分別對應於該人體左胸口的數個點位的特徵值,再依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體的心肌缺血位置。The processing unit signal is connected to the measurement unit and can receive the ECG signals. The processing unit can capture the QT intervals of the ECG signals, and use the QT intervals to calculate a number of characteristic values corresponding to several points on the left chest of the human body, and then based on the characteristic values The ECG signal measurement position corresponding to at least one of the lowest ones is used to detect the myocardial ischemia position of the human body.

本發明心肌缺血檢測方法,包含一量測步驟、一擷取特徵步驟,及一第一分析步驟。The myocardial ischemia detection method of the present invention includes a measurement step, a feature extraction step, and a first analysis step.

該量測步驟是取得一人體的數個心電訊號。至少部分的該等心電訊號的量測位置對應該人體的左胸口。The measurement step is to obtain several ECG signals of a human body. The measurement locations of at least part of the ECG signals correspond to the left chest of the human body.

該擷取特徵步驟藉由一處理單元擷取每一心電訊號的QT間期,並依據該等QT間期計算數個分別對應該人體的左胸口的數個點位的特徵值。The feature extraction step uses a processing unit to capture the QT interval of each ECG signal, and calculates several feature values corresponding to several points on the left chest of the human body based on the QT intervals.

該第一分析步驟是比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,以檢測出心肌缺血位置。The first analysis step is to compare the point corresponding to at least one of the lowest feature values with the position of the left chest of the human body to detect the position of myocardial ischemia.

本發明的功效在於:藉由以該等QT間期計算該等特徵值以檢測出該人體的心肌缺血位置,由於相對於現有以ST段的波形變化的分析方式,該等QT間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差。The effect of the present invention is to detect the myocardial ischemia position of the human body by calculating the characteristic values based on the QT intervals. Compared with the existing analysis method based on the waveform changes of the ST segment, the QT intervals are shorter. It will not be affected by chest wall impedance, noise and baseline deviation, so it can avoid evaluation errors.

參閱圖1至圖4,本發明心肌缺血檢測裝置的一實施例,適用於一人體1。該人體包括一對應左胸口的參考面100。該參考面100是由該人體1的一右胸骨緣11、一第一肋間對應於該右胸骨緣11高度的水平線12、一左腋下中線13,及一第八肋骨對應於該右胸骨緣11高度的水平線14所界定出。Referring to Figures 1 to 4, an embodiment of the myocardial ischemia detection device of the present invention is suitable for a human body 1. The human body includes a reference surface 100 corresponding to the left chest. The reference plane 100 is composed of a right sternal edge 11 of the human body 1, a first intercostal horizontal line 12 corresponding to the height of the right sternal edge 11, a left axillary midline 13, and an eighth rib corresponding to the right sternum. The height of the edge 11 is defined by a horizontal line 14.

該心肌缺血檢測裝置包含一量測單元2、一處理單元3、一資料庫單元4、一輸入單元5、一輸出單元6,及一穿戴單元7。該處理單元3訊號連接該量測單元2、該處理單元3、資料庫單元4、該輸入單元5,及該輸出單元6。The myocardial ischemia detection device includes a measurement unit 2, a processing unit 3, a database unit 4, an input unit 5, an output unit 6, and a wearable unit 7. The processing unit 3 is connected with signals to the measurement unit 2 , the processing unit 3 , the database unit 4 , the input unit 5 , and the output unit 6 .

該輸入單元5能被輸入一操作指令、一模式選擇指令,及一輸出指令。The input unit 5 can be input with an operation command, a mode selection command, and an output command.

該量測單元2包括四個肢導電極26,及數個適用於設置並佈設於該參考面100且彼此間隔設置的胸前電極21。該量測單元2能依據該操作指令,使該等肢導電極26及該等胸前電極21取得該人體1的數個心電訊號。至少部分的該等胸前電極21的量測位置對應該人體1的左胸口。每一心電訊號形成有P波、Q波、R波、S波與T波。The measurement unit 2 includes four limb conductive electrodes 26 and a plurality of chest electrodes 21 that are suitable for being arranged on the reference surface 100 and spaced apart from each other. The measurement unit 2 can cause the limb conductive electrodes 26 and the chest electrodes 21 to obtain several ECG signals of the human body 1 according to the operation instruction. At least part of the measurement positions of the chest electrodes 21 correspond to the left chest of the human body 1 . Each ECG signal consists of P wave, Q wave, R wave, S wave and T wave.

其中,要特別說明的是,為了清楚揭露該等胸前電極21及該穿戴單元7對應於該人體1的設置位置,在圖3及後續的圖10、圖15與圖16中,該等胸前電極21是以假想線繪製,而圖2的該穿戴單元7則以虛線繪製。Among them, it should be noted that in order to clearly reveal the placement positions of the chest electrodes 21 and the wearing unit 7 corresponding to the human body 1, in Figure 3 and subsequent Figures 10, 15 and 16, the chest electrodes 21 and the wearing unit 7 are The front electrode 21 is drawn with an imaginary line, while the wearable unit 7 in Figure 2 is drawn with a dotted line.

該等胸前電極21的數量可以為16個以上,並且透過該等胸前電極21取得該人體1的該參考面100的相對應數量的心電訊號,且該等心電訊號對應量測位置佈設於該參考面100。The number of the chest electrodes 21 can be more than 16, and a corresponding number of ECG signals of the reference surface 100 of the human body 1 are obtained through the chest electrodes 21 , and the ECG signals correspond to the measurement positions. arranged on the reference plane 100 .

以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的至少2個胸前電極21對應該右胸骨緣11、至少3個胸前電極21對應該左胸骨緣111、至少3個胸前電極21對應介於該左胸骨緣111及一左鎖骨正中線112間之中線113、至少4個胸前電極21對應該左鎖骨正中線112、至少2個胸前電極21對應一左腋下前緣線114,並至少2個胸前電極21對應該左腋下中線13。In terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, at least 2 of the chest electrodes 21 correspond to the right sternal edge 11, and at least 3 of the chest electrodes 21 correspond to the left side. Sternal border 111, at least 3 chest electrodes 21 corresponding to the midline 113 between the left sternal border 111 and a left clavicle midline 112, at least 4 chest electrodes 21 corresponding to the left clavicle midline 112, at least 2 The chest electrode 21 corresponds to a left axillary front edge line 114, and at least two chest electrodes 21 correspond to the left axillary midline 13.

以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中至少3個胸前電極21對應一第三肋間對應於該右胸骨緣11高度、至少5個胸前電極21對應一第四肋間對應於該右胸骨緣11高度、至少4個胸前電極21對應一第五肋間對應於該右胸骨緣11高度、至少1個胸前電極21對應一第六肋間對應於該右胸骨緣11高度、並對應介於該左胸骨緣111及該左鎖骨正中線間112之中線113的至少3個該等胸前電極21的高度是介於該第三肋間至該第六肋骨之間。In terms of the longitudinal position of the chest electrodes 21 corresponding to the human body 1, at least 3 of the chest electrodes 21 correspond to a third intercostal space, corresponding to the height of the right sternal edge 11, and at least 5 chest electrodes 21. The front electrode 21 corresponds to a fourth intercostal space corresponding to the height of the right sternal edge 11 , at least four chest electrodes 21 correspond to a fifth intercostal space corresponding to the height of the right sternal border 11 , and at least one chest electrode 21 corresponds to a sixth intercostal space. The heights of at least three of the chest electrodes 21 corresponding to the height of the right sternal edge 11 and corresponding to the midline 113 between the left sternal edge 111 and the left clavicle midline 112 are between the third intercostal space and between the sixth ribs.

在本實施例中,該等胸前電極21的數量為16個,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的2個胸前電極21對應該右胸骨緣11、3個胸前電極21對應該左胸骨緣111、3個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、2個胸前電極21對應該左腋下前緣線114、2個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的3個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第六肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的3個該等胸前電極21分別對應於一第四肋骨、一第五肋骨及一第六肋骨的高度。In this embodiment, the number of the chest electrodes 21 is 16. In terms of the lateral position of the chest electrodes 21 corresponding to the human body 1, 2 of the chest electrodes 21 Corresponding to the right sternal edge 11, three prethoracic electrodes 21 correspond to the left sternal edge 111, and three prethoracic electrodes 21 correspond to the midline 113 between the left sternal edge 111 and the left clavicle midline 112, and four thoracic electrodes 21. The front electrode 21 corresponds to the left clavicle midline 112, the two chest electrodes 21 correspond to the left axillary front edge line 114, and the two chest electrodes 21 correspond to the left axillary midline 13; Corresponding to the longitudinal position of the human body 1, three of the chest electrodes 21 correspond to the third intercostal space corresponding to the height of the right sternal edge 11, and five of the chest electrodes 21 correspond to the fourth intercostal space. At the height of the right sternal margin 11 , four chest electrodes 21 correspond to the fifth intercostal space, correspond to the height of the right sternal margin 11 , four chest electrodes 21 correspond to the sixth intercostal space, correspond to the height of the right sternal border 11 , and correspond to The three chest electrodes 21 located on the midline 113 between the left sternal edge 111 and the left clavicle midline 112 respectively correspond to the heights of a fourth rib, a fifth rib and a sixth rib.

在本實施例中,該量測單元2還包括一電連接該等胸前電極21的訊號緩衝器22、一電連接該訊號緩衝器22的訊號放大器23、一電連接該訊號放大器23的濾波器24,及一電連接該濾波器24的訊號轉換器25。該訊號緩衝器22能提供一足夠大的輸入抗阻以耦合該等心電訊號至該訊號放大器23,該訊號放大器23進一步放大該等心電訊號並輸入該濾波器24,該濾波器24能去除該等心電訊號的雜訊及電源訊號的干擾,而該訊號轉換器25則能將該心電訊號轉換為類比訊號,以供後續該處理單元3分析使用。In this embodiment, the measurement unit 2 further includes a signal buffer 22 electrically connected to the chest electrodes 21 , a signal amplifier 23 electrically connected to the signal buffer 22 , and a filter electrically connected to the signal amplifier 23 filter 24, and a signal converter 25 electrically connected to the filter 24. The signal buffer 22 can provide a large enough input impedance to couple the ECG signals to the signal amplifier 23. The signal amplifier 23 further amplifies the ECG signals and inputs them into the filter 24. The filter 24 can The noise of the ECG signals and the interference of the power signal are removed, and the signal converter 25 can convert the ECG signals into analog signals for subsequent analysis by the processing unit 3 .

該資料庫單元4儲存一比對資訊41。該比對資訊41由右上至左下區分為三個比對區域411,該等比對區域411由右上至左下依序代表冠狀動脈左迴返支(LCX)、冠狀動脈左前下降支(LAD),及冠狀動脈右支(RCA)。The database unit 4 stores a comparison information 41 . The comparison information 41 is divided into three comparison areas 411 from the upper right to the lower left. The comparison areas 411 represent the left recurrent coronary artery (LCX), the left anterior descending coronary artery (LAD), and Right branch of coronary artery (RCA).

該處理單元3訊號連接該量測單元2並能接收該等心電訊號。該處理單元3能擷取該等心電訊號的QT間期及RR間期,並藉由該等QT間期及該等RR間期計算數個分別對應於該人體1的左胸口該參考面100的數個點位的特徵值。該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期。The processing unit 3 is connected to the measurement unit 2 and can receive the ECG signals. The processing unit 3 can capture the QT intervals and RR intervals of the ECG signals, and calculate several reference planes corresponding to the left chest of the human body 1 through the QT intervals and the RR intervals. Eigenvalues of several points of 100. The characteristic values are the QTc intervals corresponding to the points calculated based on the ECG signals.

該等特徵值的計算方式是藉由該等QT間期與該等RR間期計算該等心電訊號的QTc間期,再視該等胸前電極21的數量及需求決定是否以二維的內插計算擴充計算更多點位的QTc間期,並以該等心電訊號計算出的QTc間期,及擴充計算出的QTc間期分別作為該等特徵值。The calculation method of the characteristic values is to calculate the QTc interval of the ECG signals through the QT interval and the RR interval, and then determine whether to use the two-dimensional method based on the number and demand of the chest electrodes 21 The interpolation calculation expands and calculates the QTc interval at more points, and uses the QTc interval calculated from the ECG signals and the expanded QTc interval as the characteristic values respectively.

在本實施例中,該處理單元3擷取上述16個心電訊號的QT間期及RR間期,並藉由該等QT間期及該等RR間期分別計算16個QTc間期,接著透過二維的內插計算擴充為24個點位的QTc間期。其中,以該等QT間期及該等RR間期計算該等心電訊號的QTc間期的計算公式為:In this embodiment, the processing unit 3 captures the QT intervals and RR intervals of the above 16 ECG signals, and calculates 16 QTc intervals respectively based on the QT intervals and the RR intervals, and then The QTc interval is expanded to 24 points through two-dimensional interpolation calculation. Among them, the calculation formula for calculating the QTc interval of the ECG signals based on the QT interval and the RR interval is:

其中,QTc為QTc間期,QT為QT間期(單位為毫秒),RR為RR間期(單位為秒)。Among them, QTc is the QTc interval, QT is the QT interval (in milliseconds), and RR is the RR interval (in seconds).

該處理單元3能依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體1的心肌缺血位置,並能依據該等特徵值的高低分布狀態與該比對資訊41進行比對,以檢測出心肌缺血的範圍,且能依據該輸出指令將心肌缺血位置及心肌缺血的範圍的檢測結果輸出於該輸出單元6。The processing unit 3 can detect the myocardial ischemia position of the human body 1 based on the ECG signal measurement position corresponding to at least one of the lowest characteristic values, and can detect the myocardial ischemia position of the human body 1 based on the high and low distribution status of the characteristic values. The comparison information 41 is compared to detect the range of myocardial ischemia, and the detection results of the myocardial ischemia position and the range of myocardial ischemia can be output to the output unit 6 according to the output command.

該處理單元3還能依據該輸出指令,將該等特徵值顯示於該輸出單元6,並且還能以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元6。其中,該處理單元3以不同色階將該等特徵值的數值差異與對應的分佈位置成像的方式,是類似於製圖學中所使用的分層設色法及地貌彩色暈渲法,也就是以不同的顏色或陰影表示不同的特徵值高低,以供一使用者簡易且便捷地瞭解該等特徵值的高低分佈情形,以利於評估心肌缺血位置及心肌缺血的範圍。The processing unit 3 can also display the feature values on the output unit 6 according to the output command, and can also image the numerical differences and corresponding distribution positions of the feature values on the output unit 6 with different color levels. . Among them, the processing unit 3 uses different color levels to image the numerical differences of the feature values and the corresponding distribution positions, which is similar to the layered coloring method and the landform color shading method used in cartography, that is, Different colors or shades are used to represent different levels of feature values, allowing a user to easily and conveniently understand the distribution of levels of these feature values, thereby facilitating the assessment of the location and extent of myocardial ischemia.

此外,該處理單元3能依據該輸入單元5的該模式選擇指令,以一第一評估模式及一第二評估模式的至少其中一者計算並評估整體心肌缺血的嚴重程度,且依據該輸出指令將該評估結果輸出於該輸出單元6。In addition, the processing unit 3 can calculate and evaluate the severity of overall myocardial ischemia in at least one of a first evaluation mode and a second evaluation mode according to the mode selection instruction of the input unit 5, and according to the output The instruction is to output the evaluation result to the output unit 6 .

該第一種評估模式是以一評估參數演算法計算一離散參數( ),並依據該離散參數評估該人體1的整體心肌缺血的嚴重程度。該評估參數演算法為: The first evaluation mode uses an evaluation parameter algorithm to calculate a discrete parameter ( ), and evaluate the severity of the overall myocardial ischemia of the human body 1 based on the discrete parameters. The evaluation parameter algorithm is:

其中, 為該離散參數,S為該等點位的總數量, 為一特定點位的QTc間期,n為最接近該特定點位對應於該人體1位置的點位數目, 為其中一個最接近該特定點位對應於該人體1位置的點位的QTc間期。當 值越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。 in, is the discrete parameter, S is the total number of points, is the QTc interval of a specific point, n is the number of points closest to the specific point corresponding to position 1 of the human body, It is the QTc interval of one of the points closest to the specific point corresponding to the 1 position of the human body. when The larger the value, the more serious the overall myocardial ischemia of the human body 1 is.

該第二種評估模式為計算該等點位的該等QTc間期的最大值與最小值的差距值QTcD,並且依據該等QTc間期的最大值與最小值的差距值QTcD評估該人體1的整體心肌缺血的嚴重程度。當該等QTc間期的最大值與最小值的差距值QTcD越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。The second evaluation mode is to calculate the difference value QTcD between the maximum value and the minimum value of the QTc intervals at the points, and evaluate the human body 1 based on the difference value QTcD between the maximum value and the minimum value of the QTc intervals. The severity of overall myocardial ischemia. When the difference value QTcD between the maximum value and the minimum value of the QTc interval is larger, it means that the severity of the overall myocardial ischemia of the human body 1 is more serious.

該穿戴單元7能供該人體1穿戴,且該量測單元2的該等胸前電極21設置於該穿戴單元7。該人體1穿戴該穿戴單元7時,該等胸前電極21分別對應於該參考面100的預定位置。在本實施例中,該穿戴單元7是一背心式的外衣。The wearable unit 7 can be worn by the human body 1 , and the chest electrodes 21 of the measurement unit 2 are arranged on the wearable unit 7 . When the human body 1 wears the wearing unit 7 , the chest electrodes 21 respectively correspond to predetermined positions of the reference surface 100 . In this embodiment, the wearing unit 7 is a vest-type outer garment.

參閱圖1至圖4,實際應用時,可搭配一種心肌缺血檢測方法進行檢測,該心肌缺血檢測方法包含下列步驟S1至步驟S5。Referring to Figures 1 to 4, in actual application, a myocardial ischemia detection method can be used for detection. The myocardial ischemia detection method includes the following steps S1 to step S5.

步驟S1、輸入指令步驟:於該輸入單元5輸入該操作指令、該模式選擇指令,及該輸出指令。Step S1, input command step: input the operation command, the mode selection command, and the output command into the input unit 5 .

步驟S2、量測步驟:取得該人體1的該等心電訊號。Step S2, measurement step: obtain the ECG signals of the human body 1.

其中,至少部分的該等心電訊號的量測位置對應該人體1的左胸口。Among them, the measurement positions of at least part of the ECG signals correspond to the left chest of the human body 1.

其中,該量測步驟是取得該人體1的一參考面100的該等心電訊號。該參考面100是由該人體1的該右胸骨緣11、該第一肋間對應於該右胸骨緣11高度的水平線12、該左腋下中線13,及該第八肋骨對應於該右胸骨緣11高度的水平線14所界定出。The measurement step is to obtain the ECG signals of a reference surface 100 of the human body 1 . The reference plane 100 is composed of the right sternal edge 11 of the human body 1, the horizontal line 12 of the first intercostal space corresponding to the height of the right sternal edge 11, the left axillary midline 13, and the eighth rib corresponding to the right sternum. The height of the edge 11 is defined by a horizontal line 14.

步驟S3、擷取特徵步驟:藉由該處理單元3擷取每一心電訊號的QT間期及RR間期,並依據該等QT間期與該等RR間期計算數個分別對應該人體1的左胸口的數個點位的該等特徵值。Step S3, feature extraction step: the processing unit 3 captures the QT interval and RR interval of each ECG signal, and calculates several corresponding to the human body 1 based on the QT intervals and the RR intervals. The characteristic values of several points on the left chest.

在本實施例中,擷取特徵步驟所計算的該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期。In this embodiment, the feature values calculated in the step of retrieving features are calculated based on the ECG signals and the QTc intervals corresponding to the points.

步驟S4、第一分析步驟:比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,以檢測出心肌缺血位置,並將該等特徵值的高低分布狀態與該比對資訊41進行比對,以檢測出心肌缺血的範圍。Step S4, first analysis step: compare the point corresponding to at least one of the lowest feature values with the position of the left chest of the human body to detect the position of myocardial ischemia, and compare the points of the feature values The high and low distribution status is compared with the comparison information 41 to detect the range of myocardial ischemia.

其中,該第一分析步驟可以由該處理單元3自動處理以檢測該人體1的心肌缺血位置及心肌缺血的範圍,再依據該輸出指令將檢測結果輸出於該輸出單元6。該第一分析步驟也可以由該處理單元3先依據該輸出指令,將該等特徵值依照對應於該人體1的左胸口的位置並以不同的色階代表該等特徵值的高低而於該輸出單元6產生對應的影像後,再由該使用者目視評估該等特徵值的高低分佈情形,並由該使用者透過比對該影像與該比對資訊41檢測出心肌缺血位置及心肌缺血的範圍。The first analysis step can be automatically processed by the processing unit 3 to detect the myocardial ischemia position and myocardial ischemia range of the human body 1, and then output the detection results to the output unit 6 according to the output command. The first analysis step can also be performed by the processing unit 3 first according to the output command, according to the position of the left chest of the human body 1 and using different color levels to represent the level of the characteristic values. After the output unit 6 generates the corresponding image, the user visually evaluates the high and low distribution of the feature values, and the user detects the location of myocardial ischemia and myocardial insufficiency by comparing the image with the comparison information 41. range of blood.

步驟S5、第二分析步驟:該處理單元3依據該輸入單元5的該模式選擇指令,以該第一評估模式及該第二評估模式的至少其中一者計算並評估該人體1的整體心肌缺血的嚴重程度,且依據該輸出指令將該評估結果輸出於該輸出單元6。Step S5, second analysis step: The processing unit 3 calculates and evaluates the overall myocardial defect of the human body 1 in at least one of the first evaluation mode and the second evaluation mode according to the mode selection instruction of the input unit 5. The severity of blood loss is determined, and the evaluation result is output to the output unit 6 according to the output instruction.

藉由上述步驟S1至步驟S5,就能評估出該人體1的心肌缺血位置、心肌缺血範圍,及整體心肌缺血的嚴重程度。Through the above steps S1 to S5, the myocardial ischemia location, myocardial ischemia range, and the overall myocardial ischemia severity of the human body 1 can be evaluated.

參閱下表1及圖4、圖6,舉例而言,表1是一張QTc間期分佈表,其是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),表中的數值代表每一點位的QTc間期,並且依據所對應的心電訊號量測位置及二維內插對應的點位位置進行排列,而圖6則是以不同的色階代表該等特徵值的高低而輸出於該輸出單元6的影像。Refer to Table 1 below and Figures 4 and 6. For example, Table 1 is a QTc interval distribution table, which uses the myocardial ischemia detection device and the myocardial ischemia detection method to measure 16 chest The electrode 21 acquires 16 ECG signals from the left chest of a patient with left recurrent coronary artery (LCX) stenosis. After calculating the QTc interval of these ECG signals, the calculation is then performed through two-dimensional interpolation. A QTc interval distribution table of a total of 24 points is obtained (including the aforementioned 16 QTc intervals calculated from the ECG signal). The values in the table represent the QTc interval of each point, and are based on the corresponding ECG signal. The measurement positions and the corresponding point positions of the two-dimensional interpolation are arranged, and Figure 6 is an image output to the output unit 6 using different color levels to represent the levels of the feature values.

由表1及圖6可以得知該等QTc間期中最低的一者是對應於圖中的右上方,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於冠狀動脈左迴返支(LCX)的供血區域。It can be seen from Table 1 and Figure 6 that the lowest one among the QTc intervals corresponds to the upper right part of the figure. By referring to the comparison information 41 in Figure 4, the patient's myocardial ischemia location can be evaluated. It is located in the blood supply area of the left recurrent coronary artery (LCX).

要特別說明的是,上述24個點位的QTc間期也可以透過17、18或者其他數量的該等胸前電極21取得心電訊號後,再透過二維內插的計算程序取得24個點位的QTc間期,或者也可以直接透過24個該等胸前電極21所取得的心電訊號進行計算,而不需要經過二維的內插的計算程序,而且該QTc間期分佈表的點位也可以是其他數量,例如可以透過24個該等胸前電極21所取得心電訊號後,以二維的內插計算而擴充為36個點位的QTc間期分佈表。It should be noted that the QTc intervals of the above 24 points can also be obtained through 17, 18 or other numbers of the chest electrodes 21 to obtain the ECG signals, and then obtain the 24 points through a two-dimensional interpolation calculation program. The QTc interval of the position can also be calculated directly through the ECG signals obtained by the 24 chest electrodes 21 without going through a two-dimensional interpolation calculation process, and the points of the QTc interval distribution table The number of bits can also be other. For example, the ECG signals obtained through 24 chest electrodes 21 can be expanded into a QTc interval distribution table of 36 points by two-dimensional interpolation calculation.

表1冠狀動脈左迴返支(LCX)狹窄病患的QTc間期範例 426 409 400 392 377 368 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 409 430 Table 1 Examples of QTc intervals in patients with left recurrent coronary artery (LCX) stenosis 426 409 400 392 377 368 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 409 430

參閱下表2及圖4、圖7,表2是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈右支(RCA)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖7則是顯示於該輸出單元6的對應的影像。Refer to Table 2 below and Figures 4 and 7. Table 2 shows the use of the myocardial ischemia detection device and the myocardial ischemia detection method to detect a patient with right coronary artery (RCA) stenosis using 16 of these chest electrodes 21. After calculating the QTc intervals of 16 ECG signals obtained from the left chest of the patient, a total of 24 points of QTc interval distribution table (including the aforementioned 16 QTc intervals calculated from the ECG signal), and Figure 7 is the corresponding image displayed on the output unit 6.

由表2及圖7可以得知該等QTc間期中最低的一者是對應於圖中的左側,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於冠狀動脈右支(RCA)的供血區域。It can be seen from Table 2 and Figure 7 that the lowest one of the QTc intervals corresponds to the left side of the figure. Together with the comparison information 41 in Figure 4, it can be estimated that the patient's myocardial ischemia location is Located in the territory supplied by the right branch of the coronary artery (RCA).

表2冠狀動脈右支(RCA)狹窄病患的QTc間期範例 417 428 356 390 400 404 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 405 409 Table 2 Examples of QTc intervals in patients with right coronary artery (RCA) stenosis 417 428 356 390 400 404 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 405 409

參閱下表3及圖4、圖8,表3是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖8則是顯示於該輸出單元6的對應的影像。Refer to Table 3 and Figures 4 and 8 below. Table 3 uses the myocardial ischemia detection device and the myocardial ischemia detection method to detect stenosis of a left anterior descending coronary artery (LAD) with 16 of these chest electrodes 21. After calculating the QTc intervals of 16 ECG signals obtained from the patient's left chest, a QTc interval distribution table of a total of 24 points (including The aforementioned 16 QTc intervals calculated from the ECG signal), and FIG. 8 is the corresponding image displayed on the output unit 6 .

由表3及圖8可以得知該等QTc間期中最低的一者是對應於圖中的中間偏上方的區域,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於LAD冠狀動脈左前下降支(LAD)的供血區域。It can be seen from Table 3 and Figure 8 that the lowest one of the QTc intervals corresponds to the upper middle area in the figure. By referring to the comparison information 41 in Figure 4, the patient's myocardium can be evaluated. The ischemic site is located in the blood supply area of the left anterior descending branch of the LAD coronary artery (LAD).

表3冠狀動脈左前下降支(LAD)狹窄病患的QTc間期範例 415 374 378 378 388 393 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 405 402 Table 3 Examples of QTc intervals in patients with left anterior descending coronary artery (LAD) stenosis 415 374 378 378 388 393 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 405 402

參閱下表4及圖4、圖9,表4是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一三條冠狀動脈均狹窄(3VD)的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖9則是顯示於該輸出單元6的對應的影像。Refer to Table 4 and Figures 4 and 9 below. Table 4 uses the myocardial ischemia detection device and the myocardial ischemia detection method to detect one or three coronary arteries with stenosis (3VD) using 16 of these chest electrodes 21. After calculating the QTc intervals of 16 ECG signals obtained from the patient's left chest, a QTc interval distribution table of a total of 24 points (including The aforementioned 16 QTc intervals calculated from the ECG signal), and FIG. 9 is the corresponding image displayed on the output unit 6 .

由表4及圖9可以得知該等QTc間期中最低的一者是對應於圖中的左上方的區域,但依據圖9顯示QTc間期偏低的區域包括圖中的左上方及圖中的右上方,再配合參閱圖4的該比對資訊41,QTc間期偏低的區域涵蓋了該比對資訊41的三個比對區域411,因此可評估出該病患的心肌缺血範圍涵蓋三條冠狀動脈(3VD)的供血區域。It can be seen from Table 4 and Figure 9 that the lowest one among the QTc intervals corresponds to the upper left area in the figure. However, Figure 9 shows that the areas with low QTc intervals include the upper left area and the middle area in the figure. In the upper right corner of , and referring to the comparison information 41 in Figure 4 , the area with low QTc interval covers the three comparison areas 411 of the comparison information 41 , so the extent of myocardial ischemia of the patient can be assessed. Covers the territory supplied by three coronary arteries (3VD).

表4三條冠狀動脈均狹窄(3VD)病患的QTc間期範例 376 364 442 417 411 400 364 458 430 417 405 389 401 438 422 417 422 422 401 419 423 430 426 424 Table 4 Examples of QTc intervals in patients with stenosis of all three coronary arteries (3VD) 376 364 442 417 411 400 364 458 430 417 405 389 401 438 422 417 422 422 401 419 423 430 426 424

上述的表1至表4及圖6至圖9是以16個心電訊號進行心肌缺血檢測,但不限於此,該心肌缺血檢測裝置及該心肌缺血檢測方法也可以應用在不同數量的該等胸前電極21與不同數量的心電訊號,而且也可以用不同點位數量的QTc間期分佈表進行評估,例如以下的表5至表8及圖11至圖14是依序分別對上述表1至表4及上述圖6至圖9的病患以圖10所示的24個該等胸前電極21取得24個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計36個點位的QTc間期分佈表(包含前述24個由心電訊號計算得的QTc間期)及顯示於該輸出單元6的對應的影像。The above-mentioned Tables 1 to 4 and Figures 6 to 9 use 16 ECG signals to detect myocardial ischemia, but are not limited thereto. The myocardial ischemia detection device and the myocardial ischemia detection method can also be applied to different numbers of The chest electrodes 21 and different numbers of ECG signals can also be evaluated using QTc interval distribution tables with different numbers of points. For example, the following Tables 5 to 8 and Figures 11 to 14 are in sequence respectively. For the patients in the above Tables 1 to 4 and the above Figures 6 to 9, 24 ECG signals are obtained with the 24 chest electrodes 21 shown in Figure 10. After calculating the QTc interval of the ECG signals , and then obtain a QTc interval distribution table of a total of 36 points (including the aforementioned 24 QTc intervals calculated from the ECG signals) through two-dimensional interpolation calculations and the corresponding images displayed on the output unit 6 .

其中,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的4個胸前電極21對應該右胸骨緣11、5個胸前電極21對應該左胸骨緣111、4個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、4個胸前電極21對應該左腋下前緣線114、3個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的2個胸前電極21對應該第一肋間對應於該右胸骨緣11高度、3個胸前電極21對應一第二肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、6個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、3個胸前電極21對應該第六肋間對應於該右胸骨緣11高度。Among them, in terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, 4 of the chest electrodes 21 correspond to the right sternal edge 11, and 5 of the chest electrodes 21 correspond to the left The sternal border 111 and the four chest electrodes 21 correspond to the midline 113 between the left sternal border 111 and the left clavicle midline 112. The four chest electrodes 21 correspond to the left clavicle midline 112 and the four chest electrodes. 21 corresponds to the left axillary front edge line 114, and three chest electrodes 21 correspond to the left axillary midline 13; in terms of the longitudinal position of the chest electrodes 21 corresponding to the human body 1, the chest electrodes 21 Two of the chest electrodes 21 correspond to the first intercostal space corresponding to the height of the right sternal edge 11, three chest electrodes 21 correspond to a second intercostal space corresponding to the height of the right sternal edge 11, and five chest electrodes 21 correspond to the The third intercostal space corresponds to the height of the right sternal edge 11 , the six prethoracic electrodes 21 correspond to the fourth intercostal space corresponds to the height of the right sternal edge 11 , and the five prethoracic electrodes 21 correspond to the fifth intercostal space corresponding to the right sternal edge 11 The height of the three chest electrodes 21 corresponds to the sixth intercostal space and the height of the right sternal edge 11 .

經比對上述表1至表4及上述圖6至圖9,與以下的表5至表8及圖11至圖14,可以發現對於相同的患者無論以16個心電訊號(見圖3;24個點位的QTc間期分佈表)或24個心電訊號(見圖10;36個點位的QTc間期分佈表)進行計算與分析,在分析心肌缺血位置與範圍時都能夠得到一致的分析結果,而且在部分的案例中,以24個心電訊號(36個點位的QTc間期分佈表)進行分析還能更加明顯地看出QTc間期偏低的區域(例如:圖14相較於圖9較能明顯看出QTc間期偏低的區域涵蓋該比對資訊41的三個比對區域411)。在以24個心電訊號(再透過二維的內插計算求得共計36個點位的QTc間期分佈表)進行分析的本實施例中,若 大於9.4毫秒(msec)或 QTcD大於66毫秒(msec)時,即代表有顯著的心肌缺血,可能需要進行較積極的治療。 By comparing the above Tables 1 to 4 and the above Figures 6 to 9, and the following Tables 5 to 8 and Figures 11 to 14, it can be found that for the same patient, regardless of the 16 ECG signals (see Figure 3; QTc interval distribution table at 24 points) or 24 ECG signals (see Figure 10; QTc interval distribution table at 36 points) for calculation and analysis, which can be obtained when analyzing the location and extent of myocardial ischemia. Consistent analysis results, and in some cases, analysis with 24 ECG signals (36-point QTc interval distribution table) can also more clearly see areas with low QTc intervals (for example: Figure 14 Compared with Figure 9, it can be clearly seen that the area with low QTc interval covers the three comparison areas 411 of the comparison information 41). In this embodiment, 24 ECG signals are analyzed (and then the QTc interval distribution table of a total of 36 points is obtained through two-dimensional interpolation calculation), if When it is greater than 9.4 milliseconds (msec) or QTcD is greater than 66 milliseconds (msec), it means there is significant myocardial ischemia, and more aggressive treatment may be required.

表5冠狀動脈左迴返支(LCX)狹窄病患的QTc間期範例 426 422 413 413 413 413 426 413 405 403 401 407 426 409 400 392 388 384 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 447 449 Table 5 Examples of QTc intervals in patients with left recurrent coronary artery (LCX) stenosis 426 422 413 413 413 413 426 413 405 403 401 407 426 409 400 392 388 384 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 447 449

表6冠狀動脈右支(RCA)狹窄病患的QTc間期範例 398 398 411 411 411 411 413 417 425 409 408 410 417 428 356 390 405 408 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 398 405 Table 6 Examples of QTc intervals in patients with right coronary artery (RCA) stenosis 398 398 411 411 411 411 413 417 425 409 408 410 417 428 356 390 405 408 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 398 405

表7冠狀動脈左前下降支(LAD)狹窄病患的QTc間期範例 395 370 372 372 372 372 395 336 374 374 380 376 415 374 378 378 395 390 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 403 401 Table 7 Examples of QTc intervals in patients with left anterior descending coronary artery (LAD) stenosis 395 370 372 372 372 372 395 336 374 374 380 376 415 374 378 378 395 390 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 403 401

表8三條冠狀動脈均狹窄(3VD)病患的QTc間期範例 413 422 391 391 391 391 385 372 360 389 394 392 376 364 442 417 401 394 364 458 430 417 405 389 401 438 422 417 422 422 401 419 424 430 430 426 Table 8 Examples of QTc intervals in patients with stenosis of all three coronary arteries (3VD) 413 422 391 391 391 391 385 372 360 389 394 392 376 364 442 417 401 394 364 458 430 417 405 389 401 438 422 417 422 422 401 419 424 430 430 426

而在評估整體心肌缺血的嚴重程度時,無論是採用該第一種評估模式或該第二評估模式,其主要原理都是計算該等QTc間期的離散程度,當 值或該等QTc間期的最大值與最小值的差距值QTcD越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。 When assessing the severity of overall myocardial ischemia, whether the first assessment mode or the second assessment mode is used, the main principle is to calculate the degree of dispersion of the QTc intervals. When The greater the QTcD value or the difference between the maximum value and the minimum value of the QTc interval, the more serious the overall myocardial ischemia of the human body 1 is.

舉例而言,以16個心電訊號的分析結果為例,表1的 值為17.96,該等QTc間期的最大值與最小值的差距值QTcD為93,而表3的 值為7.58,而該等QTc間期的最大值與最小值的差距值QTcD為41,因此無論是採用該第一種評估模式或該第二評估模式,都能推估出表1的病患整體心肌缺血的嚴重程度都較表3的病患嚴重,而且表1的 值與QTcD都顯示出表1的患者可能需要進行較積極的治療,因此具有一致的評估結果。 For example, taking the analysis results of 16 ECG signals, Table 1 The value is 17.96, the difference between the maximum value and the minimum value of the QTc interval is 93, and the QTcD in Table 3 The value is 7.58, and the difference between the maximum value and the minimum value of the QTc interval, QTcD, is 41. Therefore, whether the first evaluation mode or the second evaluation mode is used, the patients in Table 1 can be estimated The overall severity of myocardial ischemia is more serious than that of the patients in Table 3, and the patients in Table 1 Both values and QTcD indicate that the patients in Table 1 may require more aggressive treatment and therefore have consistent assessment results.

另外,再以24個心電訊號的分析結果為例,以分別與該表1及表3相同患者的表5及表7而言,表5的 值為13.35,該等QTc間期的最大值與最小值的差距值QTcD為93,而表7的 值為9.11,該等QTc間期的最大值與最小值的差距值QTcD為79,因此同樣能推估出表5的病患(即表1的病患)整體心肌缺血的嚴重程度較表7的病患(即表3的病患)嚴重,也就是說無論以16個心電訊號或是24個心電訊號進行分析都能達到一致的分析結果。 In addition, taking the analysis results of 24 ECG signals as an example, taking Tables 5 and 7 of the same patients as Table 1 and Table 3 respectively, the The value is 13.35, the difference between the maximum value and the minimum value of the QTc interval is 93, and the QTcD in Table 7 The value is 9.11, and the difference between the maximum value and the minimum value of the QTc interval is QTcD 79. Therefore, it can also be inferred that the severity of the overall myocardial ischemia of the patients in Table 5 (that is, the patients in Table 1) is greater than that in Table 5. 7 patients (i.e., patients in Table 3) are serious, which means that consistent analysis results can be achieved regardless of whether 16 ECG signals or 24 ECG signals are used for analysis.

除此之外,該等胸前電極21的排列方式也可以不限於圖3及圖10的排列方式,以圖15為例,圖15為另一種24個胸前電極21的排列方式,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的3個胸前電極21對應該右胸骨緣11、5個胸前電極21對應該左胸骨緣111、5個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、4個胸前電極21對應該左腋下前緣線114、3個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的1個胸前電極21對應一第二肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第六肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的5個該等胸前電極21分別對應於一第三肋骨、該第四肋骨、該第五肋骨、該第六肋骨及一第七肋骨的高度。In addition, the arrangement of the chest electrodes 21 may not be limited to the arrangement of FIG. 3 and FIG. 10 . Take FIG. 15 as an example. FIG. 15 shows another arrangement of 24 chest electrodes 21 . In terms of the lateral position of the chest electrodes 21 corresponding to the human body 1, three of the chest electrodes 21 correspond to the right sternal edge 11, and five of the chest electrodes 21 correspond to the left sternal edge 111, The five chest electrodes 21 correspond to the midline 113 between the left sternal edge 111 and the left clavicle midline 112, the four chest electrodes 21 correspond to the left clavicle midline 112, and the four chest electrodes 21 correspond to the left The front edge line 114 of the armpit and the three chest electrodes 21 correspond to the left axillary midline 13; in terms of the longitudinal position of the chest electrodes 21 corresponding to the human body 1, one of the chest electrodes 21 The chest electrode 21 corresponds to a second intercostal space corresponding to the height of the right sternal edge 11 , four chest electrodes 21 correspond to the third intercostal space corresponding to the height of the right sternal border 11 , and five chest electrodes 21 correspond to the fourth intercostal space. At the height of the right sternal margin 11 , five chest electrodes 21 correspond to the fifth intercostal space, four chest electrodes 21 correspond to the sixth intercostal space, correspond to the height of the right sternal border 11 , and correspond to The five chest electrodes 21 located on the midline 113 between the left sternal edge 111 and the left clavicle midline 112 respectively correspond to a third rib, the fourth rib, the fifth rib, and the sixth rib. and the height of the seventh rib.

經過實測與分析,依據圖15所揭示的該等胸前電極21的排列方式,在分析心肌缺血位置與範圍,以及病患整體心肌缺血的嚴重程度時能夠得到與以圖3及圖10的胸前電極21的排列方式一致的分析結果。After actual measurement and analysis, according to the arrangement of the chest electrodes 21 disclosed in Figure 15, when analyzing the location and range of myocardial ischemia, as well as the severity of the patient's overall myocardial ischemia, it can be obtained that the same results as shown in Figure 3 and Figure 10 The analysis results are consistent with the arrangement of the chest electrodes 21.

另外,參閱圖16,該等胸前電極21的數量也可以為36個,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的7個胸前電極21對應該右胸骨緣11、7個胸前電極21對應該左胸骨緣111、7個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、6個胸前電極21對應該左鎖骨正中線112、5個胸前電極21對應該左腋下前緣線114、4個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的2個胸前電極21對應該第一肋間對應於該右胸骨緣11高度,3個胸前電極21對應該第二肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第六肋間對應於該右胸骨緣11高度、5個胸前電極21對應一第七肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的7個該等胸前電極21分別對應於一第二肋骨、該第三肋骨、該第四肋骨、該第五肋骨、該第六肋骨、該第七肋骨及該第八肋骨的高度。In addition, referring to Figure 16, the number of the chest electrodes 21 can also be 36. In terms of the lateral position of the chest electrodes 21 corresponding to the human body 1, 7 of the chest electrodes 21 The electrode 21 corresponds to the right sternal edge 11, the seven chest electrodes 21 correspond to the left sternal edge 111, and the seven chest electrodes 21 correspond to the midline 113, 6 between the left sternal edge 111 and the left clavicle midline 112. One chest electrode 21 corresponds to the left clavicle midline 112, five chest electrodes 21 corresponds to the left axillary anterior edge line 114, and four chest electrodes 21 corresponds to the left axillary midline 13; with these chest electrodes 21 corresponds to the longitudinal position of the human body 1, two of the chest electrodes 21 correspond to the first intercostal space, correspond to the height of the right sternal edge 11, and three chest electrodes 21 correspond to the second The intercostal space corresponds to the height of the right sternal border 11 , the four chest electrodes 21 correspond to the third intercostal space and the five chest electrodes 21 correspond to the fourth intercostal space and the height of the right sternal border 11 , Five chest electrodes 21 correspond to the fifth intercostal space corresponding to the height of the right sternal border 11, five chest electrodes 21 correspond to the sixth intercostal space corresponding to the height of the right sternal border 11, and five chest electrodes 21 correspond to a seventh The intercostal space corresponds to the height of the right sternal edge 11 and corresponds to the midline 113 between the left sternal edge 111 and the left clavicle midline 112. The seven chest electrodes 21 respectively correspond to a second rib and the third rib. The height of the third rib, the fourth rib, the fifth rib, the sixth rib, the seventh rib and the eighth rib.

經過實測與分析,依據圖16所揭示的該等胸前電極21的排列方式,在分析心肌缺血位置與範圍,以及病患整體心肌缺血的嚴重程度時也能夠得到與以圖3、圖10及圖15的胸前電極21的排列方式一致的分析結果。After actual measurement and analysis, according to the arrangement of the chest electrodes 21 disclosed in Figure 16, when analyzing the location and range of myocardial ischemia, as well as the severity of the patient's overall myocardial ischemia, it can also be obtained according to Figures 3 and 3. The analysis results are consistent with the arrangement of the chest electrodes 21 in Figure 10 and Figure 15 .

根據上述的說明,本發明心肌缺血檢測裝置及心肌缺血檢測方法的優點包含:According to the above description, the advantages of the myocardial ischemia detection device and myocardial ischemia detection method of the present invention include:

一、本發明是以該等QT間期與該等RR間期計算該等特徵值以檢測出該人體1的心肌缺血位置,相對於現有以ST段的波形變化的分析方式,該等QT間期與該等RR間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差。1. The present invention calculates the characteristic values based on the QT intervals and the RR intervals to detect the myocardial ischemia position of the human body 1. Compared with the existing analysis method that uses the waveform changes of the ST segment, the QT The intervals and these RR intervals are less affected by chest wall impedance, noise, and baseline shifts, thus avoiding estimation errors.

二、本發明是利用該等特徵值中最低的至少一者所對應的心電訊號量測位置,檢測出心肌缺血位置,相對於現有以同組群的多數導程之ST段的上升或下降波形變化作為評估依據的方式,本發明的檢測方式相對容易而能有效提高其靈敏度。2. The present invention uses the ECG signal measurement position corresponding to at least one of the lowest characteristic values to detect the position of myocardial ischemia. Compared with the existing ST segment rise or rise of most leads of the same group, Using the falling waveform change as the basis for evaluation, the detection method of the present invention is relatively easy and can effectively improve its sensitivity.

三、以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元6,使該使用者能簡易且便捷地瞭解該等特徵值的高低分佈情形,以利於評估心肌缺血位置及心肌缺血的範圍,能有效縮短評估時間。3. The numerical differences and corresponding distribution positions of the characteristic values are imaged on the output unit 6 with different color levels, so that the user can easily and conveniently understand the high and low distribution of the characteristic values to facilitate the assessment of myocardium. The location of ischemia and the extent of myocardial ischemia can effectively shorten the evaluation time.

四、以單一的指標(即 值或該等QTc間期的最大值與最小值的差距值QTcD)評估整體心肌缺血的嚴重程度,十分地簡易。 4. Using a single indicator (i.e. It is very simple to evaluate the severity of overall myocardial ischemia using the QTcD value or the difference between the maximum value and the minimum value of the QTc interval.

五、藉由設置至少16個該等胸前電極21,透過該等胸前電極21佈設於該參考面100的特殊佈設位置,並藉由該處理單元3依據該等心電訊號所計算的該等特徵值,能完整提供該參考面100的心電訊號的特徵,因此即使是應用於未經催迫的人體1也能夠推估該人體1慢性與急性心肌缺血的位置與範圍,而且由於該等胸前電極21的數量僅至少16個,所以不需要增加太多的製造成本且使用上也十分便利。5. By arranging at least 16 chest electrodes 21, the chest electrodes 21 are arranged at special layout positions of the reference surface 100, and the processing unit 3 calculates the ECG signal based on the ECG signals. Equivalent eigenvalues can completely provide the characteristics of the ECG signal of the reference surface 100. Therefore, even when applied to an unstressed human body 1, the location and range of chronic and acute myocardial ischemia of the human body 1 can be estimated. Moreover, due to the The number of chest electrodes 21 is only at least 16, so there is no need to increase too much manufacturing cost and the use is very convenient.

六、由於該等胸前電極21是佈設於該參考面100,因此能藉由二維的內插計算,將16個該等胸前電極21所量測的心電訊號所計算而得的特徵值,擴充至24個點位的特徵值,相較於傳統的十二導程心電圖能提高判斷的精確度,而相較於現有以超過一百個電極取得心電圖的方式則能減少該等胸前電極21的數量而降低成本並簡化將該等電極黏貼至該人體1時的定位步驟。6. Since the chest electrodes 21 are arranged on the reference plane 100, the characteristics calculated from the ECG signals measured by the 16 chest electrodes 21 can be calculated through two-dimensional interpolation calculations. Values, expanded to 24 point characteristic values, can improve the accuracy of judgment compared to traditional twelve-lead electrocardiograms, and can reduce the number of chest pains compared to the existing method of obtaining electrocardiograms with more than a hundred electrodes. The number of front electrodes 21 is reduced to reduce costs and simplify the positioning steps when attaching the electrodes to the human body 1 .

七、藉由設置該穿戴單元7,當該人體1穿戴該穿戴單元7時,該等胸前電極21分別對應於該參考面100的預定位置,因此能簡化將該等胸前電極21設置該人體1時的定位與操作步驟,能加快作業流程並確保該等胸前電極21放置位置的正確性。7. By arranging the wearing unit 7, when the human body 1 wears the wearing unit 7, the chest electrodes 21 respectively correspond to the predetermined positions of the reference surface 100, thus simplifying the setting of the chest electrodes 21. The positioning and operating steps of the human body can speed up the work process and ensure the correct placement of the chest electrodes 21 .

另外,要特別說明的是,在本實施例中,每一特徵值為各自的心電訊號的QTc間期,然而,在其他的實施態樣中,每一特徵值也可以為各自的心電訊號的QT間期(也就是未以RR間期進行校正,因此不需要擷取每一心電訊號的RR間期),依據上述的檢測步驟也能夠達到相同的功效。In addition, it should be noted that in this embodiment, each characteristic value is the QTc interval of a respective ECG signal. However, in other implementations, each characteristic value can also be a respective QTc interval of the ECG signal. The QT interval of the signal (that is, it is not corrected by the RR interval, so there is no need to capture the RR interval of each ECG signal), and the same effect can be achieved according to the above detection steps.

綜上所述,本發明心肌缺血檢測裝置及心肌缺血檢測方法,藉由以該等QT間期及該等RR間期計算該等特徵值以檢測出該人體1的心肌缺血位置,由於相對於現有以ST段的波形變化的分析方式,該等QT間期及該等RR間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差,故確實能達成本發明的目的。In summary, the myocardial ischemia detection device and myocardial ischemia detection method of the present invention detect the myocardial ischemia position of the human body 1 by calculating the characteristic values based on the QT intervals and the RR intervals, Compared with the existing analysis method based on ST segment waveform changes, the QT intervals and the RR intervals are less affected by chest wall impedance, noise and baseline deviation, so evaluation errors can be avoided, so it is indeed The purpose of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. within the scope covered by the patent of this invention.

1:人體 100:參考面 11:右胸骨緣 111:左胸骨緣 112:左鎖骨正中線 113:中線 114:左腋下前緣線 12:水平線 13:左腋下中線 14:水平線 2:量測單元 21:胸前電極 22:訊號緩衝器 23:訊號放大器 24:濾波器 25:訊號轉換器 26:肢導電極 3:處理單元 4:資料庫單元 41:比對資訊 411:比對區域 5:輸入單元 6:輸出單元 7:穿戴單元 1: human body 100:Reference surface 11: Right sternal edge 111: Left sternal edge 112: Midline of left clavicle 113: Center line 114: Front edge line of left armpit 12: Horizontal line 13: Midline of left armpit 14: Horizontal line 2:Measurement unit 21: Chest electrode 22: Signal buffer 23: Signal amplifier 24:Filter 25:Signal converter 26:limb electrode 3: Processing unit 4: Database unit 41:Comparison information 411:Comparison area 5:Input unit 6:Output unit 7: Wearing unit

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明心肌缺血檢測裝置的一實施例的一系統方塊圖; 圖2是一示意圖,說明該實施例所取得的數個心電訊號所對應的一人體的一參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出; 圖3是一示意圖,說明該實施例的16個胸前電極的設置位置; 圖4是該實施例的一資料庫單元所儲存的一比對資訊的示意圖; 圖5是一流程圖,說明利用該實施例的一種心肌缺血檢測方法的流程; 圖6是一示意圖,說明從一冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於一輸出單元的影像; 圖7是另一示意圖,說明從一冠狀動脈右支(RCA)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖8是又另一示意圖,說明從一冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖9是再另一示意圖,說明從一個三條冠狀動脈均狹窄(3VD)的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖10是一類似圖3的示意圖,說明該實施例的胸前電極數量改為24個的一種變化的設置方式; 圖11是一類似圖6的圖,說明從該冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖12是一類似圖7的圖,說明從該冠狀動脈右支(RCA)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖13是一類似圖8的圖,說明從該冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖14是一類似圖9的圖,說明從該三條冠狀動脈均狹窄(3VD)的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖15是另一類似圖3的示意圖,說明該實施例的胸前電極數量改為24個的另一種變化的設置方式;及 圖16是又另一類似圖3的示意圖,說明該實施例的胸前電極數量改為36個的一種變化的設置方式。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a system block diagram of an embodiment of the myocardial ischemia detection device of the present invention; Figure 2 is a schematic diagram illustrating that a reference plane of a human body corresponding to several ECG signals obtained in this embodiment is a horizontal line corresponding to the height of the right sternal edge and a first intercostal space of the human body. , a left axillary midline, and a horizontal line of the eighth rib corresponding to the height of the right sternal border; Figure 3 is a schematic diagram illustrating the placement locations of 16 chest electrodes in this embodiment; Figure 4 is a schematic diagram of comparison information stored in a database unit in this embodiment; Figure 5 is a flow chart illustrating the flow of a myocardial ischemia detection method using this embodiment; Figure 6 is a schematic diagram illustrating the acquisition of 16 ECG signals from the left chest of a patient with left return coronary artery (LCX) stenosis, and after obtaining the characteristic values of 24 points through two-dimensional interpolation calculation, An image output to an output unit using different color levels to represent the levels of the characteristic values of the ECG signals; Figure 7 is another schematic diagram illustrating that 16 ECG signals are obtained from the left chest of a patient with right coronary artery (RCA) stenosis, and after two-dimensional interpolation calculation is used to obtain the characteristic values of 24 points, The image output to the output unit uses different color levels to represent the levels of the characteristic values of the ECG signals; Figure 8 is another schematic diagram illustrating the acquisition of 16 ECG signals from the left chest of a patient with left anterior descending coronary artery (LAD) stenosis, and the use of two-dimensional interpolation to calculate the characteristic values of 24 points. Then, different color levels are used to represent the levels of the characteristic values of the ECG signals and the images are output to the output unit; Figure 9 is another schematic diagram illustrating the acquisition of 16 ECG signals from the left chest of a patient with three coronary artery stenosis (3VD), and the two-dimensional interpolation calculation to obtain the characteristic values of 24 points. , using different color levels to represent the level of the characteristic values of the ECG signals and outputting the image to the output unit; Figure 10 is a schematic diagram similar to Figure 3, illustrating a modified arrangement in which the number of chest electrodes in this embodiment is changed to 24; Figure 11 is a diagram similar to Figure 6, illustrating that 24 ECG signals were obtained from the left chest of the patient with left return coronary artery (LCX) stenosis, and 36 points were obtained using two-dimensional interpolation calculations. After the characteristic value is determined, different color levels are used to represent the level of the characteristic value of the ECG signal and the image is output to the output unit; Figure 12 is a diagram similar to Figure 7, illustrating that 24 ECG signals were obtained from the left chest of the patient with right coronary artery (RCA) stenosis, and the characteristics of 36 points were obtained through two-dimensional interpolation calculations. After the value is obtained, different color levels are used to represent the level of the characteristic values of the ECG signals and the image is output to the output unit; Figure 13 is a diagram similar to Figure 8, illustrating that 24 ECG signals were obtained from the left chest of the patient with left anterior descending coronary artery (LAD) stenosis, and 36 points were obtained by two-dimensional interpolation calculation. After the characteristic value is determined, different color levels are used to represent the level of the characteristic value of the ECG signal and the image is output to the output unit; Figure 14 is a diagram similar to Figure 9, illustrating that 24 ECG signals were obtained from the left chest of the patient with all three coronary arteries stenosis (3VD), and the characteristics of 36 points were obtained by two-dimensional interpolation calculation. After the value is obtained, different color levels are used to represent the level of the characteristic values of the ECG signals and the image is output to the output unit; Figure 15 is another schematic diagram similar to Figure 3, illustrating another variation of the arrangement in which the number of chest electrodes in this embodiment is changed to 24; and FIG. 16 is another schematic diagram similar to FIG. 3 , illustrating a modified arrangement in which the number of chest electrodes in this embodiment is changed to 36.

2:量測單元 2:Measurement unit

21:胸前電極 21: Chest electrode

22:訊號緩衝器 22: Signal buffer

23:訊號放大器 23: Signal amplifier

24:濾波器 24:Filter

25:訊號轉換器 25:Signal converter

26:肢導電極 26:limb electrode

3:處理單元 3: Processing unit

4:資料庫單元 4: Database unit

5:輸入單元 5:Input unit

6:輸出單元 6:Output unit

Claims (7)

一種心肌缺血檢測裝置,適用於一人體,該心肌缺血檢測裝置包含:一量測單元,包括四個肢導電極,及數個胸前電極,該等肢導電極及該等胸前電極適用於取得該人體的數個心電訊號,至少部分的該等胸前電極的量測位置對應該人體的左胸口;一處理單元,訊號連接該量測單元並能接收該等心電訊號,該處理單元能擷取該等心電訊號的QT間期及RR間期,並藉由該等QT間期與該等RR間期計算數個分別對應於該人體左胸口的數個點位的QTc間期的特徵值,再依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體的心肌缺血位置;及一輸出單元,訊號連接該量測單元;其中,該處理單元能以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元,該處理單元還能以一評估參數演算法計算一離散參數,並以該離散參數評估該人體的整體心肌缺血的嚴重程度,該評估參數演算法為:
Figure 110119295-A0305-02-0028-1
,SIQTc為該離散參數,S為該等點位的總數量,(QTc)k為一特定點位的QTc間期,n為最接近該特定點位對應於該人體位置的點位數目,(QTc)i為其中一個最接近該點位對應於該人體位置的點位QTc間期。
A myocardial ischemia detection device, suitable for a human body, the myocardial ischemia detection device includes: a measurement unit, including four limb conduction electrodes, and several chest electrodes, the limb conduction electrodes and the chest electrodes It is suitable for obtaining several ECG signals of the human body, and at least part of the measurement positions of the chest electrodes correspond to the left chest of the human body; a processing unit, the signal is connected to the measurement unit and can receive the ECG signals, The processing unit can capture the QT intervals and RR intervals of the ECG signals, and use the QT intervals and the RR intervals to calculate a number of points corresponding to several points on the left chest of the human body. The characteristic value of the QTc interval is used to detect the myocardial ischemia position of the human body based on the ECG signal measurement position corresponding to at least one of the lowest characteristic values; and an output unit is connected to the measurement signal. Unit; wherein, the processing unit can image the numerical difference of the feature values and the corresponding distribution position in the output unit with different color levels, and the processing unit can also calculate a discrete parameter with an evaluation parameter algorithm, and use This discrete parameter evaluates the severity of the human body's overall myocardial ischemia. The evaluation parameter algorithm is:
Figure 110119295-A0305-02-0028-1
, SI QTc is the discrete parameter, S is the total number of such points, (QTc) k is the QTc interval of a specific point, n is the number of points closest to the specific point corresponding to the human body position, (QTc) i is the QTc interval of one of the points closest to the point corresponding to the position of the human body.
如請求項1所述的心肌缺血檢測裝置,還包含一資料庫單 元,該資料庫單元儲存一比對資訊,該處理單元能依據該等特徵值的高低分布狀態與該比對資訊進行比對,以檢測出心肌缺血的範圍。 The myocardial ischemia detection device as claimed in claim 1, further comprising a database list Yuan, the database unit stores a comparison information, and the processing unit can compare the comparison information with the comparison information according to the high and low distribution status of the characteristic values to detect the range of myocardial ischemia. 如請求項2所述的心肌缺血檢測裝置,其中,該量測單元的該等胸前電極及該等胸前電極適用於取得該人體的一參考面的至少16個該等心電訊號,該參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出。 The myocardial ischemia detection device as described in claim 2, wherein the chest electrodes of the measurement unit and the chest electrodes are adapted to obtain at least 16 of the ECG signals from a reference surface of the human body, The reference plane is defined by a right sternal border of the human body, a horizontal line of the first intercostal space corresponding to the height of the right sternal border, a left axillary midline, and a horizontal line of the eighth rib corresponding to the height of the right sternal border. out. 如請求項2所述的心肌缺血檢測裝置,其中,該處理單元還能計算該等點位中的該等QTc間期的最大值與最小值的差距值QTcD,並依據該等QTc間期的最大值與最小值的差距值評估該人體的整體心肌缺血的嚴重程度。 The myocardial ischemia detection device according to claim 2, wherein the processing unit can also calculate the difference value QTcD between the maximum value and the minimum value of the QTc intervals at the points, and calculate the difference value QTcD based on the QTc intervals. The difference between the maximum value and the minimum value evaluates the severity of the human body's overall myocardial ischemia. 一種心肌缺血檢測方法,包含:一量測步驟,取得一人體的數個心電訊號,至少部分的該等心電訊號的量測位置對應該人體的左胸口;一擷取特徵步驟,藉由一處理單元擷取每一心電訊號的QT間期及RR間期,並依據該等QT間期與該等RR間期計算數個分別對應該人體的左胸口的數個點位的QTc間期的特徵值;一第一分析步驟,比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,其中,將該等特徵值的高低分布狀態依照對應於該人體的左胸口的位置,以不同的色階代表該等特徵值的高低而產生一影 像,並透過比對該影像與該比對資訊,以檢測出心肌缺血的範圍;及一第二分析步驟,以一評估參數演算法計算一離散參數,並以該離散參數評估該人體的整體心肌缺血的嚴重程度,該評估參數演算法為:
Figure 110119295-A0305-02-0030-2
(QTc)i|},SIQTc為該離散參數,S為該等點位的總數量,(QTc)k為一特定點位的QTc間期,n為最接近該點位對應於該人體位置的點位數目,(QTc)i為其中一個最接近該點位對應於該人體位置的點位的QTc間期。
A myocardial ischemia detection method includes: a measurement step to obtain several ECG signals of a human body, and the measurement positions of at least part of the ECG signals correspond to the left chest of the human body; and a feature acquisition step to obtain A processing unit captures the QT interval and RR interval of each ECG signal, and calculates several QTc intervals corresponding to several points on the left chest of the human body based on the QT intervals and the RR intervals. characteristic values of the period; a first analysis step, comparing the point corresponding to at least one of the lowest of the characteristic values to the position of the left chest of the human body, wherein the high and low distribution status of the characteristic values is calculated according to Corresponding to the position of the left chest of the human body, an image is generated using different color levels to represent the levels of the characteristic values, and the range of myocardial ischemia is detected by comparing the image with the comparison information; and The second analysis step uses an evaluation parameter algorithm to calculate a discrete parameter, and uses the discrete parameter to evaluate the severity of the human body's overall myocardial ischemia. The evaluation parameter algorithm is:
Figure 110119295-A0305-02-0030-2
(QTc) i |}, SI QTc is the discrete parameter, S is the total number of points, (QTc) k is the QTc interval of a specific point, n is the position closest to the point corresponding to the human body The number of points, (QTc) i is the QTc interval of one of the points closest to the point corresponding to the human body position.
如請求項5所述的心肌缺血檢測方法,其中,該量測步驟是取得該人體的一參考面的該等心電訊號,該參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出。 The myocardial ischemia detection method as described in claim 5, wherein the measurement step is to obtain the ECG signals from a reference plane of the human body, the reference plane being composed of a right sternal edge of the human body and a first The intercostal space is defined by a horizontal line corresponding to the height of the right sternal border, a left axillary midline, and a horizontal line of the eighth rib corresponding to the height of the right sternal border. 如請求項5所述的心肌缺血檢測方法,其中,該擷取特徵步驟所計算的該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期,該心肌缺血檢測方法還包含一第二分析步驟,該第二分析步驟是計算該等點位的該等QTc間期的最大值與最小值的差距值,並依據該等QTc間期的最大值與最小值的差距值QTcD評估該人體的整體心肌缺血的嚴重程度。 The myocardial ischemia detection method as described in claim 5, wherein the characteristic values calculated in the feature extraction step are the QTc intervals corresponding to the points calculated based on the ECG signals, and the myocardial ischemia detection method The method also includes a second analysis step. The second analysis step is to calculate the difference between the maximum value and the minimum value of the QTc intervals at the points, and based on the difference between the maximum value and the minimum value of the QTc intervals. The gap value QTcD evaluates the severity of the person's overall myocardial ischemia.
TW110119295A 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method TWI818264B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method
PCT/US2022/029576 WO2022251003A1 (en) 2021-05-27 2022-05-17 Device and method for detecting myocardial ischemia
CN202210543461.8A CN115399778A (en) 2021-05-27 2022-05-19 Myocardial ischemia detection device and myocardial ischemia detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method

Publications (2)

Publication Number Publication Date
TW202245693A TW202245693A (en) 2022-12-01
TWI818264B true TWI818264B (en) 2023-10-11

Family

ID=84157785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method

Country Status (3)

Country Link
CN (1) CN115399778A (en)
TW (1) TWI818264B (en)
WO (1) WO2022251003A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083939A (en) * 2004-10-25 2007-12-05 泰·川·阿尔弗雷德·克维克 System, method and apparatus for detecting a cardiac event
CN111281373A (en) * 2020-03-06 2020-06-16 何乐 Method and device for quantitatively evaluating cardiac function based on electrocardiogram U wave and T wave
US20210100469A1 (en) * 2015-04-13 2021-04-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Electrocardiographic identification of non-st elevation ischemic events

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003828A1 (en) * 2006-07-05 2008-01-10 Licentia Oy Method and arrangement for detection of acute myocardial ischemia
TWI446895B (en) * 2011-12-20 2014-08-01 Univ Nat Taiwan System and method for evaluating cardiovascular performance in real time and characterized by conversion of surface potential into multi-channels
EP4066732A1 (en) * 2015-04-09 2022-10-05 Heartbeam, Inc. Mobile three-lead cardiac monitoring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083939A (en) * 2004-10-25 2007-12-05 泰·川·阿尔弗雷德·克维克 System, method and apparatus for detecting a cardiac event
US20210100469A1 (en) * 2015-04-13 2021-04-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Electrocardiographic identification of non-st elevation ischemic events
CN111281373A (en) * 2020-03-06 2020-06-16 何乐 Method and device for quantitatively evaluating cardiac function based on electrocardiogram U wave and T wave

Also Published As

Publication number Publication date
TW202245693A (en) 2022-12-01
WO2022251003A1 (en) 2022-12-01
CN115399778A (en) 2022-11-29

Similar Documents

Publication Publication Date Title
US7519416B2 (en) Diagnostic method utilizing standard lead ECG signals
EP2869759B1 (en) Apparatus for detecting myocardial ischemia using analysis of high frequency components of an electrocardiogram
JP2007517633A (en) Visual 3D representation of ECG data
JP2002511014A (en) Heart disease detection and detection system and method
JPH06125883A (en) Method and apparatus for performing mapping analysis with restricted number of electrode
EP3308703B1 (en) Magnetocardiographic method and magnetocardiographic system
CN109414242A (en) For monitoring the method and measuring device of the specific activities parameter of human heart
Soueidan et al. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability
JP2018528812A (en) ECG lead signal high / low frequency signal quality evaluation
TW201711628A (en) Heart rate detection method and heart rate detection device
US10925516B2 (en) Method and apparatus for estimating the aortic pulse transit time from time intervals measured between fiducial points of the ballistocardiogram
Sheppard et al. Does modifying electrode placement of the 12 lead ECG matter in healthy subjects?
TWI818264B (en) Myocardial ischemia detection device and myocardial ischemia detection method
Correa et al. Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set
JP3137900B2 (en) Apparatus for collecting and processing electrocardiogram signals
CN107212863A (en) Human heart bounce impact force detection system
TWI802888B (en) Cardiovascular Function Assessment System
Sakajiri et al. Non-contact capacitive ballistocardiogram measurements using in-bed fabric-sheet electrode for blood pressure estimation
Horáček et al. Heart-surface potentials estimated from 12-lead electrocardiograms
SIMONSON The distribution of cardiac potentials around the chest in one hundred and three normal men
CN111657913B (en) Midfield signal extraction
Zizzo et al. Automatic detection and imaging of ischemic changes during electrocardiogram monitoring
US20210251505A1 (en) Method and biomedial electronic equipment for monitoring patient's condition after a stroke
Przystup et al. Optimal ECG lead for deriving respiratory signal
WO2023033654A1 (en) Computer implemented cardiac activity anomaly detection