TW202245693A - Myocardial ischemia detection device and myocardial ischemia detection method detect the position of myocardial ischemia of human body by calculating feature values during QT interval - Google Patents

Myocardial ischemia detection device and myocardial ischemia detection method detect the position of myocardial ischemia of human body by calculating feature values during QT interval Download PDF

Info

Publication number
TW202245693A
TW202245693A TW110119295A TW110119295A TW202245693A TW 202245693 A TW202245693 A TW 202245693A TW 110119295 A TW110119295 A TW 110119295A TW 110119295 A TW110119295 A TW 110119295A TW 202245693 A TW202245693 A TW 202245693A
Authority
TW
Taiwan
Prior art keywords
myocardial ischemia
human body
chest
intervals
points
Prior art date
Application number
TW110119295A
Other languages
Chinese (zh)
Other versions
TWI818264B (en
Inventor
吳造中
羅孟宗
陳威宇
哈卓司
吳佳霖
Original Assignee
財團法人祺華教育基金會
吳佳霖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人祺華教育基金會, 吳佳霖 filed Critical 財團法人祺華教育基金會
Priority to TW110119295A priority Critical patent/TWI818264B/en
Priority to PCT/US2022/029576 priority patent/WO2022251003A1/en
Priority to CN202210543461.8A priority patent/CN115399778A/en
Publication of TW202245693A publication Critical patent/TW202245693A/en
Application granted granted Critical
Publication of TWI818264B publication Critical patent/TWI818264B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/353Detecting P-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/355Detecting T-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/358Detecting ST segments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/36Detecting PQ interval, PR interval or QT interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

A myocardial ischemia detection device comprises a measuring unit and a processing unit. A myocardial ischemia detection method comprises steps of a measurement step, a feature capturing step, and a first analysis step. The measurement step is configured to obtain several electrocardiography signals of a human body through the measuring unit. The position for measuring the at least portion of electrocardiography signals corresponds to the left chest of the human body. The feature capturing step is configured to capture QT interval of each electrocardiography signal through the processing unit and calculates several feature values respectively corresponding to several point positions of the human body. The first analysis step is configured to compare with the point position corresponding to at least one of the lowest in the feature value to detect the position of myocardial ischemia. In comparison with the existing analysis methods of waveform change at the ST segment, the QT interval may not be interfered with noise and baseline shift and the evaluation error can be avoided.

Description

心肌缺血檢測裝置及心肌缺血檢測方法Myocardial ischemia detection device and myocardial ischemia detection method

本發明是有關於一種心電訊號的分析,特別是指一種心肌缺血檢測裝置及心肌缺血檢測方法。The invention relates to an analysis of electrocardiographic signals, in particular to a myocardial ischemia detection device and a myocardial ischemia detection method.

維持心臟血液供給的三條冠狀動脈分別為冠狀動脈右支(RCA)、冠狀動脈左前下降支(LAD),及冠狀動脈左迴返支(LCX)。因應不同的動脈血管阻塞,所進行的醫療處置均有所不同。美國心臟學會律定心肌梗塞患者在到院後的90分鐘內應接受心導管治療,以減少病人心肌缺血的時間及死亡率,因此如何在最短的時間內評估是否有心肌缺血及心肌缺血位置是相當重要的 。The three coronary arteries that maintain blood supply to the heart are the right coronary artery (RCA), the left anterior descending coronary artery (LAD), and the left recurrent coronary artery (LCX). According to different arterial blockages, the medical treatments are different. The American Heart Association stipulates that patients with myocardial infarction should receive cardiac catheterization within 90 minutes after arriving at the hospital to reduce the time and mortality of myocardial ischemia. Therefore, how to evaluate whether there is myocardial ischemia and myocardial ischemia in the shortest time Location is quite important.

一般評估急性心肌缺血位置時,是透過十二導程心電圖進行評估。在評估時,醫療人員需要依據前胸導程(V1-V6)、下壁導程(II、III、aVF),及側壁/心尖導程(I、aVL、V5、V6)等不同組群導程的ST段的上升或下降波形變化情形綜合評估,由於在心肌缺血的早期往往ST段的變化並不明顯,因此在實務上要縮短評估時間實有一定的困難度。Generally, when evaluating the location of acute myocardial ischemia, a twelve-lead electrocardiogram is used for evaluation. During the evaluation, medical personnel need to base the lead of different groups such as anterior chest lead (V1-V6), inferior wall lead (II, III, aVF), and lateral wall/apical lead (I, aVL, V5, V6). In the early stage of myocardial ischemia, the change of ST segment is often not obvious, so it is difficult to shorten the evaluation time in practice.

此外,心電圖的ST段的波形變化很容易受到胸壁阻抗、噪訊與基線偏移的影響,因此也容易產生評估誤差。In addition, the waveform changes of the ST segment of the electrocardiogram are easily affected by chest wall impedance, noise, and baseline shift, and thus are prone to evaluation errors.

因此,本發明的目的,即在提供一種能克服至少一個先前技術缺點的的心肌缺血檢測裝置。Therefore, the object of the present invention is to provide a myocardial ischemia detection device that can overcome at least one of the disadvantages of the prior art.

本發明的另一目的,即在提供一種能克服至少一個先前技術缺點的的心肌缺血檢測方法。Another object of the present invention is to provide a method for detecting myocardial ischemia that can overcome at least one disadvantage of the prior art.

於是,本發明心肌缺血檢測裝置,適用於一人體。該心肌缺血檢測裝置包含一量測單元,及一處理單元。Therefore, the myocardial ischemia detection device of the present invention is applicable to a human body. The myocardial ischemia detection device includes a measurement unit and a processing unit.

該量測單元包括四個肢導電極,及數個胸前電極。該等肢導電極及該等胸前電極適用於取得該人體的數個心電訊號。至少部分的該等胸前電極的量測位置對應該人體的左胸口。The measurement unit includes four limb electrodes and several chest electrodes. The limb electrodes and the chest electrodes are suitable for obtaining several electrocardiographic signals of the human body. The measurement positions of at least part of the chest electrodes correspond to the left chest of the human body.

該處理單元訊號連接該量測單元並能接收該等心電訊號。該處理單元能擷取該等心電訊號的QT間期,並藉由該等QT間期計算數個分別對應於該人體左胸口的數個點位的特徵值,再依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體的心肌缺血位置。The processing unit is connected to the measurement unit and can receive the ECG signals. The processing unit can extract the QT intervals of the ECG signals, and use the QT intervals to calculate several eigenvalues corresponding to several points on the left chest of the human body, and then according to the eigenvalues The ECG signal measurement position corresponding to at least one of the lowest ones is used to detect the myocardial ischemia position of the human body.

本發明心肌缺血檢測方法,包含一量測步驟、一擷取特徵步驟,及一第一分析步驟。The myocardial ischemia detection method of the present invention includes a measurement step, a feature extraction step, and a first analysis step.

該量測步驟是取得一人體的數個心電訊號。至少部分的該等心電訊號的量測位置對應該人體的左胸口。The measurement step is to obtain several ECG signals of a human body. The measuring positions of at least part of the ECG signals correspond to the left chest of the human body.

該擷取特徵步驟藉由一處理單元擷取每一心電訊號的QT間期,並依據該等QT間期計算數個分別對應該人體的左胸口的數個點位的特徵值。In the feature extraction step, a processing unit extracts the QT interval of each ECG signal, and calculates several feature values respectively corresponding to several points of the left chest of the human body according to the QT interval.

該第一分析步驟是比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,以檢測出心肌缺血位置。The first analyzing step is to compare the point corresponding to at least one of the lowest characteristic values to the position of the left chest of the human body, so as to detect the myocardial ischemia position.

本發明的功效在於:藉由以該等QT間期計算該等特徵值以檢測出該人體的心肌缺血位置,由於相對於現有以ST段的波形變化的分析方式,該等QT間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差。The efficacy of the present invention lies in: by calculating the characteristic values with the QT intervals to detect the myocardial ischemia position of the human body, since the QT intervals are shorter than the existing analysis method based on the waveform change of the ST segment Unaffected by chest wall impedance, noise, and baseline offset, evaluation errors can be avoided.

參閱圖1至圖4,本發明心肌缺血檢測裝置的一實施例,適用於一人體1。該人體包括一對應左胸口的參考面100。該參考面100是由該人體1的一右胸骨緣11、一第一肋間對應於該右胸骨緣11高度的水平線12、一左腋下中線13,及一第八肋骨對應於該右胸骨緣11高度的水平線14所界定出。Referring to FIG. 1 to FIG. 4 , an embodiment of the myocardial ischemia detection device of the present invention is applicable to a human body 1 . The human body includes a pair of reference planes 100 corresponding to the left chest. The reference plane 100 is composed of a right sternal margin 11 of the human body 1, a first intercostal horizontal line 12 corresponding to the height of the right sternal margin 11, a left underarm midline 13, and an eighth rib corresponding to the right sternum Delimited by the horizontal line 14 at the height of the edge 11.

該心肌缺血檢測裝置包含一量測單元2、一處理單元3、一資料庫單元4、一輸入單元5、一輸出單元6,及一穿戴單元7。該處理單元3訊號連接該量測單元2、該處理單元3、資料庫單元4、該輸入單元5,及該輸出單元6。The myocardial ischemia detection device includes a measurement unit 2 , a processing unit 3 , a database unit 4 , an input unit 5 , an output unit 6 , and a wearable unit 7 . The processing unit 3 is signally connected to the measurement unit 2 , the processing unit 3 , the database unit 4 , the input unit 5 , and the output unit 6 .

該輸入單元5能被輸入一操作指令、一模式選擇指令,及一輸出指令。The input unit 5 can be input with an operation instruction, a mode selection instruction, and an output instruction.

該量測單元2包括四個肢導電極26,及數個適用於設置並佈設於該參考面100且彼此間隔設置的胸前電極21。該量測單元2能依據該操作指令,使該等肢導電極26及該等胸前電極21取得該人體1的數個心電訊號。至少部分的該等胸前電極21的量測位置對應該人體1的左胸口。每一心電訊號形成有P波、Q波、R波、S波與T波。The measurement unit 2 includes four limb conductive electrodes 26 and several chest electrodes 21 suitable for being arranged on the reference surface 100 and spaced apart from each other. The measurement unit 2 can make the limb conductive electrodes 26 and the chest electrodes 21 obtain several ECG signals of the human body 1 according to the operation instruction. The measuring positions of at least part of the chest electrodes 21 correspond to the left chest of the human body 1 . Each ECG signal has P wave, Q wave, R wave, S wave and T wave.

其中,要特別說明的是,為了清楚揭露該等胸前電極21及該穿戴單元7對應於該人體1的設置位置,在圖3及後續的圖10、圖15與圖16中,該等胸前電極21是以假想線繪製,而圖2的該穿戴單元7則以虛線繪製。Among them, it should be particularly noted that, in order to clearly disclose the installation positions of the chest electrodes 21 and the wearing unit 7 corresponding to the human body 1, in FIG. 3 and the subsequent FIG. 10, FIG. The front electrode 21 is drawn in phantom lines, while the wearable unit 7 of FIG. 2 is drawn in dotted lines.

該等胸前電極21的數量可以為16個以上,並且透過該等胸前電極21取得該人體1的該參考面100的相對應數量的心電訊號,且該等心電訊號對應量測位置佈設於該參考面100。The number of the chest electrodes 21 can be more than 16, and the corresponding number of electrocardiographic signals of the reference surface 100 of the human body 1 are obtained through the chest electrodes 21, and the electrocardiographic signals correspond to the measurement positions It is arranged on the reference plane 100 .

以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的至少2個胸前電極21對應該右胸骨緣11、至少3個胸前電極21對應該左胸骨緣111、至少3個胸前電極21對應介於該左胸骨緣111及一左鎖骨正中線112間之中線113、至少4個胸前電極21對應該左鎖骨正中線112、至少2個胸前電極21對應一左腋下前緣線114,並至少2個胸前電極21對應該左腋下中線13。In terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, at least 2 chest electrodes 21 of the chest electrodes 21 correspond to the right sternal border 11, and at least 3 chest electrodes 21 correspond to the left The sternal border 111, at least 3 chest electrodes 21 correspond to the midline 113 between the left sternal border 111 and a left clavicle midline 112, at least 4 chest electrodes 21 correspond to the left clavicle midline 112, at least 2 The chest electrodes 21 correspond to a left axillary anterior edge line 114 , and at least two chest electrodes 21 correspond to the left axillary midline 13 .

以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中至少3個胸前電極21對應一第三肋間對應於該右胸骨緣11高度、至少5個胸前電極21對應一第四肋間對應於該右胸骨緣11高度、至少4個胸前電極21對應一第五肋間對應於該右胸骨緣11高度、至少1個胸前電極21對應一第六肋間對應於該右胸骨緣11高度、並對應介於該左胸骨緣111及該左鎖骨正中線間112之中線113的至少3個該等胸前電極21的高度是介於該第三肋間至該第六肋骨之間。In terms of the longitudinal positions of the chest electrodes 21 corresponding to the human body 1, at least 3 chest electrodes 21 of the chest electrodes 21 correspond to a third intercostal space corresponding to the height of the right sternal margin 11, at least 5 chest The front electrode 21 corresponds to a fourth intercostal space corresponding to the height of the right sternal border 11, at least 4 front electrodes 21 correspond to a fifth intercostal space corresponding to the height of the right sternal border 11, and at least one front electrode 21 corresponds to a sixth intercostal space Corresponding to the height of the right sternal border 11, and corresponding to the midline 113 between the left sternal border 111 and the left clavicle midline 112, the heights of at least three of the chest electrodes 21 are between the third intercostal space to between the sixth rib.

在本實施例中,該等胸前電極21的數量為16個,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的2個胸前電極21對應該右胸骨緣11、3個胸前電極21對應該左胸骨緣111、3個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、2個胸前電極21對應該左腋下前緣線114、2個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的3個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第六肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的3個該等胸前電極21分別對應於一第四肋骨、一第五肋骨及一第六肋骨的高度。In this embodiment, the number of the chest electrodes 21 is 16, and in terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, two chest electrodes 21 in the chest electrodes 21 Corresponding to the right sternal border 11, three front electrodes 21 correspond to the left sternal border 111, three front electrodes 21 correspond to the midline 113 between the left sternal border 111 and the left clavicle midline 112, and four chest electrodes. The front electrode 21 corresponds to the left clavicle midline 112, the two chest electrodes 21 correspond to the left underarm front edge line 114, and the two chest electrodes 21 correspond to the left underarm midline 13; Corresponding to the longitudinal position of the human body 1, among the chest electrodes 21, three chest electrodes 21 correspond to the height of the right sternal border 11 in the third intercostal space, and five chest electrodes 21 correspond to the fourth intercostal space. At the height of the right sternal border 11, the 4 chest electrodes 21 correspond to the fifth intercostal space corresponding to the height of the right sternal border 11, the 4 chest electrodes 21 correspond to the sixth intercostal space corresponding to the height of the right sternal border 11, and correspond to The three chest electrodes 21 located on the midline 113 between the left sternal margin 111 and the left clavicle midline 112 correspond to the heights of a fourth rib, a fifth rib, and a sixth rib, respectively.

在本實施例中,該量測單元2還包括一電連接該等胸前電極21的訊號緩衝器22、一電連接該訊號緩衝器22的訊號放大器23、一電連接該訊號放大器23的濾波器24,及一電連接該濾波器24的訊號轉換器25。該訊號緩衝器22能提供一足夠大的輸入抗阻以耦合該等心電訊號至該訊號放大器23,該訊號放大器23進一步放大該等心電訊號並輸入該濾波器24,該濾波器24能去除該等心電訊號的雜訊及電源訊號的干擾,而該訊號轉換器25則能將該心電訊號轉換為類比訊號,以供後續該處理單元3分析使用。In this embodiment, the measurement unit 2 also includes a signal buffer 22 electrically connected to the chest electrodes 21, a signal amplifier 23 electrically connected to the signal buffer 22, a filter electrically connected to the signal amplifier 23 24, and a signal converter 25 electrically connected to the filter 24. The signal buffer 22 can provide a sufficiently large input impedance to couple the electrocardiographic signals to the signal amplifier 23, and the signal amplifier 23 further amplifies the electrocardiographic signals and inputs the filter 24, and the filter 24 can The noise of the ECG signal and the interference of the power signal are removed, and the signal converter 25 can convert the ECG signal into an analog signal for subsequent analysis by the processing unit 3 .

該資料庫單元4儲存一比對資訊41。該比對資訊41由右上至左下區分為三個比對區域411,該等比對區域411由右上至左下依序代表冠狀動脈左迴返支(LCX)、冠狀動脈左前下降支(LAD),及冠狀動脈右支(RCA)。The database unit 4 stores comparison information 41 . The comparison information 41 is divided into three comparison areas 411 from the upper right to the lower left, and the comparison areas 411 represent the left recurrent coronary artery (LCX), the left anterior descending coronary artery (LAD), and Right coronary artery (RCA).

該處理單元3訊號連接該量測單元2並能接收該等心電訊號。該處理單元3能擷取該等心電訊號的QT間期及RR間期,並藉由該等QT間期及該等RR間期計算數個分別對應於該人體1的左胸口該參考面100的數個點位的特徵值。該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期。The processing unit 3 is connected to the measurement unit 2 and can receive the ECG signals. The processing unit 3 can extract the QT interval and the RR interval of the ECG signals, and calculate several reference planes respectively corresponding to the left chest of the human body 1 through the QT interval and the RR interval The eigenvalues of several points of 100. The characteristic values are calculated based on the ECG signals and the QTc intervals corresponding to the corresponding points.

該等特徵值的計算方式是藉由該等QT間期與該等RR間期計算該等心電訊號的QTc間期,再視該等胸前電極21的數量及需求決定是否以二維的內插計算擴充計算更多點位的QTc間期,並以該等心電訊號計算出的QTc間期,及擴充計算出的QTc間期分別作為該等特徵值。The calculation method of these characteristic values is to calculate the QTc interval of the ECG signal by the QT interval and the RR interval, and then decide whether to use two-dimensional The interpolation calculation expands and calculates the QTc interval of more points, and uses the QTc interval calculated from the ECG signals and the QTc interval calculated by the expansion as the feature values respectively.

在本實施例中,該處理單元3擷取上述16個心電訊號的QT間期及RR間期,並藉由該等QT間期及該等RR間期分別計算16個QTc間期,接著透過二維的內插計算擴充為24個點位的QTc間期。其中,以該等QT間期及該等RR間期計算該等心電訊號的QTc間期的計算公式為:In this embodiment, the processing unit 3 extracts the QT intervals and RR intervals of the above-mentioned 16 ECG signals, and calculates 16 QTc intervals respectively based on the QT intervals and the RR intervals, and then The QTc interval extended to 24 points is calculated through two-dimensional interpolation. Wherein, the calculation formula for calculating the QTc interval of the electrocardiographic signal based on the QT interval and the RR interval is:

Figure 02_image001
Figure 02_image001

其中,QTc為QTc間期,QT為QT間期(單位為毫秒),RR為RR間期(單位為秒)。Among them, QTc is the QTc interval, QT is the QT interval (in milliseconds), and RR is the RR interval (in seconds).

該處理單元3能依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體1的心肌缺血位置,並能依據該等特徵值的高低分布狀態與該比對資訊41進行比對,以檢測出心肌缺血的範圍,且能依據該輸出指令將心肌缺血位置及心肌缺血的範圍的檢測結果輸出於該輸出單元6。The processing unit 3 can detect the location of myocardial ischemia in the human body 1 according to the ECG signal measurement position corresponding to at least one of the lowest characteristic values, and can detect the myocardial ischemia position of the human body 1 according to the distribution state of the characteristic values and the The comparison information 41 is compared to detect the range of myocardial ischemia, and the detection result of the location of myocardial ischemia and the range of myocardial ischemia can be output to the output unit 6 according to the output command.

該處理單元3還能依據該輸出指令,將該等特徵值顯示於該輸出單元6,並且還能以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元6。其中,該處理單元3以不同色階將該等特徵值的數值差異與對應的分佈位置成像的方式,是類似於製圖學中所使用的分層設色法及地貌彩色暈渲法,也就是以不同的顏色或陰影表示不同的特徵值高低,以供一使用者簡易且便捷地瞭解該等特徵值的高低分佈情形,以利於評估心肌缺血位置及心肌缺血的範圍。The processing unit 3 can also display the characteristic values on the output unit 6 according to the output instruction, and can also image the numerical differences and corresponding distribution positions of the characteristic values on the output unit 6 with different color scales . Wherein, the manner in which the processing unit 3 images the numerical differences of these feature values and the corresponding distribution positions in different color scales is similar to the layered coloring method and the topographic color shading method used in cartography, that is, Different colors or shades are used to represent different characteristic values, so that a user can easily and conveniently understand the distribution of the characteristic values, so as to facilitate the evaluation of myocardial ischemia location and myocardial ischemia range.

此外,該處理單元3能依據該輸入單元5的該模式選擇指令,以一第一評估模式及一第二評估模式的至少其中一者計算並評估整體心肌缺血的嚴重程度,且依據該輸出指令將該評估結果輸出於該輸出單元6。In addition, the processing unit 3 can calculate and evaluate the severity of overall myocardial ischemia in at least one of a first evaluation mode and a second evaluation mode according to the mode selection instruction of the input unit 5, and according to the output The instruction outputs the evaluation result to the output unit 6 .

該第一種評估模式是以一評估參數演算法計算一離散參數(

Figure 02_image003
),並依據該離散參數評估該人體1的整體心肌缺血的嚴重程度。該評估參數演算法為: The first evaluation mode is an evaluation parameter algorithm to calculate a discrete parameter (
Figure 02_image003
), and evaluate the severity of the overall myocardial ischemia of the human body 1 according to the discrete parameter. The evaluation parameter algorithm is:

Figure 02_image005
Figure 02_image005

其中,

Figure 02_image003
為該離散參數,S為該等點位的總數量,
Figure 02_image007
為一特定點位的QTc間期,n為最接近該特定點位對應於該人體1位置的點位數目,
Figure 02_image009
為其中一個最接近該特定點位對應於該人體1位置的點位的QTc間期。當
Figure 02_image003
值越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。 in,
Figure 02_image003
is the discrete parameter, S is the total number of such points,
Figure 02_image007
is the QTc interval of a specific point, n is the number of points closest to the specific point corresponding to the position of the human body 1,
Figure 02_image009
is the QTc interval of one of the points closest to the specific point corresponding to the position of the human body 1 . when
Figure 02_image003
The larger the value, the more severe the overall myocardial ischemia of the human body 1 is.

該第二種評估模式為計算該等點位的該等QTc間期的最大值與最小值的差距值QTcD,並且依據該等QTc間期的最大值與最小值的差距值QTcD評估該人體1的整體心肌缺血的嚴重程度。當該等QTc間期的最大值與最小值的差距值QTcD越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。The second evaluation mode is to calculate the difference QTcD between the maximum value and the minimum value of the QTc interval at the points, and evaluate the human body according to the difference QTcD between the maximum value and the minimum value of the QTc interval 1 The severity of the overall myocardial ischemia. When the difference QTcD between the maximum value and the minimum value of the QTc interval is greater, it means that the overall myocardial ischemia of the human body 1 is more severe.

該穿戴單元7能供該人體1穿戴,且該量測單元2的該等胸前電極21設置於該穿戴單元7。該人體1穿戴該穿戴單元7時,該等胸前電極21分別對應於該參考面100的預定位置。在本實施例中,該穿戴單元7是一背心式的外衣。The wearing unit 7 can be worn by the human body 1 , and the chest electrodes 21 of the measuring unit 2 are disposed on the wearing unit 7 . When the human body 1 wears the wearing unit 7 , the chest electrodes 21 respectively correspond to predetermined positions of the reference plane 100 . In this embodiment, the wearing unit 7 is a vest-like coat.

參閱圖1至圖4,實際應用時,可搭配一種心肌缺血檢測方法進行檢測,該心肌缺血檢測方法包含下列步驟S1至步驟S5。Referring to FIG. 1 to FIG. 4 , in actual application, it can be detected with a myocardial ischemia detection method, which includes the following steps S1 to S5.

步驟S1、輸入指令步驟:於該輸入單元5輸入該操作指令、該模式選擇指令,及該輸出指令。Step S1 , input command step: input the operation command, the mode selection command, and the output command into the input unit 5 .

步驟S2、量測步驟:取得該人體1的該等心電訊號。Step S2, measuring step: obtaining the ECG signals of the human body 1 .

其中,至少部分的該等心電訊號的量測位置對應該人體1的左胸口。Wherein, at least part of the measurement positions of the ECG signals correspond to the left chest of the human body 1 .

其中,該量測步驟是取得該人體1的一參考面100的該等心電訊號。該參考面100是由該人體1的該右胸骨緣11、該第一肋間對應於該右胸骨緣11高度的水平線12、該左腋下中線13,及該第八肋骨對應於該右胸骨緣11高度的水平線14所界定出。Wherein, the measuring step is to obtain the ECG signals of a reference surface 100 of the human body 1 . The reference plane 100 is composed of the right sternal border 11 of the human body 1, the horizontal line 12 corresponding to the height of the right sternal border 11 between the first intercostals, the left underarm midline 13, and the eighth rib corresponding to the right sternal Delimited by the horizontal line 14 at the height of the edge 11.

步驟S3、擷取特徵步驟:藉由該處理單元3擷取每一心電訊號的QT間期及RR間期,並依據該等QT間期與該等RR間期計算數個分別對應該人體1的左胸口的數個點位的該等特徵值。Step S3, feature extraction step: the processing unit 3 extracts the QT interval and RR interval of each ECG signal, and calculates several corresponding to the human body 1 according to the QT interval and the RR interval The eigenvalues of several points on the left chest of the patient.

在本實施例中,擷取特徵步驟所計算的該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期。In this embodiment, the feature values calculated in the feature extraction step are calculated based on the ECG signals to calculate the QTc interval corresponding to the corresponding points.

步驟S4、第一分析步驟:比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,以檢測出心肌缺血位置,並將該等特徵值的高低分布狀態與該比對資訊41進行比對,以檢測出心肌缺血的範圍。Step S4, the first analysis step: comparing the point corresponding to at least one of the lowest eigenvalues to the position of the left chest of the human body to detect the location of myocardial ischemia, and comparing the points corresponding to the lowest one of the eigenvalues The high-low distribution state is compared with the comparison information 41 to detect the range of myocardial ischemia.

其中,該第一分析步驟可以由該處理單元3自動處理以檢測該人體1的心肌缺血位置及心肌缺血的範圍,再依據該輸出指令將檢測結果輸出於該輸出單元6。該第一分析步驟也可以由該處理單元3先依據該輸出指令,將該等特徵值依照對應於該人體1的左胸口的位置並以不同的色階代表該等特徵值的高低而於該輸出單元6產生對應的影像後,再由該使用者目視評估該等特徵值的高低分佈情形,並由該使用者透過比對該影像與該比對資訊41檢測出心肌缺血位置及心肌缺血的範圍。Wherein, the first analysis step can be automatically processed by the processing unit 3 to detect the myocardial ischemia location and the myocardial ischemia range of the human body 1, and then output the detection result to the output unit 6 according to the output instruction. In the first analysis step, the processing unit 3 can firstly compare the feature values to the position corresponding to the left chest of the human body 1 and represent the level of the feature values in different color scales according to the output instruction. After the output unit 6 generates the corresponding image, the user visually evaluates the distribution of the characteristic values, and the user detects the location of myocardial ischemia and myocardial ischemia by comparing the image with the comparison information 41. range of blood.

步驟S5、第二分析步驟:該處理單元3依據該輸入單元5的該模式選擇指令,以該第一評估模式及該第二評估模式的至少其中一者計算並評估該人體1的整體心肌缺血的嚴重程度,且依據該輸出指令將該評估結果輸出於該輸出單元6。Step S5, second analysis step: the processing unit 3 calculates and evaluates the overall myocardial ischemia of the human body 1 in at least one of the first evaluation mode and the second evaluation mode according to the mode selection instruction of the input unit 5 The severity of the blood, and output the evaluation result to the output unit 6 according to the output instruction.

藉由上述步驟S1至步驟S5,就能評估出該人體1的心肌缺血位置、心肌缺血範圍,及整體心肌缺血的嚴重程度。Through the above steps S1 to S5, the location of myocardial ischemia, the extent of myocardial ischemia, and the severity of the overall myocardial ischemia of the human body 1 can be evaluated.

參閱下表1及圖4、圖6,舉例而言,表1是一張QTc間期分佈表,其是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),表中的數值代表每一點位的QTc間期,並且依據所對應的心電訊號量測位置及二維內插對應的點位位置進行排列,而圖6則是以不同的色階代表該等特徵值的高低而輸出於該輸出單元6的影像。Referring to the following Table 1 and Fig. 4 and Fig. 6, for example, Table 1 is a QTc interval distribution table, which uses the myocardial ischemia detection device and the myocardial ischemia detection method to take 16 such chest Electrode 21 is used to obtain 16 ECG signals obtained from the left chest of a patient with left recurrent coronary artery (LCX) stenosis. Get a QTc interval distribution table with a total of 24 points (including the aforementioned 16 QTc intervals calculated from ECG signals). The measurement positions and the point positions corresponding to the two-dimensional interpolation are arranged, and FIG. 6 is an image output to the output unit 6 representing the level of the feature values with different color levels.

由表1及圖6可以得知該等QTc間期中最低的一者是對應於圖中的右上方,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於冠狀動脈左迴返支(LCX)的供血區域。It can be seen from Table 1 and Figure 6 that the lowest one of the QTc intervals corresponds to the upper right in the figure, and then refer to the comparison information 41 in Figure 4 to evaluate the myocardial ischemia location of the patient It is located in the blood supply area of the left recurrent coronary artery (LCX).

要特別說明的是,上述24個點位的QTc間期也可以透過17、18或者其他數量的該等胸前電極21取得心電訊號後,再透過二維內插的計算程序取得24個點位的QTc間期,或者也可以直接透過24個該等胸前電極21所取得的心電訊號進行計算,而不需要經過二維的內插的計算程序,而且該QTc間期分佈表的點位也可以是其他數量,例如可以透過24個該等胸前電極21所取得心電訊號後,以二維的內插計算而擴充為36個點位的QTc間期分佈表。It should be noted that the QTc interval of the above-mentioned 24 points can also obtain the ECG signal through 17, 18 or other numbers of the chest electrodes 21, and then obtain 24 points through the calculation program of two-dimensional interpolation The QTc interval of the position, or can also be calculated directly through the ECG signals obtained by 24 such chest electrodes 21, without the need for a two-dimensional interpolation calculation program, and the points of the QTc interval distribution table The number of bits can also be other numbers. For example, the ECG signals obtained by 24 such chest electrodes 21 can be expanded into a 36-point QTc interval distribution table by two-dimensional interpolation calculation.

表1冠狀動脈左迴返支(LCX)狹窄病患的QTc間期範例 426 409 400 392 377 368 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 409 430 Table 1 Example of QTc interval in patients with left recurrent coronary artery (LCX) stenosis 426 409 400 392 377 368 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 409 430

參閱下表2及圖4、圖7,表2是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈右支(RCA)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖7則是顯示於該輸出單元6的對應的影像。Refer to Table 2, Figure 4, and Figure 7 below. Table 2 uses the myocardial ischemia detection device and the myocardial ischemia detection method to detect a right coronary artery (RCA) stenosis with 16 such front electrodes 21. After calculating the QTc intervals of the 16 ECG signals obtained from the patient's left chest, a QTc interval distribution table with a total of 24 points (including the aforementioned 16 QTc intervals calculated from ECG signals), and FIG. 7 is the corresponding image displayed on the output unit 6 .

由表2及圖7可以得知該等QTc間期中最低的一者是對應於圖中的左側,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於冠狀動脈右支(RCA)的供血區域。From Table 2 and Figure 7, it can be known that the lowest one of the QTc intervals corresponds to the left side of the figure, and with reference to the comparison information 41 in Figure 4, it can be estimated that the patient's myocardial ischemia location is Located in the territory supplied by the right coronary artery (RCA).

表2冠狀動脈右支(RCA)狹窄病患的QTc間期範例 417 428 356 390 400 404 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 405 409 Table 2 Examples of QTc intervals in patients with right coronary artery (RCA) stenosis 417 428 356 390 400 404 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 405 409

參閱下表3及圖4、圖8,表3是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖8則是顯示於該輸出單元6的對應的影像。Refer to Table 3, Figure 4, and Figure 8 below. Table 3 uses the myocardial ischemia detection device and the myocardial ischemia detection method to measure the stenosis of a left anterior descending coronary artery (LAD) with 16 such chest electrodes 21. After calculating the QTc intervals of the 16 ECG signals obtained from the patient's left chest, a QTc interval distribution table with a total of 24 points (including The aforementioned 16 QTc intervals calculated from ECG signals), and FIG. 8 is the corresponding image displayed on the output unit 6 .

由表3及圖8可以得知該等QTc間期中最低的一者是對應於圖中的中間偏上方的區域,再配合參閱圖4的該比對資訊41即可評估出該病患的心肌缺血位置是位於LAD冠狀動脈左前下降支(LAD)的供血區域。It can be known from Table 3 and Figure 8 that the lowest one of the QTc intervals corresponds to the upper middle area in the figure, and then refer to the comparison information 41 in Figure 4 to evaluate the patient's myocardial The ischemic site is located in the blood supply area of the left anterior descending coronary artery (LAD).

表3冠狀動脈左前下降支(LAD)狹窄病患的QTc間期範例 415 374 378 378 388 393 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 405 402 Table 3 Examples of QTc intervals in patients with left anterior descending coronary artery (LAD) stenosis 415 374 378 378 388 393 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 405 402

參閱下表4及圖4、圖9,表4是利用該心肌缺血檢測裝置及該心肌缺血檢測方法,以16個該等胸前電極21對一三條冠狀動脈均狹窄(3VD)的病患的左胸前取得的16個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計24個點位的QTc間期分佈表(包含前述16個由心電訊號計算得的QTc間期),而圖9則是顯示於該輸出單元6的對應的影像。Refer to the following Table 4 and Fig. 4 and Fig. 9, Table 4 is the use of the myocardial ischemia detection device and the myocardial ischemia detection method, with 16 such chest electrodes 21 pairs of one three coronary artery stenosis (3VD) After calculating the QTc intervals of the 16 ECG signals obtained from the patient's left chest, a QTc interval distribution table with a total of 24 points (including The aforementioned 16 QTc intervals calculated from ECG signals), and FIG. 9 is the corresponding image displayed on the output unit 6 .

由表4及圖9可以得知該等QTc間期中最低的一者是對應於圖中的左上方的區域,但依據圖9顯示QTc間期偏低的區域包括圖中的左上方及圖中的右上方,再配合參閱圖4的該比對資訊41,QTc間期偏低的區域涵蓋了該比對資訊41的三個比對區域411,因此可評估出該病患的心肌缺血範圍涵蓋三條冠狀動脈(3VD)的供血區域。It can be known from Table 4 and Figure 9 that the lowest one of the QTc intervals corresponds to the upper left area in the figure, but according to Figure 9, the area with a low QTc interval includes the upper left and the upper left area in the figure. In conjunction with the comparison information 41 in Figure 4, the area with a low QTc interval covers the three comparison areas 411 of the comparison information 41, so the extent of myocardial ischemia in this patient can be evaluated Covers the territory supplied by the three coronary arteries (3VD).

表4三條冠狀動脈均狹窄(3VD)病患的QTc間期範例 376 364 442 417 411 400 364 458 430 417 405 389 401 438 422 417 422 422 401 419 423 430 426 424 Table 4 Examples of QTc intervals in patients with three coronary artery stenosis (3VD) 376 364 442 417 411 400 364 458 430 417 405 389 401 438 422 417 422 422 401 419 423 430 426 424

上述的表1至表4及圖6至圖9是以16個心電訊號進行心肌缺血檢測,但不限於此,該心肌缺血檢測裝置及該心肌缺血檢測方法也可以應用在不同數量的該等胸前電極21與不同數量的心電訊號,而且也可以用不同點位數量的QTc間期分佈表進行評估,例如以下的表5至表8及圖11至圖14是依序分別對上述表1至表4及上述圖6至圖9的病患以圖10所示的24個該等胸前電極21取得24個心電訊號,經過計算該等心電訊號的QTc間期後,再透過二維的內插計算求得共計36個點位的QTc間期分佈表(包含前述24個由心電訊號計算得的QTc間期)及顯示於該輸出單元6的對應的影像。The above-mentioned Tables 1 to 4 and Figures 6 to 9 detect myocardial ischemia with 16 ECG signals, but are not limited thereto. The myocardial ischemia detection device and the myocardial ischemia detection method can also be applied to different numbers of The chest electrodes 21 and different numbers of ECG signals can also be evaluated with QTc interval distribution tables with different numbers of points. For example, the following Tables 5 to 8 and Figures 11 to 14 are sequentially For the above-mentioned Table 1 to Table 4 and the above-mentioned Fig. 6 to Fig. 9 patients, obtain 24 ECG signals with 24 such chest electrodes 21 as shown in Fig. 10, after calculating the QTc interval of these ECG signals , and then obtain a QTc interval distribution table of 36 points in total (including the aforementioned 24 QTc intervals calculated from ECG signals) through two-dimensional interpolation calculations and the corresponding images displayed on the output unit 6 .

其中,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的4個胸前電極21對應該右胸骨緣11、5個胸前電極21對應該左胸骨緣111、4個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、4個胸前電極21對應該左腋下前緣線114、3個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的2個胸前電極21對應該第一肋間對應於該右胸骨緣11高度、3個胸前電極21對應一第二肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、6個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、3個胸前電極21對應該第六肋間對應於該右胸骨緣11高度。Wherein, in terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, the 4 chest electrodes 21 in the chest electrodes 21 correspond to the right sternal border 11, and the 5 chest electrodes 21 correspond to the left side. The sternal border 111 and the 4 chest electrodes 21 correspond to the midline 113 between the left sternal border 111 and the left clavicle midline 112, and the 4 chest electrodes 21 correspond to the left clavicle midline 112 and 4 chest electrodes 21 corresponds to the left underarm front edge line 114, and the three chest electrodes 21 correspond to the left underarm midline 13; in terms of the longitudinal positions of the chest electrodes 21 corresponding to the human body 1, the chest electrodes 21 2 chest electrodes 21 correspond to the height of the right sternal border 11 in the first intercostal space, 3 chest electrodes 21 correspond to the height of the right sternal border 11 in the second intercostal space, and 5 chest electrodes 21 correspond to the height of the right sternal border 11. The third intercostal space corresponds to the height of the right sternal margin 11, the 6 chest electrodes 21 correspond to the fourth intercostal space corresponding to the height of the right sternal margin 11, and the 5 chest electrodes 21 correspond to the fifth intercostal space corresponding to the right sternal margin 11 Height, three chest electrodes 21 correspond to the sixth intercostal space and correspond to the height of the right sternal border 11 .

經比對上述表1至表4及上述圖6至圖9,與以下的表5至表8及圖11至圖14,可以發現對於相同的患者無論以16個心電訊號(見圖3;24個點位的QTc間期分佈表)或24個心電訊號(見圖10;36個點位的QTc間期分佈表)進行計算與分析,在分析心肌缺血位置與範圍時都能夠得到一致的分析結果,而且在部分的案例中,以24個心電訊號(36個點位的QTc間期分佈表)進行分析還能更加明顯地看出QTc間期偏低的區域(例如:圖14相較於圖9較能明顯看出QTc間期偏低的區域涵蓋該比對資訊41的三個比對區域411)。在以24個心電訊號(再透過二維的內插計算求得共計36個點位的QTc間期分佈表)進行分析的本實施例中,若

Figure 02_image003
大於9.4毫秒(msec)或 QTcD大於66毫秒(msec)時,即代表有顯著的心肌缺血,可能需要進行較積極的治療。 After comparing the above Tables 1 to 4 and the above Figures 6 to 9, and the following Tables 5 to 8 and Figures 11 to 14, it can be found that for the same patient no matter whether the 16 ECG signals (see Figure 3; QTc interval distribution table of 24 points) or 24 ECG signals (see Figure 10; QTc interval distribution table of 36 points) can be calculated and analyzed, and can be obtained when analyzing the location and range of myocardial ischemia Consistent analysis results, and in some cases, the analysis of 24 ECG signals (QTc interval distribution table with 36 points) can more clearly show the area with low QTc interval (for example: Fig. 14 Compared with Fig. 9, it can be clearly seen that the area with low QTc interval covers the three comparison areas 411 of the comparison information 41). In the present embodiment where 24 ECG signals are analyzed (the QTc interval distribution table with a total of 36 points is obtained through two-dimensional interpolation calculation), if
Figure 02_image003
When it is greater than 9.4 milliseconds (msec) or QTcD is greater than 66 milliseconds (msec), it means that there is significant myocardial ischemia, and more aggressive treatment may be required.

表5冠狀動脈左迴返支(LCX)狹窄病患的QTc間期範例 426 422 413 413 413 413 426 413 405 403 401 407 426 409 400 392 388 384 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 447 449 Table 5 Examples of QTc intervals in patients with left recurrent coronary artery (LCX) stenosis 426 422 413 413 413 413 426 413 405 403 401 407 426 409 400 392 388 384 426 405 396 383 362 358 411 396 388 366 451 451 411 404 386 366 447 449

表6冠狀動脈右支(RCA)狹窄病患的QTc間期範例 398 398 411 411 411 411 413 417 425 409 408 410 417 428 356 390 405 408 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 398 405 Table 6 Examples of QTc intervals in patients with right coronary artery (RCA) stenosis 398 398 411 411 411 411 413 417 425 409 408 410 417 428 356 390 405 408 428 348 390 394 409 409 394 360 398 394 409 413 394 377 392 402 398 405

表7冠狀動脈左前下降支(LAD)狹窄病患的QTc間期範例 395 370 372 372 372 372 395 336 374 374 380 376 415 374 378 378 395 390 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 403 401 Table 7 Examples of QTc intervals in patients with left anterior descending coronary artery (LAD) stenosis 395 370 372 372 372 372 395 336 374 374 380 376 415 374 378 378 395 390 415 399 382 382 399 399 403 390 403 403 403 399 403 397 402 407 403 401

表8三條冠狀動脈均狹窄(3VD)病患的QTc間期範例 413 422 391 391 391 391 385 372 360 389 394 392 376 364 442 417 401 394 364 458 430 417 405 389 401 438 422 417 422 422 401 419 424 430 430 426 Table 8 Examples of QTc intervals in patients with three coronary artery stenosis (3VD) 413 422 391 391 391 391 385 372 360 389 394 392 376 364 442 417 401 394 364 458 430 417 405 389 401 438 422 417 422 422 401 419 424 430 430 426

而在評估整體心肌缺血的嚴重程度時,無論是採用該第一種評估模式或該第二評估模式,其主要原理都是計算該等QTc間期的離散程度,當

Figure 02_image003
值或該等QTc間期的最大值與最小值的差距值QTcD越大,代表該人體1的整體心肌缺血的嚴重程度越嚴重。 When assessing the severity of the overall myocardial ischemia, whether the first evaluation mode or the second evaluation mode is used, the main principle is to calculate the dispersion of the QTc intervals, when
Figure 02_image003
The larger the QTcD value or the difference QTcD between the maximum value and the minimum value of the QTc interval, the more severe the overall myocardial ischemia of the human body 1 is.

舉例而言,以16個心電訊號的分析結果為例,表1的

Figure 02_image003
值為17.96,該等QTc間期的最大值與最小值的差距值QTcD為93,而表3的
Figure 02_image003
值為7.58,而該等QTc間期的最大值與最小值的差距值QTcD為41,因此無論是採用該第一種評估模式或該第二評估模式,都能推估出表1的病患整體心肌缺血的嚴重程度都較表3的病患嚴重,而且表1的
Figure 02_image003
值與QTcD都顯示出表1的患者可能需要進行較積極的治療,因此具有一致的評估結果。 For example, taking the analysis results of 16 ECG signals as an example, Table 1
Figure 02_image003
value is 17.96, and the gap value QTcD between the maximum value and minimum value of these QTc intervals is 93, while those in Table 3
Figure 02_image003
is 7.58, and the difference QTcD between the maximum value and the minimum value of these QTc intervals is 41, so whether the first evaluation mode or the second evaluation mode is used, the patients in Table 1 can be estimated The severity of overall myocardial ischemia is more serious than that of the patients in Table 3, and the patients in Table 1
Figure 02_image003
Both values and QTcD show that the patients in Table 1 may need more aggressive treatment, so they have consistent assessment results.

另外,再以24個心電訊號的分析結果為例,以分別與該表1及表3相同患者的表5及表7而言,表5的

Figure 02_image003
值為13.35,該等QTc間期的最大值與最小值的差距值QTcD為93,而表7的
Figure 02_image003
值為9.11,該等QTc間期的最大值與最小值的差距值QTcD為79,因此同樣能推估出表5的病患(即表1的病患)整體心肌缺血的嚴重程度較表7的病患(即表3的病患)嚴重,也就是說無論以16個心電訊號或是24個心電訊號進行分析都能達到一致的分析結果。 In addition, taking the analysis results of 24 ECG signals as an example, taking Table 5 and Table 7 of the same patient as Table 1 and Table 3 respectively, Table 5
Figure 02_image003
The value is 13.35, and the gap value QTcD between the maximum value and the minimum value of these QTc intervals is 93, while the values in Table 7
Figure 02_image003
value is 9.11, and the gap value QTcD between the maximum value and minimum value of these QTc intervals is 79, so it can also be estimated that the severity of the overall myocardial ischemia in the patients in Table 5 (i.e. the patients in Table 1) is higher than that in Table 1. The patients in 7 (namely the patients in Table 3) are serious, that is to say, whether the analysis is performed with 16 ECG signals or 24 ECG signals, the same analysis results can be achieved.

除此之外,該等胸前電極21的排列方式也可以不限於圖3及圖10的排列方式,以圖15為例,圖15為另一種24個胸前電極21的排列方式,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的3個胸前電極21對應該右胸骨緣11、5個胸前電極21對應該左胸骨緣111、5個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、4個胸前電極21對應該左鎖骨正中線112、4個胸前電極21對應該左腋下前緣線114、3個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的1個胸前電極21對應一第二肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第六肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的5個該等胸前電極21分別對應於一第三肋骨、該第四肋骨、該第五肋骨、該第六肋骨及一第七肋骨的高度。In addition, the arrangement of the chest electrodes 21 is not limited to the arrangement shown in Fig. 3 and Fig. 10. Taking Fig. 15 as an example, Fig. 15 is another arrangement of 24 chest electrodes 21. For the lateral positions of the chest electrodes 21 corresponding to the human body 1, three chest electrodes 21 in the chest electrodes 21 correspond to the right sternal margin 11, and 5 chest electrodes 21 correspond to the left sternal margin 111, Five chest electrodes 21 correspond to the midline 113 between the left sternal border 111 and the left clavicle midline 112, four chest electrodes 21 correspond to the left clavicle midline 112, and four chest electrodes 21 correspond to the left clavicle midline 112. The anterior underarm line 114 and the three chest electrodes 21 correspond to the left underarm midline 13; in terms of the longitudinal positions of the chest electrodes 21 corresponding to the human body 1, one of the chest electrodes 21 The chest electrodes 21 correspond to the second intercostal space corresponding to the height of the right sternal border 11, the four chest electrodes 21 correspond to the third intercostal space corresponding to the height of the right sternal border 11, and the five chest electrodes 21 correspond to the fourth intercostal space. At the height of the right sternal margin 11, the five chest electrodes 21 correspond to the fifth intercostal space corresponding to the height of the right sternal margin 11, and the 4 chest electrodes 21 correspond to the sixth intercostal space corresponding to the height of the right sternal margin 11, and correspond to The five chest electrodes 21 between the left sternal border 111 and the left clavicle midline 112 on the midline 113 correspond to a third rib, the fourth rib, the fifth rib, and the sixth rib, respectively. And the height of a seventh rib.

經過實測與分析,依據圖15所揭示的該等胸前電極21的排列方式,在分析心肌缺血位置與範圍,以及病患整體心肌缺血的嚴重程度時能夠得到與以圖3及圖10的胸前電極21的排列方式一致的分析結果。After actual measurement and analysis, according to the arrangement of the chest electrodes 21 disclosed in FIG. 15 , when analyzing the location and scope of myocardial ischemia, and the severity of the overall myocardial ischemia of the patient, it can be obtained as shown in FIG. 3 and FIG. 10 . The analysis results of the arrangement of the chest electrodes 21 are consistent.

另外,參閱圖16,該等胸前電極21的數量也可以為36個,以該等胸前電極21的對應該人體1的橫向位置而言,該等胸前電極21中的7個胸前電極21對應該右胸骨緣11、7個胸前電極21對應該左胸骨緣111、7個胸前電極21對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113、6個胸前電極21對應該左鎖骨正中線112、5個胸前電極21對應該左腋下前緣線114、4個胸前電極21對應該左腋下中線13;以該等胸前電極21的對應該人體1的縱向位置而言,該等胸前電極21中的2個胸前電極21對應該第一肋間對應於該右胸骨緣11高度,3個胸前電極21對應該第二肋間對應於該右胸骨緣11高度、4個胸前電極21對應該第三肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第四肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第五肋間對應於該右胸骨緣11高度、5個胸前電極21對應該第六肋間對應於該右胸骨緣11高度、5個胸前電極21對應一第七肋間對應於該右胸骨緣11高度,並對應介於該左胸骨緣111及該左鎖骨正中線112間之中線113的7個該等胸前電極21分別對應於一第二肋骨、該第三肋骨、該第四肋骨、該第五肋骨、該第六肋骨、該第七肋骨及該第八肋骨的高度。In addition, referring to FIG. 16 , the number of the chest electrodes 21 can also be 36. In terms of the lateral positions of the chest electrodes 21 corresponding to the human body 1, seven of the chest electrodes 21 The electrodes 21 correspond to the right sternal border 11, the seven front electrodes 21 correspond to the left sternal border 111, and the seven front electrodes 21 correspond to the midlines 113, 6 between the left sternal border 111 and the left clavicle midline 112. One chest electrode 21 corresponds to the left clavicle midline 112, five chest electrodes 21 correspond to the left underarm front edge line 114, and four chest electrodes 21 correspond to the left underarm midline 13; 21 corresponds to the longitudinal position of the human body 1, two of the chest electrodes 21 correspond to the first intercostal space corresponding to the height of the right sternal border 11, and three chest electrodes 21 correspond to the second The intercostal space corresponds to the height of the right sternal border 11, the 4 chest electrodes 21 correspond to the third intercostal space corresponding to the height of the right sternal border 11, the 5 front chest electrodes 21 correspond to the fourth intercostal space corresponding to the height of the right sternal border 11, 5 chest electrodes 21 correspond to the height of the right sternal border 11 in the fifth intercostal space, 5 chest electrodes 21 correspond to the height of the sixth intercostal space corresponding to the height of the right sternal border 11, and 5 chest electrodes 21 correspond to the height of the right sternal border 11. The intercostal space corresponds to the height of the right sternal border 11, and corresponds to the seven front chest electrodes 21 on the midline 113 between the left sternal border 111 and the left clavicle midline 112, corresponding to a second rib and the first rib respectively. The heights of three ribs, the fourth rib, the fifth rib, the sixth rib, the seventh rib and the eighth rib.

經過實測與分析,依據圖16所揭示的該等胸前電極21的排列方式,在分析心肌缺血位置與範圍,以及病患整體心肌缺血的嚴重程度時也能夠得到與以圖3、圖10及圖15的胸前電極21的排列方式一致的分析結果。After actual measurement and analysis, according to the arrangement of the chest electrodes 21 disclosed in Fig. 16, when analyzing the location and scope of myocardial ischemia, and the severity of the overall myocardial ischemia of the patient, it can also be obtained as shown in Fig. 3 and Fig. 10 and FIG. 15 show that the arrangement of the chest electrodes 21 is consistent with the analysis results.

根據上述的說明,本發明心肌缺血檢測裝置及心肌缺血檢測方法的優點包含:According to the above description, the advantages of the myocardial ischemia detection device and the myocardial ischemia detection method of the present invention include:

一、本發明是以該等QT間期與該等RR間期計算該等特徵值以檢測出該人體1的心肌缺血位置,相對於現有以ST段的波形變化的分析方式,該等QT間期與該等RR間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差。1. The present invention calculates the eigenvalues of the QT intervals and the RR intervals to detect the myocardial ischemia position of the human body 1. Compared with the existing analysis method of changing the waveform of the ST segment, the QT Intervals and the RR intervals are less affected by chest wall impedance, noise, and baseline shift, thus avoiding estimation errors.

二、本發明是利用該等特徵值中最低的至少一者所對應的心電訊號量測位置,檢測出心肌缺血位置,相對於現有以同組群的多數導程之ST段的上升或下降波形變化作為評估依據的方式,本發明的檢測方式相對容易而能有效提高其靈敏度。2. The present invention uses the ECG signal measurement position corresponding to at least one of the lowest eigenvalues to detect the position of myocardial ischemia. The falling waveform change is used as the evaluation basis, and the detection method of the present invention is relatively easy and can effectively improve its sensitivity.

三、以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元6,使該使用者能簡易且便捷地瞭解該等特徵值的高低分佈情形,以利於評估心肌缺血位置及心肌缺血的範圍,能有效縮短評估時間。3. Image the numerical differences and corresponding distribution positions of these characteristic values on the output unit 6 with different color scales, so that the user can easily and conveniently understand the high and low distribution of these characteristic values, so as to facilitate the evaluation of the myocardium The location of ischemia and the extent of myocardial ischemia can effectively shorten the assessment time.

四、以單一的指標(即

Figure 02_image003
值或該等QTc間期的最大值與最小值的差距值QTcD)評估整體心肌缺血的嚴重程度,十分地簡易。 Fourth, with a single indicator (i.e.
Figure 02_image003
Value or the difference between the maximum value and the minimum value of the QTc interval (QTcD) evaluates the severity of the overall myocardial ischemia, which is very simple.

五、藉由設置至少16個該等胸前電極21,透過該等胸前電極21佈設於該參考面100的特殊佈設位置,並藉由該處理單元3依據該等心電訊號所計算的該等特徵值,能完整提供該參考面100的心電訊號的特徵,因此即使是應用於未經催迫的人體1也能夠推估該人體1慢性與急性心肌缺血的位置與範圍,而且由於該等胸前電極21的數量僅至少16個,所以不需要增加太多的製造成本且使用上也十分便利。5. By arranging at least 16 of the chest electrodes 21, the chest electrodes 21 are arranged on the special layout position of the reference surface 100, and the processing unit 3 calculates the heart rate based on the ECG signals. can completely provide the characteristics of the ECG signal of the reference surface 100, so even if it is applied to the human body 1 without urging, the position and range of chronic and acute myocardial ischemia of the human body 1 can be estimated, and because the The number of the chest electrodes 21 is only at least 16, so there is no need to increase too much manufacturing cost and it is very convenient to use.

六、由於該等胸前電極21是佈設於該參考面100,因此能藉由二維的內插計算,將16個該等胸前電極21所量測的心電訊號所計算而得的特徵值,擴充至24個點位的特徵值,相較於傳統的十二導程心電圖能提高判斷的精確度,而相較於現有以超過一百個電極取得心電圖的方式則能減少該等胸前電極21的數量而降低成本並簡化將該等電極黏貼至該人體1時的定位步驟。6. Since the chest electrodes 21 are arranged on the reference surface 100, the characteristics obtained by calculating the ECG signals measured by the 16 chest electrodes 21 can be calculated by two-dimensional interpolation Value, expanded to 24 points of eigenvalues, compared with the traditional 12-lead ECG, it can improve the accuracy of judgment, and compared with the existing method of obtaining ECG with more than one hundred electrodes, it can reduce the chest The number of the front electrodes 21 reduces the cost and simplifies the positioning steps when the electrodes are attached to the human body 1 .

七、藉由設置該穿戴單元7,當該人體1穿戴該穿戴單元7時,該等胸前電極21分別對應於該參考面100的預定位置,因此能簡化將該等胸前電極21設置該人體1時的定位與操作步驟,能加快作業流程並確保該等胸前電極21放置位置的正確性。7. By setting the wearing unit 7, when the human body 1 wears the wearing unit 7, the chest electrodes 21 respectively correspond to the predetermined positions of the reference surface 100, so the setting of the chest electrodes 21 can be simplified. The positioning and operation steps of the human body 1 can speed up the operation process and ensure the correctness of the placement of the chest electrodes 21 .

另外,要特別說明的是,在本實施例中,每一特徵值為各自的心電訊號的QTc間期,然而,在其他的實施態樣中,每一特徵值也可以為各自的心電訊號的QT間期(也就是未以RR間期進行校正,因此不需要擷取每一心電訊號的RR間期),依據上述的檢測步驟也能夠達到相同的功效。In addition, it should be noted that in this embodiment, each feature value is the QTc interval of the respective ECG signal, however, in other implementations, each feature value can also be the QTc interval of the respective ECG signal The same effect can also be achieved according to the above-mentioned detection steps for the QT interval of the signal (that is, the RR interval is not corrected, so there is no need to capture the RR interval of each ECG signal).

綜上所述,本發明心肌缺血檢測裝置及心肌缺血檢測方法,藉由以該等QT間期及該等RR間期計算該等特徵值以檢測出該人體1的心肌缺血位置,由於相對於現有以ST段的波形變化的分析方式,該等QT間期及該等RR間期較不會受到胸壁阻抗、噪訊與基線偏移的影響,因此能避免產生評估誤差,故確實能達成本發明的目的。In summary, the myocardial ischemia detection device and the myocardial ischemia detection method of the present invention detect the myocardial ischemia location of the human body 1 by calculating the characteristic values with the QT intervals and the RR intervals, Since the QT intervals and the RR intervals are less affected by chest wall impedance, noise, and baseline offset than the existing analysis methods based on ST-segment waveform changes, evaluation errors can be avoided, so it is true Can reach the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

1:人體 100:參考面 11:右胸骨緣 111:左胸骨緣 112:左鎖骨正中線 113:中線 114:左腋下前緣線 12:水平線 13:左腋下中線 14:水平線 2:量測單元 21:胸前電極 22:訊號緩衝器 23:訊號放大器 24:濾波器 25:訊號轉換器 26:肢導電極 3:處理單元 4:資料庫單元 41:比對資訊 411:比對區域 5:輸入單元 6:輸出單元 7:穿戴單元 1: human body 100: Reference surface 11: Right sternal border 111: Left sternal border 112: Midline of the left clavicle 113: center line 114: Front edge line of left armpit 12: Horizontal line 13: Left axillary midline 14: Horizontal line 2: Measuring unit 21: chest electrodes 22: Signal buffer 23: Signal amplifier 24: filter 25: Signal converter 26: limb conduction electrode 3: Processing unit 4: Database unit 41: Compare information 411: compare area 5: Input unit 6: Output unit 7: Wearing unit

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明心肌缺血檢測裝置的一實施例的一系統方塊圖; 圖2是一示意圖,說明該實施例所取得的數個心電訊號所對應的一人體的一參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出; 圖3是一示意圖,說明該實施例的16個胸前電極的設置位置; 圖4是該實施例的一資料庫單元所儲存的一比對資訊的示意圖; 圖5是一流程圖,說明利用該實施例的一種心肌缺血檢測方法的流程; 圖6是一示意圖,說明從一冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於一輸出單元的影像; 圖7是另一示意圖,說明從一冠狀動脈右支(RCA)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖8是又另一示意圖,說明從一冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖9是再另一示意圖,說明從一個三條冠狀動脈均狹窄(3VD)的病患的左胸前取得16個心電訊號,且以二維的內插計算取得24個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖10是一類似圖3的示意圖,說明該實施例的胸前電極數量改為24個的一種變化的設置方式; 圖11是一類似圖6的圖,說明從該冠狀動脈左迴返支(LCX)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖12是一類似圖7的圖,說明從該冠狀動脈右支(RCA)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖13是一類似圖8的圖,說明從該冠狀動脈左前下降支(LAD)狹窄的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖14是一類似圖9的圖,說明從該三條冠狀動脈均狹窄(3VD)的病患的左胸前取得24個心電訊號,且以二維的內插計算取得36個點位的特徵值後,以不同的色階代表該等心電訊號的特徵值的高低而輸出於該輸出單元的影像; 圖15是另一類似圖3的示意圖,說明該實施例的胸前電極數量改為24個的另一種變化的設置方式;及 圖16是又另一類似圖3的示意圖,說明該實施例的胸前電極數量改為36個的一種變化的設置方式。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a system block diagram of an embodiment of the myocardial ischemia detection device of the present invention; Fig. 2 is a schematic diagram illustrating that a reference plane of a human body corresponding to several ECG signals obtained in this embodiment is a horizontal line corresponding to the height of the right sternal border of the human body and a first intercostal space , a left axillary midline, and a horizontal line of the eighth rib corresponding to the height of the right sternal border; Fig. 3 is a schematic diagram illustrating the setting positions of 16 chest electrodes of this embodiment; FIG. 4 is a schematic diagram of a comparison information stored in a database unit of the embodiment; Fig. 5 is a flow chart illustrating the flow process of a method for detecting myocardial ischemia utilizing this embodiment; Fig. 6 is a schematic diagram illustrating that 16 ECG signals were obtained from the left chest of a patient with left recurrent coronary artery (LCX) stenosis, and after two-dimensional interpolation was used to obtain the eigenvalues of 24 points, An image output to an output unit representing the level of the characteristic values of the electrocardiographic signals with different color scales; Fig. 7 is another schematic diagram illustrating that 16 ECG signals were obtained from the left chest of a patient with right coronary artery (RCA) stenosis, and the eigenvalues of 24 points were obtained by two-dimensional interpolation. Representing the level of the characteristic values of the ECG signals with different color levels and outputting the image on the output unit; Fig. 8 is yet another schematic diagram illustrating that 16 ECG signals were obtained from the left chest of a patient with left anterior descending coronary artery (LAD) stenosis, and the eigenvalues of 24 points were obtained by two-dimensional interpolation calculation After that, use different color scales to represent the level of the characteristic values of the ECG signals and output the image on the output unit; Fig. 9 is another schematic diagram illustrating that 16 ECG signals were obtained from the left chest of a patient with three coronary artery stenosis (3VD), and the eigenvalues of 24 points were obtained by two-dimensional interpolation calculation , using different color scales to represent the level of the characteristic values of the ECG signals and output the image on the output unit; Fig. 10 is a schematic diagram similar to Fig. 3, illustrating a change in the arrangement of the number of electrodes in front of the chest of this embodiment to 24; Fig. 11 is a diagram similar to Fig. 6, illustrating that 24 ECG signals were obtained from the left chest of a patient with left recurrent coronary artery (LCX) stenosis, and 36 points were obtained by two-dimensional interpolation calculation After the eigenvalues, the images output on the output unit are represented by different color levels of the eigenvalues of the ECG signals; Fig. 12 is a diagram similar to Fig. 7, illustrating that 24 ECG signals were obtained from the left chest of the patient with right coronary artery (RCA) stenosis, and the characteristics of 36 points were obtained by two-dimensional interpolation calculation After the value, use different color scales to represent the level of the characteristic values of the ECG signals and output the image on the output unit; Fig. 13 is a diagram similar to Fig. 8, illustrating that 24 ECG signals were obtained from the left chest of a patient with left anterior descending coronary artery (LAD) stenosis, and 36 points were obtained by two-dimensional interpolation calculation After the eigenvalues, the images output on the output unit are represented by different color levels of the eigenvalues of the ECG signals; Fig. 14 is a diagram similar to Fig. 9, illustrating that 24 ECG signals were obtained from the left chest of the patient with three coronary artery stenosis (3VD), and the characteristics of 36 points were obtained by two-dimensional interpolation calculation After the value, use different color scales to represent the level of the characteristic values of the ECG signals and output the image on the output unit; Fig. 15 is another schematic diagram similar to Fig. 3, illustrating another variation setting mode in which the number of electrodes in front of the chest of this embodiment is changed to 24; and Fig. 16 is yet another schematic diagram similar to Fig. 3, illustrating a variation arrangement in which the number of chest electrodes in this embodiment is changed to 36.

2:量測單元 2: Measuring unit

21:胸前電極 21: chest electrodes

22:訊號緩衝器 22: Signal buffer

23:訊號放大器 23: Signal amplifier

24:濾波器 24: filter

25:訊號轉換器 25: Signal converter

26:肢導電極 26: limb conduction electrode

3:處理單元 3: Processing unit

4:資料庫單元 4: Database unit

5:輸入單元 5: Input unit

6:輸出單元 6: Output unit

Claims (14)

一種心肌缺血檢測裝置,適用於一人體,該心肌缺血檢測裝置包含: 一量測單元,包括四個肢導電極,及數個胸前電極,該等肢導電極及該等胸前電極適用於取得該人體的數個心電訊號,至少部分的該等胸前電極的量測位置對應該人體的左胸口;及 一處理單元,訊號連接該量測單元並能接收該等心電訊號,該處理單元能擷取該等心電訊號的QT間期,並藉由該等QT間期計算數個分別對應於該人體左胸口的數個點位的特徵值,再依據該等特徵值中最低的至少一者所對應的心電訊號量測位置,以檢測出該人體的心肌缺血位置。 A myocardial ischemia detection device, suitable for a human body, the myocardial ischemia detection device includes: A measurement unit, including four limb conducting electrodes, and several chest electrodes, the limb conducting electrodes and the chest electrodes are suitable for obtaining several ECG signals of the human body, at least some of the chest electrodes The measurement position of corresponds to the left chest of the human body; and A processing unit, the signal is connected to the measurement unit and can receive the ECG signals, the processing unit can extract the QT intervals of the ECG signals, and use the QT intervals to calculate a number corresponding to the ECG signals respectively The characteristic values of several points on the left chest of the human body are measured according to the ECG signal corresponding to at least one of the lowest characteristic values, so as to detect the myocardial ischemia position of the human body. 如請求項1所述的心肌缺血檢測裝置,還包含一資料庫單元,該資料庫單元儲存一比對資訊,該處理單元能依據該等特徵值的高低分布狀態與該比對資訊進行比對,以檢測出心肌缺血的範圍。The myocardial ischemia detection device as described in Claim 1, further includes a database unit, the database unit stores a comparison information, and the processing unit can compare with the comparison information according to the distribution state of the characteristic values Yes, to detect the extent of myocardial ischemia. 如請求項2所述的心肌缺血檢測裝置,其中,該量測單元的該等胸前電極及該等胸前電極適用於取得該人體的一參考面的至少16個該等心電訊號,該參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出。The myocardial ischemia detection device according to claim 2, wherein the chest electrodes of the measurement unit and the chest electrodes are adapted to obtain at least 16 of the electrocardiographic signals of a reference surface of the human body, The reference plane is defined by a right sternal margin of the human body, a horizontal line corresponding to the height of the right sternal margin of the first intercostal space, a left axillary midline, and a horizontal line corresponding to the height of the right sternal margin of the eighth rib out. 如請求項2所述的心肌缺血檢測裝置,其中,該處理單元還能擷取該等心電訊號的RR間期,該處理單元是藉由該等QT間期與該等RR間期計算該等點位的QTc間期以分別作為該等特徵值。The myocardial ischemia detection device as described in Claim 2, wherein the processing unit can also extract the RR intervals of the ECG signals, and the processing unit calculates the QT intervals and the RR intervals The QTc intervals at these points are respectively used as the characteristic values. 如請求項4所述的心肌缺血檢測裝置,還包含一輸出單元,該處理單元能以不同的色階將該等特徵值的數值差異與對應的分佈位置成像於該輸出單元。The myocardial ischemia detection device according to Claim 4 further includes an output unit, and the processing unit can image the numerical differences and corresponding distribution positions of the feature values on the output unit in different color scales. 如請求項4所述的心肌缺血檢測裝置,其中,該處理單元還能以一評估參數演算法計算一離散參數,並依據該離散參數評估該人體的整體心肌缺血的嚴重程度,該評估參數演算法為:
Figure 03_image011
,其中
Figure 03_image013
為該離散參數,S為該等點位的總數量,
Figure 03_image015
為一特定點位的QTc間期,n為最接近該特定點位對應於該人體位置的點位數目,
Figure 03_image017
為其中一個最接近該點位對應於該人體位置的點位QTc間期。
The myocardial ischemia detection device according to claim 4, wherein the processing unit can also calculate a discrete parameter with an evaluation parameter algorithm, and evaluate the severity of the overall myocardial ischemia of the human body according to the discrete parameter, the evaluation The parameter algorithm is:
Figure 03_image011
,in
Figure 03_image013
is the discrete parameter, S is the total number of such points,
Figure 03_image015
is the QTc interval of a specific point, n is the number of points closest to the specific point corresponding to the position of the human body,
Figure 03_image017
is the QTc interval of one of the points closest to the point corresponding to the position of the human body.
如請求項4所述的心肌缺血檢測裝置,其中,該處理單元還能計算該等點位中的該等QTc間期的最大值與最小值的差距值QTcD,並依據該等QTc間期的最大值與最小值的差距值評估該人體的整體心肌缺血的嚴重程度。The myocardial ischemia detection device according to claim 4, wherein the processing unit can also calculate the difference QTcD between the maximum value and the minimum value of the QTc intervals in the points, and based on the QTc intervals The difference between the maximum value and the minimum value evaluates the severity of the overall myocardial ischemia in the human body. 一種心肌缺血檢測方法,包含: 一量測步驟,取得一人體的數個心電訊號,至少部分的該等心電訊號的量測位置對應該人體的左胸口; 一擷取特徵步驟,藉由一處理單元擷取每一心電訊號的QT間期,並依據該等QT間期計算數個分別對應該人體的左胸口的數個點位的特徵值;及 一第一分析步驟,比對該等特徵值中最低的至少一者所對應的點位對應於該人體的左胸口的位置,以檢測出心肌缺血位置。 A method for detecting myocardial ischemia, comprising: a measuring step, obtaining several electrocardiographic signals of a human body, at least part of which are measured at positions corresponding to the left chest of the human body; A feature extraction step, using a processing unit to extract the QT interval of each ECG signal, and calculating several feature values corresponding to several points of the left chest of the human body according to the QT interval; and A first analysis step, comparing the point corresponding to at least one of the characteristic values with the position corresponding to the left chest of the human body, so as to detect the myocardial ischemia position. 如請求項8所述的心肌缺血檢測方法,其中,該第一分析步驟還包括將該等特徵值的高低分布狀態與一比對資訊進行比對,以檢測出心肌缺血的範圍。The method for detecting myocardial ischemia according to Claim 8, wherein the first analysis step further includes comparing the distribution of the characteristic values with a comparison information to detect the extent of myocardial ischemia. 如請求項9所述的心肌缺血檢測方法,其中,該量測步驟是取得該人體的一參考面的該等心電訊號,該參考面是由該人體的一右胸骨緣、一第一肋間對應於該右胸骨緣高度的水平線、一左腋下中線,及一第八肋骨對應於該右胸骨緣高度的水平線所界定出。The myocardial ischemia detection method as described in Claim 9, wherein the measuring step is to obtain the ECG signals of a reference surface of the human body, the reference surface is composed of a right sternal margin of the human body, a first The intercostals are defined by a horizontal line corresponding to the height of the right sternal border, a left axillary midline, and a horizontal line of the eighth rib corresponding to the height of the right sternal border. 如請求項9所述的心肌缺血檢測方法,其中,該擷取特徵步驟還擷取該等心電訊號的RR間期,並藉由該等QT間期與該等RR間期計算該等點位的QTc間期以分別作為該等特徵值。The myocardial ischemia detection method as described in Claim 9, wherein the feature extraction step also extracts the RR intervals of the ECG signals, and calculates the QT intervals and the RR intervals The QTc intervals of the points are respectively used as the characteristic values. 如請求項11所述的心肌缺血檢測方法,其中,該第一分析步驟是將該等特徵值依照對應於該人體的左胸口的位置並以不同的色階代表該等特徵值的高低而產生一影像,並透過比對該影像與該比對資訊檢測出心肌缺血的範圍。The method for detecting myocardial ischemia according to claim 11, wherein the first analysis step is to compare the feature values according to the position corresponding to the left chest of the human body and represent the level of the feature values with different color levels An image is generated, and the extent of myocardial ischemia is detected by comparing the image with the comparison information. 如請求項11所述的心肌缺血檢測方法,該擷取特徵步驟所計算的該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期,該心肌缺血檢測方法還包含一第二分析步驟,該第二分析步驟是以一評估參數演算法計算一離散參數,並依據該離散參數評估該人體的整體心肌缺血的嚴重程度,該評估參數演算法為:
Figure 03_image019
,其中
Figure 03_image013
為該離散參數,S為該等點位的總數量,
Figure 03_image015
為一特定點位的QTc間期,n為最接近該點位對應於該人體位置的點位數目,
Figure 03_image017
為其中一個最接近該點位對應於該人體位置的點位的QTc間期。
According to the myocardial ischemia detection method described in claim 11, the feature values calculated in the feature extraction step are based on the ECG signals to calculate the QTc interval corresponding to the corresponding point, and the myocardial ischemia detection method also A second analysis step is included. The second analysis step is to calculate a discrete parameter by an evaluation parameter algorithm, and evaluate the severity of the overall myocardial ischemia of the human body according to the discrete parameter. The evaluation parameter algorithm is:
Figure 03_image019
,in
Figure 03_image013
is the discrete parameter, S is the total number of such points,
Figure 03_image015
is the QTc interval of a specific point, n is the number of points closest to the point corresponding to the position of the human body,
Figure 03_image017
is the QTc interval of one of the points closest to this point corresponding to the position of the human body.
如請求項11所述的心肌缺血檢測方法,其中,該擷取特徵步驟所計算的該等特徵值為依據該等心電訊號計算對應該等點位的QTc間期,該心肌缺血檢測方法還包含一第二分析步驟,該第二分析步驟是計算該等點位的該等QTc間期的最大值與最小值的差距值,並依據該等QTc間期的最大值與最小值的差距值QTcD評估該人體的整體心肌缺血的嚴重程度。The myocardial ischemia detection method as described in claim 11, wherein the feature values calculated in the feature extraction step are the QTc intervals corresponding to the points calculated based on the ECG signals, and the myocardial ischemia detection method The method also includes a second analysis step, the second analysis step is to calculate the difference between the maximum value and the minimum value of the QTc interval at the points, and according to the difference between the maximum value and the minimum value of the QTc interval The gap value QTcD assesses the severity of global myocardial ischemia in the subject.
TW110119295A 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method TWI818264B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method
PCT/US2022/029576 WO2022251003A1 (en) 2021-05-27 2022-05-17 Device and method for detecting myocardial ischemia
CN202210543461.8A CN115399778A (en) 2021-05-27 2022-05-19 Myocardial ischemia detection device and myocardial ischemia detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method

Publications (2)

Publication Number Publication Date
TW202245693A true TW202245693A (en) 2022-12-01
TWI818264B TWI818264B (en) 2023-10-11

Family

ID=84157785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119295A TWI818264B (en) 2021-05-27 2021-05-27 Myocardial ischemia detection device and myocardial ischemia detection method

Country Status (3)

Country Link
CN (1) CN115399778A (en)
TW (1) TWI818264B (en)
WO (1) WO2022251003A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014852B2 (en) * 2004-10-25 2011-09-06 Alfred Tai Chuan Kwek System, method and apparatus for detecting a cardiac event
WO2008003828A1 (en) * 2006-07-05 2008-01-10 Licentia Oy Method and arrangement for detection of acute myocardial ischemia
TWI446895B (en) * 2011-12-20 2014-08-01 Univ Nat Taiwan System and method for evaluating cardiovascular performance in real time and characterized by conversion of surface potential into multi-channels
US10433744B2 (en) * 2015-04-09 2019-10-08 Heartbeam, Inc. Mobile three-lead cardiac monitoring device and method for automated diagnostics
WO2016168181A1 (en) * 2015-04-13 2016-10-20 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Electrocardiographic identification of non-st elevation ischemic events
CN111281373A (en) * 2020-03-06 2020-06-16 何乐 Method and device for quantitatively evaluating cardiac function based on electrocardiogram U wave and T wave

Also Published As

Publication number Publication date
CN115399778A (en) 2022-11-29
WO2022251003A1 (en) 2022-12-01
TWI818264B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
Kania et al. The effect of precordial lead displacement on ECG morphology
JP3242981B2 (en) Method and apparatus for performing mapping analysis with a limited number of electrodes
EP2869759B1 (en) Apparatus for detecting myocardial ischemia using analysis of high frequency components of an electrocardiogram
US7519416B2 (en) Diagnostic method utilizing standard lead ECG signals
JP2007517633A (en) Visual 3D representation of ECG data
Correa et al. Novel set of vectorcardiographic parameters for the identification of ischemic patients
TWI667011B (en) Heart rate detection method and heart rate detection device
JP2013517083A (en) Identification of the causal coronary artery using anatomically oriented ECG data from the expanded lead set
JP2018528812A (en) ECG lead signal high / low frequency signal quality evaluation
US10925516B2 (en) Method and apparatus for estimating the aortic pulse transit time from time intervals measured between fiducial points of the ballistocardiogram
RU2598049C2 (en) Automated identification of location of occlusion in infarct-related coronary artery
Benouar et al. Systematic variability in ICG recordings results in ICG complex subtypes–steps towards the enhancement of ICG characterization
Sheppard et al. Does modifying electrode placement of the 12 lead ECG matter in healthy subjects?
Correa et al. Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set
Sejersten et al. Detection of acute ischemia from the EASI-derived 12-lead electrocardiogram and from the 12-lead electrocardiogram acquired in clinical practice
US20130035604A1 (en) Frequency Analysis of 12-Lead Cardiac Electrical Signals to Detect and Identify Cardiac Abnormalities
JP3137900B2 (en) Apparatus for collecting and processing electrocardiogram signals
TWI802888B (en) Cardiovascular Function Assessment System
Madias Comparability of the standing and supine standard electrocardiograms and standing sitting and supine stress electrocardiograms
TW202245693A (en) Myocardial ischemia detection device and myocardial ischemia detection method detect the position of myocardial ischemia of human body by calculating feature values during QT interval
Sakajiri et al. Non-contact capacitive ballistocardiogram measurements using in-bed fabric-sheet electrode for blood pressure estimation
Abboud et al. High-frequency QRS electrocardiogram for diagnosing and monitoring ischemic heart disease
Horáček et al. Heart-surface potentials estimated from 12-lead electrocardiograms
KR101498581B1 (en) Noninvasive atrial activity estimation system and method
Kania et al. The effect of precordial lead displacement on P-wave morphology in body surface potential mapping