TWI817856B - Method of forming conductive vias - Google Patents

Method of forming conductive vias Download PDF

Info

Publication number
TWI817856B
TWI817856B TW111145972A TW111145972A TWI817856B TW I817856 B TWI817856 B TW I817856B TW 111145972 A TW111145972 A TW 111145972A TW 111145972 A TW111145972 A TW 111145972A TW I817856 B TWI817856 B TW I817856B
Authority
TW
Taiwan
Prior art keywords
opening
metal layer
layer
depth
forming
Prior art date
Application number
TW111145972A
Other languages
Chinese (zh)
Inventor
章思堯
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW111145972A priority Critical patent/TWI817856B/en
Application granted granted Critical
Publication of TWI817856B publication Critical patent/TWI817856B/en

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A method of forming conductive vias includes: patterning a mask layer on a semiconductor device which includes a first area and a second area; performing a first etching process through the mask layer to form a first opening with a first depth in the first area and a second opening with the first depth in the second area; performing a second etching process through the mask layer to extend the first opening and the second opening to a second depth and a third depth respectively, the second depth and the third depth are different; performing a third etching process through the mask layer to extend the first opening and the second opening to a fourth depth, the first opening and the second opening exposed a bottom metal layer; and depositing a conductive material in the first opening and the second opening.

Description

形成導電通孔的方法Methods of forming conductive vias

本揭露是有關於一種形成導電通孔的方法。The present disclosure relates to a method of forming conductive vias.

在製造半導體的過程中,通常會根據電路需求設計各種不同樣態的電性連接結構以連接各種電子元件。導電通孔與連接墊即是兩種常見的電性連接結構。電性連接結構之間會設置黏著層以輔助他們之間的連接。然而,若設置過多的電性連接結構,將會因為黏著層的數量增加影響半導體元件的導電性。In the process of manufacturing semiconductors, various electrical connection structures are usually designed according to circuit requirements to connect various electronic components. Conductive vias and connection pads are two common electrical connection structures. An adhesive layer is provided between the electrical connection structures to assist in their connection. However, if too many electrical connection structures are provided, the conductivity of the semiconductor element will be affected due to the increase in the number of adhesive layers.

因此,如何提出一種可解決上述問題的形成導電通孔的方法,是目前業界亟欲投入研發資源解決的問題之一。Therefore, how to propose a method of forming conductive vias that can solve the above problems is one of the problems that the industry is currently eager to invest in research and development resources to solve.

有鑑於此,本揭露之一方面在於提出一種可有效解決上述問題的形成導電通孔的方法。In view of this, one aspect of the present disclosure is to provide a method of forming conductive vias that can effectively solve the above problems.

本揭露的一些實施例是有關於一種形成導電通孔的方法包含:圖案化遮罩層在半導體元件上方,半導體元件包含第一區域以及第二區域;透過遮罩層執行第一蝕刻製程以分別在第一區域以及第二區域上形成具有第一深度的第一開口以及第二開口,其中第一開口暴露出第一金屬層;透過遮罩層執行第二蝕刻製程以延伸第一開口至第二深度,並且延伸第二開口至第三深度,其中第二深度與第三深度不同;透過遮罩層執行第三蝕刻製程以延伸第一開口以及第二開口至第四深度,並且第一開口以及第二開口暴露底部金屬層;以及沉積導電材料在第一開口以及第二開口中。Some embodiments of the present disclosure relate to a method of forming a conductive via, including: patterning a mask layer above a semiconductor device, the semiconductor device including a first region and a second region; performing a first etching process through the mask layer to respectively A first opening and a second opening with a first depth are formed on the first area and the second area, wherein the first opening exposes the first metal layer; a second etching process is performed through the mask layer to extend the first opening to the two depths, and extending the second opening to a third depth, wherein the second depth is different from the third depth; performing a third etching process through the mask layer to extend the first opening and the second opening to a fourth depth, and the first opening and the second opening exposing the bottom metal layer; and depositing conductive material in the first opening and the second opening.

在一些實施方式中,透過遮罩層執行第二蝕刻製程的步驟包含:藉由第一開口貫穿第一金屬層以及位於第一金屬層下方的第二金屬層。In some embodiments, the step of performing the second etching process through the mask layer includes penetrating the first metal layer and the second metal layer below the first metal layer through the first opening.

在一些實施方式中,透過遮罩層執行第二蝕刻製程的步驟係使得第一開口暴露出位於第一金屬層下方的氧化層。In some embodiments, performing the second etching process through the mask layer causes the first opening to expose the oxide layer located under the first metal layer.

在一些實施方式中,透過遮罩層執行第三蝕刻製程的步驟係使得第一開口以及第二開口延伸至底部金屬層中,但不穿過底部金屬層。In some embodiments, performing the third etching process through the mask layer causes the first opening and the second opening to extend into the bottom metal layer but not through the bottom metal layer.

在一些實施方式中,第二深度大於第三深度。In some embodiments, the second depth is greater than the third depth.

在一些實施方式中,沉積該導電材料的步驟包含:保形地形成黏著層在第一開口以及第二開口的多個側壁以及多個底表面上;以及沉積填充層在第一開口以及第二開口中。In some embodiments, the step of depositing the conductive material includes: conformally forming an adhesive layer on a plurality of sidewalls and a plurality of bottom surfaces of the first opening and the second opening; and depositing a filling layer on the first opening and the second opening. in the mouth.

在一些實施方式中,黏著層與第一金屬層為相同材料。 In some embodiments, the adhesive layer and the first metal layer are made of the same material.

在一些實施方式中,形成導電通孔的方法更包含:執行機械研磨製程並移除導電材料的部位。 In some embodiments, a method of forming a conductive via further includes performing a mechanical grinding process and removing portions of the conductive material.

在一些實施方式中,第一蝕刻製程以及第三蝕刻製程使用相同的第一蝕刻氣體。第二蝕刻製程使用不同於第一蝕刻氣體的第二蝕刻氣體。 In some embodiments, the first etching process and the third etching process use the same first etching gas. The second etching process uses a second etching gas different from the first etching gas.

在一些實施方式中,第一蝕刻氣體與第二蝕刻氣體對第一金屬層具有不同蝕刻速度。 In some embodiments, the first etching gas and the second etching gas have different etching speeds for the first metal layer.

綜上所述,於本揭露的一些實施例的形成導電通孔的方法中,藉由形成導電通孔的方法在第一開口以及第二開口所形成的導電通孔,將可以減少半導體元件中的連接墊結構,以解決過多的連接電結構降低半導體元件導電性的問題。此外,藉由形成導電通孔的方法在第一開口以及第二開口所形成的導電通孔,將可以省去製作各別連接墊的製程步驟,提升了半導體元件的製程效率。 In summary, in the methods for forming conductive vias in some embodiments of the present disclosure, the conductive vias formed in the first opening and the second opening by the method of forming the conductive vias can reduce the number of semiconductor components. The connection pad structure is used to solve the problem of excessive connection electrical structures reducing the conductivity of semiconductor components. In addition, by forming the conductive via holes in the first opening and the second opening, the process steps of making separate connection pads can be omitted, thereby improving the process efficiency of the semiconductor device.

以下揭露內容提供用於實施所提供標的之不同特徵的許多不同實施例或實例。以下描述部件及佈置之特定實例以簡化本揭露。當然,此些僅為實例,且並不意欲為限制性的。舉例而言,在如下描述中第一特徵在第二特徵之上或在第二特徵上形成可包括其中第一特徵與第二特徵形成為直接接觸之實施例,且亦可包括其中額外特徵可在第一特徵與第二特徵之間形成而使得第一特徵與第二特徵可不直接接觸的實施例。另外,本揭露可在各種實例中重複元件符號及/或字母。此重複係出於簡化及清楚目的,且其自身並不表示所論述之各種實施例及/或配置之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, the following description where a first feature is formed on or on a second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include embodiments in which additional features may be Embodiments are formed between a first feature and a second feature such that the first feature and the second feature may not be in direct contact. Additionally, the present disclosure may repeat reference symbols and/or letters in various instances. This repetition is for simplicity and clarity and does not in itself represent a relationship between the various embodiments and/or configurations discussed.

另外,為了描述簡單,可在本文中使用諸如「在……下面」、「在……下方」、「下部」、「在……上方」、「上部」及其類似術語之空間相對術語,以描述如諸圖中所示的一個元件或特徵與另一(另外)元件或特徵的關係。除了諸圖中所描繪之定向以外,此些空間相對術語意欲涵蓋元件在使用中或操作中之不同定向。裝置可以其他方式定向(旋轉90度或以其他定向),且可同樣相應地解釋本文中所使用之空間相對描述詞。In addition, for simplicity of description, spatially relative terms such as "below", "below", "lower", "above", "upper" and similar terms may be used herein. Describe the relationship of one element or feature to another (additional) element or feature as illustrated in the figures. These spatially relative terms are intended to encompass different orientations of elements in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

本文中使用的「大約」、「約」、「近似」或者「實質上」一般表示落在給定值或範圍的百分之二十之中,或在百分之十之中,或在百分之五之中。本文中所給予的數字量值為近似值,表示使用的術語如「大約」、「約」、「近似」或者「實質上」在未明確說明時可以被推斷。As used herein, "about," "approximately," "approximately" or "substantially" generally means falling within twenty percent, within ten percent, or within one hundred percent of a given value or range. Out of five. Numerical quantities given herein are approximations, meaning that terms such as "about," "approximately," "approximately" or "substantially" may be inferred when not expressly stated otherwise.

第1圖為根據本揭露的一些實施例繪示的形成導電通孔的方法M1的流程圖。請參照第1圖。本揭露的一些實施例是有關於一種形成導電通孔的方法M1包含:圖案化遮罩層在半導體元件上方,半導體元件包含第一區域以及第二區域(步驟S110);透過遮罩層執行第一蝕刻製程以分別在第一區域以及第二區域上形成具有第一深度的第一開口以及第二開口,其中第一開口暴露出第一金屬層(步驟S120);透過遮罩層執行第二蝕刻製程以延伸第一開口至第二深度,並且延伸第二開口至第三深度,其中第二深度與第三深度不同(步驟S130);透過遮罩層執行第三蝕刻製程以延伸第一開口以及第二開口至第四深度,並且第一開口以及第二開口暴露底部金屬層(步驟S140);以及沉積導電材料在第一開口以及第二開口中(步驟S150)。FIG. 1 is a flowchart of a method M1 of forming a conductive via according to some embodiments of the present disclosure. Please refer to picture 1. Some embodiments of the present disclosure are related to a method M1 for forming a conductive via, including: patterning a mask layer over a semiconductor element, and the semiconductor element includes a first region and a second region (step S110); performing the step S110 through the mask layer. An etching process to form a first opening and a second opening with a first depth in the first region and the second region respectively, wherein the first opening exposes the first metal layer (step S120); perform the second opening through the mask layer An etching process is performed to extend the first opening to a second depth, and the second opening is extended to a third depth, where the second depth is different from the third depth (step S130); a third etching process is performed through the mask layer to extend the first opening and the second opening reaches a fourth depth, and the first opening and the second opening expose the bottom metal layer (step S140); and a conductive material is deposited in the first opening and the second opening (step S150).

第2A圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中一個階段的半導體元件110的俯視圖。形成導電通孔的方法M1將可以在半導體元件110的不同區域中製造多個導電通孔。具體來說,半導體元件110包含第一區域120與第二區域130。舉例來說,在第2A圖的實施例中,第一區域120為陣列區(array area),第二區域130為周邊區(periphery area)。第一開口122與第二開口132分別位於第一區域120與第二區域130。在此實施例中,第一區域120還包含位元線150以及於隨後第2C圖中所示的電容陣列300(第2A圖中僅顯示電容陣列300的連接墊330)。在第2A圖中,第一開口122穿過部分的位元線150並連接第一區域120以及位於第一區域120下方的其他電性元件(未示出)。第二開口132不與位元線150接觸,並連接位於位元線150上方以及下方的其他電性元件(未示出)。接下來將針對沿著不同線B-B’、C-C’與D-D’繪示的剖面側視圖對半導體元件110的結構進行說明。FIG. 2A is a top view of the semiconductor device 110 during one stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. The conductive via forming method M1 will make it possible to create a plurality of conductive vias in different areas of the semiconductor element 110 . Specifically, the semiconductor device 110 includes a first region 120 and a second region 130 . For example, in the embodiment of FIG. 2A , the first area 120 is an array area, and the second area 130 is a peripheral area. The first opening 122 and the second opening 132 are located in the first area 120 and the second area 130 respectively. In this embodiment, the first region 120 also includes the bit lines 150 and the capacitor array 300 shown in FIG. 2C (only the connection pads 330 of the capacitor array 300 are shown in FIG. 2A). In FIG. 2A , the first opening 122 passes through part of the bit line 150 and connects the first region 120 and other electrical components (not shown) located below the first region 120 . The second opening 132 is not in contact with the bit line 150 and is connected to other electrical components (not shown) located above and below the bit line 150 . Next, the structure of the semiconductor device 110 will be described with respect to cross-sectional side views drawn along different lines B-B', C-C' and D-D'.

第2B圖為第2A圖中沿線B-B’繪示的半導體元件110的剖面側視圖。第2B圖中標示的線A-A’對應第2A圖的俯視位置。請參照第2A圖與第2B圖。在第2B圖中,半導體元件110中包含依序堆疊的第一氧化層140、位元線150、第二氧化層160以及底部金屬層170。位元線150僅在第一區域120中延伸。在一些實施例中,第一氧化層140與第二氧化層160的材料包含SiO2。在第2B圖的示例中,底部金屬層170為埋入在第二氧化層160中的多個連接墊。在一些實施例中,底部金屬層170的材料包含鎢(W)。位元線150由依序堆疊的氮化層152、隔離氧化層154、第一金屬層156與第二金屬層158所形成。由於位元線150中的氮化層152在生長時所產生的氫(H)原子將可能向下鑽入電容陣列300,影響電容陣列300的性能。因此,位元線150具有隔離氧化層154以增加氮化層152與電容陣列300之間的距離。另一方面,在一些實施例中,第一金屬層156的材料包含TiN,第二金屬層158的材料包含W,第一金屬層156將有助於提升第二金屬層158與其他材料的黏著性。要說明的是,第2B圖中所示的位元線150的數目僅為示例性的,在其他實施例中,位元線150的數目可以依照需求調整。第一開口122依序穿過第一氧化層140、氮化層152、隔離氧化層154、第一金屬層156、第二金屬層158以及第二氧化層160,並與底部金屬層170電性連接。第二開口132依序穿過第一氧化層140以及第二氧化層160,並與底部金屬層170電性連接。第一開口122以及第二開口132中被導電材料180所填充。Figure 2B is a cross-sectional side view of the semiconductor device 110 along line B-B' in Figure 2A. The line A-A' marked in Figure 2B corresponds to the top view position of Figure 2A. Please refer to Figure 2A and Figure 2B. In FIG. 2B, the semiconductor device 110 includes a first oxide layer 140, a bit line 150, a second oxide layer 160 and a bottom metal layer 170 stacked in sequence. Bit line 150 extends only in first area 120 . In some embodiments, the materials of the first oxide layer 140 and the second oxide layer 160 include SiO2. In the example of FIG. 2B , the bottom metal layer 170 is a plurality of connection pads buried in the second oxide layer 160 . In some embodiments, the material of bottom metal layer 170 includes tungsten (W). The bit line 150 is formed by sequentially stacking a nitride layer 152, an isolation oxide layer 154, a first metal layer 156 and a second metal layer 158. The hydrogen (H) atoms generated during the growth of the nitride layer 152 in the bit line 150 may drill down into the capacitor array 300 and affect the performance of the capacitor array 300 . Therefore, the bit line 150 has an isolation oxide layer 154 to increase the distance between the nitride layer 152 and the capacitor array 300 . On the other hand, in some embodiments, the material of the first metal layer 156 includes TiN, and the material of the second metal layer 158 includes W. The first metal layer 156 will help improve the adhesion between the second metal layer 158 and other materials. sex. It should be noted that the number of bit lines 150 shown in Figure 2B is only exemplary. In other embodiments, the number of bit lines 150 can be adjusted according to requirements. The first opening 122 sequentially passes through the first oxide layer 140 , the nitride layer 152 , the isolation oxide layer 154 , the first metal layer 156 , the second metal layer 158 and the second oxide layer 160 , and is electrically connected to the bottom metal layer 170 connection. The second opening 132 passes through the first oxide layer 140 and the second oxide layer 160 in sequence, and is electrically connected to the bottom metal layer 170 . The first opening 122 and the second opening 132 are filled with the conductive material 180 .

第2C圖為第2A圖中沿線C-C’繪示的半導體元件110的剖面側視圖。第2C圖中標示的線A-A’對應第2A圖的俯視位置。請參照第2A圖與第2C圖。在第2C圖中,半導體元件110的電容陣列300以及字元線400被示出。電容陣列300包含多個電容310、多個電晶體320與多個連接墊330。在此實施例中,電容310在半導體元件110中呈六方最密堆積。每個電容310對應電性連接一個電晶體320的一個源極/汲極,電晶體320的另一個源極/汲極則電性連接至連接墊330。電晶體320的閘極電性連接至字元線400。多個連接墊330各別電性連接至一條位元線150。要說明的是,此圖中僅繪示出一個第二開口132由第2C圖的右側穿過第一氧化層140與第二氧化層160並電性連接至底部金屬層170。 FIG. 2C is a cross-sectional side view of the semiconductor device 110 along line CC' in FIG. 2A. The line A-A' marked in Figure 2C corresponds to the top view position of Figure 2A. Please refer to Figure 2A and Figure 2C. In FIG. 2C , the capacitor array 300 and the word line 400 of the semiconductor device 110 are shown. The capacitor array 300 includes a plurality of capacitors 310 , a plurality of transistors 320 and a plurality of connection pads 330 . In this embodiment, the capacitor 310 is hexagonally densely packed in the semiconductor device 110 . Each capacitor 310 is electrically connected to a source/drain of a transistor 320 , and the other source/drain of the transistor 320 is electrically connected to the connection pad 330 . The gate of the transistor 320 is electrically connected to the word line 400 . Each of the plurality of connection pads 330 is electrically connected to one bit line 150 . It should be noted that this figure only shows a second opening 132 passing through the first oxide layer 140 and the second oxide layer 160 from the right side of Figure 2C and being electrically connected to the bottom metal layer 170 .

第2D圖為第2A圖中沿線D-D’繪示的半導體元件110的剖面側視圖。第2D圖中標示的線A-A’對應第2A圖的俯視位置。請參照第2A圖與第2D圖。在第2D圖中,半導體元件110的位元線150與電容陣列300以及第一開口122的電性連接被展示。在此實施例中,與電容陣列300的訊號透過位元線150電性傳輸至第一開口122。要說明的是,第一開口122雖然在第2D圖中貫穿半導體元件110並電性連接至底部金屬層170,第一開口122主要將電容陣列300的訊號向底部金屬層170進行電性傳輸。換句話說,位於位元線150上方的部分第一開口122並不用於傳輸電容陣列300的訊號。 Figure 2D is a cross-sectional side view of the semiconductor device 110 along line D-D' in Figure 2A. The line A-A' marked in Figure 2D corresponds to the top view position of Figure 2A. Please refer to Figure 2A and Figure 2D. In Figure 2D, the electrical connection between the bit line 150 of the semiconductor device 110, the capacitor array 300 and the first opening 122 is shown. In this embodiment, the signal with the capacitor array 300 is electrically transmitted to the first opening 122 through the bit line 150 . It should be noted that although the first opening 122 penetrates the semiconductor device 110 and is electrically connected to the bottom metal layer 170 in FIG. 2D, the first opening 122 mainly electrically transmits the signal of the capacitor array 300 to the bottom metal layer 170. In other words, the portion of the first opening 122 located above the bit line 150 is not used for transmitting signals of the capacitor array 300 .

要特別說明的是,藉由方法M1在第一開口122以及第二開口132所形成的導電通孔,將可以減少半導體元件110中的連接墊結構。具體來說,黏著材料層被使用在連接墊結構上以輔助連接連接墊結構與其他層。然而,若使用過多的連接墊結構將會因為黏著材料層的增加,而降低半導體元件110的導電性。因此,透過方法M1形成導電通孔將可以解決過多的連接墊結構降低半導體元件110導電性的問題。此外,藉由方法M1在 第一開口122以及第二開口132所形成的導電通孔,將可以省去製作各別連接墊的製程步驟,提升了半導體元件110的製程效率。接下來將依步驟說明形成導電通孔的方法M1如何在半導體元件110中的第一區域120以及第二區域130分別製作第一開口122以及第二開口132。 It should be noted that the conductive via holes formed in the first opening 122 and the second opening 132 by the method M1 can reduce the connection pad structure in the semiconductor device 110 . Specifically, a layer of adhesive material is used on the connection pad structure to assist in connecting the connection pad structure to other layers. However, if too many connection pad structures are used, the conductivity of the semiconductor device 110 will be reduced due to an increase in the adhesive material layer. Therefore, forming conductive vias through method M1 can solve the problem of excessive connection pad structures reducing the conductivity of the semiconductor device 110 . In addition, by method M1 in The conductive vias formed by the first opening 122 and the second opening 132 can eliminate the process steps of making separate connection pads, thereby improving the process efficiency of the semiconductor device 110 . Next, the method M1 for forming a conductive via hole will be described step by step on how to form the first opening 122 and the second opening 132 in the first region 120 and the second region 130 of the semiconductor device 110 respectively.

第3A圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中一個階段的半導體元件110的剖面側視圖。第3A圖所繪示的剖面側視圖示沿著第2A圖中線B-B’的剖面側視圖。此外,隨後展示的第3B圖至第3H圖也是沿著第2A圖中線B-B’的剖面側視圖。請參照第1圖、第2A圖與第3A圖。在執行步驟S110前,半導體元件110包含由上而下依序堆疊的第一氧化層140、位元線150、第二氧化層160以及底部金屬層170。在步驟S110中,遮罩層200被形成在半導體元件110上,並隨後被圖案化。在一些實施例中,圖案化遮罩層200可以藉由交替執行多個微影製程與蝕刻製程而被實現。要說明的是,圖案化遮罩層200上的開口210將對齊底部金屬層170的位置。 FIG. 3A is a cross-sectional side view of the semiconductor device 110 during one stage of the method M1 of forming a conductive via according to some embodiments of the present disclosure. The cross-sectional side view illustrated in Figure 3A is a cross-sectional side view along line B-B' in Figure 2A. In addition, Figures 3B to 3H shown subsequently are also cross-sectional side views along line B-B' in Figure 2A. Please refer to Figure 1, Figure 2A and Figure 3A. Before step S110 is performed, the semiconductor device 110 includes a first oxide layer 140, a bit line 150, a second oxide layer 160 and a bottom metal layer 170 stacked sequentially from top to bottom. In step S110, the mask layer 200 is formed on the semiconductor element 110 and then patterned. In some embodiments, the patterned mask layer 200 may be implemented by alternately performing multiple lithography processes and etching processes. It is noted that the openings 210 on the patterned mask layer 200 will be aligned with the location of the bottom metal layer 170 .

第3B圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3B圖。在步驟S120中,第一蝕刻製程同時在半導體元件110的第一區域120以及第二區域130上被執行。第一蝕刻製程分別在第一區域120形成具有第一深度D1的第一開口122,並在第二區域130形成具有第一深度D1的第二開口132。在一些實施例中,第一蝕刻製程為使用第一蝕刻氣體的非等向性氣體蝕刻製程。第一蝕刻氣體對特定材料有高選擇蝕刻率,舉例來說,在第3B圖的示例中,第一蝕刻氣體對氧化物及氮化物具有高選擇蝕刻率。換句話說,第一蝕刻製程將會對氧化物及氮化物具有較高的蝕刻速度,但是對其他材料,例如金屬材料,將會具有較低蝕刻速度或者不具有蝕刻性。3B is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3B. In step S120 , the first etching process is simultaneously performed on the first region 120 and the second region 130 of the semiconductor device 110 . The first etching process forms a first opening 122 with a first depth D1 in the first region 120 and a second opening 132 with a first depth D1 in the second region 130 respectively. In some embodiments, the first etching process is an anisotropic gas etching process using a first etching gas. The first etching gas has a high selective etching rate for specific materials. For example, in the example of FIG. 3B , the first etching gas has a high selective etching rate for oxides and nitrides. In other words, the first etching process will have a high etching rate for oxides and nitrides, but will have a low etching rate or no etching for other materials, such as metal materials.

請繼續參照第1圖、第2A圖與第3B圖。具體來說,第一蝕刻製程在第一區域120中由上而下依序蝕刻第一氧化層140、氮化層152以及隔離氧化層154。另一方面,第一蝕刻製程將同時在第二區域130中蝕刻第一氧化層140。當第一開口122的底表面暴露出第一金屬層156時,第一蝕刻製程被停止。要說明的是,結束第一蝕刻製程的時間是由第一開口122的底表面暴露出第一金屬層156的時間決定。在第2B圖的示例中,結束第一蝕刻製程時,第二開口132僅在第一氧化層140中延伸。Please continue to refer to Figure 1, Figure 2A and Figure 3B. Specifically, the first etching process sequentially etches the first oxide layer 140 , the nitride layer 152 and the isolation oxide layer 154 from top to bottom in the first region 120 . On the other hand, the first etching process will simultaneously etch the first oxide layer 140 in the second region 130 . When the bottom surface of the first opening 122 exposes the first metal layer 156, the first etching process is stopped. It should be noted that the time to end the first etching process is determined by the time when the bottom surface of the first opening 122 exposes the first metal layer 156 . In the example of FIG. 2B , when the first etching process is completed, the second opening 132 only extends in the first oxide layer 140 .

第3C圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3C圖。在步驟S130中,第二蝕刻製程同時在半導體元件110的第一區域120以及第二區域130上被執行。第二蝕刻製程分別在第一區域120形成具有第二深度D2的第一開口122,並在第二區域130形成具有第三深度D3的第二開口132,並且第二深度D2不同於第三深度D3。在一些實施例中,第二深度D2大於第三深度D3。在一些實施例中,第二蝕刻製程為使用第二蝕刻氣體的非等向性氣體蝕刻製程,並且第二蝕刻氣體不同於第一蝕刻氣體。第二蝕刻氣體對特定材料有高選擇蝕刻率,舉例來說,在第3C圖的示例中,第二蝕刻氣體對金屬材料具有高選擇蝕刻率。換句話說,第一蝕刻氣體與第二蝕刻氣體對第一金屬層156、第二金屬層158具有不同蝕刻速度。第二蝕刻製程將會對金屬材料具有較高的蝕刻速度,但是對其他材料,例如氧化物及氮化物,將會具有較低蝕刻速度或者不具有蝕刻性。3C is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3C. In step S130 , the second etching process is simultaneously performed on the first region 120 and the second region 130 of the semiconductor device 110 . The second etching process respectively forms the first opening 122 with the second depth D2 in the first region 120 and the second opening 132 with the third depth D3 in the second region 130, and the second depth D2 is different from the third depth. D3. In some embodiments, the second depth D2 is greater than the third depth D3. In some embodiments, the second etching process is an anisotropic gas etching process using a second etching gas, and the second etching gas is different from the first etching gas. The second etching gas has a high selective etching rate for specific materials. For example, in the example of FIG. 3C , the second etching gas has a high selective etching rate for metal materials. In other words, the first etching gas and the second etching gas have different etching speeds for the first metal layer 156 and the second metal layer 158 . The second etching process will have a higher etching rate for metal materials, but will have a lower etching rate or no etching for other materials, such as oxides and nitrides.

請繼續參照第1圖、第2A圖與第3C圖。步驟S130更包含:藉由第一開口貫穿第一金屬層以及位於第一金屬層下方的第二金屬層(步驟S132)。步驟S130係使得第一開口122暴露出位於第一金屬層156下方的氧化層(例如,第二氧化層160)。具體來說,在步驟S132中,第一區域120中的第一金屬層156以及第二金屬層158在第二蝕刻製程中依序被蝕刻。隨後,第一開口122暴露出第二氧化層160。同時,在第二區域130中,由於第二蝕刻製程僅對金屬材料具有高選擇蝕刻率,因此第二開口132的深度並未如第一開口122的深度一樣有顯著改變。在一些實施例中,第二開口132的第三深度D3幾乎等於第一深度D1,並且第二開口132的底表面仍僅在第一氧化層140中延伸。Please continue to refer to Figure 1, Figure 2A and Figure 3C. Step S130 further includes: penetrating the first metal layer and the second metal layer located below the first metal layer through the first opening (step S132 ). Step S130 causes the first opening 122 to expose the oxide layer (eg, the second oxide layer 160 ) located under the first metal layer 156 . Specifically, in step S132, the first metal layer 156 and the second metal layer 158 in the first region 120 are sequentially etched in the second etching process. Subsequently, the first opening 122 exposes the second oxide layer 160 . Meanwhile, in the second region 130 , since the second etching process only has a high selective etching rate for metal materials, the depth of the second opening 132 does not change significantly like the depth of the first opening 122 . In some embodiments, the third depth D3 of the second opening 132 is almost equal to the first depth D1 , and the bottom surface of the second opening 132 still only extends in the first oxide layer 140 .

第3D圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3D圖。在步驟S140中,第三蝕刻製程同時在半導體元件110的第一區域120以及第二區域130上被執行。第三蝕刻製程分別在第一區域120與第二區域130形成具有第四深度D4的第一開口122與第二開口132。在一些實施例中,第三蝕刻製程為非等向性氣體蝕刻製程。在一些實施例中,第一蝕刻製程以及第三蝕刻製程使用相同的第一蝕刻氣體。因此,第三蝕刻製程將會對氧化物與氮化物具有較高蝕刻速率。在第三蝕刻製程開始執行時,第一區域120的第一開口122中是由第二氧化層160開始蝕刻,而第二區域130的第二開口132中是由第一氧化層140開始蝕刻。Figure 3D is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3D. In step S140 , the third etching process is simultaneously performed on the first region 120 and the second region 130 of the semiconductor device 110 . The third etching process forms the first opening 122 and the second opening 132 with the fourth depth D4 in the first region 120 and the second region 130 respectively. In some embodiments, the third etching process is an anisotropic gas etching process. In some embodiments, the first etching process and the third etching process use the same first etching gas. Therefore, the third etching process will have a higher etching rate for oxides and nitrides. When the third etching process starts to be performed, etching starts from the second oxide layer 160 in the first opening 122 of the first region 120 , and etching starts from the first oxide layer 140 in the second opening 132 of the second region 130 .

請繼續參照第1圖、第2A圖與第3D圖。步驟S140係使得第一開口122以及第二開口132延伸至底部金屬層170中,但不穿過底部金屬層170。具體來說,第三蝕刻製程將會在第一開口122與第二開口132的底表面皆暴露底部金屬層170之後進行過度蝕刻。執行過度蝕刻的目的在於移除殘留在底部金屬層170上的第二氧化層160,以確保底部金屬層170與隨後填入的導電材料180(如第2B圖所示)之間的電性連接不被殘留的第二氧化層160影響。然而,由於第三蝕刻製程對金屬材料具有低選擇蝕刻率,因此將不會蝕穿底部金屬層170。具體來說,第三蝕刻製程將會在第一開口122與第二開口132的底表面所暴露的底部金屬層170上形成凹槽172。最後,第一開口122與第二開口132將會都具有第四深度D4。Please continue to refer to Figure 1, Figure 2A and Figure 3D. Step S140 causes the first opening 122 and the second opening 132 to extend into the bottom metal layer 170 but not through the bottom metal layer 170 . Specifically, the third etching process will perform over-etching after the bottom surfaces of the first opening 122 and the second opening 132 expose the bottom metal layer 170 . The purpose of performing over-etching is to remove the second oxide layer 160 remaining on the bottom metal layer 170 to ensure the electrical connection between the bottom metal layer 170 and the subsequently filled conductive material 180 (as shown in Figure 2B) It is not affected by the remaining second oxide layer 160 . However, since the third etching process has a low selective etching rate for metal materials, the bottom metal layer 170 will not be etched through. Specifically, the third etching process will form the groove 172 on the bottom metal layer 170 exposed on the bottom surfaces of the first opening 122 and the second opening 132 . Finally, both the first opening 122 and the second opening 132 will have a fourth depth D4.

第3E圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3E圖。遮罩層200被移除。具體來說,可以透過多個濕式蝕刻製程或其他合適的製程移除遮罩層200。當遮罩層200移除之後,第一氧化層140的表面被暴露。3E is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3E. Mask layer 200 is removed. Specifically, the mask layer 200 may be removed through multiple wet etching processes or other suitable processes. After the mask layer 200 is removed, the surface of the first oxide layer 140 is exposed.

第3F圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3F圖。在步驟S150中,導電材料180被沉積在第一開口122以及第二開口132中。在一些實施例中,導電材料180包含黏著層182與填充層184。在一些實施例中,黏著層182與第一金屬層156為相同材料,例如TiN。填充層184與第二金屬層158為相同材料,例如W。黏著層182將有助於提升填充層184與其他材料的黏著性。FIG. 3F is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3F. In step S150 , the conductive material 180 is deposited in the first opening 122 and the second opening 132 . In some embodiments, the conductive material 180 includes an adhesive layer 182 and a filling layer 184 . In some embodiments, the adhesive layer 182 and the first metal layer 156 are made of the same material, such as TiN. The filling layer 184 and the second metal layer 158 are made of the same material, such as W. The adhesive layer 182 will help improve the adhesion between the filling layer 184 and other materials.

請繼續參照第1圖、第2A圖與第3F圖。步驟S150更包含:保形地形成黏著層在第一開口以及第二開口的多個側壁以及多個底表面上(步驟S152)。在一些實施例中,步驟S152可以藉由化學氣相沉積(chemical vapor deposition, CVD)、分子束磊晶(molecular beam epitaxy, MBE)、原子層磊晶(atomic layer deposition, ALD)、或其他合適的沉積製程將黏著層182保形地形成在第一開口122與第二開口132的多個側壁以及底表面上。具體來說,黏著層182將覆蓋第一氧化層140、氮化層152、隔離氧化層154、第一金屬層156、第二金屬層158、第二氧化層160以及底部金屬層170的表面。Please continue to refer to Figure 1, Figure 2A and Figure 3F. Step S150 further includes: conformally forming an adhesive layer on a plurality of side walls and a plurality of bottom surfaces of the first opening and the second opening (step S152). In some embodiments, step S152 can be performed by chemical vapor deposition (CVD), molecular beam epitaxy (MBE), atomic layer epitaxy (ALD), or other suitable methods. The deposition process conformally forms the adhesive layer 182 on the plurality of sidewalls and bottom surfaces of the first opening 122 and the second opening 132 . Specifically, the adhesion layer 182 will cover the surfaces of the first oxide layer 140 , the nitride layer 152 , the isolation oxide layer 154 , the first metal layer 156 , the second metal layer 158 , the second oxide layer 160 and the bottom metal layer 170 .

第3G圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3G圖。步驟S150更包含:沉積填充層在第一開口以及第二開口中(步驟S154)。具體來說,沉積製程同時在第一區域120以及第二區域130上被執行。在一些實施例中,步驟S154可以藉由物理氣相沉積(physical vapor deposition, PVD)、化學氣相沉積(chemical vapor deposition, CVD)、分子束磊晶(molecular beam epitaxy, MBE)、或其他合適的沉積製程將填充層184沉積在第一開口122以及第二開口132中。要說明的是,填充在第一開口122以及第二開口132中的填充層184只會直接接觸黏著層182。另一方面,步驟S154的填充層184也將會沉積在第一氧化層140的表面上。3G is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3G. Step S150 further includes: depositing a filling layer in the first opening and the second opening (step S154). Specifically, the deposition process is performed on the first region 120 and the second region 130 simultaneously. In some embodiments, step S154 can be performed by physical vapor deposition (PVD), chemical vapor deposition (CVD), molecular beam epitaxy (MBE), or other suitable methods. A deposition process deposits the filling layer 184 in the first opening 122 and the second opening 132 . It should be noted that the filling layer 184 filled in the first opening 122 and the second opening 132 will only directly contact the adhesive layer 182 . On the other hand, the filling layer 184 in step S154 will also be deposited on the surface of the first oxide layer 140 .

第3H圖為根據本揭露的一些實施例繪示在形成導電通孔的方法M1其中另一個階段的半導體元件110的剖面側視圖。請參照第1圖、第2A圖與第3H圖。形成導電通孔的方法M1更包含:執行機械研磨製程,例如化學機械研磨(chemical-mechanical planarization,CMP)製程並移除導電材料的部位(步驟S160)。具體來說,CMP製程同時在第一區域120以及第二區域130上被執行,以移除沉積在第一氧化層140上的部分導電材料180。在步驟S160後,半導體元件110的表面將會暴露第一氧化層140、黏著層182以及填充層184。 3H is a cross-sectional side view of the semiconductor device 110 at another stage of the method M1 for forming conductive vias according to some embodiments of the present disclosure. Please refer to Figure 1, Figure 2A and Figure 3H. The method M1 of forming the conductive via further includes performing a mechanical polishing process, such as a chemical-mechanical planarization (CMP) process and removing the conductive material portion (step S160). Specifically, the CMP process is performed on the first region 120 and the second region 130 simultaneously to remove part of the conductive material 180 deposited on the first oxide layer 140 . After step S160, the surface of the semiconductor device 110 will expose the first oxide layer 140, the adhesion layer 182 and the filling layer 184.

以上對於本揭露之具體實施方式之詳述,可以明顯地看出,於本揭露的一些實施例的形成導電通孔的方法中,藉由形成導電通孔的方法在第一開口以及第二開口所形成的導電通孔,將可以減少半導體元件中的連接墊結構,以解決過多的連接電結構降低半導體元件導電性的問題。此外,藉由形成導電通孔的方法在第一開口以及第二開口所形成的導電通孔,將可以省去製作各別連接墊的製程步驟,提升了半導體元件的製程效率。 From the above detailed description of the specific embodiments of the present disclosure, it can be clearly seen that in the method of forming a conductive via hole in some embodiments of the present disclosure, the first opening and the second opening are formed by the method of forming the conductive via hole. The formed conductive via holes can reduce the connection pad structure in the semiconductor element to solve the problem of excessive connection electrical structures reducing the conductivity of the semiconductor element. In addition, by forming the conductive via holes in the first opening and the second opening, the process steps of making separate connection pads can be omitted, thereby improving the process efficiency of the semiconductor device.

前文概述了若干實施例之特徵,使得熟習此項技術者可較佳地理解本揭露之態樣。熟習此項技術者應瞭解,他們可容易地使用本揭露作為設計或修改用於實現相同目的及/或達成本文中所介紹之實施例之相同優勢的其他製程及結構的基礎。熟習此項技術者亦應認識到,此些等效構造不脫離本揭露之精神及範疇,且他們可在不脫離本揭露之精神及範疇的情況下於本文作出各種改變、代替及替換。The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent structures do not depart from the spirit and scope of the disclosure, and they can make various changes, substitutions and substitutions herein without departing from the spirit and scope of the disclosure.

110:半導體元件 120:第一區域 122:第一開口 130:第二區域 132:第二開口 140:第一氧化層 150:位元線 152:氮化層 154:隔離氧化層 156:第一金屬層 158:第二金屬層 160:第二氧化層 170:底部金屬層 172:凹槽 180:導電材料 182:黏著層 184:填充層 200:遮罩層 210:開口 300:電容陣列 310:電容 320:電晶體 330:連接墊 400:字元線 D1:第一深度 D2:第二深度 D3:第三深度 D4:第四深度 A-A’, B-B’, C-C’, D-D’:線 M1:方法 S110, S120, S130, S132, S140, S150, S152, S154, S160:步驟 110:Semiconductor components 120:First area 122:First opening 130:Second area 132:Second opening 140: First oxide layer 150: bit line 152:Nitride layer 154:Isolation oxide layer 156: First metal layer 158: Second metal layer 160: Second oxide layer 170: Bottom metal layer 172: Groove 180: Conductive materials 182:Adhesive layer 184:Filling layer 200:Mask layer 210:Open your mouth 300:Capacitor array 310: Capacitor 320: Transistor 330:Connection pad 400: character line D1: first depth D2: Second depth D3: The third depth D4: fourth depth A-A’, B-B’, C-C’, D-D’: lines M1:Method S110, S120, S130, S132, S140, S150, S152, S154, S160: Steps

當結合隨附諸圖閱讀時,得以自以下詳細描述最佳地理解本揭露之態樣。應注意,根據行業上之標準實務,各種特徵未按比例繪製。事實上,為了論述清楚,可任意地增大或減小各種特徵之尺寸。 Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying figures. It should be noted that in accordance with standard industry practice, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.

第1圖為根據本揭露的一些實施例繪示的形成導電通孔的方法的流程圖。 FIG. 1 is a flowchart of a method of forming conductive vias according to some embodiments of the present disclosure.

第2A圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中一個階段的半導體元件的俯視圖。 第2B圖為第2A圖中沿線B-B’繪示的半導體元件的剖面側視圖。 第2C圖為第2A圖中沿線C-C’繪示的半導體元件的剖面側視圖。 第2D圖為第2A圖中沿線D-D’繪示的半導體元件的剖面側視圖。 第3A圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中一個階段的半導體元件的剖面側視圖。 第3B圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3C圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3D圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3E圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3F圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3G圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 第3H圖為根據本揭露的一些實施例繪示在形成導電通孔的方法其中另一個階段的半導體元件的剖面側視圖。 FIG. 2A is a top view of a semiconductor device during one stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. Figure 2B is a cross-sectional side view of the semiconductor device along line B-B' in Figure 2A. Figure 2C is a cross-sectional side view of the semiconductor device shown along line C-C' in Figure 2A. Figure 2D is a cross-sectional side view of the semiconductor device along line D-D' in Figure 2A. 3A is a cross-sectional side view of a semiconductor device during one stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3B is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3C is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. Figure 3D is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3E is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3F is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3G is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure. 3H is a cross-sectional side view of a semiconductor device at another stage of a method of forming conductive vias in accordance with some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

M1:方法 M1:Method

S110,S120,S130,S140,S150:步驟 S110, S120, S130, S140, S150: steps

Claims (10)

一種形成導電通孔的方法,包含: 圖案化一遮罩層在一半導體元件上方,該半導體元件包含一第一區域以及一第二區域; 透過該遮罩層執行一第一蝕刻製程以分別在該第一區域以及該第二區域上形成具有一第一深度的一第一開口以及一第二開口,其中該第一開口暴露出一第一金屬層; 透過該遮罩層執行一第二蝕刻製程以延伸該第一開口至一第二深度,並且延伸該第二開口至一第三深度,其中該第二深度與該第三深度不同; 透過該遮罩層執行一第三蝕刻製程以延伸該第一開口以及該第二開口至一第四深度,並且該第一開口以及該第二開口暴露一底部金屬層;以及 沉積一導電材料在該第一開口以及該第二開口中。 A method of forming conductive vias, comprising: Patterning a mask layer over a semiconductor device, the semiconductor device including a first region and a second region; A first etching process is performed through the mask layer to form a first opening and a second opening with a first depth on the first region and the second region respectively, wherein the first opening exposes a first opening. a metal layer; Performing a second etching process through the mask layer to extend the first opening to a second depth, and extending the second opening to a third depth, wherein the second depth is different from the third depth; Performing a third etching process through the mask layer to extend the first opening and the second opening to a fourth depth and expose a bottom metal layer; and A conductive material is deposited in the first opening and the second opening. 如請求項1所述之形成導電通孔的方法,該透過該遮罩層執行該第二蝕刻製程的步驟包含: 藉由該第一開口貫穿該第一金屬層以及位於該第一金屬層下方的一第二金屬層。 As in the method of forming a conductive via as described in claim 1, the step of performing the second etching process through the mask layer includes: The first opening penetrates the first metal layer and a second metal layer located below the first metal layer. 如請求項1所述之形成導電通孔的方法,其中該透過該遮罩層執行該第二蝕刻製程的步驟係使得該第一開口暴露出位於該第一金屬層下方的一氧化層。The method of forming a conductive via as claimed in claim 1, wherein the step of performing the second etching process through the mask layer causes the first opening to expose an oxide layer underneath the first metal layer. 如請求項1所述之形成導電通孔的方法,其中該透過該遮罩層執行該第三蝕刻製程的步驟係使得該第一開口以及該第二開口延伸至該底部金屬層中,但不穿過該底部金屬層。The method of forming a conductive via as claimed in claim 1, wherein the step of performing the third etching process through the mask layer causes the first opening and the second opening to extend into the bottom metal layer, but not through this bottom metal layer. 如請求項1所述之形成導電通孔的方法,其中該第二深度大於該第三深度。The method of forming a conductive via as claimed in claim 1, wherein the second depth is greater than the third depth. 如請求項1所述之形成導電通孔的方法,該沉積該導電材料的步驟包含: 保形地形成一黏著層在該第一開口以及該第二開口的複數個側壁以及複數個底表面上;以及 沉積一填充層在該第一開口以及該第二開口中。 As for the method of forming a conductive via as described in claim 1, the step of depositing the conductive material includes: Conformally forming an adhesive layer on the side walls and bottom surfaces of the first opening and the second opening; and A filling layer is deposited in the first opening and the second opening. 如請求項6所述之形成導電通孔的方法,其中該黏著層與該第一金屬層為相同材料。The method of forming a conductive via as claimed in claim 6, wherein the adhesive layer and the first metal layer are made of the same material. 如請求項1所述之形成導電通孔的方法,更包含: 執行一機械研磨製程以移除該導電材料的一部位。 The method of forming a conductive via as described in claim 1 further includes: A mechanical grinding process is performed to remove a portion of the conductive material. 如請求項1所述之形成導電通孔的方法,其中該第一蝕刻製程以及該第三蝕刻製程使用相同的一第一蝕刻氣體,並且該第二蝕刻製程使用不同於該第一蝕刻氣體的一第二蝕刻氣體。The method of forming a conductive via as claimed in claim 1, wherein the first etching process and the third etching process use the same first etching gas, and the second etching process uses a different gas than the first etching gas. a second etching gas. 如請求項9所述之形成導電通孔的方法,其中該第一蝕刻氣體與該第二蝕刻氣體對該第一金屬層具有不同蝕刻速度。The method of forming a conductive via as claimed in claim 9, wherein the first etching gas and the second etching gas have different etching speeds for the first metal layer.
TW111145972A 2022-11-30 2022-11-30 Method of forming conductive vias TWI817856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111145972A TWI817856B (en) 2022-11-30 2022-11-30 Method of forming conductive vias

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111145972A TWI817856B (en) 2022-11-30 2022-11-30 Method of forming conductive vias

Publications (1)

Publication Number Publication Date
TWI817856B true TWI817856B (en) 2023-10-01

Family

ID=89858013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145972A TWI817856B (en) 2022-11-30 2022-11-30 Method of forming conductive vias

Country Status (1)

Country Link
TW (1) TWI817856B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153548A1 (en) * 2000-07-31 2002-10-24 Fujitsu Limited Semiconductor device and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153548A1 (en) * 2000-07-31 2002-10-24 Fujitsu Limited Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN106847789B (en) Conductive structure, the system comprising conductive structure and device and correlation technique
TW548840B (en) Semiconductor memory device
TW202044357A (en) Semiconductor device with self-aligning landing pad and method of manufacturing the same
TWI689050B (en) Memory devices and methods of fabricating the same
CN107887325A (en) The forming method of semiconductor structure
JP2000164822A (en) Semiconductor storage device and its manufacture
TW202205382A (en) Method for forming semiconductor devices
TWI817856B (en) Method of forming conductive vias
JP2008042075A (en) Semiconductor memory unit, and production method therefor
CN108962817A (en) Semiconductor structure and forming method thereof
JP2001203337A5 (en)
US11792973B2 (en) Storage device and forming method having a strip-shaped bitline contact structure
US11362033B2 (en) Semiconductor structure and method for fabricating the same
JP2002158294A (en) Semiconductor memory device having metal contact structure and manufacturing method thereof
WO2022088788A1 (en) Method for forming semiconductor structure, and semiconductor structure
JP3599466B2 (en) Method for manufacturing semiconductor integrated circuit device
US10141401B2 (en) Method for forming semiconductor device structure
TWI833573B (en) Method of manufacturing semiconductor device
TWI817521B (en) Manufacturing method of semiconductor structure
WO2022062717A1 (en) Semiconductor structure forming method and semiconductor structure
US20240074212A1 (en) Method of fabricating semiconductor device
TWI841240B (en) Semiconductor structure and method of forming the same
US20240079294A1 (en) Alignment mark for back side power connections
TWI798796B (en) Semiconductor device with carbon liner over gate structure and method for forming the same
US11468920B2 (en) Semiconductor connection structure and method for manufacturing the same