TWI817561B - Multi-sensor position measuring system - Google Patents

Multi-sensor position measuring system Download PDF

Info

Publication number
TWI817561B
TWI817561B TW111122503A TW111122503A TWI817561B TW I817561 B TWI817561 B TW I817561B TW 111122503 A TW111122503 A TW 111122503A TW 111122503 A TW111122503 A TW 111122503A TW I817561 B TWI817561 B TW I817561B
Authority
TW
Taiwan
Prior art keywords
sensor
signal
carrier
sensors
measurement system
Prior art date
Application number
TW111122503A
Other languages
Chinese (zh)
Other versions
TW202401958A (en
Inventor
米哈伊爾 泰普金
奧列格 托爾斯泰克
根納迪 泰金
亞歷山大 巴爾科維
Original Assignee
大銀微系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大銀微系統股份有限公司 filed Critical 大銀微系統股份有限公司
Priority to TW111122503A priority Critical patent/TWI817561B/en
Application granted granted Critical
Publication of TWI817561B publication Critical patent/TWI817561B/en
Publication of TW202401958A publication Critical patent/TW202401958A/en

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The invention discloses a multi-sensor position measurement system, which mainly includes a base, a carrier and a modular component, wherein the carrier is provided with a first signal array and a second signal array. The modular component is disposed on the base, and includes two Hall sensors for sensing the change of the magnetic field of the first signal array, two magnetoresistive sensors for sensing the change of the magnetic field of the second signal array, and A first state sensor has a marking unit set on the carrier and a sensing element set on the base, for sensing the signal generated by the marking unit, as a subsequent reference signal generation, connecting other sensors Measurement results, homing direction identification, etc.

Description

多感測器位置量測系統Multi-sensor position measurement system

本發明係與位置量測技術有關,尤指一種多感測器位置量測系統。 The present invention relates to position measurement technology, and in particular, to a multi-sensor position measurement system.

按,傳統位置測量系統通常以霍爾傳感器來進行偵測,但其缺點是精度較低,即約為±0.25mm,且分辨率亦不高,限制了霍爾傳感器在高精度工業領域之應用。 According to traditional position measurement systems, Hall sensors are usually used for detection, but their disadvantages are low accuracy, which is about ±0.25mm, and low resolution, which limits the application of Hall sensors in high-precision industrial fields. .

況且,為確保量測位置之準確性,通常會進行初始化,但若感測器和載體數量過多,初始化過程將相當複雜。 Moreover, in order to ensure the accuracy of the measured position, initialization is usually performed. However, if there are too many sensors and carriers, the initialization process will be quite complicated.

是以,如何在降低測量系統成本的前提下,同時簡化初始化過程,並提高精度,將是相關業者所需思量的。 Therefore, how to simplify the initialization process and improve accuracy while reducing the cost of the measurement system will be what relevant industry players need to consider.

因此,本發明之主要目的在於提供一種多感測器位置量測系統,其係能夠精確地測量載體所在位置。 Therefore, the main purpose of the present invention is to provide a multi-sensor position measurement system that can accurately measure the position of the carrier.

緣是,為達成上述目的,本發明之多感測器位置量測系統主要係具有模組化組件,其包括兩個初級傳感器及兩個次級高精度傳感器,其中,利用初級傳感器和次級高精度傳感器間分段切換偵測,達到高精度檢測之功效。 The reason is that, in order to achieve the above purpose, the multi-sensor position measurement system of the present invention mainly has modular components, which include two primary sensors and two secondary high-precision sensors. Among them, the primary sensor and the secondary Segment switching detection between high-precision sensors achieves high-precision detection.

具體來說,該系統更包括一基部、一載體、一第一訊號陣列及一第二訊號陣列,其中,該載體係可相對該基部移動。各該訊號陣列係彼此相隔開來地設於該載體上,並分別具有多數依序排列之訊號源件,且該第二訊號陣列的訊號周期小於該第一訊號陣列的訊號周期,據以提高量測精度。 Specifically, the system further includes a base, a carrier, a first signal array and a second signal array, wherein the carrier system can move relative to the base. Each of the signal arrays is spaced apart from each other on the carrier, and each has a plurality of signal source elements arranged in sequence, and the signal period of the second signal array is smaller than the signal period of the first signal array, thereby improving the Measurement accuracy.

其中,模組化組件更包括一處理單元用以接收該些傳感器所偵測之訊號,計算出該載體的位置,及一第一狀態傳感器,作為生成參考訊號、銜接其他傳感器間的測量結果、歸位方向識別等功能。 Among them, the modular component further includes a processing unit to receive the signals detected by the sensors and calculate the position of the carrier, and a first state sensor to generate a reference signal and connect the measurement results of other sensors. Homing direction identification and other functions.

在一實施例中,第一傳感器與第二傳感器為初級傳感器,例如霍爾傳感器,作為位置反饋,第三傳感器與第四傳感器則作為次級高精度傳感器,例如異性磁電阻傳感器,用於修改初級傳感器所測量的位置,並確定電機電流換向相位。 In one embodiment, the first sensor and the second sensor are primary sensors, such as Hall sensors, used for position feedback, and the third sensor and the fourth sensor are used as secondary high-precision sensors, such as anisotropic magnetoresistance sensors, for modification. The primary sensor measures the position and determines the motor current commutation phase.

在一實施例中,當該第一狀態傳感器被激活時,係位於該第一傳感器測量範圍的末端處,且該第二傳感器的振幅訊號係高於預定閾值。 In one embodiment, when the first status sensor is activated, it is at the end of the first sensor's measurement range and the amplitude signal of the second sensor is above a predetermined threshold.

在一實施例中,該處理單元以加權函數分別對該些傳感器所測量結果進行計算,以獲得一參考訊號。 In one embodiment, the processing unit calculates the measurement results of the sensors using a weighting function to obtain a reference signal.

在一實施例中,該處理單元根據該參考訊號、比較各該霍爾傳感器的振幅訊號與預定閾值、及分析該狀態傳感器的狀態,作為估算該載體的移動方向之依據。 In one embodiment, the processing unit compares the amplitude signal of each Hall sensor with a predetermined threshold based on the reference signal, and analyzes the status of the status sensor as a basis for estimating the moving direction of the carrier.

在一實施例中,該量測模組更包括一第二狀態傳感器,位於該量測模組測量範圍的末端,並具有一設於該載體上之標記單元及一設於該基部上之敏感元件,用以感測該標記單元所產生之訊號。 In one embodiment, the measurement module further includes a second status sensor located at the end of the measurement range of the measurement module and having a marking unit provided on the carrier and a sensitive sensor provided on the base. Component is used to sense the signal generated by the marking unit.

其中,當該第二狀態傳感器被激活時,係位於該第二傳感器測量範圍的末端處,且該第一傳感器的振幅訊號係低於預定閾值。 Wherein, when the second status sensor is activated, it is located at the end of the measurement range of the second sensor, and the amplitude signal of the first sensor is lower than a predetermined threshold.

在一實施例中,以該載體上的該第一訊號陣列及該第二訊號陣列間的相位變化定義出一與訊號周期相關的機械位移,以供該處理單元識別載體之用。 In one embodiment, the phase change between the first signal array and the second signal array on the carrier is used to define a mechanical displacement related to the signal period for the processing unit to identify the carrier.

在一實施例中,以一初始位置將該量測模組的測量範圍區分成一正歸位區域及一負歸位區域,並透過該些傳感器所測量結果,估算出該載體的自動歸位方向 In one embodiment, an initial position is used to divide the measurement range of the measurement module into a positive homing area and a negative homing area, and the automatic homing direction of the carrier is estimated through the measurement results of the sensors.

在一實施例中,該模組化組件更包括一定子,而該二霍爾傳感器及該二磁阻傳感器分別位於定子的兩側,當該第一訊號陣列位於該定子上方時,該處理單元始進行歸位運算。 In one embodiment, the modular component further includes a stator, and the two Hall sensors and the two magnetoresistive sensors are respectively located on both sides of the stator. When the first signal array is located above the stator, the processing unit Start homing operation.

綜上所述,本發明利用模塊化組件解決了傳統測量系統精度低、載體不易辨識、初始化計算繁複等問題。 To sum up, the present invention uses modular components to solve the problems of traditional measurement systems such as low accuracy, difficult carrier identification, and complicated initialization calculations.

(10):第一訊號陣列 (10): First signal array

(101):磁鐵 (101):Magnet

(11):載體 (11): Carrier

(12):第二訊號陣列 (12): Second signal array

(T1)、(T2):磁周期 (T1), (T2): magnetic period

(L1)、(L2)、(L3):長度 (L1), (L2), (L3): length

(20):量測模組 (20):Measurement module

(21):第一傳感器 (21):First sensor

(22):第二傳感器 (22): Second sensor

(211)、(221)、(231)、(241):相位 (211), (221), (231), (241): Phase

(2111):週期 (2111):Period

(212)、(222)、(232)、(242):訊號幅度 (212), (222), (232), (242): signal amplitude

(213)、(223)、(233):閾值 (213), (223), (233): threshold

(226)、(227):接合相位閾值 (226), (227): engagement phase threshold

(214)、(215)、(224)、(225)、(2261)、(2271):位置 (214), (215), (224), (225), (2261), (2271): position

(228):初始位置閾值 (228): Initial position threshold

(H1)、(H2)、(S1)、(S2)、(S3)、(S4):敏感元件 (H1), (H2), (S1), (S2), (S3), (S4): Sensitive components

(A1)、(A2)、(A3)、(A4):訊號 (A1), (A2), (A3), (A4): signal

(23):第三傳感器 (23):Third sensor

(24):第四傳感器 (24):Fourth sensor

(25):第一狀態傳感器 (25): First state sensor

(251):標記單元 (251):Mark unit

(252):狀態訊號 (252):Status signal

(253):敏感元件 (253): Sensitive element

(26):第二狀態傳感器 (26): Second status sensor

(261):標記單元 (261):Mark unit

(262):狀態訊號 (262):Status signal

(263):敏感元件 (263): Sensitive element

(270)、(271)、(292):測量範圍 (270), (271), (292): Measuring range

(272)、(2722):初始位置 (272), (2722): initial position

(280):第一加權函數 (280): First weighting function

(281):第二加權函數 (281): Second weighting function

(282)、(283):數位連接相位 (282), (283): digital connection phase

(285):修正相位 (285):Correction phase

(286):標準絕對相位 (286): Standard absolute phase

(290):接合區域 (290):joint area

(291):重疊區域 (291): Overlapping area

(293):正歸位區域 (293): Positive homing area

(294):負歸位區域 (294): Negative homing area

(295):絕對區域 (295):Absolute area

(296):末端區域 (296): terminal region

(200):歸位方向 (200): Homing direction

(30):處理單元 (30):Processing unit

(40):驅動單元 (40):Drive unit

(50):定子 (50):Stator

(60):模組化組件 (60):Modular components

(70):運動控制器 (70):Motion controller

(71):現場總線 (71):Fieldbus

(DM):步長 (DM): step size

(DHA)、(DA)、(DH):間距 (DHA), (DA), (DH): Spacing

(x1)、(x2)、(x2'):子周期位置 (x1), (x2), (x2'): sub-period position

(d12):機械位移 (d12): mechanical displacement

圖1是本發明第一實施例的示意圖。 Figure 1 is a schematic diagram of the first embodiment of the present invention.

圖1A是本發明第一實施例的各構件具體位置關係之俯視圖、側視圖和前視圖。 1A is a top view, a side view and a front view showing the specific positional relationship of each component of the first embodiment of the present invention.

圖2是霍爾傳感器內部元件的示意圖。 Figure 2 is a schematic diagram of the internal components of the Hall sensor.

圖3是磁阻傳感器內部元件的示意圖。 Figure 3 is a schematic diagram of the internal components of the magnetoresistive sensor.

圖4是本發明第一實施例各感測器所感測訊號的示意圖。 FIG. 4 is a schematic diagram of signals sensed by each sensor according to the first embodiment of the present invention.

圖5是本發明第一實施例初始化程序中相關訊號和位置之示意圖。 FIG. 5 is a schematic diagram of relevant signals and locations in the initialization process of the first embodiment of the present invention.

圖6係延續圖5更定義出絕對區域的示意圖。 Figure 6 is a schematic diagram that continues Figure 5 and further defines the absolute area.

圖7是本發明第二實施例,係表示模組化組件的數量為二。 Figure 7 is a second embodiment of the present invention, which shows that the number of modular components is two.

圖8是表示本發明第三實施例的俯視圖、側視圖和前視圖。 8 is a top view, a side view and a front view showing a third embodiment of the present invention.

圖9是本發明第三實施例的示意圖。 Figure 9 is a schematic diagram of the third embodiment of the present invention.

圖10是本發明第三實施例針對第二狀態傳感器的編碼原理示意圖。 FIG. 10 is a schematic diagram of the encoding principle for the second state sensor according to the third embodiment of the present invention.

圖11是本發明第四實施例的示意圖,係表示增加步距之態樣。 FIG. 11 is a schematic diagram of the fourth embodiment of the present invention, showing the manner of increasing the step distance.

圖12是本發明第五實施例關於兩模組化組件間歸位辨識的示意圖。 Figure 12 is a schematic diagram of homing identification between two modular components according to the fifth embodiment of the present invention.

圖13是本發明第五實施例載體識別原理示意圖。 Figure 13 is a schematic diagram of the carrier identification principle according to the fifth embodiment of the present invention.

首先說明,本案中如第一、第二等排序用語,僅係便於元件之區別說明,其本身不具有技術上之意義,當無區別必要時,將省略之。 First of all, it should be noted that the ranking terms such as first and second in this case are only used to facilitate the differentiation of components. They themselves have no technical significance. When no distinction is necessary, they will be omitted.

如圖1至圖6所示,係本發明之第一實施例所提供的多感測器位置量測系統,其主要包括一基部、一運動部以及一模組化組件(60)。 As shown in FIGS. 1 to 6 , the multi-sensor position measurement system provided by the first embodiment of the present invention mainly includes a base part, a moving part and a modular component (60).

基部係沿著具有一長度,作為其他構件建設之基礎,以線性馬達為例,該基部即為線性馬達的定子座。 The base has a length along it and serves as the basis for the construction of other components. Taking a linear motor as an example, the base is the stator seat of the linear motor.

運動部具有一第一訊號陣列(10)、一載體(11)及一第二訊號陣列(12),其中,載體(11)係具有一長度,並可活動地位於基部之一側,而各訊號陣列(10)、(12)彼此係相隔開來地設於載體(11)上;於本實施例中係以線性馬達為例,第一訊號陣列(10)係為動子上之磁鐵陣列,除作為與定子中之線圈所造成之磁場進行交互作用,使運動部進行直線位移外,並將磁鐵作為訊號源件;而第二訊號陣列(12)則可為採用磁學、電學或光學上的非接觸性訊號源件,規律排列而成的磁性尺或光學尺等習知技術,於本實施例中係以如磁鐵等多數磁性 元件(101)組成的磁性尺;從而使各訊號陣列(10)、(12)分別具有磁周期(T1)、(T2),並沿著載體(11)的長軸方向延伸,而分別具有預定之長度(L1)、(L2)。並使T2<T1,以提高檢測精度,以及使L1至少為兩個T2的倍數。 The moving part has a first signal array (10), a carrier (11) and a second signal array (12), wherein the carrier (11) has a length and is movably located on one side of the base, and each The signal arrays (10) and (12) are spaced apart from each other on the carrier (11); in this embodiment, a linear motor is taken as an example, and the first signal array (10) is a magnet array on the mover. , in addition to interacting with the magnetic field caused by the coil in the stator to cause the moving part to perform linear displacement, the magnet is used as a signal source component; and the second signal array (12) can be magnetic, electrical or optical. Conventional technologies such as non-contact signal source components and regularly arranged magnetic rulers or optical rulers are used in this embodiment using a plurality of magnetic devices such as magnets. A magnetic ruler composed of elements (101); thus each signal array (10), (12) has a magnetic period (T1), (T2) respectively, and extends along the long axis direction of the carrier (11), and each has a predetermined The length (L1), (L2). And make T2<T1 to improve detection accuracy, and make L1 at least a multiple of two T2.

此外,各訊號陣列(10)、(12)之間具有一間距(DHA),以減少磁場相互影響,如DHA可以是60mm,但不限於此。 In addition, there is a distance (DHA) between each signal array (10) and (12) to reduce the mutual influence of magnetic fields. For example, the DHA can be 60mm, but is not limited to this.

模組化組件(60)所預設之預定寬度為步長(DM),並具有一量測模組(20)、一處理單元(30)、一驅動單元(40)及一定子(50),其中,定子(50)係設於基部上,並與第一訊號陣列(10)之磁場相互作用,驅動載體(11)相對基部位移。而處理單元(30)係接收量測模組(20)所感測訊息,並經運算以獲得關於載體(11)之位置資訊後,回饋至驅動單元(40),再由驅動單元(40)對定子(50)進行供電控制,例如電流換向。 The predetermined width of the modular component (60) is the step size (DM), and it has a measurement module (20), a processing unit (30), a driving unit (40) and a stator (50) , wherein the stator (50) is located on the base and interacts with the magnetic field of the first signal array (10) to drive the carrier (11) to move relative to the base. The processing unit (30) receives the information sensed by the measurement module (20), and performs calculations to obtain the position information about the carrier (11), and then feeds it back to the driving unit (40), and then the driving unit (40) The stator (50) performs power supply control, such as current commutation.

量測模組(20)具有一第一傳感器(21)、一第二傳感器(22)、一第三傳感器(23)、一第四傳感器(24)及一第一狀態傳感器(25),其中,各第一、第二傳感器係分別為霍爾傳感器(21)、(22)係作為初級傳感器,且分別位於基部長軸方向上之兩端,並使定子(50)介於該些霍爾傳感器(21)、(22)之間,用以感測第一訊號陣列(10)之磁場變化,作為載體(11)位置反饋依據,且各霍爾傳感器(21)、(22)的間距(DH)為磁週期(T1)的整數倍數。 The measurement module (20) has a first sensor (21), a second sensor (22), a third sensor (23), a fourth sensor (24) and a first status sensor (25), wherein , each of the first and second sensors are Hall sensors (21) and (22) respectively as primary sensors, and are respectively located at both ends of the base in the long axis direction, and the stator (50) is between these Hall sensors. Between the sensors (21) and (22), they are used to sense changes in the magnetic field of the first signal array (10) as a basis for position feedback of the carrier (11), and the distance between the Hall sensors (21) and (22) is ( DH) is an integer multiple of the magnetic period (T1).

其中,各霍爾傳感器(21)、(22)分別具有至少兩個敏感元件(H1)、(H2),分別以T1/4沿著X軸設置,如圖2所示。當載體(11)沿X軸移動時,各敏感元件所輸出訊號係分別與餘弦、正弦差分訊號Cos1+,Sin1+成正比,即U Cos1=U amp/1cos(α1),U Sin1=U amp/1sin(α1),其中,α1為訊號相位,U amp/1為振幅訊號,子周期位置(x1)係由處理單元(30)根據公式1計算而得: x1=(T1/360°)α1=(T1/360°).atan2(USin1+,UCos1+), (公式1) Wherein, each Hall sensor (21), (22) has at least two sensitive elements (H1), (H2) respectively, which are respectively arranged along the X-axis at T1/4, as shown in Figure 2. When the carrier ( 11 ) moves along the 1 sin(α1), where α1 is the signal phase, U amp /1 is the amplitude signal, and the sub-period position (x1) is calculated by the processing unit (30) according to Formula 1: x1=(T1/360°)α1 =(T1/360°). atan2(U Sin1+ ,U Cos1+ ), (Formula 1)

其中,atan2(y,x)為四象限反正切函數。 Among them, atan2(y,x) is the four-quadrant arctangent function.

由於霍爾傳感器(21)、(22)相對定子(50)的位置為已知,而能於電流換向後,再直接切換到另一組高精度測量傳感器,而不需要驅動單元(40)採取任何動作來找到當前的換向相位,相當便利。 Since the positions of the Hall sensors (21) and (22) relative to the stator (50) are known, they can be directly switched to another set of high-precision measurement sensors after current commutation, without the need for the drive unit (40) to take steps. It is quite convenient to find the current commutation phase with any action.

第三及第四傳感器(23)、(24)則為磁阻傳感器,作為次級高精度傳感器,例如可為異性磁電阻感測器(Anisotropic Magneto-Resistive sensors),用於偵測系統初始化期間的電機電流換向、及感測第二訊號陣列(12)之磁場變化。各磁阻傳感器(23)、(24)分別位於基部長軸方向上之兩端,並使定子(50)介於該些磁阻傳感器(23)、(24)之間。 The third and fourth sensors (23) and (24) are magnetoresistive sensors. As secondary high-precision sensors, they can be, for example, Anisotropic Magneto-Resistive sensors, used to detect the system initialization period. commutation of the motor current, and sensing changes in the magnetic field of the second signal array (12). Each magnetoresistive sensor (23), (24) is located at both ends in the long axis direction of the base, with the stator (50) interposed between the magnetoresistive sensors (23), (24).

其中,各磁阻傳感器(23)、(24)分別包括至少四個敏感元件(S1、S2、S3 and S4),分別以T2/8沿著X軸設置。當載體(11)沿X軸移動時,各敏感元件所輸出之訊號係分別與差分正弦和餘弦訊號Cos2+、Sin2+、Cos2-、Sin2-的半週期成正比,即各向異性磁阻效應(Anisotropic Magneto-Resistive effect):U Cos2+=U amp/2cos(α2),U Sin2+=U amp/2sin(α2),U Cos2-=-U amp/2cos(α2),U Sin2-=-U amp/2sin(α2),其中,α2是訊號相位,U amp/2是訊號幅度。 Each of the magnetoresistive sensors (23) and (24) includes at least four sensitive elements (S1, S2, S3 and S4), which are respectively arranged along the X-axis at T2/8. When the carrier (11) moves along the Magneto-Resistive effect): U Cos2+ = U amp /2 cos(α2), U Sin2+ = U amp /2 sin(α2), U Cos2- =- U amp /2 cos(α2), U Sin2- =- U amp /2 sin(α2), where α 2 is the signal phase and U amp /2 is the signal amplitude.

處理單元(30)利用反正切三角函數(arctangent trigonometric function)來估計半個磁週期(T2)中的子週期位置(x2):x2=(T2/720°).α2=(T2/720°).atan2(USin2+-USin2-),(UCos2+-UCos2-) (公式2) The processing unit (30) estimates the sub-period position (x2) in the half magnetic period (T2) using an arctangent trigonometric function: x2=(T2/720°). α2=(T2/720°). atan2(U Sin2+ -U Sin2- ),(U Cos2+ -U Cos2- ) (Formula 2)

此外,本發明透過以下條件,以簡化各訊號陣列(10)、(12)間的切換程序,即磁阻傳感器(23)、(24)的間距(DA)為磁週期(T1)的整數倍數。T1是 T2的整數倍數,例如T1=30mm,T2=10mm。L1為T1的整數倍數,並等於步長(DM)。L2至少為兩個T2,如下關係式:L2=L1+2.T2 (公式3) In addition, the present invention simplifies the switching procedures between the signal arrays (10) and (12) through the following conditions, that is, the distance (DA) between the magnetoresistive sensors (23) and (24) is an integer multiple of the magnetic period (T1) . T1 is Integer multiples of T2, such as T1=30mm, T2=10mm. L1 is an integer multiple of T1 and equal to the step size (DM). L2 is at least two T2, as follows: L2=L1+2. T2 (Formula 3)

如圖4所示,第三傳感器(23)的子週期相位(231)係與第一傳感器(21)的相位(211)位置同步,例如,當相位(211)等於0時,相位(231)也等於零。此外,在圖6中更以一標籤(13)標記了載體(11)的當前位置,以了解位置的各傳感器的狀態。 As shown in Figure 4, the sub-period phase (231) of the third sensor (23) is synchronized with the phase (211) position of the first sensor (21). For example, when the phase (211) is equal to 0, the phase (231) Also equal to zero. In addition, in Figure 6, a label (13) is used to mark the current location of the carrier (11) to understand the status of each sensor at the location.

當第一傳感器(21)的訊號幅度(212)高於一預定之閾值(213)時,第一傳感器(21)變為激活狀態,而閾值(213)為最大訊號幅度(212)的一半。 When the signal amplitude (212) of the first sensor (21) is higher than a predetermined threshold (213), the first sensor (21) becomes active, and the threshold (213) is half of the maximum signal amplitude (212).

當載體(11)沿X軸移動時,因第二訊號陣列(12)的長度(L2)係大於第一訊號陣列(10)的長度(L1),使得第三傳感器(23)能比第一傳感器(21)更早偵測到載體(11)。 When the carrier (11) moves along the The sensor (21) detects the carrier (11) earlier.

各霍爾傳感器(21)、(22)所分別量測的訊號(A1)、(A2)的訊號幅度(212)、(222)計算如下:

Figure 111122503-A0305-02-0010-1
The signal amplitudes (212) and (222) of the signals (A1) and (A2) measured by each Hall sensor (21) and (22) respectively are calculated as follows:
Figure 111122503-A0305-02-0010-1

在圖4中,訊號幅度(212)在位置(214)、(215)等於閾值(213),並以兩位置(214)、(215)的間距作為第一傳感器(21)的測量範圍(270)。 In Figure 4, the signal amplitude (212) is equal to the threshold (213) at the positions (214) and (215), and the distance between the two positions (214) and (215) is used as the measurement range (270) of the first sensor (21). ).

各磁阻傳感器(23)、(24)所分別量測的訊號(A3)、(A4)的訊號幅度(232)、(242)計算如下:

Figure 111122503-A0305-02-0010-2
The signal amplitudes (232) and (242) of the signals (A3) and (A4) measured by the magnetoresistive sensors (23) and (24) respectively are calculated as follows:
Figure 111122503-A0305-02-0010-2

當第三傳感器(23)的訊號幅度(232)高於一預定之閾值(233),並且第一傳感器(21)的訊號幅度(212)高於閾值(213)時,係將第三傳感器(23)切換至激 活(active)狀態,並以初始位置(272)作為位置同步第一訊號陣列(10)與第二訊號陣列(12)之依據。 When the signal amplitude (232) of the third sensor (23) is higher than a predetermined threshold (233), and the signal amplitude (212) of the first sensor (21) is higher than the threshold (213), the third sensor (21) is 23) Switch to active Active state, and the initial position (272) is used as the basis for position synchronization of the first signal array (10) and the second signal array (12).

所述位置同步係指第一訊號陣列(10)切換至第二訊號陣列(12)期間,根據公式6所計算出新的子週期位置(x2'),並用於用於電機電流換向和高精度位置反饋。 The position synchronization refers to the new sub-period position (x2') calculated according to Formula 6 during the switching of the first signal array (10) to the second signal array (12), and is used for motor current commutation and high voltage. Precision position feedback.

x2’=(T2/2).round(x1/x2)+x2, (公式6) x2’=(T2/2). round(x1/x2)+x2, (Formula 6)

其中,round(x)是找到較小整數的函數。 where round(x) is a function that finds the smaller integer.

在圖4中,訊號幅度(222)在位置(224)、(225)處等於閾值(223),並以兩位置(224)、(225)的間距作為第二傳感器(22)及第四傳感器(24)的測量範圍(271),並使量測模組(20)的測量範圍(292)介於位置(214)、(225)之間。 In Figure 4, the signal amplitude (222) is equal to the threshold (223) at the positions (224) and (225), and the distance between the two positions (224) and (225) is used as the second sensor (22) and the fourth sensor. The measurement range (271) of (24), and the measurement range (292) of the measurement module (20) is between the positions (214) and (225).

當載體(11)分別進入或離開各霍爾傳感器(21)、(22)的測量範圍(270)、(271)時,由於磁場變化引起的端部效應(end effects)以及敏感元件(H1)、(H2)未完全被第一訊號陣列(10)所覆蓋,造成訊號失真。是以,為了能連續且平順地測量載體(11)的所在位置,係使各霍爾傳感器(21)、(22)間的測量範圍具有重疊區域(291),重疊區域(291)介於該些位置(215)、(224)之間,且其範圍至少為一個磁周期(T1)。 When the carrier (11) enters or leaves the measurement ranges (270) and (271) of each Hall sensor (21) and (22) respectively, the end effects (end effects) caused by changes in the magnetic field and the sensitive element (H1) , (H2) is not completely covered by the first signal array (10), causing signal distortion. Therefore, in order to continuously and smoothly measure the position of the carrier (11), the measurement ranges between the Hall sensors (21) and (22) have an overlapping area (291), and the overlapping area (291) is between between these positions (215) and (224), and its range is at least one magnetic period (T1).

為了再降低端部效應的影響,本發明更以一數位接合法(digital joining method)定義出一接合區域(290),如公式7,當載體(11)位於接合區域(290)中時,數位接合法係利用第一加權函數(280)和第二加權函數(281)分別對各霍爾傳感器(21)、(22)的相位(211)、(221)進行加總。 In order to further reduce the influence of the end effect, the present invention further defines a joining area (290) using a digital joining method, as shown in Formula 7. When the carrier (11) is located in the joining area (290), the digital joining method The joining method uses the first weighting function (280) and the second weighting function (281) to respectively sum the phases (211) and (221) of the Hall sensors (21) and (22).

此外,各霍爾傳感器(21)、(22)的相位(211)、(221)相連接的時機係於系統切換到第二訊號陣列(12)之前,而各磁阻傳感器(23)、(24)的相位(231)、(241)相連接的時機係於系統切換到第二訊號陣列(12)之後。 In addition, the timing of connecting the phases (211) and (221) of each Hall sensor (21) and (22) is before the system switches to the second signal array (12), and each magnetoresistive sensor (23), ( The timing of connecting phases (231) and (241) of 24) is after the system switches to the second signal array (12).

如圖4所示,第二傳感器(22)的相位(221)係利用接合相位閾值(226)、(227)來估計接合區域(290),且各接合相位閾值(226)、(227)分別為60°和120°,並以位置(2261)、(2271)分別作為接合區域(290)的起點及終點。 As shown in Figure 4, the phase (221) of the second sensor (22) estimates the engagement area (290) using engagement phase thresholds (226), (227), and each engagement phase threshold (226), (227) respectively are 60° and 120°, and the positions (2261) and (2271) are respectively the starting point and the end point of the joint area (290).

在接合區域(290)中,計算數位連接相位(282)的方式如下:α1join=α121.W1(α122)+α122.W2(α122), (公式7) In the joint region (290), the digital join phase (282) is calculated as follows: α1 join =α1 21 . W1(α1 22 )+α1 22 . W2(α1 22 ), (Formula 7)

其中,α1join是各霍爾傳感器(21)、(22)的數位連接相位(282),α121是第一傳感器(21)的相位(211),α122是第二傳感器(22)的相位(221),W1(α122)是第一加權函數(280),W2(α122)是第二加權函數(281),例如,加權函數是圖4中的接合區域(290)中的線性反函數。 Among them, α1 join is the digital connection phase (282) of each Hall sensor (21), (22), α1 21 is the phase (211) of the first sensor (21), α1 22 is the phase of the second sensor (22) (221), W1 (α1 22 ) is the first weighting function (280), and W2 (α1 22 ) is the second weighting function (281). For example, the weighting function is the linear inverse in the joint region (290) in Figure 4 function.

再以公式8計算磁阻傳感器(23)、(24)的數位連接相位(283)。 Then use Equation 8 to calculate the digital connection phase (283) of the magnetoresistive sensors (23) and (24).

α2join=α223.W1(α122)+α224.W2(α122), (公式8) α2 join =α2 23 . W1(α1 22 )+α2 24 . W2(α1 22 ), (Formula 8)

其中,α2join是各磁阻傳感器(23)、(24)的數位連接相位(283),α223是第三傳感器(23)的相位(231),α224是第四傳感器(24)的相位(241)。 Among them, α2 join is the digital connection phase (283) of each magnetoresistive sensor (23), (24), α2 23 is the phase (231) of the third sensor (23), α2 24 is the phase of the fourth sensor (24) (241).

第一狀態傳感器(25)可為光開關傳感器(optical switch sensor),用於實現位置估計,例如參考訊號生成、銜接其他傳感器間的測量結果和歸位方向識別,並具有一標記單元(251)及一敏感元件(253),其中,標記單元(251)係鄰近於第一訊號陣列(10)而設於載體(11)上,且其長度(L3)必須大於位置(2261)、(2271)之間的距離。敏感元件(253)係設於基部上,用以感測標記單元(251)所產生之訊號。當載體(11)進入第一狀態傳感器(25)的偵測範圍時,特別是位於位置 (2261)、(2271)之間,並配合敏感元件(253)與標記單元(251)間的位置關係,係使第一狀態傳感器(25)能變為激活狀態。 The first state sensor (25) can be an optical switch sensor, used to achieve position estimation, such as reference signal generation, connecting measurement results between other sensors and home direction identification, and has a marking unit (251) And a sensitive element (253), wherein the marking unit (251) is adjacent to the first signal array (10) and is provided on the carrier (11), and its length (L3) must be greater than the positions (2261), (2271) distance between. The sensitive element (253) is arranged on the base and is used to sense the signal generated by the marking unit (251). When the carrier (11) enters the detection range of the first state sensor (25), especially at the position (2261) and (2271), and in conjunction with the positional relationship between the sensitive element (253) and the marking unit (251), the first state sensor (25) can become an activated state.

根據前述傳感器的佈置方式,再藉由狀態訊號(252)、相位(221)、接合相位閾值(226)、(227)及閾值(213)、(223),以定義出接合區域(290)。 According to the aforementioned sensor arrangement, the joint area (290) is defined by the status signal (252), phase (221), joint phase thresholds (226), (227) and thresholds (213), (223).

接著,為了建立增量式的絕對測量系統,須進行歸位程序(homing process),又稱軸初始化運行(axis initialization run),於移動路徑上設有初始位置(272),作為觸發切換之參考依據,並使驅動單元(40)驅動載體(11)移動至初始位置(272)上,以確定載體(11)的絕對位置,並獲得一參考訊號。 Next, in order to establish an incremental absolute measurement system, a homing process, also called an axis initialization run, is required. An initial position (272) is set on the movement path as a reference for triggering switching. Based on this, the driving unit (40) drives the carrier (11) to move to the initial position (272) to determine the absolute position of the carrier (11) and obtain a reference signal.

在圖4中,係根據各霍爾傳感器(21)、(22)的閾值(213)、(223)及第二傳感器(22)的初始位置閾值(228)來獲得初始位置(272)。其中,初始位置閾值(228)為150°。 In Figure 4, the initial position (272) is obtained based on the thresholds (213), (223) of each Hall sensor (21), (22) and the initial position threshold (228) of the second sensor (22). Among them, the initial position threshold (228) is 150°.

考量第一狀態傳感器(25)與接合區域(290)及初始位置(272)間的位置關係,標記單元(251)長度(L3)必須大於位置(2261)和初始位置(272)之間的距離。 Considering the positional relationship between the first state sensor (25) and the joint area (290) and the initial position (272), the length (L3) of the marking unit (251) must be greater than the distance between the position (2261) and the initial position (272) .

另外,為確保模組化組件(60)之步長(DM)的唯一性,第一狀態傳感器(25)僅於第一傳感器(21)的最後一個週期(2111)被激活,如圖6所示,週期(2111)是指當載體(11)移動過程中,訊號(A1)變得小於閾值(213)之處。 In addition, in order to ensure the uniqueness of the step size (DM) of the modular component (60), the first status sensor (25) is only activated in the last cycle (2111) of the first sensor (21), as shown in Figure 6 shows that the period (2111) refers to the point where the signal (A1) becomes smaller than the threshold (213) when the carrier (11) is moving.

然後,當第一傳感器(21)的相位(221)介於0°及60°之間,狀態訊號(252)變為激活狀態。 Then, when the phase (221) of the first sensor (21) is between 0° and 60°, the status signal (252) becomes active.

標記單元(251)的長度(L3)等於磁週期(T1),以確保週期(2111)的唯一性。 The length (L3) of the marking unit (251) is equal to the magnetic period (T1) to ensure the uniqueness of the period (2111).

在圖5中,係以初始位置(272)將測量範圍(292)區分為正歸位區域(293)及負歸位區域(294),並透過第一狀態傳感器(25)和各霍爾傳感器(21)、(22)的狀態來確定自動回歸的方向(automatic homing direction)。其中,若載體(11)位於初始位置(272),且第二傳感器(22)的相位(221)等於初始位置閾值(228),而狀態訊號(252)處於激活狀態,則不需進行回歸。 In Figure 5, the initial position (272) is used to divide the measurement range (292) into a positive homing area (293) and a negative homing area (294), and through the first state sensor (25) and each Hall sensor (21) and (22) to determine the automatic homing direction. Among them, if the carrier (11) is in the initial position (272), and the phase (221) of the second sensor (22) is equal to the initial position threshold (228), and the status signal (252) is in an active state, there is no need to perform regression.

當載體(11)位於正歸位區域(293)時,則必須在X軸的正方向進行歸零校正,且需滿足以下條件:狀態訊號(252)處於激活狀態,相位(221)低於初始位置閾值(228),例如相位(221)介於30° to 150°之間,訊號(A1)高於振幅閾值(213);或者,狀態訊號(252)未處於激活狀態,且訊號(A1)高於振幅閾值(213)。 When the carrier (11) is located in the positive homing area (293), the zeroing correction must be performed in the positive direction of the Position threshold (228), e.g. phase (221) is between 30° and 150° and signal (A1) is above amplitude threshold (213); or status signal (252) is not active and signal (A1) Above the amplitude threshold (213).

當載體(11)位於負歸位區域(294)時,歸位必須在X軸的負方向上執行。 When the carrier (11) is located in the negative homing area (294), homing must be performed in the negative direction of the X-axis.

在圖4中,處理單元(30)係增減數位連接相位(282)、(283)來確定歸位方向。其中,若歸位方向為正,係將數位連接相位(282)減去兩個磁週期(T1),即-720°;若歸位方向為負,則在數位連接相位(282)中添加兩個磁週期(T1),即+720°。接著,當驅動單元(40)接收處理單元(30)所計算出之一修正相位(285)時,得以解碼位置並估計歸位方向。 In Figure 4, the processing unit (30) increases or decreases the digital connection phases (282), (283) to determine the home direction. Among them, if the homing direction is positive, two magnetic periods (T1) are subtracted from the digital connection phase (282), that is, -720°; if the homing direction is negative, two two magnetic periods (T1) are added to the digital connection phase (282). magnetic period (T1), which is +720°. Next, when the driving unit (40) receives a modified phase (285) calculated by the processing unit (30), it can decode the position and estimate the home direction.

此外,若將標記單元(251)長度(L3)小於兩個磁週期(T1),且狀態訊號(252)處於激活狀態時,本發明更可於不進行歸位校正的情況下進行絕對位置估計。 In addition, if the length (L3) of the marking unit (251) is less than two magnetic periods (T1) and the status signal (252) is in an active state, the present invention can perform absolute position estimation without performing homing correction. .

如圖6所示,係以狀態訊號(252)中的激活範圍於測量範圍(292)中更區分出一絕對區域(295),藉以計算出絕對位置及自動歸位方向。 As shown in Figure 6, the activation range in the status signal (252) is further divided into an absolute area (295) in the measurement range (292), thereby calculating the absolute position and the automatic home direction.

其中,若載體(11)位於絕對區域(295)中,且狀態訊號(252)處於激活狀態,則不需要歸位,絕對位置的計算如下:當訊號(A1)高於閾值(213):xabs=(T1/360°)(α1joinhome) (公式9) Among them, if the carrier (11) is located in the absolute area (295) and the status signal (252) is active, there is no need to return to the position. The absolute position is calculated as follows: When the signal (A1) is higher than the threshold (213): x abs =(T1/360°)(α1 joinhome ) (Formula 9)

其中,xabs是標準絕對相位(286),αhome是初始位置閾值(228),例如αnome=150°;當訊號(A1)不高於閾值(213):xabs=(T1/360°)(α1joinhome)+T1 (公式10) Among them, x abs is the standard absolute phase (286), α home is the initial position threshold (228), for example, α nome =150°; when the signal (A1) is not higher than the threshold (213): x abs = (T1/360° )(α1 joinhome )+T1 (Formula 10)

若載體(11)位於正歸位區域(293)中,且狀態訊號(252)為未激活,訊號(A1)高於閾值(213)時,必須在X軸的正方向進行歸零校正。 If the carrier (11) is located in the positive homing area (293), and the status signal (252) is inactive, and the signal (A1) is higher than the threshold (213), a zeroing correction must be performed in the positive direction of the X-axis.

若載體(11)位於負歸位區域(294)中,歸位必須在X軸的負方向上執行。 If the carrier (11) is located in the negative homing area (294), homing must be performed in the negative direction of the X-axis.

此外,本發明係以不連續定子永磁直線同步馬達為動力,只有當第一訊號陣列(10)位於定子(50)上方,兩者的重疊區域為至少有一個磁週期(T1)時,才進行自動歸位方向運算,以避免馬達無法提供載體足夠的驅動力。 In addition, the present invention is powered by a discontinuous stator permanent magnet linear synchronous motor. Only when the first signal array (10) is located above the stator (50) and the overlapping area between the two is at least one magnetic period (T1), the invention can Perform automatic homing direction calculation to prevent the motor from being unable to provide sufficient driving force for the carrier.

如圖7所示,為了能連續地測量載體(11)所在位置,本發明第二實施例係可沿著載體(11)移動路徑配置更多模組化組件(60),且兩相鄰模組化組件(60)間的初始位置(272)之間距等於單一模組化組件(60)的步長(DM),並使兩者間具有互相重疊之量測區域,且以現場總線(71)電性連接相鄰之兩模組化組件(60),並再連接至一運動控制器(70)上,並作為控制載體運動之用。 As shown in Figure 7, in order to continuously measure the position of the carrier (11), the second embodiment of the present invention can configure more modular components (60) along the moving path of the carrier (11), and two adjacent modules The distance between the initial positions (272) of the modular components (60) is equal to the step size (DM) of a single modular component (60), so that the two have overlapping measurement areas, and the fieldbus (71 ) electrically connects two adjacent modular components (60), and is then connected to a motion controller (70), and is used to control the movement of the carrier.

運動控制器(70)分析接收到的相鄰模組化組件(60)的標準絕對相位(286),並以模組化組件(60)其中一者來執行歸位演算。接著,若接收到的標 準絕對相位(286)低於四個磁週期(T1),即+1440°,則選用於X軸上排序在前的模組化組件(60);否則,選用於X軸上排序在後的模組化組件(60)。 The motion controller (70) analyzes the received standard absolute phases (286) of adjacent modular components (60) and performs a homing algorithm with one of the modular components (60). Then, if the received bid If the quasi-absolute phase (286) is lower than four magnetic periods (T1), that is, +1440°, then the modular component (60) ranked first on the X-axis is selected; otherwise, the modular component (60) ranked later on the X-axis is selected. Modular components (60).

當載體(11)位於兩相鄰模組化組件(60)之間時,可能發生以下兩種情形,其一是兩模組化組件(60)皆可執行歸位,但兩者的歸位方向相反;另一係因重疊面積不足,導致不能移動載體(11)。是以,為解決前述問題,如圖8至圖10所示,係本發明第三實施例,其與第一實施例主要差異係於增設有一第二狀態傳感器(26),可為光學開關傳感器,具有一敏感單元(263),用以感測標記單元(251)或另一個獨立的標記單元(261),且係放置在測量範圍(292)的末端,以使處理單元(30)得知測量範圍(292)即將結束,並以狀態訊號(262)中的激活範圍於測量範圍(292)中更區分出一末端區域(296)。 When the carrier (11) is located between two adjacent modular components (60), the following two situations may occur. One is that both modular components (60) can perform homing, but the homing of both The direction is opposite; the other reason is that the carrier cannot be moved due to insufficient overlapping area (11). Therefore, in order to solve the aforementioned problems, a third embodiment of the present invention is shown in Figures 8 to 10. The main difference from the first embodiment is that a second status sensor (26) is added, which can be an optical switch sensor. , has a sensitive unit (263) for sensing the marking unit (251) or another independent marking unit (261), and is placed at the end of the measurement range (292), so that the processing unit (30) knows The measuring range (292) is about to end, and an end zone (296) is further distinguished in the measuring range (292) by the activation range in the status signal (262).

當載體(11)係位於末端區域(296)時,第二狀態傳感器(26)的狀態訊號(262)是激活的,處理單元(30)將四個磁週期(T1),即+1440°,添加到數位連接相位(282)進行修正,以獲得一標準絕對相位(286),並發送到驅動單元(40),且再現場總線(71)傳送給運動控制器(70)。 When the carrier (11) is located in the end area (296), the status signal (262) of the second status sensor (26) is activated, and the processing unit (30) converts four magnetic periods (T1), that is, +1440°, The correction is added to the digital link phase (282) to obtain a standard absolute phase (286), which is sent to the drive unit (40) and transmitted to the motion controller (70) via the field bus (71).

如圖11所示,係本發明第四實施例,其與第一實施例主要差異係於第一訊號陣列(10)增加一組磁鐵(101),以改變步長(DM),而重疊區域(291)亦隨之變化,故本發明係利用第一狀態傳感器(25)作為輔助,以確保重疊區域(291)的唯一性。 As shown in Figure 11, it is the fourth embodiment of the present invention. The main difference from the first embodiment is that a set of magnets (101) is added to the first signal array (10) to change the step size (DM), and the overlapping area (291) also changes accordingly, so the present invention uses the first state sensor (25) as an auxiliary to ensure the uniqueness of the overlapping area (291).

圖12所揭第五實施例係接續第四實施例更以兩個模組化組件(60)來識別自動回歸的方向,且排列在後的模組化組件(60)必須在X軸的正方向進行歸零校正。 The fifth embodiment disclosed in Figure 12 is a continuation of the fourth embodiment and uses two modular components (60) to identify the direction of automatic return, and the modular component (60) arranged behind must be in the positive direction of the X-axis. direction to perform zero correction.

在歸位過程中,本發明更以傳感器冗餘技術來自動識別不同之載體(11),在圖13中,係以各訊號陣列(10)、(12)間的相位變化來界定一機械位移(mechanical shift,d12)。為了不影響公式6的計算結果,機械位移(d12)為0.5mm,且不同載體的機械位移(d12)必須相差0.05mm,以具識別性。而第二傳感器(22)或第四傳感器(24)可測量機械位移(d12),而運動控制器(70)存有全部載體(11)的機械位移(d12),以進行解碼。 During the homing process, the present invention also uses sensor redundancy technology to automatically identify different carriers (11). In Figure 13, a mechanical displacement is defined by the phase change between each signal array (10) and (12). (mechanical shift,d12). In order not to affect the calculation results of Formula 6, the mechanical displacement (d12) is 0.5mm, and the mechanical displacement (d12) of different carriers must differ by 0.05mm to ensure identification. The second sensor (22) or the fourth sensor (24) can measure the mechanical displacement (d12), and the motion controller (70) stores the mechanical displacement (d12) of all carriers (11) for decoding.

在本例中,係配合歸位程序中的初始位置(272),將初始位置(272)作為辨識載體的量測位置,避免於不同基準位置,造成測量結果不同、降低精度的問題。 In this example, in conjunction with the initial position (272) in the homing procedure, the initial position (272) is used as the measurement position of the identification carrier to avoid the problem of different measurement results and reduced accuracy caused by different reference positions.

(10):第一訊號陣列 (10): First signal array

(11):載體 (11): Carrier

(12):第二訊號陣列 (12): Second signal array

(20):量測模組 (20):Measurement module

(21):第一傳感器 (21):First sensor

(22):第二傳感器 (22): Second sensor

(23):第三傳感器 (23):Third sensor

(24):第四傳感器 (24):Fourth sensor

(25):第一狀態傳感器 (25): First state sensor

(251):標記單元 (251):Mark unit

(253):敏感元件 (253): Sensitive element

(30):處理單元 (30):Processing unit

(40):驅動單元 (40):Drive unit

(50):定子 (50):Stator

(60):模組化組件 (60):Modular components

Claims (9)

一種多感測器位置量測系統,包括:一基部;一載體,係可相對該基部移動;一第一訊號陣列及一第二訊號陣列,係彼此相隔開來地設於該載體上,並分別具有多數依序排列之訊號源件,且該第二訊號陣列的訊號周期小於該第一訊號陣列的訊號周期;以及一模組化組件,係具有一量測模組及一處理單元,其中,該量測模組包括:一第一傳感器與一第二傳感器,係相隔開來地設於該基部上,用以感測該第一訊號陣列之訊號;一第三傳感器與一第四傳感器,係相隔開來地設於該基部上,用以感測該第二訊號陣列之訊號;以及一第一狀態傳感器,係具有一設於該載體上之標記單元及一設於該基部上之敏感元件,用以感測該標記單元所產生之訊號;該處理單元,係接收該些傳感器所偵測之訊號,計算出該載體的位置;其中,當該第一狀態傳感器被激活時,係位於該第一傳感器測量範圍的末端處,且該第二傳感器的振幅訊號係高於一預定閾值。 A multi-sensor position measurement system includes: a base; a carrier that can move relative to the base; a first signal array and a second signal array that are spaced apart from each other on the carrier, and Each has a plurality of signal source components arranged in sequence, and the signal period of the second signal array is smaller than the signal period of the first signal array; and a modular component has a measurement module and a processing unit, wherein , the measurement module includes: a first sensor and a second sensor, which are spaced apart on the base for sensing the signal of the first signal array; a third sensor and a fourth sensor , are spaced apart on the base for sensing the signal of the second signal array; and a first status sensor has a marking unit provided on the carrier and a mark unit provided on the base The sensitive element is used to sense the signal generated by the marking unit; the processing unit receives the signals detected by the sensors and calculates the position of the carrier; when the first state sensor is activated, It is located at the end of the measurement range of the first sensor, and the amplitude signal of the second sensor is higher than a predetermined threshold. 如請求項1所述多感測器位置量測系統,其中,該等傳感器的佈置方式及其所感測之訊號定義出一接合區域。 The multi-sensor position measurement system of claim 1, wherein the arrangement of the sensors and the signals they sense define a joint area. 如請求項1所述多感測器位置量測系統,其中,該處理單元以加權函數分別對該些傳感器所測量結果進行計算,以獲得一參考訊號。 The multi-sensor position measurement system of claim 1, wherein the processing unit calculates the measurement results of the sensors using a weighting function to obtain a reference signal. 如請求項2所述多感測器位置量測系統,其中,該處理單元根據該參考訊號、比較該第一傳感器與該第二傳感器的振幅訊號、與預定閾值及分析該第一狀態傳感器的狀態,作為估算該載體的移動方向之依據。 The multi-sensor position measurement system of claim 2, wherein the processing unit compares the amplitude signals of the first sensor and the second sensor with a predetermined threshold according to the reference signal and analyzes the amplitude of the first state sensor. status as the basis for estimating the moving direction of the carrier. 如請求項1所述多感測器位置量測系統,其中,該量測模組更包括一第二狀態傳感器,位於該量測模組測量範圍的末端,並具有一設於該載體上之標記單元及一設於該基部上之敏感元件,用以感測該標記單元所產生之訊號。 The multi-sensor position measurement system of claim 1, wherein the measurement module further includes a second state sensor located at the end of the measurement range of the measurement module and having a The marking unit and a sensitive element provided on the base are used to sense the signal generated by the marking unit. 如請求項4所述多感測器位置量測系統,其中,當該第二狀態傳感器被激活時,係位於該第二傳感器測量範圍的末端處,且該第一傳感器的振幅訊號係低於預定閾值。 The multi-sensor position measurement system of claim 4, wherein when the second state sensor is activated, it is located at the end of the measurement range of the second sensor, and the amplitude signal of the first sensor is lower than Predetermined threshold. 如請求項1所述多感測器位置量測系統,其中,以該載體上的該第一訊號陣列及該第二訊號陣列間的相位變化定義出一與訊號周期相關的機械位移,以供該處理單元識別載體之用。 The multi-sensor position measurement system of claim 1, wherein a mechanical displacement related to the signal period is defined by the phase change between the first signal array and the second signal array on the carrier for This processing unit is used to identify the carrier. 如請求項1所述多感測器位置量測系統,其中,以一初始位置將該量測模組的測量範圍區分成一正歸位區域及一負歸位區域,並透過該些傳感器所測量結果,估算出該載體的自動歸位方向。 The multi-sensor position measurement system of claim 1, wherein an initial position is used to divide the measurement range of the measurement module into a positive homing area and a negative homing area, and the measurements are measured by the sensors. As a result, the automatic homing direction of the carrier is estimated. 如請求項1所述多感測器位置量測系統,其中,該模組化組件更包括一定子,而該些傳感器分別位於定子的兩側,當該第一訊號陣列位於該定子上方時,該處理單元始進行歸位運算。 The multi-sensor position measurement system of claim 1, wherein the modular component further includes a stator, and the sensors are respectively located on both sides of the stator. When the first signal array is located above the stator, This processing unit begins homing operations.
TW111122503A 2022-06-16 2022-06-16 Multi-sensor position measuring system TWI817561B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111122503A TWI817561B (en) 2022-06-16 2022-06-16 Multi-sensor position measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111122503A TWI817561B (en) 2022-06-16 2022-06-16 Multi-sensor position measuring system

Publications (2)

Publication Number Publication Date
TWI817561B true TWI817561B (en) 2023-10-01
TW202401958A TW202401958A (en) 2024-01-01

Family

ID=89857819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122503A TWI817561B (en) 2022-06-16 2022-06-16 Multi-sensor position measuring system

Country Status (1)

Country Link
TW (1) TWI817561B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932684B2 (en) * 2008-03-25 2011-04-26 Bose Corporation Absolute position sensing
US10476413B2 (en) * 2017-03-13 2019-11-12 B&R Industrial Automation GmbH Method for determining the absolute position of a rotor of a linear motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932684B2 (en) * 2008-03-25 2011-04-26 Bose Corporation Absolute position sensing
US10476413B2 (en) * 2017-03-13 2019-11-12 B&R Industrial Automation GmbH Method for determining the absolute position of a rotor of a linear motor

Also Published As

Publication number Publication date
TW202401958A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US8294391B2 (en) Moving body system and method of determining initial position of moving body
US8497643B2 (en) Linear scale, linear motor, and linear motor controller
US9664748B2 (en) Systems and methods for providing signal encoding representative of a signature region in a target
TWI482985B (en) Magnetic pole detection system and magnetic pole detection method
JPH1151693A (en) Linear encoder
TWI698069B (en) Moving body
CN102804566A (en) Position detection device for movable magnet type linear motor
US20130057259A1 (en) Position/displacement measuring system
CN114301239B (en) Magnetic sensor system for controlling motor
JP2018151181A (en) Magnetic position detecting device
TWI817561B (en) Multi-sensor position measuring system
JP7394924B1 (en) Multi-sensor position measurement system
US20220333954A1 (en) Multi-sensor position measurement system
JP2023503812A (en) Position measurement of the mobile unit relative to the fixed unit
TW202414966A (en) Positioning device and drive unit
KR20240003261A (en) Multi-sensor position measuring system
US20170054398A1 (en) Mobile body and mobile body system
CN117308755A (en) Multi-sensor position measurement system
JP6234497B2 (en) Encoder device and motion guide device with encoder device
JP5783410B2 (en) MOBILE SYSTEM AND MOBILE POSITION DETECTING METHOD
JP6576285B2 (en) Thrust measuring device and thrust measuring method
TW201000867A (en) Position detection device and linear actuator using the same
JP2004028623A (en) Slide position detection device and xy table using the same
TWI774180B (en) Position measuring mechanism and measuring method of linear motion system
US11824478B2 (en) Two output pin protocol for speed, direction, and diagnosis