TWI817321B - Multi-mode hybrid control DC-DC power conversion circuit and control method - Google Patents

Multi-mode hybrid control DC-DC power conversion circuit and control method Download PDF

Info

Publication number
TWI817321B
TWI817321B TW111101580A TW111101580A TWI817321B TW I817321 B TWI817321 B TW I817321B TW 111101580 A TW111101580 A TW 111101580A TW 111101580 A TW111101580 A TW 111101580A TW I817321 B TWI817321 B TW I817321B
Authority
TW
Taiwan
Prior art keywords
feedback voltage
frequency
control mode
microcontroller
voltage threshold
Prior art date
Application number
TW111101580A
Other languages
Chinese (zh)
Other versions
TW202329595A (en
Inventor
吳承洲
陳竣澤
Original Assignee
捷拓科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷拓科技股份有限公司 filed Critical 捷拓科技股份有限公司
Priority to TW111101580A priority Critical patent/TWI817321B/en
Publication of TW202329595A publication Critical patent/TW202329595A/en
Application granted granted Critical
Publication of TWI817321B publication Critical patent/TWI817321B/en

Links

Images

Abstract

一種多模式混合控制的直流-直流電源轉換電路,包含一切換式電源轉換器與一微控制器,該切換式電源轉換器包含一變壓器及一切換開關,該微控制器根據該切換式電源轉換器的輸入電壓設定多個回授電壓門檻值,並判斷該切換式電源轉換器的回授電壓與各該回授電壓門檻值之間的大小關係,以根據其判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式;該微控制器輸出一驅動信號至該切換開關,該微控制器根據所執行的模式對應調整該驅動信號的頻率,讓該切換式電源轉換器從輕載到滿載獲得最佳的效率曲線。A multi-mode hybrid controlled DC-DC power conversion circuit includes a switching power converter and a microcontroller. The switching power converter includes a transformer and a switching switch. The microcontroller converts power according to the switching power supply. Set multiple feedback voltage thresholds for the input voltage of the converter, and determine the relationship between the feedback voltage of the switching power converter and each of the feedback voltage thresholds, so as to execute a frequency conversion control mode based on the judgment results. Fixed frequency control mode or one-hop period control mode; the microcontroller outputs a driving signal to the switch, and the microcontroller adjusts the frequency of the driving signal according to the executed mode, so that the switching power converter can easily Load to full load to obtain the best efficiency curve.

Description

多模式混合控制的直流-直流電源轉換電路與控制方法Multi-mode hybrid control DC-DC power conversion circuit and control method

本發明涉及直流-直流(DC to DC)電源轉換電路,特別是指多模式混合控制的直流-直流電源轉換電路與控制方法。The present invention relates to a DC-to-DC power conversion circuit, and in particular to a multi-mode hybrid control DC-to-DC power conversion circuit and control method.

習知直流-直流電源轉換電路包含一切換式電源轉換器與一微控制器,其中,返馳式(Flyback)電源轉換器是該切換式電源轉換器的一種電路架構,該返馳式電源轉換器的電源輸出端供連接一負載,該返馳式電源轉換器基本上包含一變壓器,該變壓器的一次側繞組串聯一電晶體,該電晶體常見的是金氧半場效電晶體(MOSFET),該微控制器及其控制迴路連接該切換式電源轉換器的電源輸入端、電源輸出端和該電晶體的閘極。A conventional DC-DC power conversion circuit includes a switching power converter and a microcontroller. Among them, a flyback power converter is a circuit architecture of the switching power converter. The flyback power converter The power output end of the converter is used to connect a load. The flyback power converter basically includes a transformer. The primary winding of the transformer is connected in series with a transistor. The transistor is usually a metal oxide semi-field effect transistor (MOSFET). The microcontroller and its control loop are connected to the power input terminal, the power output terminal of the switching power converter and the gate of the transistor.

藉此,使用該微控制器來控制,可偵測該切換式電源轉換器的輸入電壓和回授電壓以判斷該切換式電源轉換器所連接之該負載的負載量,並根據該負載量產生一驅動信號(PWM)給該電晶體,該電晶體根據該驅動信號實施導通/關閉(ON/OFF)的作動方式。Thereby, using the microcontroller to control, the input voltage and feedback voltage of the switching power converter can be detected to determine the load amount of the load connected to the switching power converter, and generate a signal based on the load amount. A driving signal (PWM) is given to the transistor, and the transistor implements an ON/OFF action mode according to the driving signal.

一般而言,該微控制器係執行一準諧振控制模式(QR mode),該準諧振模式的功能是當偵測到的該負載量越低,該驅動信號的頻率越高。然而,該負載量的態樣多元,至少包含重載與輕載等態樣,舉例來說,在滿載時,該驅動信號的頻率可為120kHz;但當該負載量降低為輕載(例如滿載的30%),該驅動信號的頻率可能提升為400kHz。由此可見,當該負載量為輕載或更低,甚至於空載,該驅動信號的頻率將維持在較高的頻率,致使該驅動開關實施較高頻率的導通/關閉的切換,衍生高頻雜訊、高頻切換損失和電路板線路上的電磁干擾等問題。Generally speaking, the microcontroller implements a quasi-resonant control mode (QR mode). The function of the quasi-resonant mode is that when the detected load is lower, the frequency of the driving signal is higher. However, the load has various forms, including at least heavy load and light load. For example, when the load is full, the frequency of the driving signal can be 120kHz; but when the load is reduced to a light load (such as full load) 30%), the frequency of the driving signal may be increased to 400kHz. It can be seen that when the load is light load or lower, or even no-load, the frequency of the drive signal will be maintained at a higher frequency, causing the drive switch to perform on/off switching at a higher frequency, resulting in high Frequency noise, high-frequency switching losses and electromagnetic interference on circuit board lines and other issues.

有鑒於此,本發明的主要目的是提供一種多模式混合控制的直流-直流電源轉換電路與控制方法,以期改善習知直流-直流電源轉換電路在準諧振控制模式(QR mode)下,當負載量為輕載或更低,所衍生高頻雜訊、高頻切換損失和電路板線路上的電磁干擾等問題。In view of this, the main purpose of the present invention is to provide a multi-mode hybrid control DC-DC power conversion circuit and control method, in order to improve the performance of the conventional DC-DC power conversion circuit when the load is in the quasi-resonant control mode (QR mode). The load is light load or lower, resulting in problems such as high-frequency noise, high-frequency switching loss and electromagnetic interference on the circuit board lines.

本發明的多模式混合控制的直流-直流電源轉換電路包含: 一切換式電源轉換器,包含: 一變壓器;及 一切換開關,串聯於該變壓器的一次側繞組且具有一控制端;以及 一微控制器,連接該切換式電源轉換器以及該切換開關的控制端,該微控制器根據該切換式電源轉換器的輸入電壓設定多個回授電壓門檻值,以及判斷該切換式電源轉換器的一回授電壓與各該回授電壓門檻值之間的大小關係,以根據其判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式;該微控制器輸出一驅動信號至該切換開關,並根據所執行的該變頻控制模式、該定頻控制模式或該跳週期控制模式對應調整該驅動信號的頻率。 The multi-mode hybrid controlled DC-DC power conversion circuit of the present invention includes: A switching power converter containing: a transformer; and A switch is connected in series to the primary winding of the transformer and has a control terminal; and A microcontroller is connected to the control terminal of the switching power converter and the switching switch. The microcontroller sets a plurality of feedback voltage thresholds according to the input voltage of the switching power converter, and determines the conversion of the switching power supply. The relationship between a feedback voltage of the device and each feedback voltage threshold is used to execute a variable frequency control mode, a constant frequency control mode or a skip cycle control mode according to the judgment result; the microcontroller outputs a driving signal to the switch, and correspondingly adjust the frequency of the driving signal according to the executed frequency conversion control mode, the fixed frequency control mode or the skip cycle control mode.

本發明的多模式混合控制的直流-直流電源轉換電路的控制方法係於一微控制器執行,該微控制器連接一切換式電源轉換器與一切換開關,該控制方法包含以下步驟: (a) 偵測該切換式電源轉換器的一輸入電壓和一回授電壓; (b) 根據該切換式電源轉換器的該輸入電壓設定多個回授電壓門檻值; (c) 判斷該切換式電源轉換器的該回授電壓與各該回授電壓門檻值之間的大小關係;以及 (d) 根據步驟(c)的判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式,其中,該微控制器輸出一驅動信號至該切換開關,並根據所執行的該變頻控制模式、該定頻控制模式或該跳週期控制模式對應調整該驅動信號的頻率。 The control method of the multi-mode hybrid control DC-DC power conversion circuit of the present invention is executed by a microcontroller, and the microcontroller is connected to a switching power converter and a switch. The control method includes the following steps: (a) detecting an input voltage and a feedback voltage of the switching power converter; (b) setting multiple feedback voltage thresholds based on the input voltage of the switching power converter; (c) Determine the relationship between the feedback voltage of the switching power converter and each feedback voltage threshold; and (d) Execute a frequency conversion control mode, a constant frequency control mode or a skip cycle control mode according to the judgment result of step (c), in which the microcontroller outputs a drive signal to the switch, and executes the frequency conversion control mode according to the executed frequency conversion control mode. The control mode, the fixed frequency control mode or the skip cycle control mode correspondingly adjusts the frequency of the driving signal.

根據本發明的多模式混合控制的直流-直流電源轉換電路與控制方法,所謂多模式即例如包含該變頻控制模式、該定頻控制模式和該跳週期控制模式,該微控制器即時監測該切換式電源轉換器的輸入電壓和回授電壓,其中,該切換式電源轉換器的回授電壓可反映該直流-直流電源轉換電路所連接之一負載的負載量,該微控制器所設定的該些回授電壓門檻值係作為評估該負載量的判斷基準值。According to the multi-mode hybrid control DC-DC power conversion circuit and control method of the present invention, the so-called multi-mode includes, for example, the frequency conversion control mode, the fixed frequency control mode and the skip cycle control mode, and the microcontroller monitors the switching in real time The input voltage and feedback voltage of the switching power converter, where the feedback voltage of the switching power converter can reflect the load of a load connected to the DC-DC power conversion circuit, the microcontroller sets the These feedback voltage thresholds are used as judgment reference values for evaluating the load.

當該微控制器判斷出該負載量為重載,執行該變頻控制模式;當該微控制器判斷出該負載量為輕載或更低,執行該定頻控制模式或該跳週期控制模式,在該定頻控制模式或該跳週期控制模式下,該驅動信號的頻率維持在定值而不隨著負載量變輕而提高,如此一來,有效改善先前技術所述該負載量為輕載或更低所衍生高頻雜訊、高頻切換損失和電路板線路上的電磁干擾等問題,並讓該切換式電源轉換器從輕載到滿載獲得最佳的效率曲線。When the microcontroller determines that the load is heavy load, the variable frequency control mode is executed; when the microcontroller determines that the load is light load or lower, the fixed frequency control mode or the cycle skip control mode is executed. In the fixed frequency control mode or the skip cycle control mode, the frequency of the driving signal is maintained at a constant value without increasing as the load becomes lighter. In this way, the load is effectively improved when the load is light or light as described in the prior art. It reduces the problems caused by high-frequency noise, high-frequency switching losses and electromagnetic interference on the circuit board lines, and allows the switching power converter to obtain the best efficiency curve from light load to full load.

本發明多模式混合控制的直流-直流電源轉換電路包含一切換式電源轉換器與一微控制器(MCU),或可進一步包含一主動箝位電路,其中,該切換式電源轉換器是以一返馳式(Flyback)電源轉換器為例,需說明的是,該返馳式電源轉換器的工作原理並非本發明特徵所在,僅概略敘述而容不詳述。The multi-mode hybrid controlled DC-DC power conversion circuit of the present invention includes a switching power converter and a microcontroller (MCU), or may further include an active clamping circuit, wherein the switching power converter is based on a Taking a flyback power converter as an example, it should be noted that the working principle of the flyback power converter is not a feature of the present invention and is only briefly described without going into detail.

請參考圖1,該切換式電源轉換器10包含一變壓器20、一切換開關Q1與一輸出電路30。該變壓器20的一次側繞組21及二次側繞組22未共地,該一次側繞組21的一第一端連接該切換式電源轉換器10的電源輸入端11以供接收直流的一輸入電壓V I,該切換開關Q1串聯於該一次側繞組21且具有一控制端,本發明的實施例中,該切換開關Q1可為一電晶體,例如為金氧半場效電晶體(MOSFET),其閘極作為該控制端,其汲極連接該一次側繞組21的一第二端,其源極供接地,該切換開關Q1由此連接結構與該一次側繞組21形成串聯。該輸出電路30連接該二次側繞組22且包含用以連接一負載的電源輸出端12,由電源輸出端12提供一輸出電壓V O給該負載。該微控制器40的一信號輸入端連接該切換式電源轉換器10,該微控制器40的一信號輸出端連接該切換開關Q1的控制端,該微控制器40能輸出一驅動信號S1至該切換開關Q1,以控制該切換開關Q1的作動(即:導通/關閉),其中,該驅動信號S1可為脈波寬度調變(PWM)信號,該微控制器40可設定及調整該驅動信號的脈波寬度與頻率。 Please refer to FIG. 1 , the switching power converter 10 includes a transformer 20 , a switching switch Q1 and an output circuit 30 . The primary winding 21 and the secondary winding 22 of the transformer 20 are not grounded together. A first end of the primary winding 21 is connected to the power input end 11 of the switching power converter 10 for receiving a DC input voltage V I , the switch Q1 is connected in series to the primary winding 21 and has a control terminal. In the embodiment of the present invention, the switch Q1 can be a transistor, such as a metal oxide semi-field effect transistor (MOSFET), and its gate The switch Q1 is connected in series with the primary winding 21 through this connection structure. The output circuit 30 is connected to the secondary winding 22 and includes a power output terminal 12 for connecting to a load. The power output terminal 12 provides an output voltage V O to the load. A signal input terminal of the microcontroller 40 is connected to the switching power converter 10 , and a signal output terminal of the microcontroller 40 is connected to the control terminal of the switch Q1 . The microcontroller 40 can output a driving signal S1 to The switch Q1 is used to control the operation (ie, on/off) of the switch Q1. The drive signal S1 can be a pulse width modulation (PWM) signal, and the microcontroller 40 can set and adjust the drive signal. The pulse width and frequency of the signal.

本發明的實施例中,該微控制器40的一第一信號輸入端透過一隔離回授電路50連接該切換式電源轉換器10的電源輸出端12,以從該隔離回授電路50接收一回授電壓V FB,該回授電壓V FB能反映該切換式電源轉換器10的輸出電壓V O,也就是說,當該切換式電源轉換器10連接一負載時,該回授電壓V FB的大小能反映該負載提供的一負載量,例如滿載、重載、輕載、極輕載或空載。需說明的是,利用一隔離回授電路50取得回授電壓V FB以偵測該負載量是電源電路技術領域中的通常知識,該隔離回授電路50的工作原理並非本發明特徵所在,僅概略敘述而容不詳述,該隔離回授電路50的詳細電路可參考圖2,該隔離回授電路50基本上可包含一光耦合器51,該光耦合器51包含兩輸入端、一第一輸出端與一第二輸出端,該兩輸入端分別連接該切換式電源轉換器10的電源輸出端12,該第一輸出端連接一電壓源Vcc與該微控制器40的該第一信號輸入端,藉此使該微控制器40能從該隔離回授電路50接收該回授電壓V FB,該光耦合器51的第二輸出端供接地,其中,該電壓源Vcc可取自該一次側繞組21,舉例而言,該一次側繞組21可耦合一輔助繞組(圖中未示)或連接一分壓電路(圖中未示),該光耦合器51連接該輔助繞組或該分壓電路以獲得該電壓源Vcc。 In the embodiment of the present invention, a first signal input terminal of the microcontroller 40 is connected to the power output terminal 12 of the switching power converter 10 through an isolated feedback circuit 50 to receive a signal from the isolated feedback circuit 50 Feedback voltage V FB , the feedback voltage V FB can reflect the output voltage V O of the switching power converter 10 , that is, when the switching power converter 10 is connected to a load, the feedback voltage V FB The size can reflect the load provided by the load, such as full load, heavy load, light load, very light load or no load. It should be noted that using an isolated feedback circuit 50 to obtain the feedback voltage V FB to detect the load is common knowledge in the field of power circuit technology. The working principle of the isolated feedback circuit 50 is not a feature of the present invention. Without going into details, the detailed circuit of the isolation feedback circuit 50 can be referred to FIG. 2. The isolation feedback circuit 50 basically includes an optical coupler 51. The optical coupler 51 includes two input terminals, a first An output terminal and a second output terminal, the two input terminals are respectively connected to the power output terminal 12 of the switching power converter 10, the first output terminal is connected to a voltage source Vcc and the first signal of the microcontroller 40 The input terminal allows the microcontroller 40 to receive the feedback voltage V FB from the isolated feedback circuit 50 . The second output terminal of the optocoupler 51 is grounded, where the voltage source Vcc can be taken from the The primary side winding 21, for example, the primary side winding 21 can be coupled to an auxiliary winding (not shown in the figure) or connected to a voltage dividing circuit (not shown in the figure), and the optical coupler 51 is connected to the auxiliary winding or the A voltage divider circuit is used to obtain the voltage source Vcc.

該微控制器40儲存多個回授電壓門檻值,該些回授電壓門檻值為可調整預設值,該些回授電壓門檻值作為評估該負載之負載量的判斷基準值。該微控制器40係判斷該回授電壓V FB與各該回授電壓門檻值之間的大小關係,以根據其判斷結果執行多個回授控制模式當中之一者,該微控制器40根據所執行的回授控制模式而對應調整輸出至該切換開關Q1的該驅動信號S1的脈波寬度及/或頻率。 The microcontroller 40 stores a plurality of feedback voltage thresholds. These feedback voltage thresholds are adjustable preset values. These feedback voltage thresholds are used as judgment reference values for evaluating the load capacity of the load. The microcontroller 40 determines the relationship between the feedback voltage V FB and each feedback voltage threshold, and executes one of a plurality of feedback control modes according to the determination result. The implemented feedback control mode adjusts the pulse width and/or frequency of the drive signal S1 output to the switch Q1 accordingly.

本發明的實施例中,該些回授控制模式包含一變頻控制模式、一定頻控制模式與一跳週期控制模式(Pulse Skipping Mode, PSM)。在該負載量為滿載或重載時,該微控制器40執行該變頻控制模式,顧名思義,該微控制器40使該驅動信號S1的頻率隨著負載量而改變,一般而言,隨著該負載量越低,該驅動信號S1的頻率越高,相對的,隨著該負載量越高,該驅動信號S1的頻率越低,此亦為電源電路技術領域中的通常知識,舉例而言,該變頻控制模式可為準諧振變頻控制模式(Quasi-Resonant mode, QR mode)。在該負載量為輕載時,該微控制器40執行該定頻控制模式,顧名思義,該微控制器40使該驅動信號S1的頻率為固定頻率。在該負載的負載量為極輕載或空載時,該微控制器40執行該跳週期控制模式,以使該驅動信號S1的頻率呈現「零」與「非零」的交替變化,「非零」的頻率是指該定頻控制模式的該固定頻率,容後說明。在該變頻控制模式中,當該負載的負載量為滿載時,該驅動信號S1的頻率定義為一滿載頻率,該滿載頻率例如約為120kHz;在該定頻控制模式和該跳週期控制模式中,該驅動信號S1的頻率為該滿載頻率的二分之一以上。In embodiments of the present invention, the feedback control modes include a variable frequency control mode, a constant frequency control mode and a pulse skipping mode (PSM). When the load is full or heavy, the microcontroller 40 executes the frequency conversion control mode. As the name suggests, the microcontroller 40 causes the frequency of the drive signal S1 to change with the load. Generally speaking, with the The lower the load, the higher the frequency of the driving signal S1. Conversely, as the load increases, the frequency of the driving signal S1 becomes lower. This is also common knowledge in the field of power circuit technology. For example, The frequency conversion control mode may be a quasi-resonant frequency conversion control mode (Quasi-Resonant mode, QR mode). When the load is light load, the microcontroller 40 executes the fixed frequency control mode. As the name suggests, the microcontroller 40 makes the frequency of the driving signal S1 a fixed frequency. When the load of the load is extremely light or no-load, the microcontroller 40 executes the cycle skipping control mode, so that the frequency of the driving signal S1 changes alternately between "zero" and "non-zero", and "non-zero" changes alternately. The frequency of "zero" refers to the fixed frequency of the fixed frequency control mode, which will be explained later. In the frequency conversion control mode, when the load of the load is full load, the frequency of the drive signal S1 is defined as a full load frequency, which is, for example, about 120 kHz; in the fixed frequency control mode and the skip cycle control mode , the frequency of the driving signal S1 is more than half of the full load frequency.

該微控制器40的一第二信號輸入端能偵測該切換式電源轉換器10的輸入電壓V I,以圖1為例,該微控制器40的該第二信號輸入端可透過一分壓電路13連接該切換式電源轉換器10的電源輸入端11以偵測該輸入電壓V I。該微控制器40根據該切換式電源轉換器10的輸入電壓V I設定該些回授電壓門檻值。本發明的實施例中,該些回授電壓門檻值包含一第一回授電壓門檻值V LL與一第二回授電壓門檻值V SK,且V LL大於V SK。當該微控制器40判斷出該回授電壓V FB大於該第一回授電壓門檻值V LL,該微控制器40執行該變頻控制模式,以對應該負載量為滿載或重載;當該微控制器40判斷出該回授電壓V FB小於或等於該第一回授電壓門檻值V LL並且大於該第二回授電壓門檻值V SK,該微控制器40執行該定頻控制模式,以對應該負載量為輕載;當該微控制器40判斷出該回授電壓V FB小於或等於該第二回授電壓門檻值V SK,該微控制器40執行該跳週期控制模式,以對應該負載量為極輕載或空載。 A second signal input terminal of the microcontroller 40 can detect the input voltage VI of the switching power converter 10. Taking FIG. 1 as an example, the second signal input terminal of the microcontroller 40 can detect The voltage circuit 13 is connected to the power input terminal 11 of the switching power converter 10 to detect the input voltage V I . The microcontroller 40 sets the feedback voltage thresholds according to the input voltage VI of the switching power converter 10 . In embodiments of the present invention, the feedback voltage thresholds include a first feedback voltage threshold V LL and a second feedback voltage threshold V SK , and V LL is greater than V SK . When the microcontroller 40 determines that the feedback voltage V FB is greater than the first feedback voltage threshold V LL , the microcontroller 40 executes the frequency conversion control mode to correspond to the load being full load or heavy load; when the microcontroller 40 The microcontroller 40 determines that the feedback voltage V FB is less than or equal to the first feedback voltage threshold V LL and is greater than the second feedback voltage threshold V SK , and the microcontroller 40 executes the fixed frequency control mode, The corresponding load is light load; when the microcontroller 40 determines that the feedback voltage V FB is less than or equal to the second feedback voltage threshold V SK , the microcontroller 40 executes the cycle skip control mode to The corresponding load capacity is extremely light load or no load.

以上已說明該切換式電源轉換器10與該微控制器40的電路架構與功能,以下配合波形圖說明該微控制器40所執行的多模式混合控制方法,該控制方法的流程圖可參考圖3。The circuit architecture and functions of the switching power converter 10 and the microcontroller 40 have been described above. The multi-mode hybrid control method executed by the microcontroller 40 will be described below with the help of waveform diagrams. The flow chart of the control method can be referred to FIG. 3.

步驟S01:偵測該切換式電源轉換器10的輸入電壓V I和回授電壓V FB。如前所述,該微控制器40可透過該分壓電路13偵測該切換式電源轉換器10的輸入電壓V I,另透過該隔離回授電路50接收該回授電壓V FB,該回授電壓V FB反映該切換式電源轉換器10的輸出電壓V O,該輸出電壓V O反映所連接之該負載的負載量,故能利用該回授電壓V FB偵測該負載的負載量。 Step S01: Detect the input voltage V I and the feedback voltage V FB of the switching power converter 10 . As mentioned above, the microcontroller 40 can detect the input voltage V I of the switching power converter 10 through the voltage dividing circuit 13 and receive the feedback voltage V FB through the isolation feedback circuit 50 . The feedback voltage V FB reflects the output voltage V O of the switching power converter 10 , and the output voltage V O reflects the load capacity of the connected load. Therefore, the feedback voltage V FB can be used to detect the load capacity of the load. .

步驟S02:根據該切換式電源轉換器10的輸入電壓V I設定多個回授電壓門檻值。如前所述,該些回授電壓門檻值包含該第一回授電壓門檻值V LL與該第二回授電壓門檻值V SK,且V LL大於V SK。本發明的實施例中,該微控制器40儲存多個回授電壓門檻參考值、一第一比例值R1與一第二比例值R2,該些回授電壓門檻參考值分別對應於該切換式電源轉換器10的不同的輸入電壓V I的大小,該第一比例值大於該第二比例值,即R1大於R2,例如該第一比例值可為55%,該第二比例值可為10%,但不以此為限。該微控制器40選擇與該切換式電源轉換器10的輸入電壓V I相對應的其中之一回授電壓門檻參考值,再將被選的回授電壓門檻參考值乘以該第一比例值而設定為該第一回授電壓門檻值V LL,即V LL=被選的回授電壓門檻參考值×R1,以及將被選的回授電壓門檻參考值乘以該第二比例值而設定為該第二回授電壓門檻值V SK,即V SK=被選的回授電壓門檻參考值×R2。下表記載一範例,但不以此範例為限,也就是說,當該微控制器40偵測出該切換式電源轉換器10的輸入電壓V I為9V,即選擇2.32V的回授電壓門檻參考值以供計算該第一回授電壓門檻值V LL和該第二回授電壓門檻值V SK,依此類推。 Step S02: Set multiple feedback voltage thresholds according to the input voltage VI of the switching power converter 10. As mentioned above, the feedback voltage thresholds include the first feedback voltage threshold V LL and the second feedback voltage threshold V SK , and V LL is greater than V SK . In the embodiment of the present invention, the microcontroller 40 stores a plurality of feedback voltage threshold reference values, a first proportional value R1 and a second proportional value R2. The feedback voltage threshold reference values respectively correspond to the switching formula. For different input voltage V I of the power converter 10, the first proportional value is greater than the second proportional value, that is, R1 is greater than R2. For example, the first proportional value can be 55%, and the second proportional value can be 10 %, but not limited to this. The microcontroller 40 selects one of the feedback voltage threshold reference values corresponding to the input voltage VI of the switching power converter 10, and then multiplies the selected feedback voltage threshold reference value by the first proportional value. The first feedback voltage threshold value V LL is set, that is, V LL = the selected feedback voltage threshold reference value × R1, and the selected feedback voltage threshold reference value is multiplied by the second proportional value. This is the second feedback voltage threshold value V SK , that is, V SK = selected feedback voltage threshold reference value × R2. The following table records an example, but is not limited to this example. That is to say, when the microcontroller 40 detects that the input voltage V I of the switching power converter 10 is 9V, the feedback voltage of 2.32V is selected. The threshold reference value is used for calculating the first feedback voltage threshold V LL and the second feedback voltage threshold V SK , and so on.

切換式電源轉換器的輸入電壓 Switching power converter input voltage 回授電壓門檻參考值 Feedback voltage threshold reference value 9V 9V 2.32V 2.32V 24V 24V 2.09V 2.09V 36V 36V 1.81V 1.81V

原則上,該回授電壓門檻參考值、該第一比例值R1和該第二比例值R2會以較優化的輕載效率及空載低功耗為目的進行設計,以決定該微控制器40進入該定頻控制模式和該跳週期控制模式的時機。本發明的實施例中,透過該第一比例值R1的設定,於該負載的負載量為半載時(即:滿載的一半)開始實施該定頻控制模式,使該驅動信號S1的頻率為該滿載頻率的二分之一以上。In principle, the feedback voltage threshold reference value, the first proportional value R1 and the second proportional value R2 are designed for the purpose of more optimized light load efficiency and low no-load power consumption to determine the microcontroller 40 The timing to enter the fixed frequency control mode and the skip cycle control mode. In the embodiment of the present invention, through the setting of the first proportional value R1, the fixed frequency control mode is implemented when the load capacity of the load is half load (ie: half of the full load), so that the frequency of the drive signal S1 is More than half of the full load frequency.

步驟S03:判斷該切換式電源轉換器10的回授電壓V FB與各該回授電壓門檻值之間的大小關係。本發明的實施例中,該微控制器40是先後判斷該回授電壓V FB與該第一回授電壓門檻值V LL和該第二回授電壓門檻值V SK之間的電壓大小,容後說明。 Step S03: Determine the relationship between the feedback voltage V FB of the switching power converter 10 and the feedback voltage thresholds. In the embodiment of the present invention, the microcontroller 40 successively determines the voltage magnitude between the feedback voltage V FB and the first feedback voltage threshold V LL and the second feedback voltage threshold V SK . Explain later.

步驟S04:根據步驟S03的判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式,其中,該微控制器40輸出一驅動信號S1至該切換開關Q1,並根據所執行的該變頻控制模式、該定頻控制模式或該跳週期控制模式對應調整該驅動信號S1的電壓大小、脈波寬度及/或頻率。該切換式電源轉換器10的輸出電流I O與輸出電壓V O、該回授電壓V FB和該驅動信號S1的波形可參考圖4A至圖4D,其中,圖4A顯示該切換式電源轉換器10的輸出電流I O的波形,該輸出電流I O在時間t0為一最大電流並隨著時間而遞減,故從時間t0開始能依序呈現滿載、重載、輕載、極輕載與空載的負載量。 Step S04: Execute a variable frequency control mode, a constant frequency control mode or a skip period control mode according to the judgment result of step S03, in which the microcontroller 40 outputs a driving signal S1 to the switch Q1, and executes the control mode according to the executed The variable frequency control mode, the fixed frequency control mode or the skip cycle control mode correspondingly adjusts the voltage, pulse width and/or frequency of the driving signal S1. The waveforms of the output current I O and the output voltage V O , the feedback voltage V FB and the driving signal S1 of the switching power converter 10 can be referred to FIG. 4A to FIG. 4D , wherein FIG. 4A shows the switching power converter. The waveform of the output current I O of 10, the output current I O is a maximum current at time t0 and decreases with time, so starting from time t0, it can show full load, heavy load, light load, extremely light load and empty load in sequence. The amount of load carried.

在步驟S03中,該微控制器40判斷該回授電壓V FB是否小於或等於該第一回授電壓門檻值V LL(步驟S031),若在步驟S031判斷為否,進入步驟S04執行該變頻控制模式,使該驅動信號S1的頻率隨著該負載的負載量而改變。若在步驟S031判斷為是,該微控制器40進一步判斷該回授電壓V FB是否小於或等於該第二回授電壓門檻值V SK(步驟S032),若在步驟S032判斷為否,進入步驟S04以執行該定頻控制模式,使該驅動信號S1的頻率為固定頻率。 In step S03, the microcontroller 40 determines whether the feedback voltage V FB is less than or equal to the first feedback voltage threshold V LL (step S031). If it is determined to be no in step S031, it proceeds to step S04 to execute the frequency conversion. The control mode causes the frequency of the drive signal S1 to change with the load of the load. If it is determined to be yes in step S031, the microcontroller 40 further determines whether the feedback voltage V FB is less than or equal to the second feedback voltage threshold V SK (step S032). If it is determined to be no in step S032, step S032 is entered. S04 is to execute the fixed frequency control mode so that the frequency of the driving signal S1 is a fixed frequency.

若在步驟S032判斷為是,該微控制器40進入步驟S04以執行該跳週期控制模式,在該跳週期控制模式中,該微控制器40判斷該回授電壓V FB是否回升而大於或等於該第二回授電壓門檻值V SK(步驟S041);若在步驟S041判斷為是,該微控制器40執行該定頻控制模式以使該驅動信號S1的頻率為該固定頻率並再回到步驟S031;若在步驟S041判斷為否,該微控制器40停止輸出該驅動信號S1至該切換開關Q1。 If it is determined to be yes in step S032, the microcontroller 40 enters step S04 to execute the cycle skip control mode. In the cycle skip control mode, the microcontroller 40 determines whether the feedback voltage V FB rebounds and is greater than or equal to The second feedback voltage threshold V SK (step S041); if the determination in step S041 is yes, the microcontroller 40 executes the fixed frequency control mode to make the frequency of the driving signal S1 the fixed frequency and then returns to Step S031; If the determination in step S041 is negative, the microcontroller 40 stops outputting the driving signal S1 to the switch Q1.

綜合圖4A至圖4D來看,該微控制器40在時間t1判斷出V FB≦V LL而進入該定頻控制模式,也就是說,時間t0至t1代表該負載量為滿載或重載,故該微控制器40在時間t0至t1執行該變頻控制模式,且可見該切換式電源轉換器10在時間t0至t1的輸出電流I O較高且輸出電壓V O較穩定。該微控制器40在時間t2判斷出V FB≦V SK而進入該跳週期控制模式,也就是說,時間t1至t2代表該負載量為輕載,且可見該微控制器40從該變頻控制模式進入該定頻控制模式後,係降低該驅動信號S1的頻率。時間t2至t4代表該負載量為極輕載或空載,故該微控制器40在時間t2至t4執行該跳週期控制模式,其中,該微控制器40於時間t2至t3判斷出V FB≦V SK而停止輸出該驅動信號S1(即:0V,且頻率為0 Hz),並於時間t3判斷出V FB≧V SK而執行該定頻控制模式,故使該驅動信號S1的頻率在時間t2至t4之間呈現「零」與「非零」的交替變化。 Based on Figures 4A to 4D, the microcontroller 40 determines that V FB ≦ V LL at time t1 and enters the fixed frequency control mode. That is to say, time t0 to t1 represents that the load is full load or heavy load. Therefore, the microcontroller 40 executes the frequency conversion control mode from time t0 to t1, and it can be seen that the output current I O of the switching power converter 10 from time t0 to t1 is relatively high and the output voltage V O is relatively stable. The microcontroller 40 determines that V FB ≦ V SK at time t2 and enters the cycle skip control mode. That is to say, time t1 to t2 represents that the load is light load, and it can be seen that the microcontroller 40 starts from the frequency conversion control mode. After the mode enters the fixed frequency control mode, the frequency of the driving signal S1 is reduced. Time t2 to t4 represents that the load is extremely light load or no load, so the microcontroller 40 executes the cycle skip control mode at time t2 to t4, wherein the microcontroller 40 determines V FB at time t2 to t3 ≦V SK and stop outputting the driving signal S1 (ie: 0V and the frequency is 0 Hz). At time t3, it is determined that V FB ≧V SK and the fixed frequency control mode is executed, so that the frequency of the driving signal S1 is at Between time t2 and t4, there is an alternating change of "zero" and "non-zero".

該切換式電源轉換器10的輸出電壓V O在時間t2至t4的波形起伏現象是該跳週期控制模式的現象,配合參考圖2與圖4A至4D,當該驅動信號S1從時間t2開始暫時為0V,該切換式電源轉換器10的輸出電壓V O開始遞減,該微控制器40從該隔離回授電路50接收的該回授電壓V FB則遞增(基於該光耦合器51的第一輸出端所連接的電壓源Vcc),隨著時間推進,該微控制器40在時間t3判斷出V FB≧V SK而執行該定頻控制模式,故於時間t3至t4輸出該定頻控制模式下的驅動信號S1給該切換開關Q1,該切換式電源轉換器10的輸出電壓V O開始遞增,該微控制器40從該隔離回授電路50接收的該回授電壓V FB則遞減,在時間t4之後,依此類推,該微控制器40可再次判斷出V FB≦V SK而停止輸出該驅動信號S1,並週而復始,使該驅動信號S1的頻率在該跳週期控制模式中呈現「零」與「非零」的交替變化。 The waveform fluctuation phenomenon of the output voltage V O of the switching power converter 10 from time t2 to t4 is a phenomenon of the skip cycle control mode. With reference to FIG. 2 and FIG. 4A to 4D, when the driving signal S1 starts temporarily from time t2 is 0V, the output voltage V O of the switching power converter 10 begins to decrease, and the feedback voltage V FB received by the microcontroller 40 from the isolation feedback circuit 50 increases (based on the first signal of the optocoupler 51 The voltage source Vcc) connected to the output terminal, as time progresses, the microcontroller 40 determines that V FB ≧V SK at time t3 and executes the fixed frequency control mode, so it outputs the fixed frequency control mode from time t3 to t4 The driving signal S1 is given to the switching switch Q1, the output voltage V O of the switching power converter 10 begins to increase, and the feedback voltage V FB received by the microcontroller 40 from the isolation feedback circuit 50 decreases. After time t4, and by analogy, the microcontroller 40 can again determine that V FB ≦ V SK and stop outputting the driving signal S1, and repeat the cycle, so that the frequency of the driving signal S1 appears "zero" in the skip cycle control mode. ” and “non-zero” alternately.

請參考圖1與圖2,本發明中的該主動箝位電路60連接該變壓器20的一次側繞組21,該主動箝位電路60可為自激式主動箝位電路,包含一箝位開關Q2、一第一電容C1、一第二電容C2、一電阻R,也可以進一步包含一個二極體D。以返馳式電源轉換器的電路架構來看,該箝位開關Q2可為高側開關(high-side switch),該切換開關Q1可為低側開關(low-side switch)。Please refer to Figures 1 and 2. The active clamping circuit 60 in the present invention is connected to the primary winding 21 of the transformer 20. The active clamping circuit 60 can be a self-excited active clamping circuit and includes a clamp switch Q2. , a first capacitor C1, a second capacitor C2, a resistor R, and may further include a diode D. From the perspective of the circuit architecture of the flyback power converter, the clamp switch Q2 can be a high-side switch, and the switching switch Q1 can be a low-side switch.

該箝位開關Q2的一端連接該第一電容C1的一端,該第一電容C1的另一端連接該變壓器20的一次側繞組21的第一端與該切換式電源轉換器10的電源輸入端11;該箝位開關Q2的另一端連接該第二電容C2的一端,該第二電容C2的另一端連接該變壓器20的一次側繞組21的第二端與該切換開關Q1的一端,故使該箝位開關Q2串聯在該第一電容C1及該第二電容C2之間;另外,該箝位開關Q2還具有一控制端。本發明的實施例中,該箝位開關Q2為一電晶體,例如為金氧半場效電晶體(MOSFET),其閘極作為該控制端,其汲極連接該第一電容C1,其源極連接該第二電容C2,其閘極和源極之間存在一寄生電容C3。One end of the clamp switch Q2 is connected to one end of the first capacitor C1 , and the other end of the first capacitor C1 is connected to the first end of the primary winding 21 of the transformer 20 and the power input end 11 of the switching power converter 10 ; The other end of the clamp switch Q2 is connected to one end of the second capacitor C2, and the other end of the second capacitor C2 is connected to the second end of the primary winding 21 of the transformer 20 and one end of the switch Q1, so that the The clamp switch Q2 is connected in series between the first capacitor C1 and the second capacitor C2; in addition, the clamp switch Q2 also has a control terminal. In the embodiment of the present invention, the clamp switch Q2 is a transistor, such as a metal oxide semi-field effect transistor (MOSFET). Its gate serves as the control terminal, its drain is connected to the first capacitor C1, and its source The second capacitor C2 is connected, and there is a parasitic capacitance C3 between its gate and source.

該電阻R的一端連接該箝位開關Q2的控制端,該電阻R的另一端連接該變壓器20的一次側繞組21的第二端與該切換開關Q1的一端。該二極體D的陽極連接該箝位開關Q2的控制端,該二極體D2的陰極連接該變壓器20的一次側繞組21的第二端與該切換開關Q1的一端,也就是說,該電阻R跨接在該二極體D的陽極與陰極。One end of the resistor R is connected to the control end of the clamp switch Q2, and the other end of the resistor R is connected to the second end of the primary winding 21 of the transformer 20 and one end of the switch Q1. The anode of the diode D is connected to the control end of the clamp switch Q2, and the cathode of the diode D2 is connected to the second end of the primary winding 21 of the transformer 20 and one end of the switch Q1, that is to say, the The resistor R is connected across the anode and cathode of the diode D.

該主動箝位電路60應用於一電流臨界模式,以下簡稱為BCM模式(Boundary Current Mode),其相關電壓波形請參考圖5A至5H,各波形圖的縱軸標示電壓值(V),橫軸則表示時間;以下進一步說明該主動箝位電路60的電路動作。The active clamping circuit 60 is applied in a current critical mode, hereinafter referred to as BCM mode (Boundary Current Mode). Please refer to Figures 5A to 5H for its related voltage waveforms. The vertical axis of each waveform diagram indicates the voltage value (V), and the horizontal axis represents time; the circuit operation of the active clamping circuit 60 will be further described below.

T0時段:在BCM模式下,該變壓器20一次側繞阻21的電壓V P逐漸下降為0V,該第二電容C2兩端的電壓V C2也降至0V,該寄生電容C3的電壓經由該二極體D快速放電至0V,使該箝位開關Q2的閘極電壓低於導通臨界電壓(Vgs-th),該箝位開關Q2即轉為關閉狀態(OFF),此時,該切換開關Q1的汲極-源極電壓V Q1-DS隨同Vp由原本的高準位逐漸降至0V,在該切換開關Q1的閘極電壓V Q1-G開始送出一高準位訊號,該切換開關Q1的控制模式亦達到零電壓切換(ZVS)。 T0 period: In the BCM mode, the voltage V P of the primary side winding 21 of the transformer 20 gradually drops to 0V, the voltage V C2 across the second capacitor C2 also drops to 0V, and the voltage of the parasitic capacitor C3 passes through the diode. Body D is quickly discharged to 0V, causing the gate voltage of the clamp switch Q2 to be lower than the conduction critical voltage (Vgs-th). The clamp switch Q2 turns to the closed state (OFF). At this time, the switch Q1 The drain-source voltage V Q1-DS gradually drops from the original high level to 0V along with Vp. The gate voltage V Q1-G of the switch Q1 starts to send a high-level signal. The control of the switch Q1 The mode also achieves zero voltage switching (ZVS).

T1時段:該切換開關Q1導通,即該切換開關Q1即將由原本的關閉狀態(OFF)轉換至導通狀態(ON),該變壓器20的一次側繞阻21的電壓Vp由0V上升至V IPeriod T1: The switch Q1 is turned on, that is, the switch Q1 is about to switch from the original off state (OFF) to the on state (ON), and the voltage Vp of the primary winding 21 of the transformer 20 rises from 0V to V I .

T2時段:當該切換開關Q1的閘極電壓V Q1-G降低至低準位時(即PWM信號的低準位),切換開關Q1成為關閉狀態(OFF)。因為該切換開關Q1從導通狀態轉為關閉狀態,因此在該變壓器20的一次側繞阻21會產生一反向電壓,因此圖5H所示的一次側繞阻電壓V P顯示負值。如圖6所示,該電壓V P經由該箝位開關Q2的本體二極體(body diode)往該第二電容C2及該第一電容C1充電,該第二電容C2及該第一電容C1充電在充電期間同時也會吸收該變壓器20漏感所產生的突波(spike),此時該第二電容C2及該第一電容C1會漸漸充電至穩態,該箝位開關Q2的汲極-源極電壓V Q2-DS也因為本體二極體先導通,而在給驅動信號前先降下來至約該本體二極體的順向電壓(VF),如波形圖上標示S的位置。該第二電容C2在充電過程中亦會經由該電阻R對該寄生電容C3充電,當該寄生電容C3的電壓達到該箝位開關Q2的導通臨界電壓(Vgs-th),該箝位開關Q2即轉為導通狀態,實現零電壓切換(ZVS)以及吸收突波。其中,該電阻R作為一延遲(delay)元件,在充電時透過該電阻R以及該寄生電容C3決定的延遲時間,讓該箝位開關Q2的閘極電壓V Q2-G在該箝位開關Q2的汲極-源極電壓V Q2-DS降至約為本體二極體(body diode)的順向電壓(VF)時,才達到導通臨界電壓(Vgs-th),可讓該箝位開關Q2的驅動控制符合零電壓切換的要求。 Period T2: When the gate voltage V Q1-G of the switch Q1 decreases to a low level (ie, the low level of the PWM signal), the switch Q1 becomes closed (OFF). Because the switch Q1 changes from the on state to the off state, a reverse voltage is generated on the primary winding 21 of the transformer 20, so the primary winding voltage VP shown in FIG. 5H shows a negative value. As shown in Figure 6, the voltage V P charges the second capacitor C2 and the first capacitor C1 through the body diode of the clamp switch Q2. The second capacitor C2 and the first capacitor C1 During charging, the spike generated by the leakage inductance of the transformer 20 will also be absorbed. At this time, the second capacitor C2 and the first capacitor C1 will gradually charge to a steady state. The drain of the clamp switch Q2 -The source voltage V Q2-DS is also because the body diode is turned on first and drops to about the forward voltage (VF) of the body diode before the driving signal is given, as shown in the waveform diagram marked with S. The second capacitor C2 will also charge the parasitic capacitor C3 through the resistor R during the charging process. When the voltage of the parasitic capacitor C3 reaches the conduction threshold voltage (Vgs-th) of the clamp switch Q2, the clamp switch Q2 That is, it turns into a conductive state to achieve zero voltage switching (ZVS) and absorb surges. Among them, the resistor R serves as a delay element. During charging, the gate voltage V Q2-G of the clamp switch Q2 is controlled by the delay time determined by the resistor R and the parasitic capacitance C3. The conduction critical voltage (Vgs-th) is reached only when the drain-source voltage V Q2-DS drops to approximately the forward voltage (VF) of the body diode, allowing the clamp switch Q2 to The drive control meets the requirements of zero voltage switching.

T3時段:在BCM模式下,該變壓器20一次側繞阻21的電壓V P會漸漸降為零,該第二電容C2兩端的電壓V C2也降至0V,該寄生電容C3的電壓經由該二極體D快速放電至0V(參考圖7所示),使該箝位開關Q2的閘極電壓V Q2-G低於導通臨界電壓(Vgs-th),該箝位開關Q2即轉為關閉狀態(OFF),因為該箝位開關Q2可快速關閉,可降低該箝位開關Q2的切換損失,該切換開關Q1的汲極-源極電壓V Q1-DS由原本的高準位漸降至0V,重複T0時段的動作。 Period T3: In the BCM mode, the voltage V P of the primary winding 21 of the transformer 20 will gradually drop to zero, and the voltage V C2 across the second capacitor C2 will also drop to 0V. The voltage of the parasitic capacitor C3 passes through the two The pole body D is quickly discharged to 0V (see Figure 7), causing the gate voltage V Q2-G of the clamp switch Q2 to be lower than the conduction critical voltage (Vgs-th), and the clamp switch Q2 turns to the closed state. (OFF), because the clamp switch Q2 can be turned off quickly, the switching loss of the clamp switch Q2 can be reduced, and the drain-source voltage V Q1-DS of the switch Q1 gradually drops from the original high level to 0V. , repeat the actions in the T0 period.

T4時段:此時該切換開關Q1導通,如圖7所示,重複T1時段的動作。T4 period: At this time, the switch Q1 is turned on, as shown in Figure 7, and the action of the T1 period is repeated.

在一較佳實施例中,為了使該箝位開關Q2導通時的導通電阻(R DS)最小、損耗最低,該箝位開關Q2的閘極應維持在一較理想的驅動電壓值,約為一較佳值10V左右。該第一電容C1及該第二電容C2的電壓總和(V C1+V C2)約等於一次側繞阻21在釋能時的電壓(即V P為反向電壓),此時的V P電壓值與變壓器20的一次側繞阻21的匝數N P、二次側繞阻22的匝數N S有關,即V P=[(N S/N P)×V O]。在實際設計電源轉換裝置時,因為有不同的輸入/輸出需求,V P受限於匝數比而無法接近該較佳值10V,本發明便可選用適當的該第二電容C2的值,令該第一電容C1與該第二電容C2分壓後,在該第二電容C2上得到接近該較佳值10V的電壓,即可使該箝位開關Q2的閘極具有較佳的驅動電壓值,達到較理想的驅動效果。 In a preferred embodiment, in order to minimize the on-resistance (R DS ) and the lowest loss when the clamp switch Q2 is turned on, the gate of the clamp switch Q2 should be maintained at a more ideal driving voltage value, which is about A better value is about 10V. The sum of the voltages of the first capacitor C1 and the second capacitor C2 (V C1 + V C2 ) is approximately equal to the voltage of the primary winding 21 when releasing energy (that is, VP is the reverse voltage). The VP voltage at this time The value is related to the number of turns N P of the primary side winding 21 and the number of turns N S of the secondary side winding 22 of the transformer 20 , that is, V P =[(N S /N P )×V O ]. When actually designing a power conversion device, due to different input/output requirements, V P is limited by the turns ratio and cannot approach the optimal value of 10V. Therefore, the present invention can select an appropriate value of the second capacitor C2, so that After the first capacitor C1 and the second capacitor C2 divide the voltage, a voltage close to the optimal value of 10V is obtained on the second capacitor C2, so that the gate of the clamp switch Q2 has a better driving voltage value. , to achieve a more ideal driving effect.

綜上所述,本發明具備以下功效:To sum up, the present invention has the following effects:

1、該微控制器40即時監測該切換式電源轉換器10的輸入電壓V I和回授電壓V FB,該回授電壓V FB可反映該負載量,該微控制器40實施多模式混合控制,所謂多模式即例如包含該變頻控制模式、該定頻控制模式和該跳週期控制模式,以實現效率曲線最佳化的電源轉換特性。 1. The microcontroller 40 monitors the input voltage V I and the feedback voltage V FB of the switching power converter 10 in real time. The feedback voltage V FB can reflect the load. The microcontroller 40 implements multi-mode hybrid control. The so-called multi-mode includes, for example, the variable frequency control mode, the fixed frequency control mode and the cycle skipping control mode to achieve power conversion characteristics that optimize the efficiency curve.

舉例而言,當本發明所連接的負載為滿載或重載時,該微控制器40執行該變頻控制模式。隨著該負載量變輕,輸出至該切換開關Q1的驅動信號S1的頻率越高,為避免該切換開關Q1在輕載、極輕載或空載時實施高頻切換所導致的高頻雜訊、切換損失和電路板線路上的電磁干擾等問題,該微控制器40可即時切換到該定頻控制模式,另於極輕載或空載時即時切換到該跳週期控制模式,致使該驅動信號S1的頻率維持在定值而不再提高,藉以最佳化電源轉換效率,有效改善如前所述高頻雜訊、切換損失和電路板線路上的電磁干擾等問題。For example, when the load connected to the present invention is fully loaded or heavily loaded, the microcontroller 40 executes the frequency conversion control mode. As the load becomes lighter, the frequency of the driving signal S1 output to the switch Q1 becomes higher. In order to avoid high-frequency noise caused by the high-frequency switching of the switch Q1 during light load, extremely light load or no load, , switching loss and electromagnetic interference on the circuit board circuit, the microcontroller 40 can instantly switch to the fixed frequency control mode, and also instantly switch to the cycle skip control mode when the load is extremely light or no load, causing the driver to The frequency of the signal S1 is maintained at a constant value without increasing, thereby optimizing the power conversion efficiency and effectively improving the aforementioned problems of high-frequency noise, switching loss, and electromagnetic interference on the circuit board lines.

2、透過該主動箝位電路60的設置,其不需要額外增設驅動電路,而可根據該一次側繞組21的電壓V P極性自己控制該箝位開關Q2的導通/關閉。該主動箝位電路60不僅可以達到吸收突波的功能,也可藉由適當挑選的該第二電容C2而使該箝位開關Q2的閘極獲得一理想的驅動電壓,在該箝位開關Q2導通時呈現較小的導通電阻(R DS)並使損耗降低。 2. Through the arrangement of the active clamp circuit 60, it does not need to add an additional drive circuit, and can control the on/off of the clamp switch Q2 according to the polarity of the voltage VP of the primary winding 21. The active clamp circuit 60 can not only achieve the function of absorbing surges, but also enable the gate of the clamp switch Q2 to obtain an ideal driving voltage by appropriately selecting the second capacitor C2. When turned on, it presents a smaller on-resistance (R DS ) and reduces losses.

10:切換式電源轉換器 11:電源輸入端 12:電源輸出端 13:分壓電路 20:變壓器 21:一次側繞組 22:二次側繞組 30:輸出電路 40:微控制器 50:隔離回授電路 51:光耦合器 60:主動箝位電路 Q1:切換開關 Q2:箝位開關 C1:第一電容 C2:第二電容 C3:寄生電容 R:電阻 D:二極體 V I:輸入電壓 V O:輸出電壓 Vcc:電壓源 V FB:回授電壓 V LL:第一回授電壓門檻值 V SK:第二回授電壓門檻值 V P:一次側繞組的電壓 I O:輸出電流 S1:驅動信號 10: Switching power converter 11: Power input terminal 12: Power output terminal 13: Voltage dividing circuit 20: Transformer 21: Primary side winding 22: Secondary side winding 30: Output circuit 40: Microcontroller 50: Isolated return Feeding circuit 51: Optocoupler 60: Active clamping circuit Q1: Switch Q2: Clamp switch C1: First capacitor C2: Second capacitor C3: Parasitic capacitance R: Resistor D: Diode V I : Input voltage V O : Output voltage Vcc: Voltage source V FB : Feedback voltage V LL : First feedback voltage threshold V SK : Second feedback voltage threshold V P : Voltage of primary winding I O : Output current S1: Drive signal

圖1:本發明多模式混合控制的直流-直流電源轉換電路的實施例的電路示意圖(一)。 圖2:本發明多模式混合控制的直流-直流電源轉換電路的實施例的電路示意圖(二)。 圖3:本發明的控制方法的流程示意圖。 圖4A:本發明的實施例中,切換式電源轉換器的輸出電流I O波形圖。 圖4B:本發明的實施例中,回授電壓V FB的波形圖。 圖4C:本發明的實施例中,驅動信號S1的波形圖。 圖4D:本發明的實施例中,切換式電源轉換器的輸出電壓V O波形圖。 圖5A:本發明的實施例中,切換式電源轉換器的輸出電壓V O細部波形圖。 圖5B:本發明的實施例中,第二電容C2兩端的電壓V C2波形圖。 圖5C:本發明的實施例中,第一電容C1兩端的電壓V C1波形圖。 圖5D:本發明的實施例中,箝位開關Q2的汲極-源極之間的電壓V Q 2 -DS波形圖。 圖5E:本發明的實施例中,箝位開關Q2的閘極-源極之間的電壓V Q2-G波形圖。 圖5F:本發明的實施例中,切換開關Q1的汲極-源極之間的電壓V Q1-DS波形圖。 圖5G:本發明的實施例中,切換開關Q1的閘極電壓V Q1-G波形圖。 圖5H:本發明的實施例中,變壓器的一次側繞組兩端之間的電壓V P波形圖。 圖6:本發明的實施例中,切換開關Q1關閉、箝位開關Q2導通時的電路動作示意圖。 圖7:本發明的實施例中,切換開關Q1導通、箝位開關Q2關閉時的電路動作示意圖。 Figure 1: Circuit schematic diagram (1) of an embodiment of a multi-mode hybrid controlled DC-DC power conversion circuit of the present invention. Figure 2: Circuit schematic diagram (2) of an embodiment of the multi-mode hybrid controlled DC-DC power conversion circuit of the present invention. Figure 3: Schematic flow chart of the control method of the present invention. Figure 4A: In an embodiment of the present invention, the output current I O waveform diagram of the switching power converter. Figure 4B: Waveform diagram of feedback voltage V FB in the embodiment of the present invention. Figure 4C: Waveform diagram of the driving signal S1 in the embodiment of the present invention. Figure 4D: Waveform diagram of the output voltage V O of the switching power converter in an embodiment of the present invention. Figure 5A: Detailed waveform diagram of the output voltage V O of the switching power converter in an embodiment of the present invention. Figure 5B: In the embodiment of the present invention, the waveform diagram of voltage V C2 across the second capacitor C2. Figure 5C: In the embodiment of the present invention, the waveform diagram of voltage V C1 across the first capacitor C1. Figure 5D: In the embodiment of the present invention, the voltage V Q 2 -DS waveform diagram between the drain and the source of the clamp switch Q2. Figure 5E: In the embodiment of the present invention, the voltage V Q2-G waveform between the gate and the source of the clamp switch Q2. Figure 5F: In the embodiment of the present invention, the voltage V Q1-DS between the drain and the source of the switch Q1 is a waveform diagram. Figure 5G: In the embodiment of the present invention, the gate voltage V Q1-G waveform diagram of the switch Q1. Figure 5H: In the embodiment of the present invention, the voltage V P waveform between the two ends of the primary winding of the transformer. Figure 6: In the embodiment of the present invention, the circuit operation diagram is shown when the switch Q1 is turned off and the clamp switch Q2 is turned on. Figure 7 is a schematic diagram of the circuit operation when the switch Q1 is turned on and the clamp switch Q2 is turned off in the embodiment of the present invention.

10:切換式電源轉換器 11:電源輸入端 12:電源輸出端 13:分壓電路 20:變壓器 21:一次側繞組 22:二次側繞組 30:輸出電路 40:微控制器 50:隔離回授電路 60:主動箝位電路 V I:輸入電壓 V O:輸出電壓 V FB:回授電壓 V P:一次側繞組的電壓 I O:輸出電流 S1:驅動信號 Q1:切換開關 10: Switching power converter 11: Power input terminal 12: Power output terminal 13: Voltage dividing circuit 20: Transformer 21: Primary side winding 22: Secondary side winding 30: Output circuit 40: Microcontroller 50: Isolated return Feed circuit 60: Active clamping circuit V I : Input voltage V O : Output voltage V FB : Feedback voltage V P : Voltage of primary winding I O : Output current S1: Drive signal Q1: Switch

Claims (10)

一種多模式混合控制的直流-直流電源轉換電路,包含:一切換式電源轉換器,包含:一變壓器;及一切換開關,串聯於該變壓器的一次側繞組且具有一控制端;以及一微控制器,連接該切換式電源轉換器以及該切換開關的控制端,並儲存多個回授電壓門檻參考值與多個比例值;該微控制器偵測該切換式電源轉換器的一輸入電壓、選擇與該切換式電源轉換器的該輸入電壓相對應的其中之一回授電壓門檻參考值、將被選的回授電壓門檻參考值乘以該多個比例值而分別設定作為評估負載量的判斷基準值的多個回授電壓門檻值,以及判斷該切換式電源轉換器的一回授電壓與各該回授電壓門檻值之間的大小關係,以根據其判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式;該微控制器輸出一驅動信號至該切換開關,並根據所執行的該變頻控制模式、該定頻控制模式或該跳週期控制模式對應調整該驅動信號的頻率。 A multi-mode hybrid controlled DC-DC power conversion circuit includes: a switching power converter, including: a transformer; and a switching switch connected in series to the primary side winding of the transformer and having a control end; and a microcontroller The microcontroller is connected to the switching power converter and the control terminal of the switching switch, and stores a plurality of feedback voltage threshold reference values and a plurality of proportional values; the microcontroller detects an input voltage of the switching power converter, Select one of the feedback voltage threshold reference values corresponding to the input voltage of the switching power converter, multiply the selected feedback voltage threshold reference value by the plurality of proportional values, and set them respectively as evaluation load values. Determine multiple feedback voltage thresholds of the reference value, and determine the magnitude relationship between a feedback voltage of the switching power converter and each of the feedback voltage thresholds, so as to execute a frequency conversion control mode based on the judgment results. A fixed frequency control mode or a skip cycle control mode; the microcontroller outputs a drive signal to the switch, and adjusts the drive signal according to the executed frequency control mode, the fixed frequency control mode, or the skip cycle control mode. frequency. 如請求項1所述之多模式混合控制的直流-直流電源轉換電路,其中,該微控制器透過一隔離回授電路連接該切換式電源轉換器的電源輸出端,以從該隔離回授電路接收該回授電壓;該微控制器係判斷該回授電壓與各該回授電壓門檻值之間的大小關係,以根據其判斷結果執行該變頻控制模式、該定頻控制模式或該跳週期控制模式。 The multi-mode hybrid controlled DC-DC power conversion circuit as described in claim 1, wherein the microcontroller is connected to the power output end of the switching power converter through an isolated feedback circuit to receive the signal from the isolated feedback circuit. Receive the feedback voltage; the microcontroller determines the relationship between the feedback voltage and the feedback voltage threshold, and executes the variable frequency control mode, the fixed frequency control mode or the cycle skipping according to the judgment result control mode. 如請求項2所述之多模式混合控制的直流-直流電源轉換電路,其中,該些回授電壓門檻值包含一第一回授電壓門檻值與一第二回授電壓門檻值,該第一回授電壓門檻值大於該第二回授電壓門檻值;當該微控制器判斷出該回授電壓大於該第一回授電壓門檻值,該微控制器執行該變頻控制模式,以使該驅動信號的頻率隨著負載量而改變; 當該微控制器判斷出該回授電壓小於或等於該第一回授電壓門檻值,並且大於該第二回授電壓門檻值,該微控制器執行該定頻控制模式,以使該驅動信號的頻率為固定頻率;當該微控制器判斷出該回授電壓小於或等於該第二回授電壓門檻值,該微控制器執行該跳週期控制模式,在該跳週期控制模式中,該微控制器判斷該回授電壓是否回升而大於或等於該第二回授電壓門檻值;若是,該微控制器使該驅動信號的頻率為固定頻率;若否,該微控制器停止輸出該驅動信號至該切換開關。 The multi-mode hybrid controlled DC-DC power conversion circuit as described in claim 2, wherein the feedback voltage thresholds include a first feedback voltage threshold and a second feedback voltage threshold, the first The feedback voltage threshold is greater than the second feedback voltage threshold; when the microcontroller determines that the feedback voltage is greater than the first feedback voltage threshold, the microcontroller executes the frequency conversion control mode so that the driver The frequency of the signal changes with the load; When the microcontroller determines that the feedback voltage is less than or equal to the first feedback voltage threshold and greater than the second feedback voltage threshold, the microcontroller executes the fixed frequency control mode so that the driving signal The frequency is a fixed frequency; when the microcontroller determines that the feedback voltage is less than or equal to the second feedback voltage threshold, the microcontroller executes the cycle skip control mode. In the cycle skip control mode, the microcontroller The controller determines whether the feedback voltage rises and is greater than or equal to the second feedback voltage threshold; if so, the microcontroller makes the frequency of the drive signal a fixed frequency; if not, the microcontroller stops outputting the drive signal. to the toggle switch. 如請求項3所述之多模式混合控制的直流-直流電源轉換電路,其中,在該變頻控制模式中,當所述負載量為滿載時,該驅動信號的頻率定義為一滿載頻率;在該定頻控制模式和該跳週期控制模式中,該驅動信號的頻率為該滿載頻率的二分之一以上。 The multi-mode hybrid control DC-DC power conversion circuit as described in claim 3, wherein in the frequency conversion control mode, when the load is full load, the frequency of the drive signal is defined as a full load frequency; In the fixed frequency control mode and the skip cycle control mode, the frequency of the driving signal is more than half of the full load frequency. 如請求項1至4中任一項所述多模式混合控制的直流-直流電源轉換電路,更包含一主動箝位電路,其連接該變壓器的一次側繞組且包含:一箝位開關,串聯在一第一電容與一第二電容之間,該第一電容的另一端連接該變壓器的一次側繞組的第一端,該第二電容的另一端連接該變壓器的一次側繞組的第二端;以及一電阻,其一端連接該箝位開關的一控制端,另一端連接該變壓器的一次側繞組的第二端;該切換開關的一端係連接該變壓器的一次側繞組的第二端而與該一次側繞組形成串聯。 The multi-mode hybrid controlled DC-DC power conversion circuit as described in any one of claims 1 to 4, further includes an active clamp circuit connected to the primary winding of the transformer and including: a clamp switch connected in series Between a first capacitor and a second capacitor, the other end of the first capacitor is connected to the first end of the primary winding of the transformer, and the other end of the second capacitor is connected to the second end of the primary winding of the transformer; And a resistor, one end of which is connected to a control end of the clamp switch, and the other end is connected to the second end of the primary side winding of the transformer; one end of the switch is connected to the second end of the primary side winding of the transformer and is connected to the second end of the primary side winding of the transformer. The primary windings are connected in series. 如請求項5所述之多模式混合控制的直流-直流電源轉換電路,其中,該主動箝位電路包含二極體,其陽極連接該箝位開關的該控制端,其陰極連接該變壓器的一次側繞組的第二端。 The multi-mode hybrid controlled DC-DC power conversion circuit as described in claim 5, wherein the active clamping circuit includes a diode, the anode of which is connected to the control terminal of the clamp switch, and the cathode of which is connected to the primary terminal of the transformer. The second end of the side winding. 一種多模式混合控制的直流-直流電源轉換電路的控制方法,係於一微控制器執行,該微控制器連接一切換式電源轉換器與一切換開關,並儲存多個回授電壓門檻參考值與多個比例值,該控制方法包含以下步驟:(a)偵測該切換式電源轉換器的一輸入電壓和一回授電壓;(b)選擇與該切換式電源轉換器的該輸入電壓相對應的其中之一回授電壓門檻參考值,並將被選的回授電壓門檻參考值乘以該多個比例值而分別設定作為評估負載量的判斷基準值的多個回授電壓門檻值;(c)判斷該切換式電源轉換器的該回授電壓與各該回授電壓門檻值之間的大小關係;以及(d)根據步驟(c)的判斷結果執行一變頻控制模式、一定頻控制模式或一跳週期控制模式,其中,該微控制器輸出一驅動信號至該切換開關,並根據所執行的該變頻控制模式、該定頻控制模式或該跳週期控制模式對應調整該驅動信號的頻率。 A control method for a multi-mode hybrid control DC-DC power conversion circuit is executed by a microcontroller, which is connected to a switching power converter and a switch, and stores multiple feedback voltage threshold reference values and a plurality of proportional values, the control method includes the following steps: (a) detecting an input voltage and a feedback voltage of the switching power converter; (b) selecting a phase phase with the input voltage of the switching power converter Corresponding to one of the feedback voltage threshold reference values, the selected feedback voltage threshold reference value is multiplied by the multiple proportional values to respectively set multiple feedback voltage threshold values as the judgment reference value for evaluating the load; (c) Determine the relationship between the feedback voltage of the switching power converter and each feedback voltage threshold; and (d) execute a variable frequency control mode and a constant frequency control based on the judgment result of step (c) mode or a skip cycle control mode, wherein the microcontroller outputs a drive signal to the switch, and adjusts the drive signal according to the executed frequency control mode, the fixed frequency control mode or the skip cycle control mode. frequency. 如請求項7所述多模式混合控制的直流-直流電源轉換電路的控制方法,在步驟(b)中,該些回授電壓門檻值包含一第一回授電壓門檻值與一第二回授電壓門檻值,該第一回授電壓門檻值大於該第二回授電壓門檻值;在步驟(c)中,更包含:(c-1)該微控制器判斷該回授電壓是否小於或等於該第一回授電壓門檻值,若在步驟(c-1)判斷為否,進入步驟(d)以執行該變頻控制模式,使該驅動信號的頻率隨著負載量而改變; (c-2)在步驟(c-1)中若判斷為是,該微控制器判斷該回授電壓是否小於或等於該第二回授電壓門檻值,若在步驟(c-2)判斷為否,進入步驟(d)以執行該定頻控制模式,使該驅動信號的頻率為固定頻率;(c-3)在步驟(c-2)中若判斷為是,進入步驟(d)以執行該跳週期控制模式,在該跳週期控制模式中,該微控制器判斷該回授電壓是否回升而大於或等於該第二回授電壓門檻值;若是,該微控制器使該驅動信號的頻率為固定頻率並再回覆執行步驟(c-1);若否,該微控制器停止輸出該驅動信號至該切換開關。 As claimed in claim 7, the control method of the multi-mode hybrid control DC-DC power conversion circuit, in step (b), the feedback voltage thresholds include a first feedback voltage threshold and a second feedback voltage threshold, the first feedback voltage threshold is greater than the second feedback voltage threshold; in step (c), it further includes: (c-1) the microcontroller determines whether the feedback voltage is less than or equal to If the first feedback voltage threshold is determined to be negative in step (c-1), step (d) is entered to execute the frequency conversion control mode so that the frequency of the drive signal changes with the load; (c-2) If it is determined to be yes in step (c-1), the microcontroller determines whether the feedback voltage is less than or equal to the second feedback voltage threshold. If it is determined to be yes in step (c-2) No, go to step (d) to execute the fixed frequency control mode so that the frequency of the drive signal is a fixed frequency; (c-3) If it is determined to be yes in step (c-2), go to step (d) to execute In the skip cycle control mode, in the skip cycle control mode, the microcontroller determines whether the feedback voltage rises and is greater than or equal to the second feedback voltage threshold; if so, the microcontroller sets the frequency of the drive signal to is a fixed frequency and returns to step (c-1); if not, the microcontroller stops outputting the driving signal to the switch. 如請求項8所述多模式混合控制的直流-直流電源轉換電路的控制方法,其中,該多個比例值包含一第一比例值與一第二比例值;在步驟(b)中,該微控制器將被選的該回授電壓門檻參考值乘以該第一比例值而設定為該第一回授電壓門檻值,以及將被選的該回授電壓門檻參考值乘以該第二比例值而設定為該第二回授電壓門檻值,其中,被選的該回授電壓門檻參考值對應於所偵測的該切換式電源轉換器的該輸入電壓。 The control method of a multi-mode hybrid control DC-DC power conversion circuit as described in claim 8, wherein the plurality of proportional values include a first proportional value and a second proportional value; in step (b), the micro The controller multiplies the selected feedback voltage threshold reference value by the first proportional value to set the first feedback voltage threshold value, and multiplies the selected feedback voltage threshold reference value by the second proportional value. The second feedback voltage threshold is set to a value, wherein the selected feedback voltage threshold reference value corresponds to the detected input voltage of the switching power converter. 如請求項8或9所述多模式混合控制的直流-直流電源轉換電路的控制方法,其中,在該變頻控制模式中,當所述負載量為滿載時,該驅動信號的頻率定義為一滿載頻率;在該定頻控制模式和該跳週期控制模式中,該驅動信號的頻率為該滿載頻率的二分之一以上。 The control method of the multi-mode hybrid control DC-DC power conversion circuit as described in claim 8 or 9, wherein in the frequency conversion control mode, when the load is full load, the frequency of the drive signal is defined as a full load frequency; in the fixed frequency control mode and the skip cycle control mode, the frequency of the driving signal is more than half of the full load frequency.
TW111101580A 2022-01-14 2022-01-14 Multi-mode hybrid control DC-DC power conversion circuit and control method TWI817321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111101580A TWI817321B (en) 2022-01-14 2022-01-14 Multi-mode hybrid control DC-DC power conversion circuit and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111101580A TWI817321B (en) 2022-01-14 2022-01-14 Multi-mode hybrid control DC-DC power conversion circuit and control method

Publications (2)

Publication Number Publication Date
TW202329595A TW202329595A (en) 2023-07-16
TWI817321B true TWI817321B (en) 2023-10-01

Family

ID=88147572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101580A TWI817321B (en) 2022-01-14 2022-01-14 Multi-mode hybrid control DC-DC power conversion circuit and control method

Country Status (1)

Country Link
TW (1) TWI817321B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200743295A (en) * 2006-05-09 2007-11-16 Champion Microelectronic Corp A control method and apparatus of resonant type DC/DC converter with low power loss at standby
US20130033902A1 (en) * 2011-08-02 2013-02-07 Power Integrations, Inc. Smooth mode transition plateau for a power supply controller
CN104300795A (en) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 Flyback converter and control method of flyback converter
TW202037054A (en) * 2019-03-20 2020-10-01 龍華科技大學 Full-bridge LLC resonant converter with hybrid modulation control mechanism comprising a full-bridge switching circuit, a capacitor-inductor serial circuit, a transformer, a first diode, a second diode, an output capacitor, a load resistor, a feedback circuit, a control unit and a gate driver
TWM628149U (en) * 2022-01-14 2022-06-11 捷拓科技股份有限公司 DC-DC power conversion circuit allowing multi-mode hybrid control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200743295A (en) * 2006-05-09 2007-11-16 Champion Microelectronic Corp A control method and apparatus of resonant type DC/DC converter with low power loss at standby
US20130033902A1 (en) * 2011-08-02 2013-02-07 Power Integrations, Inc. Smooth mode transition plateau for a power supply controller
CN104300795A (en) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 Flyback converter and control method of flyback converter
TW202037054A (en) * 2019-03-20 2020-10-01 龍華科技大學 Full-bridge LLC resonant converter with hybrid modulation control mechanism comprising a full-bridge switching circuit, a capacitor-inductor serial circuit, a transformer, a first diode, a second diode, an output capacitor, a load resistor, a feedback circuit, a control unit and a gate driver
TWM628149U (en) * 2022-01-14 2022-06-11 捷拓科技股份有限公司 DC-DC power conversion circuit allowing multi-mode hybrid control

Also Published As

Publication number Publication date
TW202329595A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
US9614447B2 (en) Control circuits and methods for active-clamp flyback power converters
US11804780B2 (en) Multi-mode control method for active clamp flyback converter
US20150003121A1 (en) Control circuit for active-clamp flyback power converter with programmable switching period
US20060274558A1 (en) Snubber circuit for a power converter
JP2002101655A (en) Switching power supply device
TWI708462B (en) Control method in use of active-clamp flyback power converter
CN112510976B (en) Active clamp flyback converter, controller and control method thereof
CN101795074A (en) Band is used for the power-supply controller of electric of the input voltage compensation of efficient and maximum power output
US6738266B2 (en) Switching power supply unit
JP7378495B2 (en) Power converters and respective control devices with active non-dissipative clamp circuits
CN113054848B (en) Control device and control method of flyback converter
KR20180004675A (en) Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof
US6239989B1 (en) Forward converter with improved reset circuitry
US20240014741A1 (en) Insulated power supply apparatus and semiconductor device for power supply control
TWM628149U (en) DC-DC power conversion circuit allowing multi-mode hybrid control
US20230291317A1 (en) Multi-mode hybrid control dc-dc converting circuit and control method thereof
TWI817321B (en) Multi-mode hybrid control DC-DC power conversion circuit and control method
CN208158436U (en) A kind of synchronous rectification inverse-excitation type DC-DC power conversion equipment
US20220416674A1 (en) Direct electrical power converter
CN108418438B (en) DC-DC converter
CN113541501A (en) Flyback switching power supply and control method and circuit for improving conversion efficiency of flyback switching power supply
EP4243270A1 (en) Multi-mode hybrid control dc-dc converting circuit and control method thereof
CN116526850A (en) DC-DC power supply conversion circuit with multi-mode mixed control and control method
CN216794868U (en) Self-excited active clamping circuit
Vangala et al. Transformer design to achieve soft switching in low power Flyback converters