TWI815531B - Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure - Google Patents
Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure Download PDFInfo
- Publication number
- TWI815531B TWI815531B TW111124579A TW111124579A TWI815531B TW I815531 B TWI815531 B TW I815531B TW 111124579 A TW111124579 A TW 111124579A TW 111124579 A TW111124579 A TW 111124579A TW I815531 B TWI815531 B TW I815531B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- polycrystalline silicon
- insulating
- polysilicon
- layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 257
- 229920005591 polysilicon Polymers 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 69
- 238000009413 insulation Methods 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims description 16
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 230000005684 electric field Effects 0.000 claims description 9
- 238000001459 lithography Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 description 9
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66484—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明有關於一種PIP結構及具有PIP結構之高壓元件與電容元件之製造方法,特別是指一種能夠縮短閘極與分離閘極間的距離之PIP結構及具有PIP結構之高壓元件與電容元件之製造方法。The present invention relates to a PIP structure and a method of manufacturing a high-voltage element and a capacitive element having a PIP structure. In particular, it relates to a PIP structure that can shorten the distance between a gate and a separate gate, and a high-voltage element and a capacitive element having a PIP structure. Manufacturing method.
請參考圖1,其係顯示一習知之高壓元件的剖視示意圖。如圖1所示,傳統之高壓元件10若未來想要進行微縮,會被閘極G1與分離閘極G2間的間隔層116、自對準氧化層108及降低表面電場(RESURF)氧化層104之厚度所限制。再者,分離閘極G2會因為閘極G1與分離閘極G2間之間隔層116、自對準氧化層108及降低表面電場(RESURF, reduced surface field)氧化層104的堆疊而位移或變形,換言之,由於降低表面電場(RESURF)氧化層104之厚度較厚,閘極G1及分離閘極G2間的距離被拉長之狀況明顯,若分離閘極G2太過靠近閘極G1,而擠壓到降低表面電場(RESURF)氧化層104,則會容易造成分離閘極G2傾斜,而使製程控制不易。Please refer to Figure 1, which shows a schematic cross-sectional view of a conventional high-voltage component. As shown in FIG. 1 , if the traditional high-
有鑑於此,本發明提出一種嶄新的PIP結構及具有PIP結構之高壓元件與電容元件之製造方法。In view of this, the present invention proposes a brand-new PIP structure and a manufacturing method of high-voltage components and capacitive components having a PIP structure.
於一觀點中,本發明提供了一種多晶矽-絕緣物-多晶矽(poly silicon-insulator-poly silicon, PIP)結構,包括:一第一多晶矽區,形成於一基板上;一第一絕緣區,形成於該第一多晶矽區之一第一側外,而與該第一多晶矽區在一橫向上鄰接;以及一第二多晶矽區,形成於該第一絕緣區之一第三側外,而使得該第一多晶矽區、該第一絕緣區與該第二多晶矽區於該橫向上依次鄰接;其中該第二多晶矽區以一第一自對準製程步驟而形成於該第一絕緣區之該第三側外;其中該第一絕緣區以一第二自對準製程步驟而形成於該第一多晶矽區之該第一側外。In one aspect, the present invention provides a polysilicon-insulator-polysilicon (PIP) structure, including: a first polysilicon region formed on a substrate; a first insulating region , formed outside a first side of the first polycrystalline silicon region and adjacent to the first polycrystalline silicon region in a lateral direction; and a second polycrystalline silicon region formed on one of the first insulating regions outside the third side, so that the first polycrystalline silicon region, the first insulation region and the second polycrystalline silicon region are sequentially adjacent in the lateral direction; wherein the second polycrystalline silicon region is aligned with a first The first insulating region is formed outside the first side of the first polysilicon region by a second self-aligned process step.
於一實施例中,該PIP結構應用於一高壓元件,其中該高壓元件除了該多晶矽-絕緣區-多晶矽結構外,更包括:一源極,形成於該第一多晶矽區之一第二側外下方該基板中,其中該第一側與該第二側為該第一多晶矽區之相對的兩側;以及一汲極,形成於該第二多晶矽區之一第四側外下方該基板中,其中該第四側為該第二多晶矽區之相對鄰接該第一絕緣區之該第三側的另一側;其中該第一多晶矽區用以形成該高壓元件之一閘極,而控制該高壓元件的導通與不導通操作;其中該第二多晶矽區用以形成該高壓元件之一分離閘極,用以於該高壓元件操作時,調整一漂移區之電場。In one embodiment, the PIP structure is applied to a high-voltage device, wherein the high-voltage device, in addition to the polycrystalline silicon-insulating region-polycrystalline silicon structure, further includes: a source electrode formed in the first polycrystalline silicon region and the second polycrystalline silicon region. In the substrate below the side, the first side and the second side are opposite sides of the first polycrystalline silicon region; and a drain is formed on a fourth side of the second polycrystalline silicon region. In the substrate below, the fourth side is the other side of the second polycrystalline silicon region opposite to the third side adjacent to the first insulating region; wherein the first polycrystalline silicon region is used to form the high voltage A gate of the component is used to control conduction and non-conduction operations of the high-voltage component; wherein the second polysilicon region is used to form a separate gate of the high-voltage component to adjust a drift when the high-voltage component is operating. area’s electric field.
於一實施例中,該PIP結構應用於一電容元件,其中該第一多晶矽區用以形成該電容元件之一第一電極,且該第一絕緣區用以形成該電容元件之一介電層,且該第二多晶矽區用以形成該電容元件之一第二電極。In one embodiment, the PIP structure is applied to a capacitive element, wherein the first polysilicon region is used to form a first electrode of the capacitive element, and the first insulating region is used to form a dielectric of the capacitive element. electrical layer, and the second polycrystalline silicon region is used to form a second electrode of the capacitor element.
於一實施例中,該電容元件更包括:一第二絕緣區,形成於該第一多晶矽區之一第二側外,而與該第一多晶矽區在該橫向上鄰接;以及一第三多晶矽區,形成於該第二絕緣區之一第五側外,而使得該第一多晶矽區、該第二絕緣區與該第三多晶矽區於該橫向上之反向上依次鄰接;其中該第三多晶矽區以該第一自對準製程步驟而形成於該第二絕緣區之該第五側外;其中該第二絕緣區以該第二自對準製程步驟而形成於該第一多晶矽區之該第二側外。In one embodiment, the capacitive element further includes: a second insulating region formed outside a second side of the first polycrystalline silicon region and adjacent to the first polycrystalline silicon region in the lateral direction; and A third polycrystalline silicon region is formed outside a fifth side of the second insulation region, so that the first polycrystalline silicon region, the second insulation region and the third polycrystalline silicon region are in the lateral direction. adjacent in reverse order; wherein the third polysilicon region is formed outside the fifth side of the second insulating region using the first self-aligned process step; wherein the second insulating region is formed using the second self-aligned process step The process steps are formed outside the second side of the first polycrystalline silicon region.
於一實施例中,該閘極之一閘極氧化層之厚度介於80Å與130Å之間。In one embodiment, a gate oxide layer of the gate has a thickness between 80Å and 130Å.
於一實施例中,該高壓元件更包括:一矽化金屬區,形成於該第二多晶矽區之該第四側外,用以作為該第二多晶矽區之電性接點;以及一第三絕緣區,以一第三自我對準製程步驟形成於該第二多晶矽區之外;其中該第三絕緣區用以定義該高壓元件之一汲極延伸區,該汲極延伸區於該橫向上之長度介於200Å與300Å之間。In one embodiment, the high-voltage component further includes: a siliconized metal region formed outside the fourth side of the second polycrystalline silicon region for serving as an electrical contact of the second polycrystalline silicon region; and A third insulating region is formed outside the second polysilicon region in a third self-aligned process step; wherein the third insulating region is used to define a drain extension region of the high-voltage device, and the drain extension region The length of the region in this transverse direction is between 200Å and 300Å.
於另一觀點中,本發明係提供一種具有PIP結構之高壓元件之製造方法,包括:形成一第一多晶矽層於一基板上;形成一犧牲層於該第一多晶矽層上;形成一高度決定層於該犧牲層上;以一第一微影(lithography)製程步驟蝕刻該第一多晶矽層、該犧牲層與該高度決定層,而形成一第一堆疊區,其中該第一堆疊區包括一第一多晶矽區、一犧牲區與一高度決定區;形成一第一絕緣層包覆於該第一堆疊區之外側;形成一第二多晶矽層包覆於該第一絕緣層之外側;以一第一自對準製程步驟形成一第二多晶矽區於該第一絕緣層之外側;以一第二自對準製程步驟形成一第一絕緣區於該第一多晶矽區之一第一側外;以及移除該高度決定區而形成一PIP結構;以一第二微影製程步驟蝕刻該PIP結構之該犧牲區與該第一多晶矽區,而形成一雙閘極結構;形成一源極於該第一多晶矽區之一第二側外下方該基板中,其中該第一側與該第二側為該第一多晶矽區之相對的兩側;以及形成一汲極於該第二多晶矽區之一第四側外下方該基板中,其中該第四側為該第二多晶矽區之相對鄰接該第一絕緣區之一第三側的另一側;其中該第一多晶矽區用以形成該高壓元件之一閘極,而控制該高壓元件的導通與不導通操作;其中該第二多晶矽區用以形成該高壓元件之一分離閘極,用以於該高壓元件操作時,調整一漂移區之電場;其中該雙閘極結構之該第一多晶矽區、該第一絕緣區與該第二多晶矽區於一橫向上依次鄰接。In another aspect, the present invention provides a method for manufacturing a high-voltage component with a PIP structure, including: forming a first polycrystalline silicon layer on a substrate; forming a sacrificial layer on the first polycrystalline silicon layer; Forming a height-determining layer on the sacrificial layer; etching the first polysilicon layer, the sacrificial layer and the height-determining layer with a first lithography process step to form a first stacking region, wherein the The first stacking area includes a first polycrystalline silicon area, a sacrificial area and a height determining area; a first insulating layer is formed to cover the outside of the first stacking area; a second polycrystalline silicon layer is formed to cover the outside of the first stacking area. outside the first insulating layer; using a first self-aligned process step to form a second polysilicon region outside the first insulating layer; using a second self-aligned process step to form a first insulating region outside a first side of the first polycrystalline silicon region; and removing the height-determining region to form a PIP structure; etching the sacrificial region and the first polycrystalline silicon of the PIP structure with a second lithography process step region to form a dual gate structure; forming a source in the substrate outside and below a second side of the first polysilicon region, wherein the first side and the second side are the first polysilicon on opposite sides of the region; and forming a drain in the substrate below a fourth side of the second polycrystalline silicon region, wherein the fourth side is opposite to the second polycrystalline silicon region and adjacent to the first The other side of the third side of the insulating region; wherein the first polysilicon region is used to form a gate of the high-voltage component and control the conduction and non-conduction operations of the high-voltage component; wherein the second polysilicon The region is used to form a separate gate of the high-voltage component, and is used to adjust the electric field of a drift region when the high-voltage component is operated; wherein the first polysilicon region, the first insulating region of the double gate structure and The second polycrystalline silicon regions are successively adjacent in a lateral direction.
於一實施例中,該第二多晶矽區之高度為該第一多晶矽區之高度的1.5倍到2倍。In one embodiment, the height of the second polycrystalline silicon region is 1.5 times to 2 times the height of the first polycrystalline silicon region.
於一實施例中,該具有PIP結構之高壓元件之製造方法更包括:形成一矽化金屬區於該第二多晶矽區之該第四側外,用以作為該第二多晶矽區之電性接點;以及以一第三自我對準製程步驟形成一第三絕緣區於該第二多晶矽區之外;其中該第三絕緣區用以定義該高壓元件之一汲極延伸區,該汲極延伸區於該橫向上之長度介於200Å與300Å之間。In one embodiment, the manufacturing method of the high-voltage component with the PIP structure further includes: forming a siliconized metal region outside the fourth side of the second polycrystalline silicon region to serve as the second polycrystalline silicon region. electrical contacts; and a third self-aligned process step is used to form a third insulating region outside the second polysilicon region; wherein the third insulating region is used to define a drain extension region of the high-voltage component , the length of the drain extension in the lateral direction is between 200Å and 300Å.
於一實施例中,該分離閘極電連接於該閘極或一接地電位。In one embodiment, the split gate is electrically connected to the gate or a ground potential.
於又一觀點中,本發明係提供一種具有PIP結構之電容元件之製造方法,包括:形成一第一多晶矽層於一基板上;形成一犧牲層於該第一多晶矽層上;形成一高度決定層於該犧牲層上;以一第一微影(lithography)製程步驟蝕刻該第一多晶矽層、該犧牲層與該高度決定層,而形成一第一堆疊區,其中該第一堆疊區包括一第一多晶矽區、一犧牲區與一高度決定區;形成一第一絕緣層包覆於該第一堆疊區之外側;形成一第二多晶矽層包覆於該第一絕緣層之外側;以一第一自對準製程步驟形成一第二多晶矽區於該第一絕緣層之外側;以一第二自對準製程步驟形成一第一絕緣區於該第一多晶矽區之一第一側外;以及移除該高度決定區而形成一PIP結構;其中該第一多晶矽區用以形成該電容元件之一第一電極,且該第一絕緣區用以形成該電容元件之一介電層,且該第二多晶矽區用以形成該電容元件之一第二電極。In another aspect, the present invention provides a method for manufacturing a capacitor element with a PIP structure, which includes: forming a first polycrystalline silicon layer on a substrate; forming a sacrificial layer on the first polycrystalline silicon layer; Forming a height-determining layer on the sacrificial layer; etching the first polysilicon layer, the sacrificial layer and the height-determining layer with a first lithography process step to form a first stacking region, wherein the The first stacking area includes a first polycrystalline silicon area, a sacrificial area and a height determining area; a first insulating layer is formed to cover the outside of the first stacking area; a second polycrystalline silicon layer is formed to cover the outside of the first stacking area. outside the first insulating layer; using a first self-aligned process step to form a second polysilicon region outside the first insulating layer; using a second self-aligned process step to form a first insulating region outside a first side of the first polycrystalline silicon region; and removing the height-determining region to form a PIP structure; wherein the first polycrystalline silicon region is used to form a first electrode of the capacitor element, and the third An insulating region is used to form a dielectric layer of the capacitive element, and the second polysilicon region is used to form a second electrode of the capacitive element.
於一實施例中,該具有PIP結構之電容元件之製造方法更包括:形成一第二絕緣區於該第一多晶矽區之一第二側外,而與該第一多晶矽區在該橫向上鄰接;以及形成一第三多晶矽區於該第二絕緣區之一第五側外,而使得該第一多晶矽區、該第二絕緣區與該第三多晶矽區於該橫向上之反向上依次鄰接;其中該第三多晶矽區以該第一自對準製程步驟而形成於該第二絕緣區之該第五側外;其中該第二絕緣區以該第二自對準製程步驟而形成於該第一多晶矽區之該第二側外。In one embodiment, the manufacturing method of the capacitor element with the PIP structure further includes: forming a second insulating region outside a second side of the first polycrystalline silicon region and in contact with the first polycrystalline silicon region. the lateral adjoining; and forming a third polycrystalline silicon region outside a fifth side of the second insulation region, such that the first polycrystalline silicon region, the second insulation region and the third polycrystalline silicon region adjacent in the opposite direction in the lateral direction; wherein the third polysilicon region is formed outside the fifth side of the second insulating region by the first self-aligned process step; wherein the second insulating region is formed by the first self-aligned process step; A second self-aligned process step is formed outside the second side of the first polysilicon region.
於一實施例中,該第二電極之高度為該第一電極之高度的1.5倍到2倍。In one embodiment, the height of the second electrode is 1.5 times to 2 times the height of the first electrode.
於一實施例中,該第一絕緣區由一高溫氧化(high temperature oxidation,HTO)製程步驟或一快速熱氧化(rapid thermal oxidation, RTO)製程步驟所形成。In one embodiment, the first insulating region is formed by a high temperature oxidation (HTO) process step or a rapid thermal oxidation (RTO) process step.
於一實施例中,形成該第一絕緣層使用之材質包括四乙氧基矽烷(TEOS, tetraethoxysilane)。In one embodiment, the material used to form the first insulating layer includes tetraethoxysilane (TEOS).
於一實施例中,該第一絕緣區於該橫向上之厚度為400Å與900Å之間。In one embodiment, the thickness of the first insulating region in the lateral direction is between 400Å and 900Å.
本發明之優點係為本發明藉由PIP結構形成高壓元件及電容元件,可達到使分離閘極不會因為絕緣區、間隔層的層層堆疊而導致變形或位移,且使閘極與分離閘極間的距離僅與第一絕緣區之橫向厚度相關。The advantage of the present invention is that the high-voltage components and capacitive components are formed through a PIP structure, so that the separation gate will not be deformed or displaced due to the layer-by-layer stacking of insulating areas and spacers, and the gate and separation gate The distance between the poles is only related to the lateral thickness of the first insulating region.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。It will be easier to understand the purpose, technical content, characteristics and achieved effects of the present invention through detailed description of specific embodiments below.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。本發明中的圖式均屬示意,主要意在表示製程步驟以及各層之間之上下次序關係,至於形狀、厚度與寬度則並未依照比例繪製。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the preferred embodiments with reference to the drawings. The drawings in the present invention are schematic and are mainly intended to represent the process steps and the sequential relationship between each layer. The shape, thickness and width are not drawn to scale.
請參考圖2,其根據本發明之一實施例顯示具有PIP結構之高壓元件的剖視示意圖。如圖2所示,本發明之具有PIP(多晶矽-絕緣物-多晶矽, poly silicon-insulator-poly silicon)結構之高壓元件20包括第一多晶矽區202、第一絕緣區203、第二多晶矽區204、矽化金屬區207、第三絕緣區208、源極218及汲極219。第一多晶矽區202形成於基板201上。基板201例如但不限於為一P型或N型的半導體基板。形成基板201的方式,為本領域中具有通常知識者所熟知,在此不予贅述。第一絕緣區203形成於第一多晶矽區202之第一側209外,而與第一多晶矽區202在橫向上鄰接。第二多晶矽區204形成於第一絕緣區203之第三側211外,而使得第一多晶矽區202、第一絕緣區203與第二多晶矽區204於橫向上依次鄰接。Please refer to FIG. 2 , which shows a schematic cross-sectional view of a high-voltage component with a PIP structure according to an embodiment of the present invention. As shown in Figure 2, the high-
於一實施例中,第二多晶矽區204以第一自對準製程步驟而形成於第一絕緣區203之第三側211外。於一實施例中,第一絕緣區203以第二自對準製程步驟而形成於第一多晶矽區202之第一側209外。矽化金屬區207形成於第二多晶矽區204之第四側212外,用以作為第二多晶矽區204之電性接點。第三絕緣區208以第三自我對準製程步驟形成於第二多晶矽區204之外。第三絕緣區208用以定義高壓元件20之汲極延伸區。於一實施例中,汲極延伸區於橫向上之長度介於200Å與300Å之間。源極218形成於第一多晶矽區202之第二側210外下方基板201中。第一側209與第二側210為第一多晶矽區202之相對的兩側。汲極219形成於第二多晶矽區204之第四側212外下方基板201中。第四側212為第二多晶矽區204之相對鄰接第一絕緣區203之第三側211的另一側。第一多晶矽區202用以形成高壓元件20之閘極,而控制高壓元件20的導通與不導通操作,而第二多晶矽區204用以形成高壓元件20之分離閘極,用以於高壓元件20操作時調整漂移區之電場。間隔層216分別形成並連接於第一絕緣區203之第六側221、第二多晶矽區204之第四側212及第一多晶矽區202之第二側210外。In one embodiment, the
於一實施例中,第二多晶矽區204之高度為第一多晶矽區202之高度的1.5倍到2倍。於一實施例中,第一絕緣區203由高溫氧化(high temperature oxidation,HTO)製程步驟或快速熱氧化(rapid thermal oxidation, RTO)製程步驟所形成。於一實施例中,形成第一絕緣區203使用之材質包括四乙氧基矽烷(TEOS, tetraethoxysilane)。於一實施例中,第一絕緣區203於橫向上之厚度例如為400Å與900Å之間。於一實施例中,閘極之閘極氧化層(例如第一多晶矽區202正下方的第一絕緣區203)之厚度介於80Å與130Å之間。分離閘極(例如第二多晶矽區204)電連接於閘極(例如第一多晶矽區202)或接地電位。In one embodiment, the height of the second
圖3係根據本發明之另一實施例顯示具有PIP結構之電容元件的剖視示意圖。如圖3所示,本發明之具有PIP(多晶矽-絕緣物-多晶矽, poly silicon-insulator-poly silicon)結構之電容元件30包括第一多晶矽區302、第一絕緣區303、第二多晶矽區304、第二絕緣區305、第三多晶矽區306及矽化金屬區307。第一多晶矽區302形成於基板301上。第一絕緣區303形成於第一多晶矽區302之第一側309外,而與第一多晶矽區302在橫向上鄰接。第二多晶矽區304形成於第一絕緣區303之第三側311外,而使得第一多晶矽區302、第一絕緣區303與第二多晶矽區304於橫向上依次鄰接。於一實施例中,第二多晶矽區304以第一自對準製程步驟而形成於第一絕緣區303之第三側311外。於一實施例中,第一絕緣區303以第二自對準製程步驟而形成於第一多晶矽區302之第一側309外。FIG. 3 is a schematic cross-sectional view showing a capacitive element with a PIP structure according to another embodiment of the present invention. As shown in Figure 3, the
第一多晶矽區302用以形成電容元件30之第一電極,且第一絕緣區303用以形成電容元件30之介電層,且第二多晶矽區304用以形成電容元件30之第二電極。第二絕緣區305形成於第一多晶矽區302之第二側310外,而與第一多晶矽區302在橫向上鄰接。第三多晶矽區306形成於第二絕緣區305之第五側313外,而使得第一多晶矽區302、第二絕緣區305與第三多晶矽區306於橫向上之反向上依次鄰接。於一實施例中,第三多晶矽區306以第一自對準製程步驟而形成於第二絕緣區305之第五側313外。於一實施例中,第二絕緣區305以第二自對準製程步驟而形成於第一多晶矽區302之第二側310外。The first
矽化金屬區307分別形成於第二多晶矽區304之第四側312外及第三多晶矽區306之第八側323外,分別用以作為第二多晶矽區304及第三多晶矽區306之電性接點。間隔層316分別形成於第一絕緣區303之第六側321、第二多晶矽區304之第四側312、第二絕緣區305之第七側322及第三多晶矽區306之第八側323上。於一較佳實施例中,電容元件30係形成於一絕緣層上,絕緣層例如但不限於淺溝槽隔絕(shallow trench isolation, STI)結構317。於一實施例中,第二多晶矽區304及第三多晶矽區306之高度為第一多晶矽區302之高度的1.5倍到2倍。於一實施例中,第一絕緣區303及第二絕緣區305由高溫氧化(high temperature oxidation,HTO)製程步驟或快速熱氧化(rapid thermal oxidation, RTO)製程步驟所形成。於一實施例中,形成第一絕緣區303及第二絕緣區305使用之材質包括四乙氧基矽烷(TEOS, tetraethoxysilane)。The
於一實施例中,第一絕緣區303及第二絕緣區305於橫向上之厚度例如為400Å與900Å之間。於一實施例中,電容元件30可從第一多晶矽區302之中間切開而形成兩個電容,此兩個電容可加以並聯成一個電容。於一實施例中,當上述兩個電容並聯時,第二多晶矽區304之矽化金屬區307可與第三多晶矽區306之矽化金屬區307電連接,且被切開成兩部分的第一多晶矽區302可彼此電連接。In one embodiment, the thickness of the first
圖4A~4N係根據本發明之實施例顯示具有PIP結構之高壓元件及電容元件之製造方法的剖視示意圖。如圖4A所示,首先,形成一絕緣層例如但不限於淺溝槽隔絕(shallow trench isolation, STI)結構417於基板401上。接著,如圖4B所示,例如但不限於以沉積製程步驟形成第一多晶矽層402’於基板401上。之後,如圖4B所示,例如但不限於以沉積製程步驟形成犧牲層414’於第一多晶矽層402’上。接續,如圖4B所示,例如但不限於以沉積製程步驟形成高度決定層415’於犧牲層414’上。4A to 4N are schematic cross-sectional views showing a method of manufacturing a high-voltage component and a capacitive component with a PIP structure according to an embodiment of the present invention. As shown in FIG. 4A , first, an insulating layer such as but not limited to a shallow trench isolation (STI)
之後,如圖4C及4D所示,利用遮罩420以第一微影(lithography)製程步驟蝕刻第一多晶矽層402’、犧牲層414’與高度決定層415’,而形成第一堆疊區,其中第一堆疊區包括第一多晶矽區402、犧牲區414與高度決定區415。接著,如圖4E所示,例如但不限於以沉積製程步驟形成第一絕緣層403’包覆於第一堆疊區之外側。接續,如圖4E所示,例如但不限於以沉積製程步驟形成第二多晶矽層404’包覆於第一絕緣層403’之外側。之後,如圖4F、4G及4H所示,以第一自對準製程步驟形成第二多晶矽區404於第一絕緣層403’之外側(即第三側411),且形成第三多晶矽區406於第一絕緣層403’之第五側413外,而使得第一多晶矽區402、第二絕緣區405與第三多晶矽區406於橫向上之反向上依次鄰接。Thereafter, as shown in FIGS. 4C and 4D , the first
接續,如圖4H所示,以第二自對準製程步驟形成第一絕緣區403於第一多晶矽區402之第一側409外,且形成第二絕緣區405於第一多晶矽區402之第二側410外,而使第二絕緣區405與第一多晶矽區402在橫向上鄰接。接著,如圖4I所示,例如以濕式蝕刻製程步驟移除高度決定區415而形成PIP結構。之後,如圖4J所示,利用遮罩(未圖示)以第二微影製程步驟蝕刻高壓元件20之PIP結構之犧牲區414與第一多晶矽區402,而形成雙閘極結構。接著,如圖4K所示,分別形成間隔層416於第一絕緣區403之第六側421、第二多晶矽區404之第四側412、第一多晶矽區402之第二側410、第二絕緣區405之第七側422及第三多晶矽區406之第八側423上。Continuing, as shown in FIG. 4H , a second self-aligned process step is used to form a
接續,如圖4L所示,形成源極418於第一多晶矽區402之第二側410外下方基板401中,其中第一側409與第二側410為第一多晶矽區402之相對的兩側。如圖4L所示,形成汲極419於第二多晶矽區404之第四側412外下方基板401中,其中第四側412為第二多晶矽區404之相對鄰接第一絕緣區403之第三側411的另一側。形成源極418與汲極419之步驟,例如但不限於利用由微影製程步驟形成光阻層為遮罩,視高壓元件20為N型元件或P型元件,將N型或P型雜質透過離子植入製程步驟,以加速離子的形式,分別摻雜至基板401中,以形成源極418與汲極419。第一多晶矽區402用以形成高壓元件20之閘極,而控制高壓元件20的導通與不導通操作,而第二多晶矽區404用以形成高壓元件20之分離閘極,用以於高壓元件20操作時,調整漂移區之電場。雙閘極結構之第一多晶矽區402、第一絕緣區403與第二多晶矽區404於橫向上依次鄰接。Continuing, as shown in FIG. 4L , the
於一實施例中,第二多晶矽區404及/或第三多晶矽區406之高度為第一多晶矽區402之高度的1.5倍到2倍。於一實施例中,第一絕緣層403’由高溫氧化(high temperature oxidation,HTO)製程步驟或快速熱氧化(rapid thermal oxidation, RTO)製程步驟所形成。於一實施例中,形成第一絕緣層403’使用之材質包括四乙氧基矽烷(TEOS, tetraethoxysilane)。於一實施例中,第一絕緣區403及/或第二絕緣區405於橫向上之厚度為400Å與900Å之間。In one embodiment, the height of the second
接著,如圖4M所示,以第三自我對準製程步驟形成第三絕緣區408於第二多晶矽區404之外。第三絕緣區408用以定義高壓元件20之汲極延伸區。於一實施例中,汲極延伸區於橫向上之長度介於200Å與300Å之間。之後,如圖4N所示,分別形成矽化金屬區407於第二多晶矽區404之第四側412外及第三多晶矽區406之第八側423外,用以分別作為第二多晶矽區404及第三多晶矽區406之電性接點。高壓元件20之分離閘極(例如第二多晶矽區404)電連接於閘極(例如第一多晶矽區402)或接地電位。如圖4N所示,第一多晶矽區402用以形成電容元件30之第一電極,且第一絕緣區403用以形成電容元件30之介電層,且第二多晶矽區404用以形成電容元件30之第二電極。Next, as shown in FIG. 4M , a third self-aligned process step is used to form a
如上所述,本發明藉由PIP結構形成高壓元件及電容元件,可達到使分離閘極不會因為絕緣區、間隔層的層層堆疊而導致變形或位移,且使閘極與分離閘極間的距離僅與第一絕緣區之橫向厚度相關。As mentioned above, the present invention uses a PIP structure to form high-voltage components and capacitive components, so that the separation gate will not be deformed or displaced due to the layer-by-layer stacking of insulation regions and spacers, and the gap between the gate and the separation gate will be reduced. The distance is only related to the lateral thickness of the first insulating region.
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,在不影響元件主要的特性下,可加入其他製程步驟或結構,如輕摻雜汲極區等;又如,微影技術並不限於光罩技術,亦可包含電子束微影技術。凡此種種,皆可根據本發明的教示類推而得。此外,所說明之各個實施例,並不限於單獨應用,亦可以組合應用,例如但不限於將兩實施例併用。因此,本發明的範圍應涵蓋上述及其他所有等效變化。此外,本發明的任一實施型態不必須達成所有的目的或優點,因此,請求專利範圍任一項也不應以此為限。The present invention has been described above with reference to the preferred embodiments. However, the above description is only to make it easy for those familiar with the art to understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. Various equivalent changes may be devised by those skilled in the art within the same spirit of the present invention. For example, without affecting the main characteristics of the device, other process steps or structures can be added, such as lightly doped drain regions; for another example, lithography technology is not limited to photomask technology, but can also include electron beam lithography technology. All these can be derived by analogy based on the teachings of the present invention. In addition, each of the described embodiments is not limited to being used alone, but can also be used in combination, such as but not limited to using two embodiments together. Accordingly, the scope of the present invention is intended to cover the above and all other equivalent changes. In addition, any implementation form of the present invention may not necessarily achieve all the objectives or advantages, and therefore, the scope of the claimed patent should not be limited by this.
10, 20: 高壓元件
101, 201, 301, 401: 基板
104: 降低表面電場氧化層
108: 自對準氧化層
116, 216, 316, 416: 間隔層
202, 302, 402: 第一多晶矽區
203, 303, 403: 第一絕緣區
204, 304, 404: 第二多晶矽區
207, 307, 407: 矽化金屬區
208, 408: 第三絕緣區
209, 309, 409: 第一側
210, 310, 410: 第二側
211, 311, 411: 第三側
212, 312, 412: 第四側
218, 418: 源極
219, 419: 汲極
221, 321, 421: 第六側
30: 電容元件
305, 405: 第二絕緣區
306, 406: 第三多晶矽區
313, 413: 第五側
317, 417: 淺溝槽隔絕結構
322, 422: 第七側
323, 423: 第八側
402’: 第一多晶矽層
403’: 第一絕緣層
404’ 第二多晶矽層
414: 犧牲區
414’: 犧牲層
415: 高度決定區
415’: 高度決定層
420: 遮罩
G1: 閘極
G2: 分離閘極
10, 20:
圖1係顯示一習知之高壓元件的剖視示意圖。Figure 1 is a schematic cross-sectional view of a conventional high-voltage component.
圖2係根據本發明之一實施例顯示具有PIP結構之高壓元件的剖視示意圖。FIG. 2 is a schematic cross-sectional view showing a high-voltage component with a PIP structure according to an embodiment of the present invention.
圖3係根據本發明之另一實施例顯示具有PIP結構之電容元件的剖視示意圖。FIG. 3 is a schematic cross-sectional view showing a capacitive element with a PIP structure according to another embodiment of the present invention.
圖4A~4N係根據本發明之實施例顯示具有PIP結構之高壓元件及電容元件之製造方法的剖視示意圖。4A to 4N are schematic cross-sectional views showing a method of manufacturing a high-voltage component and a capacitive component with a PIP structure according to an embodiment of the present invention.
20: 高壓元件 201: 基板 202: 第一多晶矽區 203: 第一絕緣區 204: 第二多晶矽區 207: 矽化金屬區 208: 第三絕緣區 209: 第一側 210: 第二側 211: 第三側 212: 第四側 216: 間隔層 218: 源極 219: 汲極 221: 第六側 20: High voltage components 201: Substrate 202: First polysilicon area 203: First insulation zone 204: Second polysilicon area 207: Siliconized metal area 208: Third insulation zone 209: First side 210: Second side 211: Third side 212: Fourth side 216: Spacer layer 218: Source 219: Jiji 221: Sixth Side
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/933,126 US20230238242A1 (en) | 2022-01-25 | 2022-09-19 | Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263302911P | 2022-01-25 | 2022-01-25 | |
US63/302911 | 2022-01-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202332057A TW202332057A (en) | 2023-08-01 |
TWI815531B true TWI815531B (en) | 2023-09-11 |
Family
ID=87451179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111124579A TWI815531B (en) | 2022-01-25 | 2022-06-30 | Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116544218A (en) |
TW (1) | TWI815531B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210126089A1 (en) * | 2019-10-25 | 2021-04-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective polysilicon growth for deep trench polysilicon isolation structure |
-
2022
- 2022-06-30 TW TW111124579A patent/TWI815531B/en active
- 2022-07-08 CN CN202210799079.3A patent/CN116544218A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210126089A1 (en) * | 2019-10-25 | 2021-04-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective polysilicon growth for deep trench polysilicon isolation structure |
Also Published As
Publication number | Publication date |
---|---|
TW202332057A (en) | 2023-08-01 |
CN116544218A (en) | 2023-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7923777B2 (en) | Power semiconductor device and method for manufacturing the same | |
TWI656642B (en) | Lateral double-diffused metal oxide semiconductor device and method of manufacturing same | |
CN109801965B (en) | Transistor with double-layer spacer and forming method thereof | |
KR19980018751A (en) | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME | |
TWI644441B (en) | High voltage device and manufacturing method thereof | |
TW201519446A (en) | Lateral double diffused metal oxide semiconductor device and manufacturing method thereof | |
TWI770452B (en) | High voltage device and manufacturing method thereof | |
JP5183959B2 (en) | Method for manufacturing MOSFET type semiconductor device | |
TWI815531B (en) | Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure | |
JP6103453B2 (en) | Semiconductor device and manufacturing method thereof | |
TW202228212A (en) | High voltage device, high voltage control device and manufacturing methods thereof | |
TWI704606B (en) | Trench power semiconductor device and manufacturing method thereof | |
TW202310025A (en) | Power device and manufacturing method thereof | |
US8049274B2 (en) | Semiconductor integrated circuit and method of manufacturing the same | |
TWI844035B (en) | Manufacturing method of integrated structure of semiconductor devices having split gate | |
US20230238242A1 (en) | Pip structure and manufacturing methods of high voltage device and capacitor device having pip structure | |
TWI821940B (en) | Integration manufacturing method of high voltage device and low voltage device | |
TWI841913B (en) | High voltage device and manufacturing method thereof | |
TWI736300B (en) | Radio frequency integrated circuit and method of fabricating the same | |
TW202324746A (en) | Nmos half-bridge power device and manufacturing method thereof | |
TWI811036B (en) | Integrated structure of semiconductor devices having shared contact plug and manufacturing method thereof | |
TWI668802B (en) | Metal oxide semiconductor (mos) device and manufacturing method thereof | |
TW202324612A (en) | High voltage cmos device and manufacturing method thereof | |
US7482228B1 (en) | Method of forming a MOS transistor with a litho-less gate | |
JP2003008018A (en) | Semiconductor device and its manufacturing method |