TWI770452B - High voltage device and manufacturing method thereof - Google Patents
High voltage device and manufacturing method thereof Download PDFInfo
- Publication number
- TWI770452B TWI770452B TW108146520A TW108146520A TWI770452B TW I770452 B TWI770452 B TW I770452B TW 108146520 A TW108146520 A TW 108146520A TW 108146520 A TW108146520 A TW 108146520A TW I770452 B TWI770452 B TW I770452B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- gate
- drift
- sub
- conductivity type
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000004065 semiconductor Substances 0.000 claims abstract description 188
- 210000000746 body region Anatomy 0.000 claims abstract description 106
- 239000000758 substrate Substances 0.000 claims description 87
- 239000012535 impurity Substances 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 47
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 44
- 229920005591 polysilicon Polymers 0.000 claims description 44
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 30
- 239000010703 silicon Substances 0.000 claims description 30
- 230000003647 oxidation Effects 0.000 claims description 27
- 238000007254 oxidation reaction Methods 0.000 claims description 27
- 238000005229 chemical vapour deposition Methods 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 19
- 238000009413 insulation Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 2
- 238000001947 vapour-phase growth Methods 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- 229910021332 silicide Inorganic materials 0.000 description 16
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 16
- 239000007787 solid Substances 0.000 description 15
- 239000004020 conductor Substances 0.000 description 12
- 238000005468 ion implantation Methods 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 230000001052 transient effect Effects 0.000 description 11
- 125000006850 spacer group Chemical group 0.000 description 10
- 239000007943 implant Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
本發明有關於一種高壓元件及其製造方法,特別是指一種能夠提高導通操作時之暫態響應效能的高壓元件及其製造方法。 The present invention relates to a high-voltage component and a manufacturing method thereof, in particular to a high-voltage component and a manufacturing method thereof capable of improving the transient response performance during turn-on operation.
第1A與1B圖分別顯示一種習知高壓元件100的剖視示意圖與上視示意圖。所謂的高壓元件,在本文中,係指於正常操作時,施加於汲極的電壓高於5V的半導體元件。一般而言,以第1A與1B圖所示的高壓元件100為例,高壓元件100的汲極19與本體區16間,具有漂移區12a(如第1A圖中虛線範圍所示意),將汲極19與本體區16分隔,且漂移區12a之橫向長度根據正常操作時所需承受的操作電壓而調整。如第1A與1B圖所示,高壓元件100包含:井區12、絕緣結構13、漂移氧化區14、本體區16、閘極17、源極18、與汲極19。其中,井區12的導電型為N型,形成於基板11上,絕緣結構13為區域氧化(local oxidation of silicon,LOCOS)結構,以定義操作區13a,作為高壓元件100操作時主要的作用區。操作區13a的範圍由第1B圖中,粗黑虛線框所示意。如第1A圖所示,部分的閘極17於漂移區12a上,覆蓋部分漂移氧化區14。一般而言,漂移氧化區14的厚度,約在2,500到15,000埃(Å)之間,而閘極17中的閘極氧化層173的厚度,約在20Å至500Å之間。漂移氧化區14的厚度高出閘極氧化層173的厚度甚多,至少在5倍以上。採用較厚的漂移氧化區14,可於高壓元件100不導通操作時,阻擋高電位,使相對較高的電場落在較厚的漂移氧化區14中,以提高高壓元件100的不導通崩潰防護
電壓。然而,較厚的漂移氧化區14雖然使高壓元件100的耐壓(withstand voltage)提高(不導通崩潰防護電壓提高),但高壓元件100的導通電阻與閘極-汲極電容也相對提高,造成操作的速度降低,而降低元件的性能。
1A and 1B respectively show a schematic cross-sectional view and a schematic top view of a conventional high-
有鑑於此,本發明提出一種能夠在不影響漂移氧化區厚度的情況下,提高操作速度,改善暫態響應效能的高壓元件及其製造方法。 In view of this, the present invention provides a high-voltage device and a manufacturing method thereof that can increase the operating speed and improve the transient response performance without affecting the thickness of the drift oxide region.
就其中一觀點言,本發明提供了一種高壓元件,包含:一半導體層,形成於一基板上,該半導體層於一垂直方向上,具有相對之一上表面與一下表面;一漂移氧化區,形成於該上表面上並連接於該上表面,且位於一操作區中之一漂移區上並連接於該漂移區;一井區,具有一第一導電型,形成於該半導體層之該操作區中,且於該垂直方向上,該井區位於上表面下並連接於該上表面;一本體區,具有一第二導電型,形成於該操作區的該井區中,且於該垂直方向上,該本體區位於該上表面下並連接於該上表面;一閘極,形成於該半導體層之該上表面上的該操作區中,部分該本體區位於該閘極正下方並連接於該閘極,以提供該高壓元件在一導通操作中之一反轉電流通道;至少一子閘極,形成於該漂移氧化區上,且於至少部分該漂移區正上方,該子閘極與該閘極平行排列,且該子閘極位於該漂移氧化區上且連接該漂移氧化區;以及一源極與一汲極,具有該第一導電型,該源極與該汲極形成於該上表面下並連接於該上表面之該操作區中,且該源極與該汲極分別位於該閘極之外部下方之該本體區中與遠離該本體區側之該井區中,且於一通道方向上,該漂移區位於該汲極與該本體區之間,靠近該上表面之該井區中,用以作為該高壓元件在該導通操作中之一漂移電流通道,且由上視圖視之,該子閘極介於該閘極與該汲極之間,該源極與該汲極位 於該上表面下並連接於該上表面;其中,該閘極之導電層具有該第一導電型,且該子閘極之導電層具有該第二導電型或為一純質半導體結構。 In one aspect, the present invention provides a high-voltage device, comprising: a semiconductor layer formed on a substrate, the semiconductor layer having an upper surface and a lower surface opposite to each other in a vertical direction; a drift oxide region, formed on the upper surface and connected to the upper surface, and located on a drift region in an operation region and connected to the drift region; a well region, having a first conductivity type, formed in the operation of the semiconductor layer In the region, and in the vertical direction, the well region is located under the upper surface and is connected to the upper surface; a body region, having a second conductivity type, is formed in the well region of the operation region, and is in the vertical direction direction, the body region is located under the upper surface and connected to the upper surface; a gate is formed in the operating region on the upper surface of the semiconductor layer, and part of the body region is located directly below the gate and connected at the gate to provide an inversion current path of the high-voltage element during a conduction operation; at least one sub-gate is formed on the drift oxide region, and at least part of the drift region is directly above the sub-gate The gate electrode is arranged in parallel with the gate electrode, and the sub-gate electrode is located on the drift oxide region and is connected to the drift oxide region; and a source electrode and a drain electrode have the first conductivity type, and the source electrode and the drain electrode are formed in The upper surface is below and connected to the operating region of the upper surface, and the source electrode and the drain electrode are respectively located in the body region below the outer portion of the gate electrode and in the well region away from the body region side, and In a channel direction, the drift region is located between the drain electrode and the body region, in the well region near the upper surface, and is used as a drift current channel of the high-voltage element in the conduction operation, and from the top Viewed from the view, the sub-gate is between the gate and the drain, and the source and the drain are at the same Under the upper surface and connected to the upper surface; wherein, the conductive layer of the gate electrode has the first conductivity type, and the conductive layer of the sub-gate electrode has the second conductivity type or is a pure semiconductor structure.
就另一觀點言,本發明提供了一種高壓元件製造方法,包含:形成一半導體層於一基板上,該半導體層具有相對之一上表面與一下表面;形成一絕緣結構於該上表面上並連接於該上表面,用以定義一操作區;形成一漂移氧化區於該上表面上並連接於該上表面,且位於該操作區中之一漂移區上並連接於該漂移區;形成一井區於該半導體層之該操作區中,且該井區位於上表面下方並連接於該上表面,該井區具有一第一導電型;形成一本體區於該操作區的該井區中,且該本體區位於上表面下方並連接於該上表面,該本體區具有一第二導電型;形成一閘極於該半導體層之該上表面上的該操作區中,部分該本體區位於該閘極正下方並連接於該閘極,以提供該高壓元件在一導通操作中之一反轉電流通道;形成至少一子閘極於該漂移氧化區上,且於至少部分該漂移區正上方,該子閘極與該閘極平行排列,該子閘極位於該漂移氧化區上且連接該漂移氧化區;以及形成一源極與一汲極於該上表面下並連接於該上表面之該操作區中,該源極與該汲極具有該第一導電型,且分別位於該閘極之外部下方之該本體區中與遠離該本體區側之該井區中,且於一通道方向上,該漂移區位於該汲極與該本體區間,靠近該上表面之該井區中,用以作為該高壓元件在該導通操作中之一漂移電流通道,且由上視圖視之,該子閘極介於該閘極與該汲極之間,且該源極與該汲極位於該上表面下並連接於該上表面;其中,該閘極之導電層具有該第一導電型,且該子閘極之導電層具有該第二導電型或為一純質半導體結構。 From another point of view, the present invention provides a method for manufacturing a high-voltage device, comprising: forming a semiconductor layer on a substrate, the semiconductor layer having an opposite upper surface and a lower surface; forming an insulating structure on the upper surface and connected to the upper surface to define an operation region; forming a drift oxide region on the upper surface and connected to the upper surface, and located on a drift region in the operation region and connected to the drift region; forming a drift region A well area is in the operation area of the semiconductor layer, and the well area is located below the upper surface and connected to the upper surface, the well area has a first conductivity type; a body area is formed in the well area of the operation area , and the body region is located below and connected to the upper surface, the body region has a second conductivity type; a gate is formed in the operation region on the upper surface of the semiconductor layer, and part of the body region is located in The gate is directly below and connected to the gate to provide an inversion current path for the high voltage element in a conducting operation; at least one sub-gate is formed on the drift oxide region, and at least part of the drift region is positive Above, the sub-gate is arranged in parallel with the gate, the sub-gate is located on the drift oxide region and connected to the drift oxide region; and a source electrode and a drain electrode are formed under the upper surface and connected to the upper surface In the operation region, the source electrode and the drain electrode have the first conductivity type, and are respectively located in the body region below the outer portion of the gate electrode and in the well region away from the body region side, and in a channel In the direction, the drift region is located between the drain electrode and the body, in the well region near the upper surface, and is used as a drift current channel of the high-voltage element during the conduction operation, and viewed from the top view, the The sub-gate is between the gate and the drain, and the source and the drain are located under the upper surface and are connected to the upper surface; wherein, the conductive layer of the gate has the first conductivity type, And the conductive layer of the sub-gate has the second conductivity type or is a pure semiconductor structure.
就另一觀點言,本發明提供了一種高壓元件,包含:一半導體層,形成於一基板上,該半導體層具有相對之一上表面與一下表面;一漂移氧化區,形成於該上表面上並連接於該上表面,且位於一操作區中之一漂移區上並連接 於該漂移區;一漂移井區,具有一第一導電型,形成於該上表面下該半導體層之該操作區中,且該漂移井區位於上表面下並連接於該上表面;一通道井區,具有該第二導電型,形成於該上表面下之該操作區中,該通道井區與該漂移井區在一通道方向上鄰接;一埋層,具有一第一導電型,形成於該通道井區下方且與該通道井區連接,且該埋層於該操作區內,完全覆蓋該通道井區;一閘極,形成於該半導體層之該上表面上的該操作區中,部分該通道井區位於該閘極正下方並連接於該閘極,用以提供該高壓元件在一導通操作中之一反轉電流通道;至少一子閘極,形成於該漂移氧化區上,且於至少部分該漂移區正上方,該子閘極與該閘極平行排列,且該子閘極位於該漂移氧化區上且連接該漂移氧化區;以及一源極與一汲極,具有該第一導電型,且該源極與該汲極形成於該上表面下並連接於該上表面之該操作區中,且該源極與該汲極分別位於該閘極之外部下方之該通道井區中與遠離該通道井區側之該漂移井區中,且於一通道方向上,該漂移區位於該汲極與該通道井區之間,靠近該上表面之該漂移井區中,用以作為該高壓元件在該導通操作中之一漂移電流通道,且由上視圖視之,該子閘極介於該閘極與該汲極之間;其中,該閘極之導電層具有該第一導電型,且該子閘極之導電層具有該第二導電型或為一純質半導體結構。 In another aspect, the present invention provides a high-voltage device, comprising: a semiconductor layer formed on a substrate, the semiconductor layer having an opposite upper surface and a lower surface; a drift oxide region formed on the upper surface and connected to the upper surface, and located on and connected to a drift region in an operating region in the drift region; a drift well region, having a first conductivity type, formed in the operation region of the semiconductor layer under the upper surface, and the drift well region is located under the upper surface and connected to the upper surface; a channel A well region, having the second conductivity type, is formed in the operating region below the upper surface, the channel well region and the drift well region adjoining in a channel direction; a buried layer, having a first conductivity type, is formed below the channel well region and connected to the channel well region, and the buried layer is in the operating region, completely covering the channel well region; a gate electrode is formed in the operating region on the upper surface of the semiconductor layer , a part of the channel well area is located directly below the gate electrode and is connected to the gate electrode to provide an inversion current channel for the high-voltage element in a conducting operation; at least one sub-gate is formed on the drift oxide region , and directly above at least part of the drift region, the sub-gate is arranged in parallel with the gate, and the sub-gate is located on the drift oxide region and connected to the drift oxide region; and a source electrode and a drain electrode, with the first conductivity type, and the source electrode and the drain electrode are formed under the upper surface and connected in the operation region of the upper surface, and the source electrode and the drain electrode are respectively located at the outer portion of the gate electrode. In the channel well region and in the drift well region on the side away from the channel well region, and in a channel direction, the drift region is located between the drain electrode and the channel well region, in the drift well region near the upper surface , used as a drift current channel of the high-voltage element during the conduction operation, and viewed from the top view, the sub-gate is between the gate and the drain; wherein, the conductive layer of the gate has The first conductivity type, and the conductive layer of the sub-gate has the second conductivity type or a pure semiconductor structure.
就另一觀點言,本發明提供了一種高壓元件製造方法,包含:形成一半導體層於一基板上,該半導體層具有相對之一上表面與一下表面;形成一漂移氧化區於該上表面上並連接於該上表面,且位於該操作區中之一漂移區上並連接於該漂移區;形成一漂移井區於該上表面下該半導體層之該操作區中,且該漂移井區位於上表面下並連接於該上表面,該漂移井區具有一第一導電型;形成一通道井區於該上表面下之該操作區中,該通道井區具有該第二導電型,且與該漂移井區在一通道方向上鄰接;形成一埋層於該通道井區下方且與該通道井 區連接,且該埋層於該操作區內,完全覆蓋該通道井區,該埋層具有該第一導電型;形成一閘極於該半導體層之該上表面上的該操作區中,部分該通道井區位於該閘極正下方,用以提供該高壓元件在一導通操作中之一反轉電流通道;形成至少一子閘極於該漂移氧化區上,且於至少部分該漂移區正上方,該子閘極位於該漂移氧化區上且連接於該漂移氧化區;以及形成一源極與一汲極於該上表面下之該操作區中,該源極與該汲極具有該第一導電型,且分別位於該閘極之外部下方之該通道井區中與遠離該通道井區側之該漂移井區中,且於一通道方向上,該漂移區位於該汲極與該通道井區之間,靠近該上表面之該漂移井區中,用以作為該高壓元件在該導通操作中之一漂移電流通道,且由上視圖視之,該子閘極介於該閘極與該汲極之間;其中,該閘極之導電層具有第一導電型,且該子閘極之導電層具有第二導電型或為一純質半導體結構。 In another aspect, the present invention provides a method for manufacturing a high-voltage device, comprising: forming a semiconductor layer on a substrate, the semiconductor layer having an opposite upper surface and a lower surface; forming a drift oxide region on the upper surface and connected to the upper surface and located on a drift region in the operation region and connected to the drift region; a drift well region is formed in the operation region of the semiconductor layer under the upper surface, and the drift well region is located in the operation region of the semiconductor layer The upper surface is below and connected to the upper surface, the drift well region has a first conductivity type; a channel well region is formed in the operation region under the upper surface, the channel well region has the second conductivity type, and is connected with The drift well region is adjacent in a channel direction; a buried layer is formed below the channel well region and is adjacent to the channel well region area connection, and the buried layer is in the operation area, completely covering the channel well area, the buried layer has the first conductivity type; a gate is formed in the operation area on the upper surface of the semiconductor layer, partially The channel well is located directly below the gate, and is used for providing an inversion current channel of the high-voltage element during a conduction operation; at least one sub-gate is formed on the drift oxide region, and at least part of the drift region is positive Above, the sub-gate is located on the drift oxide region and connected to the drift oxide region; and a source electrode and a drain electrode are formed in the operation region under the upper surface, and the source electrode and the drain electrode have the first a conductivity type, and are located in the channel well region below the outside of the gate electrode and in the drift well region away from the channel well region side, respectively, and in a channel direction, the drift region is located in the drain electrode and the channel Between the well regions, in the drift well region close to the upper surface, it is used as a drift current path of the high-voltage element during the conduction operation, and from the top view, the sub-gate is between the gate and the gate. Between the drain electrodes; wherein, the conductive layer of the gate electrode has a first conductivity type, and the conductive layer of the sub-gate electrode has a second conductivity type or a pure semiconductor structure.
在一種較佳的實施型態中,該漂移氧化區包括一區域氧化(local oxidation of silicon,LOCOS)結構、一淺溝槽絕緣(shallow trench isolation,STI)結構或一化學氣相沉積(chemical vapor deposition,CVD)氧化區。 In a preferred embodiment, the drift oxide region includes a local oxidation of silicon (LOCOS) structure, a shallow trench isolation (STI) structure, or a chemical vapor deposition (chemical vapor deposition) structure. deposition, CVD) oxidation zone.
在一種較佳的實施型態中,至少一該子閘極與該閘極彼此直接連接。 In a preferred embodiment, at least one of the sub-gate and the gate are directly connected to each other.
在一種較佳的實施型態中,至少一該子閘極與該閘極彼此不直接連接。 In a preferred embodiment, at least one of the sub-gate and the gate are not directly connected to each other.
在一種較佳的實施型態中,該閘極之導電層包括具有第一導電型雜質摻雜之多晶矽結構,且該子閘極之導電層包括具有第二導電型雜質摻雜之多晶矽結構。 In a preferred embodiment, the conductive layer of the gate includes a polysilicon structure doped with impurities of the first conductivity type, and the conductive layer of the sub-gate includes a polysilicon structure doped with impurities of the second conductivity type.
在一種較佳的實施型態中,該子閘極電性浮接,或電連接至該閘極或該源極。 In a preferred embodiment, the sub-gate is electrically floating, or is electrically connected to the gate or the source.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The following describes in detail with specific embodiments, when it is easier to understand the purpose, technical content, characteristics and effects of the present invention.
100,200,300,400,500,600,700,800,900,1000,1100:高壓元件 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100: High Voltage Components
11,21,31,41,51,61,71,81,91,101,111:基板 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111: Substrates
11’,21’,31’,41’,51’,61’,71’,81’,91’,101’,111’:半導體層 11', 21', 31', 41', 51', 61', 71', 81', 91', 101', 111': semiconductor layer
11a,21a,31a,41a,51a,61a,71a,81a,91a,101a,111a:上表面 11a, 21a, 31a, 41a, 51a, 61a, 71a, 81a, 91a, 101a, 111a: Upper surface
11b,21b,31b,41b,51b,61b,71b,81b,91b,101b,111b:下表面 11b, 21b, 31b, 41b, 51b, 61b, 71b, 81b, 91b, 101b, 111b: lower surface
12,22,32,42,52,62:井區 12, 22, 32, 42, 52, 62: Well block
12a,22a,32a,42a,52a,62a,72a,82a,92a,102a,112a:漂移區 12a, 22a, 32a, 42a, 52a, 62a, 72a, 82a, 92a, 102a, 112a: Drift Region
13,23,33,43,53,63,73,83,93,103,113:絕緣結構 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113: Insulation structure
13a,23a,33a,43a,53a,63a,73a,83a,93a,103a,113a:操作區 13a, 23a, 33a, 43a, 53a, 63a, 73a, 83a, 93a, 103a, 113a: Operation area
14,24,34,44,54,64,74,84,94,104,114:漂移氧化區 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114: Drift Oxidation Zones
15,25,35,45,55,65,75,85,95,105,115:導電連接結構 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115: Conductive connection structure
16,26,36,46,56,66:本體區 16,26,36,46,56,66: Ontology area
17,27,37,47,57,67,77,87,97,107,117:閘極 17,27,37,47,57,67,77,87,97,107,117: Gate
17’,27’,37’,47’,57’,67’,77’,87’,97’,107’,117’:子閘極 17', 27', 37', 47', 57', 67', 77', 87', 97', 107', 117': Sub-gate
18,28,38,48,58,68,78,88,98,108,118:源極 18, 28, 38, 48, 58, 68, 78, 88, 98, 108, 118: Source
19,29,39,49,59,69,79,89,99,109,119:汲極 19,29,39,49,59,69,79,89,99,109,119: Drain
48’,98’:矽化金屬層 48', 98': silicide metal layer
72,82,92,102,112:漂移井區 72, 82, 92, 102, 112: Drift Wells
76,86,96,106,116:通道井區 76, 86, 96, 106, 116: Access well area
271,271’,771’:導電層 271, 271', 771': Conductive layer
272,272’,772’:間隔層 272, 272', 772': spacer layer
273:介電層 273: Dielectric Layer
第1A與1B圖分別顯示一種先前技術高壓元件100的剖視示意圖與上視示意圖。
1A and 1B respectively show a schematic cross-sectional view and a schematic top view of a prior art high-
第2A與2B圖顯示本發明的第一個實施例。 Figures 2A and 2B show a first embodiment of the present invention.
第3A與3B圖顯示本發明的第二個實施例。 Figures 3A and 3B show a second embodiment of the present invention.
第4A與4B圖顯示本發明的第三個實施例。 Figures 4A and 4B show a third embodiment of the present invention.
第5A與5B圖顯示本發明的第四個實施例。 Figures 5A and 5B show a fourth embodiment of the present invention.
第6A與6B圖顯示本發明的第五個實施例。 Figures 6A and 6B show a fifth embodiment of the present invention.
第7A與7B圖顯示本發明的第六個實施例。 Figures 7A and 7B show a sixth embodiment of the present invention.
第8A與8B圖顯示本發明的第七個實施例。 Figures 8A and 8B show a seventh embodiment of the present invention.
第9A與9B圖顯示本發明的第八個實施例。 Figures 9A and 9B show an eighth embodiment of the present invention.
第10A與10B圖顯示本發明的第九個實施例。 Figures 10A and 10B show a ninth embodiment of the present invention.
第11A與11B圖顯示本發明的第十個實施例。 Figures 11A and 11B show a tenth embodiment of the present invention.
第12A-12G圖顯示本發明的第十一個實施例。 Figures 12A-12G show an eleventh embodiment of the present invention.
第13A-13F圖顯示本發明的第十二個實施例。 Figures 13A-13F show a twelfth embodiment of the present invention.
第14A圖示出本發明與先前技術之導通操作時的暫態響應之閘極電壓的電性示意圖。 FIG. 14A is an electrical schematic diagram of the gate voltage of the transient response during the turn-on operation of the present invention and the prior art.
第14B圖示出本發明與先前技術之導通操作時的暫態響應之汲極電壓的電性示意圖。 FIG. 14B is an electrical schematic diagram of the drain voltage of the transient response during the turn-on operation of the present invention and the prior art.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。本發明中的圖式均屬示意,主要意在表示製程步驟以及各層之間之上下次序關係,至於形狀、厚度與寬度則並未依照比例繪製。 The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the preferred embodiments with reference to the drawings. The drawings in the present invention are schematic, mainly intended to represent the process steps and the top-bottom order relationship between the layers, and the shapes, thicknesses and widths are not drawn to scale.
請參考第2A與2B圖,其顯示本發明的第一個實施例。第2A與2B圖分別顯示高壓元件200的剖視示意圖與上視示意圖。如第2A與2B圖所示,高壓元件200包含:半導體層21’、井區22、絕緣結構23、漂移氧化區24、導電連接結構25、本體區26、閘極27、子閘極27’、源極28以及汲極29。半導體層21’形成於基板21上,半導體層21’於垂直方向(如第2A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面21a與下表面21b。基板21例如但不限於為一P型或N型的半導體矽基板。半導體層21’例如以磊晶的步驟,形成於基板21上,或是以基板21的部分,作為半導體層21’。形成半導體層21’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 2A and 2B, which show a first embodiment of the present invention. 2A and 2B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第2A與2B圖,其中,絕緣結構23形成於上表面21a上並連接於上表面21a,用以定義操作區23a(如第2B圖中虛線框所示意)。絕緣結構23並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區24形成於該上表面21a上並連接於上表面21a,且位於操作區23a中之漂移區22a(如第2A圖中虛線框所示意)上並連接於漂移區22a。在本實施例中,絕緣結構23所定義的操作區23a僅有一個高壓元件200,但本發明不限於此,絕緣結構23所定義的操作區23a中亦可以包括複數個高壓元件,例如以鏡像排列的兩個高壓元件等,此為本領域中具有通常知識者所熟知,在此不予贅述。
Please continue to refer to FIGS. 2A and 2B, wherein the insulating
井區22具有第一導電型,形成於半導體層21’之操作區23a中,且於垂直方向上,井區22位於上表面21a下並連接於上表面21a。本體區26具有第二導電型,形成於操作區23a的井區22中,且於垂直方向上,本體區26位於上表面21a下並連接於上表面21a。閘極27形成於半導體層21’之上表面21a上的操作區23a中,由上視圖視之,閘極27大致為沿著寬度方向(如第2B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分本體區26位於閘極27正下方並連接於閘極27,以提供高壓元件200在導通操作中之反轉電流通道。閘極27之導電層271具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第2A與2B圖,子閘極27’形成於部分漂移區22a正上方,且位於漂移氧化區24上之操作區23a中。由上視圖第2B圖視之,子閘極27’大致為沿著寬度方向而延伸之長方形並與閘極27平行排列。且子閘極27’於寬度方向上,跨越整個操作區23a。且於垂直方向上,子閘極27’位於漂移氧化區24上且連接漂移氧化區24。在本實施例中,高壓元件200例如包含一個子閘極27’。根據本發明之高壓元件,高壓元件200也可以包含複數個子閘極27’。子閘極27’之導電層271具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。在本實施例中,子閘極27’與閘極27不直接連接,並經由導電連接結構25彼此電連接。在其他的實施例中,子閘極27’也可以與源極28電連接。在一種較佳的實施例中,在與本體區26及源極28連接的上表面21a上,會有一層矽化金屬層(未示出,於後詳述),用以電連接本體區26及源極28;因此,在此種實施例中,子閘極27’也與本體區26電連接。在另一種較佳的實施例中,子閘極27’也可以為電性浮接。
Continuing to refer to FIGS. 2A and 2B , the sub-gate 27 ′ is formed just above a portion of the
源極28與汲極29具有第一導電型,於垂直方向上,源極28與汲極29形成於上表面21a下並連接於上表面21a之操作區23a中,且源極28與汲極29分別位於閘極27在通道方向(如第2B圖中之虛線箭號方向所示意,下同)之外部下方之本體區26中與遠離本體區26側之井區22中,且於通道方向上,漂移區22a位於汲極29與本體區26之間,並分隔汲極29與本體區26,且位於靠近上表面21a之井區22中,用以作為高壓元件200在導通操作中之漂移電流通道,且由上視圖第2B圖視之,在通道方向上,子閘極27’介於閘極27與汲極29之間,且於垂直方向上,源極28與汲極29位於上表面21a下並連接於上表面21a。導電連接結構25由閘極27與子閘極27’上方,電連接閘極27與子閘極27’,且導電連接結構25為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。
The
在本實施例中,閘極27之導電層具有第一導電型,且子閘極27’之導電層具有第二導電型。在另一種實施例中,子閘極27’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
需說明的是,所謂反轉電流通道係指高壓元件200在導通操作中因施加於閘極27的電壓,而使閘極27的下方形成反轉層(inversion layer)以使導通電流通過的區域,此為本領域具有通常知識所熟知,在此不予贅述。
It should be noted that the so-called inversion current channel refers to a region where an inversion layer is formed under the
需說明的是,所謂漂移電流通道係指高壓元件200在導通操作中使導通電流以漂移的方式通過的區域,此為本領域具有通常知識所熟知,在此不予贅述。
It should be noted that the so-called drift current channel refers to a region through which the on-current of the high-
需說明的是,上表面21a並非指一完全平坦的平面,而是指半導體層21’的一個表面。在本實施例中,例如漂移氧化區24與上表面21a接觸的部分上表面21a,就具有下陷的部分。
It should be noted that the
需說明的是,閘極27包括具有導電性的導電層271、與上表面21a連接的介電層273、以及具有電絕緣特性之間隔層272;子閘極27’包括具有導電性的導電層271’以及具有電絕緣特性之間隔層272’,此為本領域具有通常知識所熟知,在此不予贅述。
It should be noted that the
需說明的是,前述之「第一導電型」與「第二導電型」係指於高壓MOS元件中,以不同導電型之雜質摻雜於半導體組成區域(例如但不限於前述之井區、本體區、源極與汲極等區域)內,使得半導體組成區域成為第一或第二導電型(例如但不限於第一導電型為N型,而第二導電型為P型,或反之亦可),其中,第一導電型與第二導電型為彼此電性相反的導電型。 It should be noted that the aforementioned "first conductivity type" and "second conductivity type" refer to the high-voltage MOS devices where impurities of different conductivity types are doped into the semiconductor constituent regions (such as but not limited to the aforementioned well regions, In the body region, source and drain regions, etc.), the semiconductor composition region becomes the first or second conductivity type (for example, but not limited to, the first conductivity type is N-type, and the second conductivity type is P-type, or vice versa ), wherein the first conductivity type and the second conductivity type are conductivity types that are electrically opposite to each other.
此外需說明的是,所謂的高壓MOS元件,係指於正常操作時,施加於汲極的電壓高於一特定之電壓,例如5V,且本體區26與汲極29之橫向距離(漂移區長度)根據正常操作時所承受的操作電壓而調整,因而可操作於前述較高之特定電壓。此皆為本領域中具有通常知識者所熟知,在此不予贅述。
In addition, it should be noted that the so-called high-voltage MOS device refers to that the voltage applied to the drain electrode is higher than a specific voltage, such as 5V, and the lateral distance between the
需說明的是,子閘極27’的數量不限於為如圖所示的一個,亦可以為複數個。需說明的是,如第2A與2B圖所示,子閘極27’與閘極27不直接連接,而是透過導電連接結構25電連接,在另一種實施例中,子閘極27’與閘極27可直接連接。在此,所謂直接連接,係指閘極導體層271與子閘極導體層271’直接接觸。
It should be noted that, the number of sub-gates 27' is not limited to one as shown in the figure, but may also be plural. It should be noted that, as shown in FIGS. 2A and 2B , the sub-gate 27 ′ and the
值得注意的是,本發明優於先前技術的其中一個技術特徵,在於:根據本發明,以第2A與2B圖所示之實施例為例,當至少一子閘極27’形成於漂移氧化區24上,且與閘極27平行排列,可於高壓元件200不導通時,每個子閘極27'沿著寬度方向的邊緣,會有相對較高的電場,以使得電場沿著通道積分後所得的電壓較高,因此就使得不導通時的電壓較高,也使其不導通時的崩潰防護電壓較
先前技術高。在本實施例中,閘極27具有第一導電型,而子閘極27’具有第二導電型。如此一來,雖然子閘極27’在高壓元件200導通操作時,也就是閘極27電壓高於其閾值電壓時,子閘極27’會不導通或是部分導通,因此子閘極27’對於其正下方的漂移區22a之導通電荷之蓄積(accumulation)能力較低,因此造成高壓元件200的導通電阻下降;但是,也因此降低了閘極-汲極電容,使得在高壓元件200導通操作時之暫態響應效能提高,提升高壓元件200的操作速度,增加高壓元件200的應用範圍,且這是在不影響漂移氧化區厚度,也不影響崩潰防護電壓的情況下。
It is worth noting that one of the technical features of the present invention over the prior art is that according to the present invention, taking the embodiment shown in FIGS. 2A and 2B as an example, when at least one sub-gate 27 ′ is formed in the
在一種較佳的實施例中,如第2A與2B圖所示,子閘極27’與閘極27由導電連接結構25連接,而不彼此連接。在一種較佳的實施例中,如第2A與2B圖所示,子閘極27’包括導電層271’以及間隔層272’。在一種較佳的實施例中,如第2A與2B圖所示,漂移氧化區24係完整連接之結構,並不分割為不同區塊。
In a preferred embodiment, as shown in Figs. 2A and 2B, the sub-gate 27' and the
請參考第3A與3B圖,其顯示本發明的第二個實施例。第3A與3B圖分別顯示高壓元件300的剖視示意圖與上視示意圖。如第3A與3B圖所示,高壓元件300包含:半導體層31’、井區32、絕緣結構33、漂移氧化區34、本體區36、閘極37、兩子閘極37’、源極38以及汲極39。半導體層31’形成於基板31上,半導體層31’於垂直方向(如第3A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面31a與下表面31b。基板31例如但不限於為P型或N型的半導體矽基板。半導體層31’例如以磊晶的步驟,形成於基板31上,或是以基板31的部分,作為半導體層31’。形成半導體層31’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 3A and 3B, which show a second embodiment of the present invention. 3A and 3B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第3A與3B圖,其中,絕緣結構33形成於上表面31a上並連接於上表面31a,用以定義操作區33a(如第3B圖中虛線框所示意)。絕緣結構
33並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區34形成於該上表面31a上並連接於上表面31a,且位於操作區33a中之漂移區32a(如第3A圖中虛線框所示意)上並連接於漂移區32a。
Please continue to refer to FIGS. 3A and 3B, wherein the insulating
井區32具有第一導電型,形成於半導體層31’之操作區33a中,且於垂直方向上,井區32位於上表面31a下並連接於上表面31a。本體區36具有第二導電型,形成於操作區33a的井區32中,且於垂直方向上,本體區36位於上表面31a下並連接於上表面31a。閘極37形成於半導體層31’之上表面31a上的操作區33a中,由上視圖第3B圖視之,閘極37大致為沿著寬度方向(如第3B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分本體區36位於閘極37正下方並連接於閘極37,以提供高壓元件300在導通操作中之反轉電流通道。閘極37之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第3A與3B圖,兩個子閘極37’形成於部分漂移區32a正上方,且位於漂移氧化區34上之操作區33a中。由上視圖第3B圖視之,每個子閘極37’大致為沿著寬度方向而延伸之長方形並與閘極37平行排列。且子閘極37’於寬度方向上,跨越整個操作區33a。且於垂直方向上,子閘極37’位於漂移氧化區34上且連接漂移氧化區34。在本實施例中,高壓元件300例如包含兩個子閘極37’。根據本發明之高壓元件,高壓元件300也可以包含一個或其他數量的複數個子閘極37’。子閘極37’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。在本實施例中,子閘極37’與閘極37不直接連接,且兩個子閘極37’例如皆為電性浮接。在其他的實施例
中,至少一個子閘極37’也可以與閘極37或源極38電連接。子閘極37’也可與本體區36電連接。
Continuing to refer to FIGS. 3A and 3B , two sub-gates 37 ′ are formed just above part of the
源極38與汲極39具有第一導電型,於垂直方向上,源極38與汲極39形成於上表面31a下並連接於上表面31a之操作區33a中,且源極38與汲極39分別位於閘極37在通道方向(如第3B圖中之虛線箭號方向所示意,下同)之外部下方之本體區36中與遠離本體區36側之井區32中,且於通道方向上,漂移區32a位於汲極39與本體區36之間,並分隔汲極39與本體區36,且位於靠近上表面31a之井區32中,用以作為高壓元件300在導通操作中之漂移電流通道,且由上視圖第3B圖視之,在通道方向上,子閘極37’介於閘極37與汲極39之間,且於垂直方向上,源極38與汲極39位於上表面31a下並連接於上表面31a。在本實施例中,兩個子閘極37’例如皆為電性浮接。
The
在本實施例中,閘極37之導電層具有第一導電型,且兩個子閘極37’之導電層皆具有第二導電型。在另一種實施例中,至少一個子閘極之導電層37’也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第一個實施例不同之處,除上述外,其中一點在於,在第一個實施例中,漂移氧化區24為LOCOS結構,而在本實施例中,漂移氧化區34為化學氣相沉積(chemical vapor deposition,CVD)氧化區。CVD氧化區由CVD製程沉積步驟而形成,此為本領域中具有通常知識者所熟知,在此不予贅述。
The difference between this embodiment and the first embodiment, in addition to the above, is that in the first embodiment, the
請參考第4A與4B圖,其顯示本發明的第三個實施例。第4A與4B圖分別顯示高壓元件400的剖視示意圖與上視示意圖。如第4A與4B圖所示,高壓元件400包含:半導體層41’、井區42、絕緣結構43、漂移氧化區44、導電連接結構45、本體區46、本體極46’、閘極47、至少一子閘極47’、源極48、矽化金屬層48’以及汲極49。半導體層41’形成於基板41上,半導體層41’於垂直方向(如第
4A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面41a與下表面41b。基板41例如但不限於為一P型或N型的半導體矽基板。半導體層41’例如以磊晶的步驟,形成於基板41上,或是以基板41的部分,作為半導體層41’。形成半導體層41’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 4A and 4B, which show a third embodiment of the present invention. 4A and 4B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第4A與4B圖,其中,絕緣結構43形成於上表面41a上並連接於上表面41a,用以定義操作區43a(如第4B圖中虛線框所示意)。絕緣結構43並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區44形成於該上表面41a上並連接於上表面41a,且位於操作區43a中之漂移區42a(如第4A圖中虛線框所示意)上並連接於漂移區42a。
Please continue to refer to FIGS. 4A and 4B, wherein the insulating
井區42具有第一導電型,形成於半導體層41’之操作區43a中,且於垂直方向上,井區42位於上表面41a下並連接於上表面41a。本體區46具有第二導電型,形成於操作區43a的井區42中,且於垂直方向上,本體區46位於上表面41a下並連接於上表面41a。閘極47形成於半導體層41’之上表面41a上的操作區43a中,由上視圖視之,閘極47大致為沿著寬度方向(如第4B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分本體區46位於閘極47正下方並連接於閘極47,以提供高壓元件400在導通操作中之反轉電流通道。閘極47之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第4A與4B圖,兩個子閘極47’形成於部分漂移區42a正上方,且位於漂移氧化區44上之操作區43a中。由上視圖第4B圖視之,子閘極47’大致為沿著寬度方向而延伸之長方形並與閘極47平行排列。且每個子閘極47’於寬度方向上,跨越整個操作區43a。且於垂直方向上,子閘極47’位於漂移氧化
區44上且連接漂移氧化區44。在本實施例中,高壓元件400例如包含兩個子閘極47’。根據本發明之高壓元件,可以包含一個或其他數量的複數個子閘極47’。在本實施例中,子閘極47’與閘極47不直接連接,且兩個子閘極47’例如經由導電連接結構45與矽化金屬層48’,電連接於源極48與本體區46及本體極46’。在其他的實施例中,至少一個子閘極47’也可以與閘極47電連接,或是電性浮接。矽化金屬層48’形成於與本體區46及源極48連接的上表面41a上,例如以鈷或鈦等金屬,以自我對準(self-aligned)製程步驟,與矽原子反應而形成矽化金屬層48’,具有良好的導電效果,此為本領域中具有通常知識者所熟知,在此不予贅述。
Continuing to refer to FIGS. 4A and 4B , two sub-gates 47 ′ are formed directly above part of the drift region 42 a and in the
源極48與汲極49具有第一導電型,於垂直方向上,源極48與汲極49形成於上表面41a下並連接於上表面41a之操作區43a中,且源極48與汲極49分別位於閘極47在通道方向(如第4B圖中之虛線箭號方向所示意,下同)之外部下方之本體區46中與遠離本體區46側之井區42中,且於通道方向上,漂移區42a位於汲極49與本體區46之間,並分隔汲極49與本體區46,且位於靠近上表面41a之井區42中,用以作為高壓元件400在導通操作中之漂移電流通道,且由上視圖第4B圖視之,在通道方向上,兩個子閘極47’介於閘極47與汲極49之間,且於垂直方向上,源極48與汲極49位於上表面41a下並連接於上表面41a。導電連接結構45為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。
The
在本實施例中,閘極47之導電層具有第一導電型,且子閘極47’之導電層具有第二導電型。在另一種實施例中,子閘極47’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第一個實施例不同之處,除上述兩個子閘極47’例如經由導電連接結構45與矽化金屬層48’,電連接於源極48與本體區46及本體極46’
外,另外一點在於,在第一個實施例中,漂移氧化區24為LOCOS結構,而在本實施例中,漂移氧化區44為淺溝槽絕緣(shallow trench isolation,STI)結構。STI結構為本領域中具有通常知識者所熟知,在此不予贅述。
The difference between this embodiment and the first embodiment is that the two sub-gate electrodes 47' are electrically connected to the
請參考第5A與5B圖,其顯示本發明的第四個實施例。第5A與5B圖分別顯示高壓元件500的剖視示意圖與上視示意圖。如第5A與5B圖所示,高壓元件500包含:半導體層51’、井區52、絕緣結構53、漂移氧化區54、本體區56、閘極57、子閘極57’、源極58以及汲極59。半導體層51’形成於基板51上,半導體層51’於垂直方向(如第5A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面51a與下表面51b。基板51例如但不限於為一P型或N型的半導體矽基板。半導體層51’例如以磊晶的步驟,形成於基板51上,或是以基板51的部分,作為半導體層51’。形成半導體層51’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 5A and 5B, which show a fourth embodiment of the present invention. 5A and 5B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第5A與5B圖,其中,絕緣結構53形成於上表面51a上並連接於上表面51a,用以定義操作區53a(如第5B圖中虛線框所示意)。絕緣結構53並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區54形成於該上表面51a上並連接於上表面51a,且位於操作區53a中之漂移區52a(如第5A圖中虛線框所示意)上並連接於漂移區52a。
Please continue to refer to FIGS. 5A and 5B, wherein the insulating
井區52具有第一導電型,形成於半導體層51’之操作區53a中,且於垂直方向上,井區52位於上表面51a下並連接於上表面51a。本體區56具有第二導電型,形成於操作區53a的井區52中,且於垂直方向上,本體區56位於上表面51a下並連接於上表面51a。閘極57形成於半導體層51’之上表面51a上的操作區53a中,由上視圖視之,閘極57大致為沿著寬度方向(如第5B圖中之實線箭號方向
所示意,下同)上而延伸之長方形,且於垂直方向上,部分本體區56位於閘極57正下方並連接於閘極57,以提供高壓元件500在導通操作中之反轉電流通道。閘極57之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第5A與5B圖,子閘極57’形成於部分漂移區52a正上方,且位於漂移氧化區54上之操作區53a中。由上視圖第5B圖視之,子閘極57’大致為沿著寬度方向而延伸之長方形並與閘極57平行排列。且子閘極27’於寬度方向上,跨越整個操作區53a。且於垂直方向上,子閘極57’位於漂移氧化區54上且連接漂移氧化區54。在本實施例中,如圖所示,高壓元件500例如包含一個子閘極57’,且與閘極57彼此直接連接。根據本發明之高壓元件,高壓元件500也可以包含複數個子閘極。子閘極57’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。
Continuing to refer to FIGS. 5A and 5B , the sub-gate 57 ′ is formed just above a portion of the
源極58與汲極59具有第一導電型,於垂直方向上,源極58與汲極59形成於上表面51a下並連接於上表面51a之操作區53a中,且源極58與汲極59分別位於閘極57在通道方向(如第5B圖中之虛線箭號方向所示意,下同)之外部下方之本體區56中與遠離本體區56側之井區52中,且於通道方向上,漂移區52a位於汲極59與本體區56之間,並分隔汲極59與本體區56,且位於靠近上表面51a之井區52中,用以作為高壓元件500在導通操作中之漂移電流通道,且由上視圖第5B圖視之,在通道方向上,子閘極57’介於閘極57與汲極59之間,且於垂直方向上,源極58與汲極59位於上表面51a下並連接於上表面51a。
The
在本實施例中,閘極57之導電層具有第一導電型,且子閘極57’之導電層具有第二導電型。在另一種實施例中,子閘極57’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第一個實施例不同之處,在於,在第一個實施例中,閘極27與子閘極27’是分開的,彼此不直接連接;而在本實施例中,子閘極57’,且與閘極57彼此直接連接。
The difference between this embodiment and the first embodiment is that, in the first embodiment, the
請參考第6A與6B圖,其顯示本發明的第五個實施例。第6A與6B圖分別顯示高壓元件600的剖視示意圖與上視示意圖。如第6A與6B圖所示,高壓元件600包含:半導體層61’、井區62、絕緣結構63、漂移氧化區64、導電連接結構65、本體區66、閘極67、子閘極67’、源極68以及汲極69。半導體層61’形成於基板61上,半導體層61’於垂直方向(如第6A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面61a與下表面61b。基板61例如但不限於為一P型或N型的半導體矽基板。半導體層61’例如以磊晶的步驟,形成於基板61上,或是以基板61的部分,作為半導體層61’。形成半導體層61’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 6A and 6B, which show a fifth embodiment of the present invention. 6A and 6B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第6A與6B圖,其中,絕緣結構63形成於上表面61a上並連接於上表面61a,用以定義操作區63a(如第6B圖中虛線框所示意)。絕緣結構63並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區64形成於該上表面61a上並連接於上表面61a,且位於操作區63a中之漂移區62a(如第6A圖中虛線框所示意)上並連接於漂移區62a。
Please continue to refer to FIGS. 6A and 6B, wherein the insulating
井區62具有第一導電型,形成於半導體層61’之操作區63a中,且於垂直方向上,井區62位於上表面61a下並連接於上表面61a。本體區66具有第二導電型,形成於操作區63a的井區62中,且於垂直方向上,本體區66位於上表面61a下並連接於上表面61a。閘極67形成於半導體層61’之上表面61a上的操作區63a中,由上視圖視之,閘極67大致為沿著寬度方向(如第6B圖中之實線箭號方向
所示意,下同)上而延伸之長方形,且於垂直方向上,部分本體區66位於閘極67正下方並連接於閘極67,以提供高壓元件600在導通操作中之反轉電流通道。閘極67之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第6A與6B圖,子閘極67’形成於部分漂移區62a正上方,且位於漂移氧化區64上之操作區63a中。由上視圖第6B圖視之,子閘極67’大致為沿著寬度方向而延伸之長方形並與閘極67平行排列。且子閘極67’於寬度方向上,跨越整個操作區63a。且於垂直方向上,子閘極67’位於漂移氧化區64上且連接漂移氧化區64。在本實施例中,高壓元件600例如包含一個子閘極67’。根據本發明之高壓元件,高壓元件600也可以包含複數個子閘極67’。子閘極67’之導電層為純質半導體結構。在本實施例中,子閘極67’與閘極67不直接連接,並經由導電連接結構65彼此電連接。在其他的實施例中,子閘極67’也可以與源極68電連接。在一種較佳的實施例中,在與本體區66及源極68連接的上表面61a上,會有一層矽化金屬層(未示出,於後詳述),用以電連接本體區66及源極68;因此,在此種實施例中,子閘極67’也與本體區66電連接。在另一種較佳的實施例中,子閘極67’也可以為電性浮接。
Continuing to refer to FIGS. 6A and 6B , the sub-gate 67 ′ is formed directly above a portion of the
源極68與汲極69具有第一導電型,於垂直方向上,源極68與汲極69形成於上表面61a下並連接於上表面61a之操作區63a中,且源極68與汲極69分別位於閘極67在通道方向(如第6B圖中之虛線箭號方向所示意,下同)之外部下方之本體區66中與遠離本體區66側之井區62中,且於通道方向上,漂移區62a位於汲極69與本體區66之間,並分隔汲極69與本體區66,且位於靠近上表面61a之井區62中,用以作為高壓元件600在導通操作中之漂移電流通道,且由上視圖第6B圖視之,在通道方向上,子閘極67’介於閘極67與汲極69之間,且於垂直方向上,
源極68與汲極69位於上表面61a下並連接於上表面61a。導電連接結構65由閘極67與子閘極67’上方,電連接閘極67與子閘極67’,且導電連接結構65為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。
The
在本實施例中,閘極67之導電層具有第一導電型,且子閘極67’之導電層為純質半導體結構。
In this embodiment, the conductive layer of the
本實施例與第一個實施例不同之處,在於,在第一個實施例中閘極27之導電層具有第一導電型,且子閘極27’之導電層具有第二導電型。而在本實施例中,閘極67之導電層具有第一導電型,且子閘極67’之導電層為純質半導體結構,例如但不限於純質多晶矽結構。
The difference between this embodiment and the first embodiment is that in the first embodiment, the conductive layer of the
請參考第7A與7B圖,其顯示本發明的第六個實施例。第7A與7B圖分別顯示高壓元件700的剖視示意圖與上視示意圖。如第7A與7B圖所示,高壓元件700包含:半導體層71’、埋層71’’、漂移井區72、絕緣結構73、漂移氧化區74、導電連接結構75、通道井區76、閘極77、子閘極77’、源極78以及汲極79。半導體層71’形成於基板71上,半導體層71’於垂直方向(如第7A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面71a與下表面71b。基板71例如但不限於為一P型或N型的半導體矽基板。半導體層71’例如以磊晶的步驟,形成於基板71上,或是以基板71的部分,作為半導體層71’。形成半導體層71’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 7A and 7B, which show a sixth embodiment of the present invention. 7A and 7B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第7A與7B圖,其中,絕緣結構73形成於上表面71a上並連接於上表面71a,用以定義操作區73a(如第7B圖中虛線框所示意)。絕緣結構73並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區74形成於該上表面71a
上並連接於上表面71a,且位於操作區73a中之漂移區72a(如第7A圖中虛線框所示意)上並連接於漂移區72a。在本實施例中,絕緣結構73所定義的操作區73a僅有一個高壓元件700,但本發明不限於此,絕緣結構73所定義的操作區73a中亦可以包括複數個高壓元件,例如以鏡像排列的兩個高壓元件等,此為本領域中具有通常知識者所熟知,在此不予贅述。
Please continue to refer to FIGS. 7A and 7B, wherein the insulating
漂移井區72具有第一導電型,形成於半導體層71’之操作區73a中,且於垂直方向上,漂移井區72位於上表面71a下並連接於上表面71a。通道井區76具有第二導電型,形成於上表面71a下之操作區73a中,且於垂直方向上,通道井區76位於上表面71a下並連接於上表面71a。通道井區76與漂移井區72在通道方向(如第7A圖中之實線箭號方向所示意,下同)上鄰接。閘極77形成於半導體層71’之上表面71a上的操作區73a中,由上視圖視之,閘極77大致為沿著寬度方向(如第7B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區76位於閘極77正下方並連接於閘極77,以提供高壓元件700在導通操作中之反轉電流通道。閘極77之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第7A與7B圖,子閘極77’形成於部分漂移區72a正上方,且位於漂移氧化區74上之操作區73a中。由上視圖第7B圖視之,子閘極77’大致為沿著寬度方向而延伸之長方形並與閘極77平行排列。且子閘極77’於寬度方向上,跨越整個操作區73a。且於垂直方向上,子閘極77’位於漂移氧化區74上且連接漂移氧化區74。在本實施例中,高壓元件700例如包含一個子閘極77’。根據本發明之高壓元件,高壓元件700也可以包含複數個子閘極77’。子閘極77’之導電層771’具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。在本實施例中,子閘極77’與閘極77不直接連接,
並經由導電連接結構75彼此電連接。在其他的實施例中,子閘極77’也可以與源極78電連接。在一種較佳的實施例中,在與本體區76及源極78連接的上表面71a上,會有一層矽化金屬層(未示出,如第4A圖所示之矽化金屬層48’),用以電連接本體區76及源極78;因此,在此種實施例中,子閘極77’也與本體區76電連接。在另一種較佳的實施例中,子閘極77’也可以為電性浮接。
Continuing to refer to FIGS. 7A and 7B , a sub-gate 77 ′ is formed just above a portion of the
源極78與汲極79具有第一導電型,於垂直方向上,源極78與汲極79形成於上表面71a下並連接於上表面71a之操作區73a中,且源極78與汲極79分別位於閘極77在通道方向之外部下方之通道井區76中與遠離通道井區76側之漂移井區72中,且於通道方向上,漂移區72a位於汲極79與通道井區76之間,並分隔汲極79與本體區76,且位於靠近上表面71a之漂移井區72中,用以作為高壓元件700在導通操作中之漂移電流通道,且由上視圖第7B圖視之,在通道方向上,子閘極77’介於閘極77與汲極79之間,且於垂直方向上,源極78與汲極79位於上表面71a下並連接於上表面71a。導電連接結構75由閘極77與子閘極77’上方,電連接閘極77與子閘極77’,且導電連接結構75為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。埋層71”具有第一導電型,於垂直方向上,形成於通道井區76下方且與通道井區76連接,且埋層71”於操作區73a內,完全覆蓋通道井區76下方。在垂直方向上,埋層71”例如形成於基板71與半導體層71’接面兩側,部分埋層71”位於基板71中,且部分埋層71”位於半導體層71’中,以電性隔絕通道井區76與基板71。
The
在本實施例中,閘極77之導電層具有第一導電型,且子閘極77’之導電層具有第二導電型。在另一種實施例中,子閘極77’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
在一種較佳的實施例中,如第7A與7B圖所示,子閘極77’與閘極77由導電連接結構75連接,而不彼此連接。在一種較佳的實施例中,如第7A與7B圖所示,子閘極77’包括導電層771’以及間隔層772’。在一種較佳的實施例中,如第7A與7B圖所示,漂移氧化區74係完整連接之結構,並不分割為不同區塊。
In a preferred embodiment, as shown in Figs. 7A and 7B, the sub-gate 77' and the
請參考第8A與8B圖,其顯示本發明的第七個實施例。第8A與8B圖分別顯示高壓元件800的剖視示意圖與上視示意圖。如第8A與8B圖所示,高壓元件800包含:半導體層81’、埋層81”、漂移井區82、絕緣結構83、漂移氧化區84、導電連接結構85、通道井區86、閘極87、兩個子閘極87’、源極88以及汲極89。半導體層81’形成於基板81上,半導體層81’於垂直方向(如第8A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面81a與下表面81b。基板81例如但不限於為一P型或N型的半導體矽基板。半導體層81’例如以磊晶的步驟,形成於基板81上,或是以基板81的部分,作為半導體層81’。形成半導體層81’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 8A and 8B, which show a seventh embodiment of the present invention. 8A and 8B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第8A與8B圖,其中,絕緣結構83形成於上表面81a上並連接於上表面81a,用以定義操作區83a(如第8B圖中虛線框所示意)。絕緣結構83並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區84形成於該上表面81a上並連接於上表面81a,且位於操作區83a中之漂移區82a(如第8A圖中虛線框所示意)上並連接於漂移區82a。
Please continue to refer to FIGS. 8A and 8B, wherein the insulating
漂移井區82具有第一導電型,形成於半導體層81’之操作區83a中,且於垂直方向上,漂移井區82位於上表面81a下並連接於上表面81a。通道井區86具有第二導電型,形成於上表面81a下之操作區83a中,且於垂直方向上,通道井區86位於上表面81a下並連接於上表面81a。通道井區86與漂移井區82在通道
方向(如第8A圖中之實線箭號方向所示意,下同)上鄰接。閘極87形成於半導體層81’之上表面81a上的操作區83a中,由上視圖視之,閘極87大致為沿著寬度方向(如第8B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區86位於閘極87正下方並連接於閘極87,以提供高壓元件800在導通操作中之反轉電流通道。閘極87之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第8A與8B圖,子閘極87’形成於部分漂移區82a正上方,且位於漂移氧化區84上之操作區83a中。由上視圖第8B圖視之,子閘極87’大致為沿著寬度方向而延伸之長方形並與閘極87平行排列。且子閘極77’於寬度方向上,跨越整個操作區73a。且於垂直方向上,子閘極87’位於漂移氧化區84上且連接漂移氧化區84。在本實施例中,高壓元件800例如包含兩個子閘極87’。根據本發明之高壓元件,高壓元件800也可以包含一個或其他數量之複數個子閘極。子閘極87’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。在本實施例中,子閘極87’與閘極87不直接連接,並經由導電連接結構85彼此電連接。在其他的實施例中,子閘極87’也可以與源極88電連接。在一種較佳的實施例中,在與本體區86及源極88連接的上表面81a上,會有一層矽化金屬層(未示出,如第4A圖所示之矽化金屬層48’),用以電連接本體區86及源極88;因此,在此種實施例中,子閘極87’也與本體區86電連接。在另一種較佳的實施例中,子閘極87’也可以為電性浮接。
Continuing to refer to FIGS. 8A and 8B , a sub-gate 87 ′ is formed just above a portion of the
源極88與汲極89具有第一導電型,於垂直方向上,源極88與汲極89形成於上表面81a下並連接於上表面81a之操作區83a中,且源極88與汲極89分別位於閘極87在通道方向之外部下方之通道井區86中與遠離通道井區86側之漂移井區82中,且於通道方向上,漂移區82a位於汲極89與通道井區86之間,並分
隔汲極89與本體區86,且位於靠近上表面81a之漂移井區82中,用以作為高壓元件800在導通操作中之漂移電流通道,且由上視圖第8B圖視之,在通道方向上,子閘極87’介於閘極87與汲極89之間,且於垂直方向上,源極88與汲極89位於上表面81a下並連接於上表面81a。導電連接結構85由閘極87與子閘極87’上方,電連接閘極87與子閘極87’,且導電連接結構85為導體。例如但不限於為在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。埋層81”具有第一導電型,於垂直方向上,形成於通道井區86下方且與通道井區86連接,且埋層81”於操作區83a內,完全覆蓋通道井區86下方。在垂直方向上,埋層81”例如形成於基板81與半導體層81’接面兩側,部分埋層81”位於基板81中,且部分埋層81”位於半導體層81’中,以電性隔絕通道井區86與基板81。
The
在本實施例中,閘極87之導電層具有第一導電型,且子閘極87’之導電層具有第二導電型。在另一種實施例中,子閘極87’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第六個實施例不同之處,其中一點在於,在第六個實施例中,漂移氧化區74為LOCOS結構,而在本實施例中,漂移氧化區84為化學氣相沉積(chemical vapor deposition,CVD)氧化區。CVD氧化區由CVD製程沉積步驟而形成,為本領域中具有通常知識者所熟知,在此不予贅述。本實施例與第六個實施例不同之處,另外一點在於,在第六個實施例中,子閘極77’的數量為1個,而在本實施例中,子閘極87’的數量為2個。本實施例與第六個實施例不同之處,又另外一點在於,在第六個實施例中,部分閘極77覆蓋於漂移氧化區74的正上方,而在本實施例中,閘極87並未覆蓋於漂移氧化區84的正上方,而子閘極87’則完全位於漂移氧化區84的正上方。
The difference between this embodiment and the sixth embodiment is that, in the sixth embodiment, the
請參考第9A與9B圖,其顯示本發明的第八個實施例。第9A與9B圖分別顯示高壓元件900的剖視示意圖與上視示意圖。如第9A與9B圖所示,高壓元件900包含:半導體層91’、埋層91”、漂移井區92、絕緣結構93、漂移氧化區94、導電連接結構95、通道井區96、閘極97、兩子閘極97’、源極98以及汲極99。半導體層91’形成於基板91上,半導體層91’於垂直方向(如第9A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面91a與下表面91b。基板91例如但不限於為一P型或N型的半導體矽基板。半導體層91’例如以磊晶的步驟,形成於基板91上,或是以基板91的部分,作為半導體層91’。形成半導體層91’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 9A and 9B, which show an eighth embodiment of the present invention. 9A and 9B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第9A與9B圖,其中,絕緣結構93形成於上表面91a上並連接於上表面91a,用以定義操作區93a(如第9B圖中虛線框所示意)。絕緣結構93並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區94形成於該上表面91a上並連接於上表面91a,且位於操作區93a中之漂移區92a(如第9A圖中虛線框所示意)上並連接於漂移區92a。
Please continue to refer to FIGS. 9A and 9B, wherein the insulating
漂移井區92具有第一導電型,形成於半導體層91’之操作區93a中,且於垂直方向上,漂移井區92位於上表面91a下並連接於上表面91a。通道井區96具有第二導電型,形成於上表面91a下之操作區93a中,且於垂直方向上,通道井區96位於上表面91a下並連接於上表面91a。通道井區96與漂移井區92在通道方向(如第9A圖中之實線箭號方向所示意,下同)上鄰接。閘極97形成於半導體層91’之上表面91a上的操作區93a中,由上視圖視之,閘極97大致為沿著寬度方向(如第9B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區96位於閘極97正下方並連接於閘極97,以提供高壓元件900在導通
操作中之反轉電流通道。閘極97之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第9A與9B圖,子閘極97’形成於部分漂移區92a正上方,且位於漂移氧化區94上之操作區93a中。由上視圖第9B圖視之,子閘極97’大致為沿著寬度方向而延伸之長方形並與閘極97平行排列。且子閘極97’於寬度方向上,跨越整個操作區93a。且於垂直方向上,子閘極97’位於漂移氧化區94上且連接漂移氧化區94。在本實施例中,高壓元件900例如包含兩個子閘極97’。根據本發明之高壓元件,高壓元件900也可以包含一個或其他數量複數個子閘極。子閘極97’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。在本實施例中,其中一個子閘極97’與閘極97不直接連接,且該子閘極97’例如經由導電連接結構95與矽化金屬層98’,電連接於源極98與本體區96及本體極96’,另一個子閘極97’例如為電性浮接。在其他的實施例中,至少一個子閘極97’也可以與閘極97電連接。矽化金屬層98’形成於與本體區96及源極98連接的上表面91a上,例如以鈷或鈦等金屬,以自我對準(self-aligned)製程步驟,與矽原子反應而形成矽化金屬層98’,具有良好的導電效果,此為本領域中具有通常知識者所熟知,在此不予贅述。
Continuing to refer to FIGS. 9A and 9B , a sub-gate 97 ′ is formed just above a portion of the drift region 92 a and in the
源極98與汲極99具有第一導電型,於垂直方向上,源極98與汲極99形成於上表面91a下並連接於上表面91a之操作區93a中,且源極98與汲極99分別位於閘極97在通道方向之外部下方之通道井區96中與遠離通道井區96側之漂移井區92中,且於通道方向上,漂移區92a位於汲極99與通道井區96之間,並分隔汲極99與本體區96,且位於靠近上表面91a之漂移井區92中,用以作為高壓元件900在導通操作中之漂移電流通道,且由上視圖第9B圖視之,在通道方向上,子閘極97’介於閘極97與汲極99之間,且於垂直方向上,源極98與汲極99位於上
表面91a下並連接於上表面91a。導電連接結構95由閘極97與子閘極97’上方,電連接矽化金屬層98’與子閘極97’,且導電連接結構95為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。埋層91”具有第一導電型,於垂直方向上,形成於通道井區96下方且與通道井區96連接,且埋層91”於操作區93a內,完全覆蓋通道井區96下方。在垂直方向上,埋層91”例如形成於基板91與半導體層91’接面兩側,部分埋層91”位於基板91中,且部分埋層91”位於半導體層91’中,以電性隔絕通道井區96與基板91。
The
在本實施例中,閘極97之導電層具有第一導電型,且子閘極97’之導電層具有第二導電型。在另一種實施例中,子閘極97’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第六個實施例不同之處,其中一點在於,在第六個實施例中,漂移氧化區74為LOCOS結構,而在本實施例中,漂移氧化區94為淺溝槽絕緣(shallow trench isolation,STI)結構。STI結構為本領域中具有通常知識者所熟知,在此不予贅述。本實施例與第六個實施例不同之處,另外一點在於,在第六個實施例中,子閘極77’的數量為1個,而在本實施例中,子閘極97’的數量為2個。本實施例與第六個實施例不同之處,又另外一點在於,在第六個實施例中,子閘極77’與閘極77電性連接,而在本實施例中,其中一個子閘極97’與源極98、本體極96’及本體區96電性連接,另一個子閘極97’電性浮接。
The difference between this embodiment and the sixth embodiment is that, in the sixth embodiment, the
請參考第10A與10B圖,其顯示本發明的第九個實施例。第10A與10B圖分別顯示高壓元件1000的剖視示意圖與上視示意圖。如第10A與10B圖所示,高壓元件1000包含:半導體層101’、埋層101”、漂移井區102、絕緣結構103、漂移氧化區104、導電連接結構105、通道井區106、閘極107、子閘極107’、
源極108以及汲極109。半導體層101’形成於基板101上,半導體層101’於垂直方向(如第10A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面101a與下表面101b。基板101例如但不限於為一P型或N型的半導體矽基板。半導體層101’例如以磊晶的步驟,形成於基板101上,或是以基板101的部分,作為半導體層101’。形成半導體層101’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 10A and 10B, which show a ninth embodiment of the present invention. FIGS. 10A and 10B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第10A與10B圖,其中,絕緣結構103形成於上表面101a上並連接於上表面101a,用以定義操作區103a(如第10B圖中虛線框所示意)。絕緣結構103並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區104形成於該上表面101a上並連接於上表面101a,且位於操作區103a中之漂移區102a(如第10A圖中虛線框所示意)上並連接於漂移區102a。
Please continue to refer to FIGS. 10A and 10B, wherein the insulating
漂移井區102具有第一導電型,形成於半導體層101’之操作區103a中,且於垂直方向上,漂移井區102位於上表面101a下並連接於上表面101a。通道井區106具有第二導電型,形成於上表面101a下之操作區103a中,且於垂直方向上,通道井區106位於上表面101a下並連接於上表面101a。通道井區106與漂移井區102在通道方向(如第10A圖中之實線箭號方向所示意,下同)上鄰接。閘極107形成於半導體層101’之上表面101a上的操作區103a中,由上視圖視之,閘極107大致為沿著寬度方向(如第10B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區106位於閘極107正下方並連接於閘極107,以提供高壓元件1000在導通操作中之反轉電流通道。閘極107之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第10A與10B圖,子閘極107’形成於部分漂移區102a正上方,且位於漂移氧化區104上之操作區103a中。由上視圖第10B圖視之,子閘極107’大致為沿著寬度方向而延伸之長方形並與閘極107平行排列。且子閘極107’於寬度方向上,跨越整個操作區103a。且於垂直方向上,子閘極107’位於漂移氧化區104上且連接漂移氧化區104。在本實施例中,高壓元件1000例如包含一個子閘極107’,且子閘極107’與閘極107彼此直接連接。子閘極107’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。
Please continue to refer to FIGS. 10A and 10B , the sub-gate 107 ′ is formed directly above part of the
源極108與汲極109具有第一導電型,於垂直方向上,源極108與汲極109形成於上表面101a下並連接於上表面101a之操作區103a中,且源極108與汲極109分別位於閘極107在通道方向之外部下方之通道井區106中與遠離通道井區106側之漂移井區102中,且於通道方向上,漂移區102a位於汲極109與通道井區106之間,並分隔汲極109與本體區106,且位於靠近上表面101a之漂移井區102中,用以作為高壓元件1000在導通操作中之漂移電流通道,且由上視圖第10B圖視之,在通道方向上,子閘極107’介於閘極107與汲極109之間,且於垂直方向上,源極108與汲極109位於上表面101a下並連接於上表面101a。導電連接結構105由閘極107與子閘極107’上方,電連接閘極107與子閘極107’,且導電連接結構105為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。埋層101”具有第一導電型,於垂直方向上,形成於通道井區106下方且與通道井區106連接,且埋層101”於操作區103a內,完全覆蓋通道井區106下方。在垂直方向上,埋層101”例如形成於基板101與半導體層101’接面兩側,部分埋層101”位於基板101中,且部分埋層101”位於半導體層101’中,以電性隔絕通道井區106與基板101。
The
在本實施例中,閘極107之導電層具有第一導電型,且子閘極107’之導電層具有第二導電型。在另一種實施例中,子閘極107’之導電層也可以為純質半導體結構,例如純質多晶矽結構。
In this embodiment, the conductive layer of the
本實施例與第六個實施例不同之處,其中一點在於,在第六個實施例中,子閘極77’與閘極77彼此不直接連接;而在本實施例中,子閘極107’與閘極107彼此直接連接。
The difference between this embodiment and the sixth embodiment is that in the sixth embodiment, the sub-gate 77 ′ and the
請參考第11A與11B圖,其顯示本發明的第十個實施例。第11A與11B圖分別顯示高壓元件1100的剖視示意圖與上視示意圖。如第11A與11B圖所示,高壓元件1100包含:半導體層111’、埋層111”、漂移井區112、絕緣結構113、漂移氧化區114、導電連接結構115、通道井區116、閘極117、子閘極117’、源極118以及汲極119。半導體層111’形成於基板111上,半導體層111’於垂直方向(如第11A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面111a與下表面111b。基板111例如但不限於為一P型或N型的半導體矽基板。半導體層111’例如以磊晶的步驟,形成於基板111上,或是以基板111的部分,作為半導體層111’。形成半導體層111’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to FIGS. 11A and 11B, which show a tenth embodiment of the present invention. 11A and 11B respectively show a schematic cross-sectional view and a schematic top view of the high-
請繼續參閱第11A與11B圖,其中,絕緣結構113形成於上表面111a上並連接於上表面111a,用以定義操作區113a(如第11B圖中虛線框所示意)。絕緣結構113並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區114形成於該上表面111a上並連接於上表面111a,且位於操作區113a中之漂移區112a(如第11A圖中虛線框所示意)上並連接於漂移區112a。
Please continue to refer to FIGS. 11A and 11B, wherein the insulating
漂移井區112具有第一導電型,形成於半導體層111’之操作區113a中,且於垂直方向上,漂移井區112位於上表面111a下並連接於上表面111a。通道井區116具有第二導電型,形成於上表面111a下之操作區113a中,且於垂直方向上,通道井區116位於上表面111a下並連接於上表面111a。通道井區116與漂移井區112在通道方向(如第11A圖中之實線箭號方向所示意,下同)上鄰接。閘極117形成於半導體層111’之上表面111a上的操作區113a中,由上視圖視之,閘極117大致為沿著寬度方向(如第11B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區116位於閘極117正下方並連接於閘極117,以提供高壓元件1100在導通操作中之反轉電流通道。閘極117之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。
The
請繼續參閱第11A與11B圖,子閘極117’形成於部分漂移區112a正上方,且位於漂移氧化區114上之操作區113a中。由上視圖第11B圖視之,子閘極117’大致為沿著寬度方向而延伸之長方形並與閘極117平行排列。且子閘極117’於寬度方向上,跨越整個操作區113a。且於垂直方向上,子閘極117’位於漂移氧化區114上且連接漂移氧化區114。在本實施例中,高壓元件1100例如包含一個子閘極117’。根據本發明之高壓元件,高壓元件1100也可以包含複數個子閘極。子閘極27’之導電層為純質半導體結構,例如純質多晶矽結構。在本實施例中,子閘極117”與閘極117不直接連接,並經由導電連接結構115彼此電連接。在其他的實施例中,子閘極117’也可以與源極118電連接。在另一種較佳的實施例中,子閘極117’也可以為電性浮接。
Continuing to refer to FIGS. 11A and 11B , the sub-gate 117 ′ is formed directly above part of the
源極118與汲極119具有第一導電型,於垂直方向上,源極118與汲極119形成於上表面111a下並連接於上表面111a之操作區113a中,且源極118與
汲極119分別位於閘極117在通道方向之外部下方之通道井區116中與遠離通道井區116側之漂移井區112中,且於通道方向上,漂移區112a位於汲極119與通道井區116之間,並分隔汲極119與本體區116,且位於靠近上表面111a之漂移井區112中,用以作為高壓元件1100在導通操作中之漂移電流通道,且由上視圖第11B圖視之,在通道方向上,子閘極117’介於閘極117與汲極119之間,且於垂直方向上,源極118與汲極119位於上表面111a下並連接於上表面111a。導電連接結構115由閘極117與子閘極117’上方,電連接閘極117與子閘極117’,且導電連接結構115為導體。例如但不限於在製程中的金屬導線(metal line)與導電插栓(conductive plug),為本領域中具有通常知識者所熟知,在此不予贅述。埋層111”具有第一導電型,於垂直方向上,形成於通道井區116下方且與通道井區116連接,且埋層111”於操作區113a內,完全覆蓋通道井區116下方。在垂直方向上,埋層111”例如形成於基板111與半導體層111’接面兩側,部分埋層111”位於基板111中,且部分埋層111”位於半導體層111’中。
The
本實施例與第六個實施例不同之處,其中一點在於,在第六個實施例中,子閘極77’之導電層具有第二導電型雜質摻雜,為第二導電型;而在本實施例中,子閘極117’之導電層為純質半導體結構,例如但不限於為純質多晶矽結構。 The difference between this embodiment and the sixth embodiment is that, in the sixth embodiment, the conductive layer of the sub-gate 77 ′ is doped with impurities of the second conductivity type and is of the second conductivity type; In this embodiment, the conductive layer of the sub-gate 117 ′ is a pure semiconductor structure, such as, but not limited to, a pure polysilicon structure.
請參考第12A-12G圖,其顯示本發明的第十一個實施例。第12A-12G圖顯示高壓元件200製造方法的剖視示意圖(第12A、12C、12D、12E、12F、12G圖)或上視示意圖(第12B圖)。如第12A與12B圖所示,首先形成半導體層21’於基板21上,半導體層21’於垂直方向(如第12A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面21a與下表面21b。基板21例如但不限於為一P型或N型的半導體矽基板。半導體層21’例如以磊晶的步驟,形成於基板21上,或是以基
板21的部分,作為半導體層21’。形成半導體層21’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to Figures 12A-12G, which show an eleventh embodiment of the present invention. FIGS. 12A-12G are schematic cross-sectional views (FIGS. 12A, 12C, 12D, 12E, 12F, and 12G) or top-view schematic diagrams (FIG. 12B) of the manufacturing method of the high-
請繼續參閱第12A與12B圖,接著,形成絕緣結構23與漂移氧化區24於上表面21a上並連接於上表面21a。絕緣結構23用以定義操作區23a(如第12B圖中虛線框所示意)。絕緣結構23並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。漂移氧化區24位於操作區23a中之漂移區22a上並連接於漂移區22a。在本實施例中,絕緣結構23所定義的操作區23a僅有一個高壓元件200,但本發明不限於此,絕緣結構23所定義的操作區23a中亦可以包括複數個高壓元件,例如以鏡像排列的兩個高壓元件等,此為本領域中具有通常知識者所熟知,在此不予贅述。
Please continue to refer to FIGS. 12A and 12B. Next, an insulating
接著,請參閱第12C圖,形成井區22於半導體層21’之操作區23a中,且於垂直方向上,井區22位於上表面21a下並連接於上表面21a。井區22具有第一導電型,例如可利用例如但不限於離子植入製程步驟,將第一導電型雜質,以加速離子的形式,如第12C圖中虛線箭號所示意,植入操作區23a中,以形成井區22。
Next, referring to FIG. 12C, the
接著,請參閱第12D圖,形成本體區26於操作區23a的井區22中,且於垂直方向上,本體區26位於上表面21a下並連接於上表面21a。本體區26具有第二導電型,形成本體區26之步驟,例如但不限於利用由微影製程步驟形成光阻層26’為遮罩,將第二導電型雜質摻雜至井區22中,以形成本體區26。其中,本實施例可利用例如但不限於離子植入製程步驟,將第二導電型雜質,以加速離子的形式,植入井區22中,以形成本體區26。
Next, referring to FIG. 12D, the
接著,請參閱第12E圖,形成閘極27於半導體層21’之上表面21a上的操作區23a中,由上視圖第2B圖視之,閘極27大致為沿著寬度方向(如第2B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向(如第12E圖中之虛線箭號方向所示意,下同)上,部分本體區26位於閘極27正下方並連接於閘極27,以提供高壓元件200在導通操作中之反轉電流通道。閘極27之導電層271’具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。形成第一導電型之導電層271’的方法,例如可利用離子植入製程步驟,將第一導電型雜質,以加速離子的形式,植入閘極27之導電層271’中,以形成第一導電型之導電層。
Next, referring to FIG. 12E, a
請繼續參閱第12E圖,例如在形成閘極27的部分相同製程步驟中,包含沉積純質半導體(例如但不限於為多晶矽)與形成間隔層之製程步驟,形成子閘極27’於漂移氧化區24上之操作區23a中。由上視圖第2B圖視之,子閘極27’大致為沿著寬度方向而延伸之長方形並與閘極27平行排列。且於垂直方向上,子閘極27’位於漂移氧化區24上且連接漂移氧化區24。在本實施例中,高壓元件200例如包含一個子閘極27’。根據本發明之高壓元件,可以包含一個或其他複數個子閘極27’。子閘極27’之導電層具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。形成第二導電型之導電層的方法,例如可利用離子植入製程步驟,將第二導電型雜質,以加速離子的形式,植入子閘極27’之導電層中,以形成第二導電型之導電層。
Please continue to refer to FIG. 12E, for example, in some of the same process steps of forming
接著,請參閱第12F圖,於垂直方向上,形成源極28與汲極29於上表面21a下並連接於上表面21a之操作區23a中,且源極28與汲極29分別位於閘極27在通道方向(如第12F圖中之實線箭號方向所示意,下同)之外部下方之本體區26中與遠離本體區26側之井區22中,且於通道方向上,漂移區22a位於汲極29
與本體區26之間,靠近上表面21a之井區22中,用以作為高壓元件200在導通操作中之漂移電流通道,且由上視圖第2B圖視之,在通道方向上,子閘極27’介於閘極27與汲極29之間,且於垂直方向(如第12F圖中之虛線箭號方向所示意,下同)上,源極28與汲極29位於上表面21a下並連接於上表面21a。源極28與汲極29具有第一導電型,形成源極28與汲極29之步驟,例如但不限於利用由微影製程步驟形成光阻層28’為遮罩,將第一導電型雜質分別摻雜至本體區26中與井區22中,以形成源極28與汲極29。其中,本實施例可利用例如但不限於離子植入製程步驟,將第一導電型雜質,以加速離子的形式,植入本體區26中與井區22中,以形成源極28與汲極29。
Next, referring to FIG. 12F, in the vertical direction, the
接著,請參閱第12G圖,形成導電連接結構25以由閘極27與子閘極27’上方,電連接閘極27與子閘極27’,且導電連接結構25為導體。例如但不限於以半導體元件之製程步驟中的形成金屬導線(metal line)與導電插栓(conductive plug)的步驟,形成導電連接結構25,此為本領域中具有通常知識者所熟知,在此不予贅述。
Next, referring to FIG. 12G, a
在一種較佳的實施例中,如第12G圖所示,子閘極27’與閘極27由導電連接結構25連接,而不彼此直接連接。在一種較佳的實施例中,如第12G圖所示,子閘極27’包括導電層271’以及間隔層272’。在一種較佳的實施例中,如第12G圖所示,漂移氧化區24係完整連接之結構,並不分割為不同區塊。
In a preferred embodiment, as shown in FIG. 12G, the sub-gate 27' and the
請參考第13A-13F圖,其顯示本發明的第十二個實施例。第13A-13F圖顯示高壓元件700製造方法的剖視示意圖。如第13A圖所示,首先形成半導體層71’於基板71上,半導體層71’於垂直方向(如第13A圖中之虛線箭號方向所示意,下同)上,具有相對之上表面71a與下表面71b。基板71例如但不限於為一P型或N型的半導體矽基板。半導體層71’例如以磊晶的步驟,形成於基板71上,或
是以基板71的部分,作為半導體層71’。形成半導體層71’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。
Please refer to Figures 13A-13F, which show a twelfth embodiment of the present invention. FIGS. 13A-13F show schematic cross-sectional views of a method of manufacturing a
請繼續參閱第13A圖,接著,形成絕緣結構73於上表面71a上並連接於上表面71a,用以定義操作區73a。絕緣結構73並不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構。形成絕緣結構73的同時,例如以相同的製程步驟形成漂移氧化區74於該上表面71a上並連接於上表面71a,且位於操作區73a中之漂移區72a(如第13B圖中虛線框所示意)上並連接於漂移區72a。接著,於垂直方向上,形成埋層71”於通道井區76下方且與通道井區76連接,且埋層71”於操作區73a內,完全覆蓋通道井區76下方。在垂直方向上,埋層71”例如形成於基板71與半導體層71’接面兩側,部分埋層71”位於基板71中,且部分埋層71”位於半導體層71’中。埋層71”具有第一導電型,例如可利用例如但不限於離子植入製程步驟,將第一導電型雜質,以加速離子的形式,植入基板71中,以形成埋層71”。
Please continue to refer to FIG. 13A. Next, an insulating
接著,請參閱第13B圖,形成漂移井區72於半導體層71’之操作區73a中,且於垂直方向上,漂移井區72位於上表面71a下並連接於上表面71a。漂移井區72具有第一導電型,形成漂移井區72之步驟,例如但不限於利用由微影製程步驟形成光阻層72’為遮罩,將第一導電型雜質摻雜至半導體層71’中,以形成漂移井區72。其中,本實施例可利用例如但不限於離子植入製程步驟,將第二導電型雜質,以加速離子的形式,植入半導體層71’中,以形成漂移井區72。
Next, referring to FIG. 13B, a
接著,請參閱第13C圖,形成通道井區76於上表面71a下之操作區73a中,且於垂直方向上,通道井區76位於上表面71a下並連接於上表面71a。通道井區76與漂移井區72在通道方向(如第13C圖中之實線箭號方向所示意,下同)上鄰接。通道井區76具有第二導電型,形成通道井區76之步驟,例如但不限於利
用由微影製程步驟形成光阻層76’為遮罩,將第二導電型雜質摻雜至半導體層71’中,以形成通道井區76。其中,本實施例可利用例如但不限於離子植入製程步驟,將第二導電型雜質,以加速離子的形式,植入半導體層71’中,以形成通道井區76。
Next, referring to FIG. 13C, the channel well 76 is formed in the
接著,請參閱第13D圖,形成閘極77於半導體層71’之上表面71a上的操作區73a中,由上視圖視之,閘極77大致為沿著寬度方向(如第7B圖中之實線箭號方向所示意,下同)上而延伸之長方形,且於垂直方向上,部分通道井區76位於閘極77正下方並連接於閘極77,以提供高壓元件700在導通操作中之反轉電流通道。閘極77之導電層具有第一導電型雜質摻雜,為第一導電型,其例如但不限於為具有第一導電型雜質摻雜之多晶矽結構。形成第一導電型之導電層的方法,例如可利用離子植入製程步驟,將第一導電型雜質,以加速離子的形式,植入閘極77之導電層中,以形成第一導電型之導電層。
Next, referring to FIG. 13D, the
請繼續參閱第13D圖,例如在形成閘極77的部分相同製程步驟中,包含沉積純質半導體(例如但不限於為多晶矽)與形成間隔層之製程步驟,形成子閘極77’形成於漂移氧化區74上之操作區73a中。由上視圖第7B圖視之,子閘極77’大致為沿著寬度方向而延伸之長方形並與閘極77平行排列。且於垂直方向上,子閘極77’位於漂移氧化區74上且連接漂移氧化區74。在本實施例中,高壓元件700例如包含一個子閘極77’。根據本發明之高壓元件,可以包含一個或其他複數個子閘極77’。子閘極77’之導電層771’具有第二導電型雜質摻雜,為第二導電型,其例如但不限於為具有第二導電型雜質摻雜之多晶矽結構。形成第二導電型之導電層771’的方法,例如可利用離子植入製程步驟,將第二導電型雜質,以加速離子的形式,植入子閘極77’之導電層771’中,以形成第二導電型之導電層771’。
Please continue to refer to FIG. 13D, for example, in some of the same process steps of forming the
接著,請參閱第13E圖,於垂直方向上,形成源極78與汲極79具有第一導電型,源極78與汲極79於上表面71a下並連接於上表面71a之操作區73a中,且源極78與汲極79分別位於閘極77在通道方向之外部下方之通道井區76中與遠離通道井區76側之漂移井區72中,且於通道方向上,漂移區72a位於汲極79與通道井區76之間,靠近上表面71a之漂移井區72中,用以作為高壓元件700在導通操作中之漂移電流通道,且由上視圖第7B圖視之,在通道方向上,子閘極77’介於閘極77與汲極79之間,且於垂直方向上,源極78與汲極79位於上表面71a下並連接於上表面71a。源極78與汲極79具有第一導電型,形成源極78與汲極79之步驟,例如但不限於利用由微影製程步驟形成光阻層78’為遮罩,將第一導電型雜質分別摻雜至通道井區76中與漂移井區72中,以形成源極78與汲極79。其中,本實施例可利用例如但不限於離子植入製程步驟,將第一導電型雜質,以加速離子的形式,植入通道井區76中與漂移井區72中,以形成源極78與汲極79。
Next, referring to FIG. 13E, in the vertical direction, the
接著,請參閱第13F圖,形成導電連接結構75,以由閘極77與子閘極77’上方,電連接閘極77與子閘極77’,且導電連接結構75為導體。例如但不限於以半導體元件之製程步驟中的形成金屬導線(metal line)與導電插栓(conductive plug)的步驟,形成導電連接結構75,此為本領域中具有通常知識者所熟知,在此不予贅述。
Next, referring to FIG. 13F, a
在一種較佳的實施例中,如第13F圖所示,子閘極77’與閘極77由導電連接結構75連接,而不彼此連接。在一種較佳的實施例中,如第13F圖所示,子閘極77’包括子閘極導電層771’以及子閘極間隔層772’。在一種較佳的實施例中,如第13F圖所示,漂移氧化區74係完整連接之結構,並不分割為不同區塊。
In a preferred embodiment, as shown in FIG. 13F, the sub-gate 77' and the
第14A圖示出本發明與先前技術之導通操作時的暫態響應之閘極電壓的電性示意圖。根據第14A圖所示,本發明之高壓元件,相較於先前技術,
具有較短的切換時間,較好的暫態響應。如第14A圖所示,橫軸為時間,單位為秒s;縱軸為閘極電壓,單位為伏特V。以第一個實施例高壓元件200為例,在導通(turning ON)操作中,相較於先前技術,根據本發明之閘極電壓上升的速度較快,這是因為相應的電容值,相對於先前技術之高壓元件下降,使得在導通的操作中,閘極電壓花了相對較短的時間達到目標電壓(例如但不限於為3.3V),因此根據本發明之高壓元件的暫態響應改善。
FIG. 14A is an electrical schematic diagram of the gate voltage of the transient response during the turn-on operation of the present invention and the prior art. As shown in FIG. 14A, the high-voltage device of the present invention, compared with the prior art,
It has shorter switching time and better transient response. As shown in Figure 14A, the horizontal axis is time, in seconds, and the vertical axis is gate voltage, in volts V. Taking the high-
第14B圖示出本發明與先前技術之導通操作時的暫態響應之汲極電壓的電性示意圖。根據第14B圖所示,本發明之高壓元件,相較於先前技術,具有較短的切換時間,較好的暫態響應。如第14B圖所示,橫軸為時間,單位為秒s;縱軸為汲極電壓,單位為伏特V。以第一個實施例高壓元件200為例,在導通(turning ON)操作中,相較於先前技術,根據本發明之汲極電壓上升的速度較快,這是因為相應的電容值,相對於先前技術之高壓元件下降,使得在導通的操作中,汲極電壓花了相對較短的時間達到目標電壓(例如但不限於為12V),因此根據本發明之高壓元件的暫態響應改善。
FIG. 14B is an electrical schematic diagram of the drain voltage of the transient response during the turn-on operation of the present invention and the prior art. As shown in FIG. 14B , the high-voltage device of the present invention has a shorter switching time and better transient response than the prior art. As shown in Fig. 14B, the horizontal axis is time, and the unit is seconds; the vertical axis is the drain voltage, and the unit is volt V. Taking the high-
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,在不影響元件主要的特性下,可加入其他製程步驟或結構,如深井區等;又如,微影技術並不限於光罩技術,亦可包含電子束微影技術。凡此種種,皆可根據本發明的教示類推而得。此外,所說明之各個實施例,並不限於單獨應用,亦可以組合應用,例如但不限於將兩實施例併用。因此,本發明的範圍應涵蓋上述及其他所有等效變化。此外,本發明的任一實施型態不必須達成所有的目的或優點,因此,請求專利範圍任一項也不應以此為限。 The present invention has been described above with respect to the preferred embodiments, but the above-mentioned descriptions are only intended to make it easy for those skilled in the art to understand the content of the present invention, and are not intended to limit the scope of rights of the present invention. Within the same spirit of the present invention, various equivalent changes will be devised by those skilled in the art. For example, other process steps or structures, such as deep well regions, can be added without affecting the main characteristics of the device; for another example, the lithography technology is not limited to the photomask technology, but also includes electron beam lithography technology. All of these can be derived by analogy according to the teachings of the present invention. In addition, each of the described embodiments is not limited to be applied individually, but can also be applied in combination, for example, but not limited to, the two embodiments are used together. Accordingly, the scope of the present invention should cover the above and all other equivalent changes. In addition, it is not necessary for any embodiment of the present invention to achieve all the purposes or advantages, and therefore the scope of the claimed patent should not be limited thereto.
200:高壓元件200: High Voltage Components
21:基板21: Substrate
21’:半導體層21': Semiconductor layer
21a:上表面21a: upper surface
21b:下表面21b: lower surface
22:井區22: Well area
23:絕緣結構23: Insulation structure
23a:操作區23a: Operation area
24:漂移氧化區24: Drift oxide zone
25:導電連接結構25: Conductive connection structure
26:本體區26: Ontology area
27:閘極27: Gate
27’:子閘極27': Sub-gate
271,271’:導電層271,271': Conductive layer
272,272’:間隔層272,272': Spacer layer
273:介電層273: Dielectric Layer
28:源極28: Source
29:汲極29: Drain
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/868,456 US20210074851A1 (en) | 2019-09-05 | 2020-05-06 | High voltage device and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962896546P | 2019-09-05 | 2019-09-05 | |
US62/896546 | 2019-09-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202111773A TW202111773A (en) | 2021-03-16 |
TWI770452B true TWI770452B (en) | 2022-07-11 |
Family
ID=74733632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108146520A TWI770452B (en) | 2019-09-05 | 2019-12-18 | High voltage device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112447829A (en) |
TW (1) | TWI770452B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267729A (en) * | 2021-12-06 | 2022-04-01 | 华虹半导体(无锡)有限公司 | Preparation method of LDMOS device and device |
TWI811036B (en) * | 2022-07-22 | 2023-08-01 | 立錡科技股份有限公司 | Integrated structure of semiconductor devices having shared contact plug and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110215399A1 (en) * | 2010-03-03 | 2011-09-08 | Renesas Electronics Corporation | P-channel power mosfet |
TW201143096A (en) * | 2010-03-31 | 2011-12-01 | Volterra Semiconductor Corp | Dual gate LDMOS device with reduced capacitance |
TWI644438B (en) * | 2017-10-16 | 2018-12-11 | 立錡科技股份有限公司 | High voltage metal oxide semiconductor device and manufacturing method thereof |
TWI644441B (en) * | 2018-05-04 | 2018-12-11 | 立錡科技股份有限公司 | High voltage device and manufacturing method thereof |
TWI656642B (en) * | 2018-05-08 | 2019-04-11 | 立錡科技股份有限公司 | Lateral double-diffused metal oxide semiconductor device and method of manufacturing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100628250B1 (en) * | 2005-09-28 | 2006-09-27 | 동부일렉트로닉스 주식회사 | Semiconductor device for using power and method for fabricating the same |
US9450056B2 (en) * | 2012-01-17 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lateral DMOS device with dummy gate |
US9520367B2 (en) * | 2014-08-20 | 2016-12-13 | Freescale Semiconductor, Inc. | Trenched Faraday shielding |
JP2019114643A (en) * | 2017-12-22 | 2019-07-11 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method for manufacturing the same |
-
2019
- 2019-12-18 TW TW108146520A patent/TWI770452B/en active
- 2019-12-27 CN CN201911377939.9A patent/CN112447829A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110215399A1 (en) * | 2010-03-03 | 2011-09-08 | Renesas Electronics Corporation | P-channel power mosfet |
TW201143096A (en) * | 2010-03-31 | 2011-12-01 | Volterra Semiconductor Corp | Dual gate LDMOS device with reduced capacitance |
TWI644438B (en) * | 2017-10-16 | 2018-12-11 | 立錡科技股份有限公司 | High voltage metal oxide semiconductor device and manufacturing method thereof |
TWI644441B (en) * | 2018-05-04 | 2018-12-11 | 立錡科技股份有限公司 | High voltage device and manufacturing method thereof |
TWI656642B (en) * | 2018-05-08 | 2019-04-11 | 立錡科技股份有限公司 | Lateral double-diffused metal oxide semiconductor device and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN112447829A (en) | 2021-03-05 |
TW202111773A (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9281395B2 (en) | Semiconductor device and fabrication method thereof | |
US6620688B2 (en) | Method for fabricating an extended drain metal oxide semiconductor field effect transistor with a source field plate | |
US10777551B2 (en) | Integrated semiconductor device and method for manufacturing the same | |
US10418480B2 (en) | Semiconductor device capable of high-voltage operation | |
TWI656642B (en) | Lateral double-diffused metal oxide semiconductor device and method of manufacturing same | |
KR102449211B1 (en) | Semiconductor devices including field effect transistors | |
TWI770452B (en) | High voltage device and manufacturing method thereof | |
US10714612B2 (en) | High voltage device and manufacturing method thereof | |
US7514747B2 (en) | Silicon-on-insulator semiconductor device | |
TWI786976B (en) | High voltage device, high voltage control device and manufacturing methods thereof | |
US9324786B2 (en) | Semiconductor device and method for fabricating the same | |
US20210074851A1 (en) | High voltage device and manufacturing method thereof | |
CN110491941B (en) | High voltage device and method for manufacturing the same | |
TW202247462A (en) | Power device and manufacturing method thereof | |
TWI619200B (en) | Metal oxide semiconductor device with dual-well and manufacturing method thereof | |
TWI841913B (en) | High voltage device and manufacturing method thereof | |
TWI821940B (en) | Integration manufacturing method of high voltage device and low voltage device | |
TWI796237B (en) | Integration manufacturing method of depletion high voltage nmos device and depletion low voltage nmos device | |
US20230170262A1 (en) | Integration manufacturing method of high voltage device and low voltage device | |
US20240006530A1 (en) | High voltage device having multi-field plates and manufacturing method thereof | |
KR19980067670A (en) | Double gate transistor manufacturing method | |
KR20050063315A (en) | High voltage transistor and method for manufacturing the same | |
TW202324746A (en) | Nmos half-bridge power device and manufacturing method thereof | |
KR20240117301A (en) | High voltage semiconductor device and method of manufacturing the same | |
CN114759091A (en) | High voltage element, high voltage control element and manufacturing method thereof |