TWI812890B - Non-telecentric light guide elements - Google Patents

Non-telecentric light guide elements Download PDF

Info

Publication number
TWI812890B
TWI812890B TW109136105A TW109136105A TWI812890B TW I812890 B TWI812890 B TW I812890B TW 109136105 A TW109136105 A TW 109136105A TW 109136105 A TW109136105 A TW 109136105A TW I812890 B TWI812890 B TW I812890B
Authority
TW
Taiwan
Prior art keywords
light
photoresist material
optical
container
reflective surface
Prior art date
Application number
TW109136105A
Other languages
Chinese (zh)
Other versions
TW202131104A (en
Inventor
詹姆士 當菲
大衛 胡奇森
Original Assignee
美商威摩有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商威摩有限責任公司 filed Critical 美商威摩有限責任公司
Publication of TW202131104A publication Critical patent/TW202131104A/en
Application granted granted Critical
Publication of TWI812890B publication Critical patent/TWI812890B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12173Masking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Abstract

The present disclosure relates to systems and methods relating to the fabrication of light guide elements. An example system includes an optical component configured to direct light emitted by a light source to illuminate a photoresist material at one or more desired angles so as to expose an angled structure in the photoresist material. The photoresist material overlays at least a portion of a first surface of a substrate. The optical component includes a container containing a light-coupling material that is selected based in part on the one or more desired angles. The system also includes a reflective surface arranged to reflect at least a first portion of the emitted light to illuminate the photoresist material at the one or more desired angles.

Description

非遠心式導光元件Non-telecentric light guide element

本發明係關於與導光元件相關之系統及製造方法且更特定言之,係關於非遠心式導光元件。The present invention relates to systems and manufacturing methods related to light guide elements and, more particularly, to non-telecentric light guide elements.

導光裝置可包含光纖、波導及其他光學元件(例如,透鏡、鏡、稜鏡等)。此等導光裝置可經由全內反射或部分內反射將光自一輸入面透射至一輸出面。此外,導光裝置可包含主動及被動光學組件,諸如光學開關、組合器及分離器。Light guide devices may include optical fibers, waveguides, and other optical elements (eg, lenses, mirrors, mirrors, etc.). These light guide devices can transmit light from an input surface to an output surface through total internal reflection or partial internal reflection. Additionally, light guides may include active and passive optical components, such as optical switches, combiners, and splitters.

光學系統可利用導光裝置用於各種目的。例如,光纖可經實施以將光學信號自一光源傳輸至一所要位置。在光偵測及測距(LIDAR)裝置之情況中,複數個光源可發射光,該光可經光學地耦合至導光裝置以便被引導至一給定環境中。發射至環境中之光可藉由LIDAR裝置之一接收器偵測以便提供距環境中之物件之經估計距離。Optical systems can utilize light guides for a variety of purposes. For example, optical fibers can be implemented to transmit optical signals from a light source to a desired location. In the case of a light detection and ranging (LIDAR) device, a plurality of light sources can emit light, which can be optically coupled to a light guide in order to be directed into a given environment. Light emitted into the environment can be detected by a receiver of the LIDAR device to provide estimated distances to objects in the environment.

本發明係關於與經組態以依一非遠心式配置安裝於一光學系統內之導光元件相關之系統及製造方法。另外或替代地,本文中描述之系統及方法可適用於光學系統之製造。例如,本發明描述某些光學元件(例如,導光裝置)及其等製造方法。光學波導可包含一或多個結構,諸如鏡表面、垂直結構及/或傾斜結構。The present invention relates to systems and methods of fabrication related to light guide elements configured to be mounted in an optical system in a non-telecentric configuration. Additionally or alternatively, the systems and methods described herein may be adapted for use in the fabrication of optical systems. For example, this disclosure describes certain optical components (eg, light guides) and methods of making them. Optical waveguides may include one or more structures, such as mirror surfaces, vertical structures, and/or tilted structures.

在一第一態樣中,提供一種系統。該系統包含經組態以引導由一光源發射之光按一或多個所要角度照明一光阻劑材料以便使該光阻劑材料中之一傾斜結構曝光之一光學組件。該光阻劑材料覆疊一基板之一第一表面之至少一部分。該光學組件包含容納至少部分基於該一或多個所要角度選擇之一光耦合材料之一容器。該系統亦包含經配置以反射該經發射光之至少一第一部分以按該一或多個所要角度照明該光阻劑材料之一反射表面。In a first aspect, a system is provided. The system includes an optical component configured to direct light emitted by a light source to illuminate a photoresist material at one or more desired angles to expose a tilted structure in the photoresist material. The photoresist material covers at least a portion of a first surface of a substrate. The optical assembly includes a container containing a light coupling material selected based at least in part on the one or more desired angles. The system also includes a reflective surface configured to reflect at least a first portion of the emitted light to illuminate the photoresist material at the one or more desired angles.

在一第二態樣中,提供一種光學系統。該光學系統包含一基板及一光發射器裝置。該光學系統亦包含沿著該基板之一表面配置之一光學波導。該光學波導包含一鏡部分。該光學波導經組態以導引由該光發射器裝置發射之光。該經導引光之一部分與該鏡部分相互作用以便將反射光引導至該光學系統之一環境中。該鏡部分包含相對於該基板配置成30度與60度之間之一反射表面。In a second aspect, an optical system is provided. The optical system includes a substrate and a light emitter device. The optical system also includes an optical waveguide disposed along a surface of the substrate. The optical waveguide contains a mirror section. The optical waveguide is configured to guide light emitted by the light emitter device. A portion of the directed light interacts with the mirror portion to direct reflected light into an environment of the optical system. The mirror portion includes a reflective surface configured between 30 degrees and 60 degrees relative to the substrate.

在一第三態樣中,提供一種方法。該方法包含在一光學組件之一個端附近放置一基板。該光阻劑材料覆疊該基板之一第一表面之至少一部分。該光學組件包含:(i)一容器,其容納一光耦合材料;及(ii)一反射表面。該方法亦可包含引起一光源發射光至該光學組件中。該反射表面反射該經發射光之至少一第一部分以依一或多個所要角度照明該光阻劑材料,藉此使該光阻劑材料中之一傾斜結構之至少一部分曝光。In a third aspect, a method is provided. The method includes placing a substrate near one end of an optical component. The photoresist material covers at least a portion of a first surface of the substrate. The optical component includes: (i) a container containing an optical coupling material; and (ii) a reflective surface. The method may also include causing a light source to emit light into the optical component. The reflective surface reflects at least a first portion of the emitted light to illuminate the photoresist material at one or more desired angles, thereby exposing at least a portion of a tilted structure in the photoresist material.

藉由視情況參考附圖閱讀以下詳細描述,一般技術者將變得明白其他態樣、實施例及實施方案。Other aspects, embodiments, and implementations will become apparent to those of ordinary skill by reading the following detailed description, as appropriate, with reference to the accompanying drawings.

本文中描述例示性方法、裝置及系統。應理解,詞「實例」及「例示性」在本文中用於意指「充當一實例、例項或圖解」。本文中被描述為一「實例」或「例示性」之任何實施例或特徵不一定被解釋為與其他實施例或特徵相比較佳或有利。可利用其他實施例,且可作出其他改變而不脫離本文中呈現之標的物之範疇。Exemplary methods, devices, and systems are described herein. It should be understood that the words "example" and "illustrative" are used herein to mean "serving as an example, instance, or illustration." Any embodiment or feature described herein as an "example" or "illustrative" is not necessarily to be construed as being preferred or advantageous over other embodiments or features. Other embodiments may be utilized, and other changes may be made, without departing from the scope of the subject matter presented herein.

因此,本文中描述之例示性實施例不意欲為限制性。如本文中大體上描述且在圖中繪示之本發明之態樣可以廣泛多種不同組態配置、取代、組合、分離及設計,全部該等不同組態在本文中經考慮。Accordingly, the illustrative embodiments described herein are not intended to be limiting. Aspects of the invention as generally described herein and illustrated in the Figures may be configured, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are contemplated herein.

此外,除非背景內容另外建議,否則在各圖中繪示之特徵可彼此組合使用。因此,應通常將圖視為一或多個整體實施例之組成態樣,應理解,並非各實施例需要全部經繪示特徵。I. 概述 Furthermore, the features depicted in each figure may be used in combination with each other unless background content suggests otherwise. Therefore, the drawings should generally be considered as schematics of one or more overall embodiments, with the understanding that not all illustrated features may be required of each embodiment. I. Overview

光導可包含可經組態以在光導內導引光之光學元件。此等光學元件可包含可反射光(完全或部分)以便將光自光導之一輸入面透射至一輸出面之結構。例如,光學元件可係可導引光之垂直及/或傾斜結構。更具體言之,一垂直結構可沿著結構之一長度導引光。一傾斜結構可使用一金屬(其係光學反射的)塗佈,藉此有效地用作可在一特定方向上反射入射光之一鏡。The light guide may include optical elements that may be configured to guide light within the light guide. These optical elements may include structures that reflect light (fully or partially) to transmit light from an input face to an output face of the light guide. For example, optical elements can be vertical and/or tilted structures that can direct light. More specifically, a vertical structure can direct light along a length of the structure. A tilted structure can be coated with a metal (which is optically reflective), thereby effectively acting as a mirror that reflects incident light in a specific direction.

在一例示性實施例中,光導可由一光阻劑材料形成且可經組態以導引紅外光。In an exemplary embodiment, the light guide may be formed from a photoresist material and may be configured to guide infrared light.

實務上,光導可使用光微影製造,該光微影使用一光源以將覆疊一基板之一光阻劑材料中之光學元件之結構曝光。所要結構可由照明具有一光罩圖案之光阻劑之曝光光曝光。在此等案例中,垂直結構由法向入射於光阻劑材料上之曝光光曝光以便按一法向角使光阻劑曝光。In practice, light guides can be fabricated using photolithography, which uses a light source to expose the structure of the optical element in a photoresist material overlaying a substrate. The desired structure can be exposed by exposure light illuminating the photoresist having a mask pattern. In these cases, the vertical structures are exposed by exposure light incident normally on the photoresist material to expose the photoresist at a normal angle.

另一方面,傾斜結構由按一非法向角入射於光阻劑材料上之曝光光曝光。例如,為了使一傾斜結構曝光,將光在光阻劑材料中之一折射角設定為傾斜結構之一所要角度。然而,達成光阻劑材料中之一些折射角可係挑戰性的。例如,當光源與光阻劑材料之間之一介質係空氣時,根據斯涅爾(Snell)定律,光阻劑材料中用於使一些傾斜結構曝光之折射角可能係無法達成的。On the other hand, the tilted structure is exposed by exposure light incident on the photoresist material at an illegal angle. For example, to expose a tilted structure, an angle of refraction of light in the photoresist material is set to a desired angle of the tilted structure. However, achieving certain refraction angles in photoresist materials can be challenging. For example, when one of the media between the light source and the photoresist material is air, the refraction angle in the photoresist material for exposing some tilted structures may not be achieved according to Snell's law.

一個當前解決方案係使用浸潤式光微影以達成光阻劑材料中之所要折射角。在此解決方案中,基板可浸潤在具有一中度折射率之一介質中。根據斯涅爾定律,選取材料以具有足夠高以透射折射至光阻劑材料中之經設計角度之光之一折射率。為了使浸潤光阻劑材料中之傾斜結構曝光,一機器人裝置按相對於光阻劑材料之特定角度移動一光源以按所要角度使光阻劑材料曝光。雖然此解決方案可用於製造傾斜結構,但其效率低且耗時。實務上,使用此一技術製造光學元件可耗費數小時。One current solution is to use immersion photolithography to achieve the desired refraction angle in the photoresist material. In this solution, the substrate can be immersed in a medium with a moderate refractive index. According to Snell's law, the material is selected to have a refractive index high enough to transmit refracted light at designed angles into the photoresist material. To expose tilted structures in wetted photoresist material, a robotic device moves a light source at a specific angle relative to the photoresist material to expose the photoresist material at the desired angle. While this solution can be used to fabricate tilted structures, it is inefficient and time-consuming. In practice, manufacturing optical components using this technology can take several hours.

本文中揭示浸潤式微影系統及方法,其等可包含經組態以引導來自一光源之光以按複數個所要角度照明一基板上之一光阻劑材料且藉此使光阻劑材料中之複數個各種角度之結構曝光。光學組件可包含容納至少部分基於所要角度選擇之一折射率匹配材料(例如,水或另一流體)之一容器。光學組件亦可包含經配置以反射光之至少一部分以按所要角度照明光阻劑材料之一反射表面。Immersion lithography systems and methods are disclosed herein, which may include a photoresist material configured to direct light from a light source to illuminate a photoresist material on a substrate at a plurality of desired angles and thereby cause the photoresist material to Exposure of structures from various angles. The optical assembly may include a container holding an index matching material (eg, water or another fluid) selected based at least in part on the desired angle. The optical component may also include a reflective surface configured to reflect at least a portion of the light to illuminate the photoresist material at a desired angle.

在一例示性實施例中,反射表面包含可在光阻劑材料中形成複數個所要角度之複數個不同角度。在此等案例中,傾斜結構可經形成具有基於反射表面之一形狀判定之不同可控制角度。In an exemplary embodiment, the reflective surface includes a plurality of different angles that create a plurality of desired angles in the photoresist material. In such cases, the tilted structure can be formed with different controllable angles based on a shape determination of the reflective surface.

在一些實施例中,傾斜結構可使用一反射材料塗佈以便形成傾斜鏡結構。傾斜鏡結構可光學耦合至各自複數個光導(例如,光學波導)。複數個光發射器裝置可經組態以沿著光導發射各自光脈衝。光脈衝可沿著光導導引且藉由傾斜鏡結構反射出平面。在此等案例中,光脈衝可按不同角度被發射至一環境中。In some embodiments, the tilted structure may be coated with a reflective material to form a tilted mirror structure. The tilted mirror structure can be optically coupled to a respective plurality of light guides (eg, optical waveguides). A plurality of light emitter devices may be configured to emit respective light pulses along the light guide. Light pulses can be guided along the light guide and reflected out of the plane by tilted mirror structures. In these cases, light pulses can be emitted into an environment at different angles.

一LIDAR系統可包含複數個光發射器裝置及一導光歧管。導光歧管可包含對應於且光學耦合至各自光發射器裝置之複數個波導。複數個光發射器裝置可經組態以沿著各自波導發射光脈衝。導光歧管亦可包含光學耦合至波導之複數個傾斜鏡結構。在一例示性實施例中,複數個傾斜鏡結構可經組態以引導光脈衝離開波導之平面且朝向LIDAR之一環境。此外,傾斜鏡結構之各自角度可不同,使得沿著不同發射角度朝向環境可控制地引導光脈衝。例如,傾斜鏡結構可經配置於相對於波導之平面之42度、45度及48度。然而,其他角度及/或角度範圍經考慮並係可能的。II. 例示性系統 A LIDAR system may include a plurality of light emitter devices and a light guide manifold. The light guide manifold may include a plurality of waveguides corresponding to and optically coupled to respective light emitter devices. A plurality of light emitter devices may be configured to emit light pulses along respective waveguides. The light guide manifold may also include a plurality of tilted mirror structures optically coupled to the waveguide. In an exemplary embodiment, a plurality of tilted mirror structures may be configured to direct light pulses away from the plane of the waveguide and toward an environment of the LIDAR. Additionally, the respective angles of the tilted mirror structures can be different, allowing controllably directing light pulses toward the environment along different emission angles. For example, tilted mirror structures may be configured at 42 degrees, 45 degrees, and 48 degrees relative to the plane of the waveguide. However, other angles and/or angle ranges are contemplated and possible. II. Illustrative system

依據上文之論述,使用當前光微影系統製造一些所要結構可係挑戰性的。例如,當光源與光阻劑材料之間之介質係空氣時,製造一些傾斜結構可係不可行的。具體言之,根據斯涅爾定律,當光源與光阻劑材料之間之介質係空氣時,光阻劑材料中用於使傾斜結構曝光之折射角可能係無法達成的。As discussed above, fabricating some desired structures can be challenging using current photolithography systems. For example, when the medium between the light source and the photoresist material is air, it may not be feasible to create some tilted structures. Specifically, according to Snell's law, when the medium between the light source and the photoresist material is air, the refraction angle in the photoresist material for exposing the tilted structure may not be achieved.

本文中揭示用於製造光學元件(例如,光學波導)之方法及系統。特定言之,方法及系統可用於製造包含所要結構(例如,所要傾斜及/或垂直結構)之光學元件。此外,本文中揭示之方法及系統可比當前實務上使用之製造系統更快速且有效地製造光學元件。Methods and systems for fabricating optical components, such as optical waveguides, are disclosed herein. In particular, methods and systems can be used to fabricate optical elements that include desired structures (eg, desired tilted and/or vertical structures). In addition, the methods and systems disclosed herein can fabricate optical components more quickly and efficiently than manufacturing systems currently used in practice.

圖1繪示根據一例示性實施例之一系統100。系統100可係可經組態以藉由使一光可圖案化材料中之所要結構曝光而製造光學元件之一光微影系統。此外,系統100可在光學浸潤式微影之背景內容中利用。在此等案例中,系統100可用於在一光阻劑材料中按所要角度形成傾斜結構。Figure 1 illustrates a system 100 according to an exemplary embodiment. System 100 can be a photolithography system that can be configured to fabricate optical elements by exposing desired structures in a photopatternable material. Additionally, system 100 may be utilized in the context of optical immersion lithography. In such cases, system 100 can be used to form tilted structures at desired angles in a photoresist material.

系統100包含一光學組件110,該光學組件110經組態以引導由一光源10發射之光12按一或多個所要角度照明一光阻劑材料130以便使光阻劑材料130中之一傾斜結構134曝光。如本文中解釋,光學組件110可經組態以操縱由光源10發射之光以便使光阻劑材料130中之所要結構曝光。System 100 includes an optical assembly 110 configured to direct light 12 emitted by a light source 10 to illuminate a photoresist material 130 at one or more desired angles to tilt one of the photoresist materials 130 Structure 134 exposed. As explained herein, optical assembly 110 may be configured to manipulate light emitted by light source 10 to expose desired structures in photoresist material 130 .

在此等實施例中,光阻劑材料130覆疊一基板140之一第一表面142之至少一部分。例如,光阻劑材料130可包含SU-8聚合物、Kloe K-CL負光阻劑、Dow PHOTOPOSIT負光阻劑或JSR負色調THB光阻劑。將理解,光阻劑材料130可包含其他聚合物光可圖案化材料。In these embodiments, the photoresist material 130 covers at least a portion of a first surface 142 of a substrate 140 . For example, photoresist material 130 may include SU-8 polymer, Kloe K-CL negative photoresist, Dow PHOTOPOSIT negative photoresist, or JSR negative tint THB photoresist. It will be understood that photoresist material 130 may include other polymeric photopatternable materials.

基板140可係一透明基板,諸如玻璃及/或對於一所要波長範圍(例如,近紅外波長或另一紅外波長範圍)實質上透明之另一材料。Substrate 140 may be a transparent substrate such as glass and/or another material that is substantially transparent to a desired wavelength range (eg, near-infrared wavelengths or another infrared wavelength range).

在一些實施例中,光源10可經組態以發射一或多個波長之光。例如,光源10可經組態以發射可見光及/或紫外(UV)光。此外,光源10可包含可使光源10能夠發射準直或實質上準直光之一或多個組件(例如,一透鏡及/或一準直器)。例如,光可使用各向異性準直準直。在此等案例中,光源10可係一經各向異性準直光源。In some embodiments, light source 10 may be configured to emit light at one or more wavelengths. For example, light source 10 may be configured to emit visible light and/or ultraviolet (UV) light. Additionally, light source 10 may include one or more components (eg, a lens and/or a collimator) that enable light source 10 to emit collimated or substantially collimated light. For example, light can be collimated using anisotropic collimation. In such cases, light source 10 may be an anisotropically collimated light source.

在一些實施例中,光源10可發射p偏振光以便減少來自基板-光阻劑介面及來自基板140之一背側之反射。因此,光源10可包含使光源10能夠發射p偏振光之一偏振器(例如,一偏振濾光器)。另外及/或替代地,光源10可包含可容許系統100控制一曝光時間之一整合式計時器。在一例示性實施方案中,光源10可係一500瓦特UV燈源。在另一例示性實施方案中,光源10可係一500瓦特準直UV燈源。In some embodiments, light source 10 may emit p-polarized light to reduce reflections from the substrate-photoresist interface and from a backside of substrate 140 . Accordingly, light source 10 may include a polarizer (eg, a polarizing filter) that enables light source 10 to emit p-polarized light. Additionally and/or alternatively, light source 10 may include an integrated timer that may allow system 100 to control an exposure time. In an exemplary embodiment, light source 10 may be a 500 watt UV light source. In another exemplary embodiment, light source 10 may be a 500 watt collimated UV light source.

另外或替代地,光源10可係一水銀或氙氣放電燈。在其他實施例中,光源10可係一深紫外(UV)準分子雷射,諸如一193 nm ArF準分子雷射。然而,適用於光學微影及/或浸潤式微影之其他光源係可能的且經考慮。Additionally or alternatively, the light source 10 may be a mercury or xenon discharge lamp. In other embodiments, the light source 10 may be a deep ultraviolet (UV) excimer laser, such as a 193 nm ArF excimer laser. However, other light sources suitable for optical lithography and/or immersion lithography are possible and considered.

在一實施例中,光學組件110可經組態以操縱經發射光以便使光阻劑材料130曝光。為了操縱經發射光,光學組件110可接近光源10定位且光學耦合至光源10。在一實施方案中,光學組件110可相對於一水準面定位於光源10上方或下方。光學組件110及光源10之其他定向經考慮且係可能的。In one embodiment, optical assembly 110 may be configured to manipulate emitted light to expose photoresist material 130 . To manipulate the emitted light, optical assembly 110 may be positioned proximate to and optically coupled to light source 10 . In one embodiment, the optical component 110 may be positioned above or below the light source 10 relative to a horizontal plane. Other orientations of optical assembly 110 and light source 10 are contemplated and possible.

光學組件110包含容納至少部分基於一或多個所要角度選擇之一光耦合材料114之一容器112。在一例示性實施例中,光耦合材料114可包含具有大於1之一折射率之一液體介質(例如,純化水)。在其他實例中,光耦合材料114可係乙二醇(折射率~ 1.43)及/或甘油(折射率~ 1.47)以及其他實例。在一實例中,光耦合材料114可係具有適用於支援光線之透射之一折射率之任何材料,該等光線在折射之後在光阻劑中具有所要角度。另外或替代地,光耦合材料114可係填充容器112之一內部之至少一部分之一固體(例如,透明丙烯酸及固化聚矽氧或環氧樹脂)、液體、黏著劑或凝膠。然而,浸潤式微影常見之其他類型之光耦合材料在本文中係可能的且經考量。Optical assembly 110 includes a container 112 containing a light coupling material 114 selected at least in part based on one or more desired angles. In an exemplary embodiment, optical coupling material 114 may include a liquid medium (eg, purified water) having a refractive index greater than 1. In other examples, the optical coupling material 114 may be ethylene glycol (refractive index ~ 1.43) and/or glycerol (refractive index ~ 1.47), as well as other examples. In one example, light coupling material 114 may be any material with a refractive index suitable for supporting the transmission of light rays that, after refraction, have a desired angle in the photoresist. Additionally or alternatively, the light coupling material 114 may be a solid (eg, clear acrylic and cured silicone or epoxy), liquid, adhesive, or gel that fills at least a portion of an interior of the container 112 . However, other types of light coupling materials common to immersion lithography are possible and considered herein.

在一些實施例中,容器112可由一或多個材料(諸如鋁及/或其他類型之金屬)製成。容器112之一個表面之一部分可係透明的,使得由光源10發射之光可進入容器112。容器112之另一表面之一部分亦可係透明的以便使光離開容器112以使光阻劑材料130曝光。例如,容器112之一頂表面及一底表面之部分可係透明的以便使光進入/離開容器112。顯然,透明部分可對該類型之經發射光透明。例如,當經發射光係UV光時,透明部分可對UV光透明。透明部分之例示性材料可包含玻璃及/或對由光源10發射之光透明之任何其他材料。In some embodiments, container 112 may be made from one or more materials, such as aluminum and/or other types of metals. A portion of a surface of container 112 may be transparent so that light emitted by light source 10 may enter container 112 . A portion of the other surface of container 112 may also be transparent to allow light to exit container 112 to expose photoresist material 130. For example, portions of a top surface and a bottom surface of container 112 may be transparent to allow light to enter/leave container 112 . Obviously, the transparent portion can be transparent to this type of emitted light. For example, when the emitted light is UV light, the transparent portion may be transparent to UV light. Exemplary materials for the transparent portion may include glass and/or any other material that is transparent to light emitted by light source 10 .

光學組件110另外包含經配置以反射光之至少一第一部分14以按一或多個所要角度照明光阻劑材料130之一反射表面116。在例示性實施例中,反射表面116可包含一表面鏡、一凹透鏡、一凸透鏡、一稜鏡及/或一繞射鏡。在一些實施例中,光學組件110可包含複數個反射表面116。在此等案例中,反射表面116可包含具有相同類型、定向及/或特性之鏡。Optical assembly 110 additionally includes at least a first portion 14 configured to reflect light to illuminate a reflective surface 116 of photoresist material 130 at one or more desired angles. In an exemplary embodiment, reflective surface 116 may include a surface mirror, a concave lens, a convex lens, a lens, and/or a diffraction mirror. In some embodiments, optical component 110 may include a plurality of reflective surfaces 116 . In such cases, reflective surface 116 may include mirrors of the same type, orientation, and/or characteristics.

在一些實施例中,一或多個所要角度可包含以下之至少一者:相對於第一表面142之42度、45度及48度。以此一方式,光阻劑材料130可使用UV光曝光且經顯影以便形成複數個傾斜結構134。然而,應理解,傾斜結構134可具有具備相對於第一表面142之其他角度之表面。例如,一或多個所要角度可包含相對於第一表面142之選自40度與60度之間之一角度範圍之至少一個角度。In some embodiments, the one or more desired angles may include at least one of: 42 degrees, 45 degrees, and 48 degrees relative to first surface 142 . In this manner, the photoresist material 130 may be exposed using UV light and developed to form a plurality of tilted structures 134 . However, it should be understood that the sloped structure 134 may have surfaces with other angles relative to the first surface 142 . For example, the one or more desired angles may include at least one angle relative to first surface 142 selected from an angle range between 40 degrees and 60 degrees.

在一些實施例中,反射表面116可包含對應於一或多個所要角度之複數個平面鏡部分118。In some embodiments, reflective surface 116 may include a plurality of planar mirror portions 118 corresponding to one or more desired angles.

另外或替代地,反射表面116可包含一或多個曲面鏡部分119。Additionally or alternatively, reflective surface 116 may include one or more curved mirror portions 119 .

在一些實施例中,系統100可進一步包含放置於光源10與基板140之間之一孔隙遮罩160。孔隙遮罩160包含一或多個開口162,各開口對應於光阻劑材料130中之一各自所要結構(例如,垂直結構132及/或傾斜結構134)。經透射穿過各開口之經發射光之至少一部分使開口所對應之各自所要結構曝光。作為一實例,各自所要結構可包含至少一個垂直結構132及至少一個傾斜結構134。In some embodiments, system 100 may further include an aperture mask 160 positioned between light source 10 and substrate 140 . Aperture mask 160 includes one or more openings 162, each opening corresponding to a respective desired structure in photoresist material 130 (eg, vertical structure 132 and/or angled structure 134). At least a portion of the emitted light transmitted through each opening exposes the respective desired structure to which the opening corresponds. As an example, each desired structure may include at least one vertical structure 132 and at least one inclined structure 134 .

在一實施例中,孔隙遮罩160之各開口162可對應於光阻劑材料130中供曝光之一各自所要特徵。孔隙遮罩160可用於藉由選擇性地容許光行進穿過遮罩之開口而界定不同曝光光角度之近似場。各開口可容許光之一各自部分行進穿過,光之該各自部分可接著用於(直接或間接地)使光阻劑材料130中之一特定特徵曝光。In one embodiment, each opening 162 of aperture mask 160 may correspond to a respective desired feature in photoresist material 130 for exposure. Aperture mask 160 may be used to define approximate fields for different exposure light angles by selectively allowing light to travel through the mask's openings. Each opening may allow a respective portion of light to travel therethrough, which may then be used (directly or indirectly) to expose a particular feature in photoresist material 130 .

例如,孔隙遮罩160包含一第一開口。在此等案例中,第一開口經組態以容許經發射光之第一部分與反射表面116之一第一部分相互作用。反射表面116之第一部分經組態以重新引導經發射光之第一部分14以使至少一個傾斜結構134曝光。For example, aperture mask 160 includes a first opening. In these cases, the first opening is configured to allow a first portion of the emitted light to interact with a first portion of the reflective surface 116 . The first portion of reflective surface 116 is configured to redirect the first portion of emitted light 14 to expose at least one tilted structure 134 .

在一些實施例中,孔隙遮罩160包含一第二開口。在此等案例中,第二開口經組態以容許經發射光之一第二部分16使至少一個垂直結構132曝光。In some embodiments, aperture mask 160 includes a second opening. In such cases, the second opening is configured to allow a second portion 16 of the emitted light to expose at least one vertical structure 132 .

在各項實施例中,孔隙遮罩160可包含經組態以反射及/或吸收光以便平衡入射於光阻劑材料130之法向場區域與傾斜場區域之光強度之一或多個中性密度濾光器。一個此中性密度濾光器可包含在與孔隙遮罩160相對之背景(例如,一圓點圖案)上併入小不透明及/或透明圓圈之一圖案。在此一案例中,經透射穿過此一中性密度濾光器之光可在與光阻劑材料130相互作用時均勻地衰減。另外,歸因於繞射,光可稍微模糊化。輸入至系統之光未經完美準直且可具有1至2度之一角度範圍。因此,點圖案可在一足夠「投擲(throw)」距離(近似點週期除以角度範圍之切線)處模糊化成一均勻強度。在一些實施例中,針對在1 mm週期下之一精細圖案,模糊化可發生在光學器件框之實質上整個寬度上(例如,50 mm)。因此,經透射穿過中性密度濾光器區域之光可實質上模糊化以便在光阻劑材料130處形成一均勻照明強度。In various embodiments, the aperture mask 160 may include one or more of the intensities of light incident on normal field regions and oblique field regions configured to reflect and/or absorb light in order to balance the light intensity incident on the photoresist material 130 Density filter. One such neutral density filter may include incorporating a pattern of small opaque and/or transparent circles onto a background (eg, a pattern of dots) opposite the aperture mask 160. In this case, light transmitted through such a neutral density filter can be uniformly attenuated as it interacts with the photoresist material 130 . Additionally, light can be slightly blurred due to diffraction. Light input to the system is not perfectly collimated and can have an angular range of 1 to 2 degrees. Therefore, the dot pattern can be blurred to a uniform intensity at a sufficient "throw" distance (approximately the tangent of the dot period divided by the angular range). In some embodiments, blurring can occur across substantially the entire width of the optics frame (eg, 50 mm) for a fine pattern at 1 mm periodicity. Therefore, light transmitted through the neutral density filter region may be substantially blurred to create a uniform illumination intensity at the photoresist material 130 .

在例示性實施例中,容器112之一第一表面之至少一部分及一第二表面之至少一部分係透明的。在此等案例中,經發射光12透過第一表面之透明部分進入容器112,且其中經發射光透過第二表面之透明部分照明光阻劑材料130。In the exemplary embodiment, at least a portion of a first surface and at least a portion of a second surface of container 112 are transparent. In these cases, the emitted light 12 enters the container 112 through the transparent portion of the first surface, and wherein the emitted light illuminates the photoresist material 130 through the transparent portion of the second surface.

在各項實施例中,系統100可包含一光罩170。在一些實施例中,光罩170接近光阻劑材料130配置。光罩170經組態以界定光阻劑材料130中之個別所要結構。In various embodiments, system 100 may include a reticle 170 . In some embodiments, photomask 170 is disposed proximate photoresist material 130 . Photomask 170 is configured to define individual desired structures in photoresist material 130 .

在各項實施例中,光罩170可定位於基板140附近,可能放置於光阻劑材料130上方。在一實施例中,光罩170可用於界定光阻劑材料130中之個別結構。特定言之,光罩170可包含容許曝光光透射穿過至光阻劑材料130之開口之一圖案或透明度。在一實施例中,圖案可對應於光學波導或由光阻劑材料130形成之其他結構之一所要配置。亦即,光罩170可包含對應於垂直結構132及/或傾斜結構134之開口。當使用光使基板140曝光時,經透射穿過對應於一垂直結構之一開口之光在光阻劑材料130中產生一垂直結構,且經透射穿過對應於一傾斜結構之一開口之光可在光阻劑材料130中產生一傾斜結構134 (在光阻劑烘烤及/或顯影程序之後)。如本文中解釋,自反射表面116反射之光可經透射穿過光罩170之對應於傾斜結構134之開口。In various embodiments, photomask 170 may be positioned adjacent substrate 140 , possibly over photoresist material 130 . In one embodiment, photomask 170 may be used to define individual structures in photoresist material 130 . In particular, reticle 170 may include a pattern or transparency that allows exposure light to be transmitted through openings into photoresist material 130 . In one embodiment, the pattern may correspond to the desired configuration of one of the optical waveguides or other structures formed from the photoresist material 130 . That is, the photomask 170 may include openings corresponding to the vertical structures 132 and/or the tilted structures 134 . When substrate 140 is exposed to light, light transmitted through an opening corresponding to a vertical structure creates a vertical structure in photoresist material 130, and light transmitted through an opening corresponding to a tilted structure A tilted structure 134 may be created in the photoresist material 130 (after the photoresist bake and/or development process). As explained herein, light reflected from reflective surface 116 may be transmitted through openings of photomask 170 corresponding to tilted structures 134 .

在一些實施例中,光學組件110進一步包含經組態以移除光學組件110內之雜散光之一裝置。例如,光學組件110可包含一光隔板或另一類型之光雜訊減輕結構及/或材料。In some embodiments, optical assembly 110 further includes a device configured to remove stray light within optical assembly 110 . For example, optical component 110 may include a light baffle or another type of optical noise mitigating structure and/or material.

在各種實例中,一光學吸收器可安置於基板140之後方(例如,沿著與光阻劑材料130相對之一表面)。光學吸收器可經組態以防止反向散射光在光阻劑材料130中引起偽圖案。光學吸收器可包含基板140之背側上之一塗層。替代地,光學吸收器可係與基板140分離之一暗或不透明材料。例如,一光學耦合材料(例如,光耦合材料114)可安置於基板140之背側與光學吸收器之間。In various examples, an optical absorber may be disposed behind substrate 140 (eg, along a surface opposite photoresist material 130). The optical absorber may be configured to prevent backscattered light from causing artifacts in the photoresist material 130 . The optical absorber may include a coating on the backside of substrate 140 . Alternatively, the optical absorber may be a dark or opaque material separate from substrate 140 . For example, an optical coupling material (eg, optical coupling material 114) may be disposed between the backside of substrate 140 and the optical absorber.

在一些實施例中,基板140可浸潤於光耦合材料114中,使得光阻劑材料130面向容器112之一第二表面。容器112之第二表面之至少一部分係透明的。在此一案例中,來自光源10之發射光12透過容器112之第二表面之透明部分進入容器112。In some embodiments, substrate 140 may be wetted into light coupling material 114 such that photoresist material 130 faces a second surface of container 112 . At least a portion of the second surface of container 112 is transparent. In this case, the emitted light 12 from the light source 10 enters the container 112 through the transparent portion of the second surface of the container 112 .

圖2A繪示根據一例示性實施例之一系統200。系統200可類似於如相對於圖1繪示且描述之系統100。例如,一光源10可經組態以發射光12朝向一光學組件110。Figure 2A illustrates a system 200 according to an exemplary embodiment. System 200 may be similar to system 100 as illustrated and described with respect to FIG. 1 . For example, a light source 10 may be configured to emit light 12 toward an optical component 110 .

在一例示性實施例中,光12可與一孔隙遮罩160相互作用。在此一案例中,光部分12a、12b、12c及12d可實質上行進穿過孔隙遮罩160中之各自開口162a、162b、162c及162d。In an exemplary embodiment, light 12 may interact with an aperture mask 160 . In this case, light portions 12a, 12b, 12c, and 12d may travel substantially through respective openings 162a, 162b, 162c, and 162d in aperture mask 160.

光部分12a可與可沿著一平面鏡部分118a配置之反射表面116a相互作用。反射表面116a可經配置於相對於支撐件210a或容器112之另一參考平面之一角度θa 。在此一案例中,光部分12a可自反射表面116a反射作為反射光212a。反射光212a可沿著相對於基板140及第一表面142之一角度(例如,42°)與光阻劑材料130相互作用。在此一案例中,反射光212a可使用UV光使光阻劑材料130曝光以便交聯光阻劑材料130。如此做,反射光212a可有助於在一光阻劑曝光及顯影程序之背景內容中形成傾斜結構134a。Light portion 12a may interact with a reflective surface 116a that may be disposed along a planar mirror portion 118a. Reflective surface 116a may be configured at an angle θ a relative to support 210a or another reference plane of container 112 . In this case, light portion 12a may be reflected from reflective surface 116a as reflected light 212a. Reflected light 212a may interact with photoresist material 130 along an angle (eg, 42°) relative to substrate 140 and first surface 142. In this case, the reflected light 212a may expose the photoresist material 130 using UV light to cross-link the photoresist material 130. In doing so, reflected light 212a may help form tilted structure 134a in the background during a photoresist exposure and development process.

同樣地,光部分12b及12c可分別與反射表面116b及116c相互作用。例如,光部分12b可與可沿著一平面鏡部分118b配置之反射表面116b相互作用。在此一案例中,反射表面116b可配置於相對於支撐件210b或容器112之另一參考平面或表面之一角度θb 。在一例示性實施例中,光部分12b可自反射表面116b反射作為反射光212b。反射光212b可沿著相對於基板140及第一表面142之一角度(例如,45°)與光阻劑材料130相互作用。在實例中,反射光212b可使用UV光使光阻劑材料130曝光,從而使其交聯。因而,反射光212b可至少部分在一光阻劑曝光及顯影程序之背景內容中形成傾斜結構134b。Likewise, light portions 12b and 12c may interact with reflective surfaces 116b and 116c, respectively. For example, light portion 12b may interact with reflective surface 116b that may be disposed along a planar mirror portion 118b. In this case, the reflective surface 116b may be configured at an angle θ b relative to the support 210b or another reference plane or surface of the container 112 . In an exemplary embodiment, light portion 12b may be reflected from reflective surface 116b as reflected light 212b. Reflected light 212b may interact with photoresist material 130 along an angle (eg, 45°) relative to substrate 140 and first surface 142. In an example, the reflected light 212b may expose the photoresist material 130 using UV light, thereby cross-linking it. Thus, the reflected light 212b may form the tilted structure 134b at least partially in the background of a photoresist exposure and development process.

另外或替代地,光部分12c可與可沿著一平面鏡部分118c配置之反射表面116c相互作用。在此一案例中,反射表面116c可配置於相對於支撐件210c或容器112之另一參考平面或表面之一角度θc 。在一例示性實施例中,光部分12c可自反射表面116c反射作為反射光212c。反射光212c可沿著相對於基板140及第一表面142之一角度(例如,48°)與光阻劑材料130相互作用。在實例中,反射光212c可使光阻劑材料130曝光,從而使其交聯。以此一方式,反射光212c可至少部分有助於在一光阻劑曝光及顯影程序中形成傾斜結構134c。Additionally or alternatively, light portion 12c may interact with reflective surface 116c that may be disposed along a planar mirror portion 118c. In this case, the reflective surface 116c may be configured at an angle θ c relative to the support 210c or another reference plane or surface of the container 112 . In an exemplary embodiment, light portion 12c may be reflected from reflective surface 116c as reflected light 212c. Reflected light 212c may interact with photoresist material 130 along an angle (eg, 48°) relative to substrate 140 and first surface 142. In an example, reflected light 212c may expose photoresist material 130, thereby cross-linking it. In this manner, reflected light 212c may at least partially assist in forming tilted structure 134c during a photoresist exposure and development process.

在一些實施例中,光部分12d可經由開口162d行進穿過孔隙板160。在此等情況中,光部分12d可直接(例如,垂直或筆直)行進朝向光阻劑材料130及基板140。在實例中,光部分12d可沿著相對於基板140之一垂直(例如,法向)角使光阻劑曝光。在此等案例中,光部分12d可輔助在一光阻劑顯影程序之後在光阻劑材料130中形成垂直結構132。In some embodiments, light portion 12d may travel through aperture plate 160 via opening 162d. In such cases, light portion 12d may travel directly (eg, vertically or straight) toward photoresist material 130 and substrate 140. In an example, light portion 12d may expose the photoresist along a vertical (eg, normal) angle relative to substrate 140 . In such cases, light portion 12d may assist in forming vertical structures 132 in photoresist material 130 after a photoresist development process.

雖然未繪示,但光學組件110亦可包含用於移除雜散光之結構及/或裝置。結構可係配置於光學組件110中以便移除雜散光(例如,反射回至光學組件110中之光)之暗隔板。Although not shown, the optical component 110 may also include structures and/or devices for removing stray light. The structure may be a dark baffle disposed in the optical assembly 110 to remove stray light (eg, light reflected back into the optical assembly 110).

在一些實例中,容器112之一外部可包含用於填充容器112及自容器112排出光耦合材料114之管道配件。在另一例示性實施例中,容器112可包含供組件(例如,濾光器、真空裝置等)移除空氣氣泡或其他類型之氣體氣泡或雜質之配件。此外,在一些實施例中,可遮蔽反射表面(例如,反射表面116a、116b及/或116c)之各者之至少一部分以便改良自反射表面反射之光之定向性。In some examples, an exterior of container 112 may include plumbing fittings for filling container 112 and draining light coupling material 114 from container 112 . In another exemplary embodiment, container 112 may include fittings for components (eg, optical filters, vacuum devices, etc.) to remove air bubbles or other types of gas bubbles or impurities. Additionally, in some embodiments, at least a portion of each of the reflective surfaces (eg, reflective surfaces 116a, 116b, and/or 116c) may be obscured in order to improve the directionality of light reflected from the reflective surfaces.

在其他實施例中,系統200亦可包含用於將基板140對準至光學組件110及/或光源10之機械及/或光學特徵。在一實例中,系統200可包含可用於對準基板140之載物台、夾具、光學裝置(例如,放大裝置)及/或影像擷取裝置(例如,相機)。在一實施方案中,系統200可包含可用於將基板140帶至與一出射表面(例如,底表面214)接觸之一線性載物台,其中一光耦合材料填充出射表面與基板140之間之一間隙。另外,出射表面可包含可用於對準基板140之基準點。例如,可藉由將出射表面上之基準標記與光罩170上之特徵對準而達成平面內及旋轉對準。在一實施方案中,可使用經配置以相對於容器112上之基準標記使光罩170上之基準標記成像之一或多個相機同時觀察兩對特徵。In other embodiments, system 200 may also include mechanical and/or optical features for aligning substrate 140 to optical component 110 and/or light source 10 . In one example, system 200 may include a stage, fixtures, optical devices (eg, magnification devices), and/or image capture devices (eg, cameras) that may be used to align substrate 140 . In one embodiment, system 200 may include a linear stage that may be used to bring substrate 140 into contact with an exit surface (eg, bottom surface 214 ), with an optical coupling material filling the space between the exit surface and substrate 140 A gap. Additionally, the exit surface may include fiducial points that may be used to align substrate 140 . For example, in-plane and rotational alignment can be achieved by aligning fiducial marks on the exit surface with features on reticle 170 . In one embodiment, two pairs of features may be viewed simultaneously using one or more cameras configured to image fiducial marks on reticle 170 relative to fiducial marks on container 112 .

圖2B繪示根據一例示性實施例之圖2A之系統200之一孔隙遮罩160之一俯視圖。孔隙遮罩160可包含不透明特徵及容許光行進穿過之透明特徵。例如,孔隙遮罩160可包含複數個開口162。例如,開口162可包含孔隙遮罩160中之若干長、窄透明(或透光)開口162a、162b、162c及162d。Figure 2B illustrates a top view of the aperture mask 160 of the system 200 of Figure 2A, according to an exemplary embodiment. Aperture mask 160 may include opaque features and transparent features that allow light to travel through. For example, aperture mask 160 may include a plurality of openings 162 . For example, openings 162 may include a plurality of long, narrow transparent (or light-transmitting) openings 162a, 162b, 162c, and 162d in aperture mask 160.

在一些情況中,可期望在光阻劑材料130處重疊法向及傾斜照明場,同時維持重疊過渡區域中之一實質上均勻照明強度。在此等案例中,光阻劑材料130可經照明,使得一個場之強度沿著一方向增加,鄰近場之強度沿著該方向降低。以此一方式,如插圖216中繪示,孔隙遮罩160之一些或全部邊緣特徵可包含一或多個梯度中性密度濾光器。在一些實施例中,此等濾光器可經組態以在光阻劑材料130處模糊至一梯度強度圖案。In some cases, it may be desirable to overlap normal and oblique illumination fields at photoresist material 130 while maintaining one of substantially uniform illumination intensity in the overlapping transition regions. In such cases, the photoresist material 130 can be illuminated such that the intensity of one field increases along one direction and the intensity of adjacent fields decreases along that direction. In this manner, as illustrated in inset 216, some or all edge features of aperture mask 160 may include one or more gradient neutral density filters. In some embodiments, these filters can be configured to blur to a gradient intensity pattern at photoresist material 130 .

例如,一光學梯度強度濾光器可經實施具有沿著孔隙遮罩開口162之邊緣之一不透明精細鋸齒圖案218。另外或替代地,可藉由沿著孔隙遮罩160之一邊緣特徵調變不透明圓圈(例如,點刻或「圓點」)之一大小及/或強度而提供光學梯度強度濾光器。實施例可機械地利用此等鋸齒及/或圓點圖案作為孔隙遮罩160之邊緣之部分或作為對準至孔隙遮罩160或基板140上之基準標記之一單獨光罩之部分。雖然圖2B將開口162d之全部側繪示為具有一鋸齒圖案,但其他設計係可能的。例如,在一些實施例中,僅開口之一個長側可具有鋸齒圖案。在此等案例中,開口之其他側可係筆直的(例如,未經圖案化)。For example, an optical gradient intensity filter may be implemented with an opaque fine sawtooth pattern 218 along the edge of the aperture mask opening 162. Additionally or alternatively, an optical gradient intensity filter may be provided by modulating the size and/or intensity of opaque circles (eg, stipples or "dots") along an edge feature of aperture mask 160. Embodiments may utilize these sawtooth and/or dot patterns mechanically as part of the edge of aperture mask 160 or as part of a separate mask aligned to aperture mask 160 or fiducial marks on substrate 140 . Although Figure 2B depicts all sides of opening 162d as having a zigzag pattern, other designs are possible. For example, in some embodiments, only one long side of the opening may have a zigzag pattern. In such cases, the other sides of the opening may be straight (eg, not patterned).

圖2C繪示根據例示性實施例之各種反射表面類型220、230及240。反射表面類型220可包含複數個反射表面116a、116b及116c。在此一案例中,反射表面可包含一第一平面鏡部分118a、一第二平面鏡部分118b及一第三平面鏡部分118c。各平面鏡部分可彼此實體分離。Figure 2C illustrates various reflective surface types 220, 230, and 240 according to an exemplary embodiment. Reflective surface type 220 may include a plurality of reflective surfaces 116a, 116b, and 116c. In this case, the reflective surface may include a first mirror portion 118a, a second mirror portion 118b, and a third mirror portion 118c. Each plane mirror portion can be physically separated from each other.

反射表面116a、116b及116c可藉由一或多個支撐件210a、210b及210c安裝至容器。支撐件210a、210b及210c可經固定以便將反射表面116a、116b及116c之一定向維持為一預定角度或預定定向。另外或替代地,支撐件210a、210b及210c可係可調整的以調整反射表面116a、116b及116c之定向。例如,支撐件210a、210b及210c之一者或全部可經組態以可藉由一壓電致動器、一步進馬達或另一類型之角度調整設備調整。應理解,存在調整反射表面116a、116b及116c之一定向之許多其他方式,全部該等其他方式在本發明之背景內容中經考慮且係可能的。Reflective surfaces 116a, 116b, and 116c may be mounted to the container via one or more supports 210a, 210b, and 210c. Support members 210a, 210b, and 210c may be fixed to maintain the orientation of reflective surfaces 116a, 116b, and 116c at a predetermined angle or orientation. Additionally or alternatively, supports 210a, 210b, and 210c may be adjustable to adjust the orientation of reflective surfaces 116a, 116b, and 116c. For example, one or all of supports 210a, 210b, and 210c may be configured to be adjustable by a piezoelectric actuator, a stepper motor, or another type of angle adjustment device. It should be understood that there are many other ways of adjusting the orientation of reflective surfaces 116a, 116b, and 116c, all of which are contemplated and possible in the context of this disclosure.

反射表面類型230可包含由第一平面鏡部分118a、一第二平面鏡部分118b及一第三平面鏡部分118c (其等可藉由一連續鏡表面或另一類型之耦合結構實體耦合在一起)構成之一連續鏡。換言之,在一些實施例中,鏡部分可彼此連結且藉由支撐件232附接至容器112。在此一案例中,鏡部分不需要經個別地支撐或安裝。代替性地,一單一連續鏡可藉由一單一支撐件(例如,支撐件232)實體支撐。Reflective surface type 230 may include a first planar mirror portion 118a, a second planar mirror portion 118b, and a third planar mirror portion 118c (which may be physically coupled together by a continuous mirror surface or another type of coupling structure). A continuous lens. In other words, in some embodiments, the mirror portions may be coupled to each other and attached to container 112 via supports 232 . In this case, the mirror sections do not need to be individually supported or mounted. Alternatively, a single continuous mirror may be physically supported by a single support member (eg, support member 232).

反射表面類型240可包含具有一對應彎曲反射表面116d之一曲面鏡部分119。曲面鏡部分119可以一軸對稱方式彎曲(例如,具有一圓柱形曲率)。然而,在其他實施例中,曲面鏡部分119可根據另一形狀彎曲。Reflective surface type 240 may include a curved mirror portion 119 having a corresponding curved reflective surface 116d. The curved mirror portion 119 may be curved in an axially symmetric manner (eg, have a cylindrical curvature). However, in other embodiments, curved mirror portion 119 may be curved according to another shape.

圖2D繪示根據一例示性實施例之一光阻劑結構250。圖2D繪示在光阻劑材料130之顯影之後之光阻劑結構250。特定言之,在傾斜結構134a、134b、134c以及132之曝光之後,可移除光阻劑材料130之各種部分以顯露光阻劑結構250之表面。在一些實施例中,傾斜結構134a、134b及134c可具有相對於結構140之第一表面142之不同鏡角度。雖然圖2D將光阻劑結構250繪示為具有一特定形狀,但其他形狀在本文中係可能的且經考慮。Figure 2D illustrates a photoresist structure 250 according to an exemplary embodiment. Figure 2D illustrates photoresist structure 250 after development of photoresist material 130. In particular, after exposure of sloped structures 134a, 134b, 134c, and 132, various portions of photoresist material 130 may be removed to reveal the surface of photoresist structure 250. In some embodiments, sloped structures 134a, 134b, and 134c may have different mirror angles relative to first surface 142 of structure 140. Although FIG. 2D depicts photoresist structure 250 as having one specific shape, other shapes are possible and contemplated herein.

圖2E繪示根據一例示性實施例之一光學組件110。圖2E係光學組件110之一光輸入側之一斜視圖。光學組件110可包含一容器112。光學組件110可包含一第一反射表面116及一第二反射表面270。光學組件110亦可包含一透明頂部窗260及一透明底部窗262。Figure 2E illustrates an optical assembly 110 according to an exemplary embodiment. FIG. 2E is a perspective view of the light input side of the optical component 110 . Optical assembly 110 may include a container 112 . Optical component 110 may include a first reflective surface 116 and a second reflective surface 270. Optical assembly 110 may also include a transparent top window 260 and a transparent bottom window 262.

圖2F繪示根據一例示性實施例之一光學組件110。圖2F係光學組件110之一光輸出側之一斜視圖。光學組件110可包含一容器112。如圖2F中繪示,光學組件110亦可包含一第一反射表面116、一透明頂部窗260及一透明底部窗262。Figure 2F illustrates an optical assembly 110 according to an exemplary embodiment. FIG. 2F is a perspective view of the light output side of the optical component 110 . Optical assembly 110 may include a container 112 . As shown in Figure 2F, the optical component 110 may also include a first reflective surface 116, a transparent top window 260, and a transparent bottom window 262.

圖3A繪示根據一例示性實施例之一系統300。系統300可與如相對於圖1及圖2A繪示且描述之系統100及/或系統200類似或相同。例如,系統300可包含一光源10及至少部分填充有光耦合材料114之一容器112。系統300亦可包含一第一反射表面116及一第二反射表面270。Figure 3A illustrates a system 300 according to an exemplary embodiment. System 300 may be similar or identical to system 100 and/or system 200 as illustrated and described with respect to Figures 1 and 2A. For example, system 300 may include a light source 10 and a container 112 at least partially filled with light coupling material 114 . System 300 may also include a first reflective surface 116 and a second reflective surface 270.

在一例示性實施例中,系統300包含可配置於容器112之一出射表面(例如,底表面214)與光阻劑材料130之間之一孔隙遮罩160。在此一案例中,自光源10發射之光可自第一反射表面116及第二反射表面270反射且照射於孔隙遮罩160上。反射光之一部分可經透射穿過孔隙遮罩160中之開口162。In an exemplary embodiment, system 300 includes an aperture mask 160 disposed between an exit surface (eg, bottom surface 214 ) of container 112 and photoresist material 130 . In this case, the light emitted from the light source 10 may be reflected from the first reflective surface 116 and the second reflective surface 270 and illuminate the aperture mask 160 . A portion of the reflected light may be transmitted through openings 162 in aperture mask 160.

經透射穿過孔隙遮罩160之光可使光阻劑材料130曝光,該光阻劑材料130可覆疊一基板140之一第一表面142。如本文中描述,可控制或操縱透射光之角度以便使光阻劑材料130中之傾斜結構曝光。Light transmitted through aperture mask 160 may expose photoresist material 130 , which may cover first surface 142 of substrate 140 . As described herein, the angle of transmitted light can be controlled or manipulated to expose tilted structures in photoresist material 130.

圖3B繪示根據一例示性實施例之一系統320。系統320可與如相對於圖1及圖2A繪示且描述之系統100及/或系統200類似或相同。例如,系統320可包含一光源10及至少部分填充有光耦合材料114之一容器112。系統320亦可包含一第一反射表面116及一第二反射表面270。Figure 3B illustrates a system 320 according to an exemplary embodiment. System 320 may be similar or identical to system 100 and/or system 200 as illustrated and described with respect to Figures 1 and 2A. For example, system 320 may include a light source 10 and a container 112 at least partially filled with light coupling material 114 . System 320 may also include a first reflective surface 116 and a second reflective surface 270.

在一些實施例中,系統320可包含配置於容器112下方(例如,下面)之光源10。因而,自光源10發射之光可經引導向上朝向容器112之一底表面214。In some embodiments, system 320 may include light source 10 disposed below (eg, below) container 112 . Thus, light emitted from light source 10 may be directed upward toward a bottom surface 214 of container 112 .

在此等案例中,系統320包含可沿著容器之一底部內表面配置於容器112內之一孔隙遮罩160。在此一案例中,自光源10發射之光可入射於孔隙遮罩160上且藉由開口162透射朝向反射表面116及/或270。透射光之一部分可由反射表面116及/或270反射以便使可覆疊一基板140之一第一表面142之光阻劑材料130曝光。In these cases, system 320 includes an aperture mask 160 disposed within container 112 along a bottom interior surface of the container. In this case, light emitted from light source 10 may be incident on aperture mask 160 and transmitted through opening 162 toward reflective surfaces 116 and/or 270 . A portion of the transmitted light may be reflected by reflective surfaces 116 and/or 270 to expose photoresist material 130 that may cover a first surface 142 of a substrate 140 .

圖3C繪示根據一例示性實施例之一系統330。例如,系統330可與如相對於圖1及圖2A繪示且描述之系統100及/或系統200類似或相同。例如,系統330可包含一光源10及至少部分填充有光耦合材料114之一容器112。系統330亦可包含一第一反射表面116及一第二反射表面270。Figure 3C illustrates a system 330 according to an exemplary embodiment. For example, system 330 may be similar or identical to system 100 and/or system 200 as illustrated and described with respect to FIGS. 1 and 2A. For example, system 330 may include a light source 10 and a container 112 at least partially filled with light coupling material 114 . System 330 may also include a first reflective surface 116 and a second reflective surface 270.

在一些實施例中,系統330可包含配置於容器112下方(例如,下面)之光源10。因而,自光源10發射之光可經引導向上朝向容器112之一底表面214。In some embodiments, system 330 may include light source 10 disposed below (eg, below) container 112 . Thus, light emitted from light source 10 may be directed upward toward a bottom surface 214 of container 112 .

在此等案例中,系統330包含可在容器112中且接近光阻劑材料130配置之一孔隙遮罩160。例如,孔隙遮罩可與光阻劑材料130軟或硬接觸。在此一案例中,自光源10發射之光可入射於反射表面116及/或270上。反射光及透射光將入射於孔隙遮罩160上且藉由開口162透射朝向光阻劑材料130以使可覆疊一基板140之一第一表面142之光阻劑材料130曝光。III. 例示性光學系統 In such cases, system 330 includes an aperture mask 160 that may be disposed within container 112 and adjacent to photoresist material 130 . For example, the aperture mask may be in soft or hard contact with the photoresist material 130 . In this case, light emitted from light source 10 may be incident on reflective surfaces 116 and/or 270 . The reflected light and transmitted light will be incident on the aperture mask 160 and transmitted through the opening 162 toward the photoresist material 130 to expose the photoresist material 130 that may cover a first surface 142 of a substrate 140 . III. Exemplary optical system

圖4A及圖4B繪示根據一例示性實施例之一光學系統400及其部分。光學系統400可係併入光學導光元件之一緊湊LIDAR系統。此一LIDAR系統可經組態以提供關於一給定環境中之一或多個物件(例如,位置、形狀等)之資訊(例如,點雲資料)。在一例示性實施例中,LIDAR系統可將點雲資訊、物件資訊、映射資訊或其他資訊提供至一載具。載具可係一半自動或全自動載具。例如,載具可係一自動駕駛汽車、一自主無人機、一自主卡車或一自主機器人。本文中考慮其他類型之載具及LIDAR系統。4A and 4B illustrate an optical system 400 and portions thereof according to an exemplary embodiment. Optical system 400 may be a compact LIDAR system incorporating optical light guide elements. Such a LIDAR system can be configured to provide information (eg, point cloud data) about one or more objects (eg, location, shape, etc.) in a given environment. In an exemplary embodiment, the LIDAR system may provide point cloud information, object information, mapping information, or other information to a vehicle. The vehicle can be semi-automatic or fully automatic. For example, the vehicle may be an autonomous car, an autonomous drone, an autonomous truck, or an autonomous robot. Other types of vehicles and LIDAR systems are considered in this article.

圖4A繪示根據一例示性實施例之光學系統400之一示意性方塊圖。光學系統400包含一基板410、一光發射器裝置420及一光學波導430。在一些實施例中,光發射器裝置420可包含一雷射總成,該雷射總成包含一或多個雷射條。另外或替代地,光學系統400可包含一柱面透鏡422。在一些實例中,柱面透鏡422可包含一光纖。Figure 4A illustrates a schematic block diagram of an optical system 400 according to an exemplary embodiment. Optical system 400 includes a substrate 410, a light emitter device 420, and an optical waveguide 430. In some embodiments, light emitter device 420 may include a laser assembly that includes one or more laser bars. Additionally or alternatively, optical system 400 may include a cylindrical lens 422. In some examples, cylindrical lens 422 may include an optical fiber.

光學波導430沿著基板410之一表面配置。光學波導430包含至少一個鏡表面432。光學波導430經組態以導引由光發射器裝置420發射之光。此光可經由全內反射在光學波導430之至少一部分內導引。The optical waveguide 430 is arranged along one surface of the substrate 410 . Optical waveguide 430 includes at least one mirror surface 432. Optical waveguide 430 is configured to guide light emitted by light emitter device 420. This light may be guided within at least a portion of optical waveguide 430 via total internal reflection.

在一些實施例中,光學波導430之至少一個鏡表面432可包含一反射材料,諸如一金屬塗層。在一些實施例中,金屬塗層可包含一或多個金屬,諸如鈦、鉑、金、銀、鋁及/或另一類型之金屬。在其他實施例中,至少一個鏡表面432可包含一介電塗層及/或一介電堆疊。In some embodiments, at least one mirror surface 432 of optical waveguide 430 may include a reflective material, such as a metallic coating. In some embodiments, the metal coating may include one or more metals, such as titanium, platinum, gold, silver, aluminum, and/or another type of metal. In other embodiments, at least one mirror surface 432 may include a dielectric coating and/or a dielectric stack.

在此等案例中,經導引光之一部分與鏡表面432相互作用以便將反射光引導至光學系統400之一環境中。在一些實施例中,鏡表面432可經配置於相對於基板410之42度、45度或48度之至少一者。In such cases, a portion of the directed light interacts with mirror surface 432 to direct the reflected light into an environment of optical system 400 . In some embodiments, mirror surface 432 may be configured at at least one of 42 degrees, 45 degrees, or 48 degrees relative to substrate 410 .

光發射器裝置420可經組態以發射光朝向一柱面透鏡422,該柱面透鏡422可幫助將經發射光聚焦、失焦、引導及/或以其他方式耦合至光學波導430中。Light emitter device 420 may be configured to emit light toward a cylindrical lens 422 , which may help focus, defocus, direct, and/or otherwise couple the emitted light into optical waveguide 430 .

光學系統400係可包含光導(諸如由一光阻劑材料130或其他光學材料形成之光學波導430)之各種不同光學系統之一者。在一例示性實施例中,光學波導430可耦合至一透明基板。在此等案例中,(若干)鏡表面432可經組態以將由光發射器裝置420發射之光引導朝向透明基板且隨後至光學系統400之環境中。Optical system 400 is one of a variety of different optical systems that may include a light guide, such as optical waveguide 430 formed from a photoresist material 130 or other optical material. In an exemplary embodiment, optical waveguide 430 may be coupled to a transparent substrate. In such cases, mirror surface(s) 432 may be configured to direct light emitted by light emitter device 420 toward the transparent substrate and subsequently into the environment of optical system 400 .

圖4B繪示根據一例示性實施例之光學系統400之一俯視圖及側視圖。如圖4B中繪示,光學波導430可與如相對於圖2D繪示且描述之光阻劑系統250類似或相同。Figure 4B illustrates a top view and a side view of an optical system 400 according to an exemplary embodiment. As shown in Figure 4B, optical waveguide 430 may be similar or identical to photoresist system 250 as shown and described with respect to Figure 2D.

作為一實例,光學波導430可包含三個鏡表面432a、432b及432c。鏡表面432a、432b及432c可具有不同角度。例如,鏡表面432a可相對於基板410之表面以一42°鏡角度定向。另外或替代地,鏡表面432b可相對於基板410之表面以一45°鏡角度定向。又進一步,鏡表面432c可相對於基板410之表面以一48°鏡角度定向。應理解,其他鏡角度(例如,在30°與60°之間)係可能的且經考慮。此外,應理解,雖然圖4B繪示鏡表面432之一特定配置,但應理解,鏡表面432及光學波導430之其他元件之其他配置係可能的且經考慮。As an example, optical waveguide 430 may include three mirror surfaces 432a, 432b, and 432c. Mirror surfaces 432a, 432b, and 432c can have different angles. For example, mirror surface 432a may be oriented at a 42° mirror angle relative to the surface of substrate 410. Additionally or alternatively, mirror surface 432b may be oriented at a 45° mirror angle relative to the surface of substrate 410. Still further, mirror surface 432c may be oriented at a 48° mirror angle relative to the surface of substrate 410. It should be understood that other mirror angles (eg, between 30° and 60°) are possible and considered. Additionally, it should be understood that while FIG. 4B depicts one specific configuration of mirror surface 432, it should be understood that other configurations of mirror surface 432 and other elements of optical waveguide 430 are possible and contemplated.

在一些實施例中,光學系統400可包含一光發射器裝置420及一柱面透鏡422。柱面透鏡422可配置於光發射器裝置420與光學波導430之一輸入表面450之間。光發射器裝置420可經組態以發射經發射光421朝向柱面透鏡422。In some embodiments, optical system 400 may include a light emitter device 420 and a cylindrical lens 422. Cylindrical lens 422 may be disposed between light emitter device 420 and one input surface 450 of optical waveguide 430. Light emitter device 420 may be configured to emit emitted light 421 toward cylindrical lens 422 .

例如,如圖4B中繪示,光發射器裝置420可發射經發射光421,該經發射光421可經由輸入表面450耦合至光學波導430中。在此一案例中,光部分424a、424b及424c可分別經由鏡表面432a、432b及432c反射朝向一環境。反射光部分440a、440b及440c可藉由基板410 (其可實質上透明)耦合輸出。反射光部分440a、440b及440c可(例如,經由反射、吸收及/或折射)與環境中之物件相互作用。For example, as shown in Figure 4B, light emitter device 420 can emit emitted light 421, which can be coupled into optical waveguide 430 via input surface 450. In this case, light portions 424a, 424b, and 424c may be reflected toward an environment via mirror surfaces 432a, 432b, and 432c, respectively. Reflected light portions 440a, 440b, and 440c may be coupled out through substrate 410 (which may be substantially transparent). Reflective light portions 440a, 440b, and 440c may interact with objects in the environment (eg, via reflection, absorption, and/or refraction).

換言之,在與柱面透鏡422相互作用之後,經發射光421之各種部分可耦合至光學波導430中。例如,一第一光部分424a可與鏡表面432a相互作用。在此一案例中,第一光部分424a可自鏡表面432a反射,從而形成第一反射光440a。另外,一第二光部分424b可與鏡表面432b相互作用。在此一案例中,第二光部分424b可自鏡表面432b反射,從而形成第二反射光440b。此外,一第三光部分424c可與鏡表面432c相互作用。在此一案例中,第三光部分424c可自鏡表面432c反射,從而形成第二反射光440c。In other words, after interacting with cylindrical lens 422, various portions of emitted light 421 may be coupled into optical waveguide 430. For example, a first light portion 424a may interact with mirror surface 432a. In this case, the first light portion 424a may be reflected from the mirror surface 432a, thereby forming the first reflected light 440a. Additionally, a second light portion 424b can interact with mirror surface 432b. In this case, the second light portion 424b may be reflected from the mirror surface 432b, thereby forming the second reflected light 440b. Additionally, a third light portion 424c can interact with mirror surface 432c. In this case, the third light portion 424c may be reflected from the mirror surface 432c, thereby forming the second reflected light 440c.

如繪示,第一反射光440a、第二反射光440b及第三反射光440c可以相對於基板410之表面之不同角度反射。例如,第一反射光440a、第二反射光440b及第三反射光440c可在相對於基板410之表面法線之±6°之間。其他反射角度係可能的且經考慮。IV. 例示性方法 As shown, the first reflected light 440a, the second reflected light 440b and the third reflected light 440c may be reflected at different angles relative to the surface of the substrate 410. For example, the first reflected light 440a, the second reflected light 440b, and the third reflected light 440c may be within ±6° relative to the surface normal of the substrate 410. Other reflection angles are possible and considered. IV. Illustrative Methods

圖5繪示根據一例示性實施例之一方法500。應理解,方法500可包含比本文中明確繪示或以其他方式揭示之步驟或方塊更少或更多之步驟或方塊。此外,方法500之各自步驟或方塊可以任何順序執行且可執行各步驟或方塊一或多次。在一些實施例中,方法500之方塊或步驟之一些或全部可與如相對於圖1、圖4A及圖4D繪示且描述之系統100及/或光學系統400之元件相關。Figure 5 illustrates a method 500 according to an exemplary embodiment. It should be understood that method 500 may include fewer or more steps or blocks than those explicitly illustrated or otherwise disclosed herein. Furthermore, the respective steps or blocks of method 500 may be performed in any order and each step or block may be performed one or more times. In some embodiments, some or all of the blocks or steps of method 500 may be associated with elements of system 100 and/or optical system 400 as illustrated and described with respect to Figures 1, 4A, and 4D.

方塊502包含在一光學組件之一個端附近放置一基板,其中光阻劑材料覆疊基板之一第一表面之至少一部分,且其中光學組件包括:(i)一容器,其容納一光耦合材料;及(ii)一反射表面。Block 502 includes placing a substrate near one end of an optical component, wherein the photoresist material covers at least a portion of a first surface of the substrate, and wherein the optical component includes: (i) a container holding an optical coupling material ; and (ii) a reflective surface.

方塊504包含引起一光源將光發射至光學組件中,其中反射表面反射經發射光之至少一第一部分以依一或多個所要角度照明光阻劑材料,藉此使光阻劑材料中之一傾斜結構之至少一部分曝光。Block 504 includes causing a light source to emit light into an optical component, wherein the reflective surface reflects at least a first portion of the emitted light to illuminate the photoresist material at one or more desired angles, thereby causing one of the photoresist materials to At least a portion of the tilted structure is exposed.

在一些實施例中,一或多個所要角度可包含以以下之至少一者定向之一或多個反射表面:相對於第一表面之42度、45度及48度。應理解,在本發明之範疇內其他所要角度經考慮且係可能的。In some embodiments, the one or more desired angles may include orienting the one or more reflective surfaces at at least one of: 42 degrees, 45 degrees, and 48 degrees relative to the first surface. It is to be understood that other desired angles are contemplated and possible within the scope of the invention.

在一些實例中,方法可包含在光學組件之一表面上或附近覆疊一孔隙遮罩。孔隙遮罩可包含一或多個開口,各開口對應於光阻劑材料中之一各自所要結構。經透射穿過各開口之經發射光之至少一部分使開口所對應之各自所要結構曝光。In some examples, methods may include overlaying an aperture mask on or near one of the surfaces of the optical component. The aperture mask may include one or more openings, each opening corresponding to a respective desired structure in the photoresist material. At least a portion of the emitted light transmitted through each opening exposes the respective desired structure to which the opening corresponds.

在一些實施例中,孔隙遮罩包含一第一開口。在此等案例中,第一開口經組態以容許經發射光之第一部分與反射表面之一第一部分相互作用。反射表面之第一部分經組態以重新引導經發射光之第一部分以使至少一個傾斜結構曝光。In some embodiments, the aperture mask includes a first opening. In these cases, the first opening is configured to allow a first portion of the emitted light to interact with a first portion of the reflective surface. The first portion of the reflective surface is configured to redirect the first portion of emitted light to expose at least one tilted structure.

在一實施例中,方法500可涉及判定待製造之所要結構,諸如垂直結構及/或傾斜結構。另外,方法500可涉及判定所要結構之參數。另外,方法500可涉及判定所要結構之尺寸。另外,針對所要傾斜結構,方法500可涉及判定一所要傾斜角。例如,所要傾斜角可在相對於一基板表面之30度至60度之間。In one embodiment, method 500 may involve determining desired structures to be fabricated, such as vertical structures and/or tilted structures. Additionally, method 500 may involve determining parameters of the desired structure. Additionally, method 500 may involve determining the dimensions of a desired structure. Additionally, method 500 may involve determining a desired tilt angle for a desired tilted structure. For example, the desired tilt angle may be between 30 degrees and 60 degrees relative to a substrate surface.

如上文解釋,傾斜結構之所要傾斜角可判定鏡定向角度。因此,方法500亦可涉及判定鏡定向角度θa 、θb (其等可使用斯涅爾定律判定)。斯涅爾定律陳述,入射角與折射角之正弦之一比率等於折射率之一比率之倒數,其由以下公式表示: As explained above, the desired tilt angle of the tilted structure determines the mirror orientation angle. Thus, method 500 may also involve determining mirror orientation angles θ a , θ b (which may be determined using Snell's law). Snell's law states that the ratio of the angle of incidence to the sine of the angle of refraction is equal to the reciprocal of the ratio of the refractive index, which is expressed by the following formula:

光阻劑材料(例如,光阻劑材料130)中之所要折射角(θ2 )、光耦合材料(例如,光耦合材料114)之折射率(n1 )及光阻劑材料之折射率(n2 )已知且可用於計算一所要入射角。例如,入射角可在與法向入射成15度至45度(包含15度及45度)之間之一角度範圍內。應理解,其他角度係可能的且動態變動之入射角亦係可能的。The desired refraction angle (θ 2 ) in the photoresist material (e.g., photoresist material 130), the refractive index (n 1 ) of the optical coupling material (e.g., optical coupling material 114), and the refractive index (n 1 ) of the photoresist material ( n 2 ) is known and can be used to calculate a desired angle of incidence. For example, the incident angle may be within an angle range between 15 degrees and 45 degrees (inclusive) from normal incidence. It should be understood that other angles are possible and that dynamically varying angles of incidence are also possible.

基於入射角,可計算鏡定向角度(例如,如相對於圖2A繪示且描述之角度θa 、θb 及/或θc )。特定言之,可計算角度,使得由(若干)反射表面反射之光可以所要入射角入射於光阻劑材料上。一旦計算角度,方法500便亦可涉及調整可調整耦合組件(例如,支撐件210a、210b及/或210c),使得反射表面以所要角度定位。Based on the angle of incidence, the mirror orientation angles (eg, angles θ a , θ b and/or θ c as illustrated and described with respect to FIG. 2A ) may be calculated. In particular, the angle can be calculated so that light reflected from the reflective surface(s) is incident on the photoresist material at a desired angle of incidence. Once the angle is calculated, method 500 may also involve adjusting the adjustable coupling components (eg, supports 210a, 210b, and/or 210c) so that the reflective surface is positioned at the desired angle.

方法500亦可涉及提供包含與光阻劑材料覆疊之基板(例如,基板140)之一晶圓。在此等案例中,提供基板可涉及藉由將一光阻劑沈積於基板140上,接著烘烤光阻劑材料而製備光阻劑材料。另外,提供晶圓可包含將一光阻劑材料安置於晶圓上。另外,提供晶圓可涉及將晶圓與光學組件對準。如本文中解釋,對準晶圓可涉及將一出射表面(例如,底表面214)上之基準點與一光罩(例如,光罩170)上之特徵對準。Method 500 may also involve providing a wafer including a substrate (eg, substrate 140 ) overlaid with photoresist material. In such cases, providing the substrate may involve preparing the photoresist material by depositing a photoresist on the substrate 140 and then baking the photoresist material. Additionally, providing the wafer may include disposing a photoresist material on the wafer. Additionally, providing the wafer may involve aligning the wafer with optical components. As explained herein, aligning the wafer may involve aligning fiducials on an exit surface (eg, bottom surface 214) with features on a reticle (eg, reticle 170).

方法500亦可涉及引起光源發射經引導朝向光學組件之光。例如,光源可藉由跨光學組件之一第一表面之一實質上均勻照明強度發射光朝向光學組件。在其中光源不定位於光學組件上方之例示性系統中,來自光源之光可經由一或多個光學元件(例如,鏡、光導等)重新引導朝向光學組件。Method 500 may also involve causing a light source to emit light directed toward an optical component. For example, the light source may emit light toward the optical component by emitting light with a substantially uniform illumination intensity across a first surface of the optical component. In exemplary systems in which the light source is not positioned above the optical component, light from the light source may be redirected toward the optical component via one or more optical elements (eg, mirrors, light guides, etc.).

不應將圖中展示之特定配置視為限制性。應理解,其他實施例可或多或少包含一給定圖中展示之各元件。此外,可組合或省略一些經繪示元件。又進一步,一闡釋性實施例可包含圖中未繪示之元件。The specific configurations shown in the figures should not be considered limiting. It is understood that other embodiments may contain more or less of the elements shown in a given figure. Additionally, some of the illustrated elements may be combined or omitted. Still further, an illustrative embodiment may include elements not shown.

表示資訊之一處理之一步驟或方塊可對應於可經組態以執行一本文中描述之方法或技術之特定邏輯功能之電路。替代地或另外,表示資訊之一處理之一步驟或方塊可對應於程式碼(包含相關資料)之一模組、一片段或一部分。程式碼可包含可藉由一處理器執行用於實施方法或技術中之特定邏輯功能或動作之一或多個指令。程式碼及/或相關資料可儲存於任何類型之電腦可讀媒體(諸如一儲存裝置,其包含一磁碟、硬碟機或其他儲存媒體)上。A step or block representing a processing of information may correspond to circuitry that can be configured to perform the specific logical functions of a method or technique described herein. Alternatively or additionally, a step or block representing a process of information may correspond to a module, a fragment, or a portion of program code (including associated data). The program code may include one or more instructions executable by a processor for implementing specific logical functions or actions in a method or technique. The program code and/or related data may be stored on any type of computer-readable medium (such as a storage device including a disk, hard drive, or other storage medium).

電腦可讀媒體亦可包含非暫時性電腦可讀媒體,諸如儲存資料達短時間段之電腦可讀媒體,如同暫存器記憶體、處理器快取區及隨機存取記憶體(RAM)。電腦可讀媒體亦可包含儲存程式碼及/或資料達較長時間段之非暫時性電腦可讀媒體。因此,電腦可讀媒體可包含輔助或永久長期儲存器,如同(例如)唯讀記憶體(ROM)、光碟或磁碟、光碟唯讀記憶體(CD-ROM)。電腦可讀媒體亦可係任何其他揮發性或非揮發性儲存系統。可將一電腦可讀媒體視為(例如)一電腦可讀儲存媒體或一有形儲存裝置。Computer-readable media may also include non-transitory computer-readable media, such as computer-readable media that stores data for short periods of time, such as register memory, processor cache, and random access memory (RAM). Computer-readable media may also include non-transitory computer-readable media that stores code and/or data for an extended period of time. Thus, computer-readable media may include secondary or permanent long-term storage, such as, for example, read-only memory (ROM), optical or magnetic disks, and compact disc-read-only memory (CD-ROM). Computer-readable media can also be any other volatile or non-volatile storage system. A computer-readable medium may be considered, for example, as a computer-readable storage medium or a tangible storage device.

雖然已揭示各種實例及實施例,但熟習此項技術者將明白其他實例及實施例。各種所揭示實例及實施例係為了圖解之目的且不旨在為限制性,其中真實範疇係由以下發明申請專利範圍指示。Although various examples and embodiments have been disclosed, others will be apparent to those skilled in the art. The various disclosed examples and embodiments are for illustrative purposes and are not intended to be limiting, with the true scope being indicated by the following patent claims.

10:光源 12:光 12a:光部分 12b:光部分 12c:光部分 12d:光部分 14:光之至少一第一部分 16:經發射光之一第二部分 100:系統 110:光學組件 112:容器 114:光耦合材料 116:反射表面 116a:反射表面 116b:反射表面 116c:反射表面 116d:彎曲反射表面 118:平面鏡部分 118a:第一平面鏡部分 118b:第二平面鏡部分 118c:第三平面鏡部分 119:曲面鏡部分 130:光阻劑材料 132:垂直結構 134:傾斜結構 134a:傾斜結構 134b:傾斜結構 134c:傾斜結構 140:基板 142:第一表面 160:孔隙遮罩/孔隙板 162:開口 162a:開口 162b:開口 162c:開口 162d:開口 170:光罩 200:系統 210a:支撐件 210b:支撐件 210c:支撐件 212a:反射光 212b:反射光 212c:反射光 214:底表面 216:插圖 218:不透明精細鋸齒圖案 220:反射表面類型 230:反射表面類型 232:支撐件 240:反射表面類型 250:光阻劑結構 260:透明頂部窗 262:透明底部窗 270:第二反射表面 300:系統 320:系統 330:系統 400:光學系統 410:基板 420:光發射器裝置 421:經發射光 422:柱面透鏡 424a:光部分/第一光部分 424b:光部分/第二光部分 424c:光部分/第三光部分 430:光學波導 432:鏡表面 432a:鏡表面 432b:鏡表面 432c:鏡表面 440a:反射光部分/第一反射光 440b:反射光部分/第二反射光 440c:反射光部分/第三反射光 450:輸入表面 500:方法 502:方塊 504:方塊 θa :角度 θb :角度 θc :角度10: light source 12: light 12a: light part 12b: light part 12c: light part 12d: light part 14: at least a first part of the light 16: a second part of the emitted light 100: system 110: optical component 112: container 114: Optical coupling material 116: Reflective surface 116a: Reflective surface 116b: Reflective surface 116c: Reflective surface 116d: Curved reflective surface 118: Plane mirror part 118a: First plane mirror part 118b: Second plane mirror part 118c: Third plane mirror part 119: Curved mirror part 130: photoresist material 132: vertical structure 134: tilted structure 134a: tilted structure 134b: tilted structure 134c: tilted structure 140: substrate 142: first surface 160: aperture mask/aperture plate 162: opening 162a: Opening 162b: Opening 162c: Opening 162d: Opening 170: Photomask 200: System 210a: Support 210b: Support 210c: Support 212a: Reflected light 212b: Reflected light 212c: Reflected light 214: Bottom surface 216: Illustration 218: Opaque fine serrated pattern 220: Reflective surface type 230: Reflective surface type 232: Support 240: Reflective surface type 250: Photoresist structure 260: Transparent top window 262: Transparent bottom window 270: Second reflective surface 300: System 320: System 330: System 400: Optical system 410: Substrate 420: Light emitter device 421: Emitted light 422: Cylindrical lens 424a: Light part/First light part 424b: Light part/Second light part 424c: Light part/ Third light part 430: Optical waveguide 432: Mirror surface 432a: Mirror surface 432b: Mirror surface 432c: Mirror surface 440a: Reflected light part/First reflected light 440b: Reflected light part/Second reflected light 440c: Reflected light part/ Third reflected light 450: input surface 500: method 502: block 504: block θ a : angle θ b : angle θ c : angle

圖1繪示根據一例示性實施例之一系統。Figure 1 illustrates a system according to an exemplary embodiment.

圖2A繪示根據一例示性實施例之一系統。Figure 2A illustrates a system according to an exemplary embodiment.

圖2B繪示根據一例示性實施例之圖2A之系統之一孔隙遮罩。Figure 2B illustrates an aperture mask of the system of Figure 2A, according to an exemplary embodiment.

圖2C繪示根據例示性實施例之各種反射表面類型。Figure 2C illustrates various reflective surface types according to an exemplary embodiment.

圖2D繪示根據一例示性實施例之一光阻劑結構。Figure 2D illustrates a photoresist structure according to an exemplary embodiment.

圖2E繪示根據一例示性實施例之一光學組件。Figure 2E illustrates an optical assembly according to an exemplary embodiment.

圖2F繪示根據一例示性實施例之一光學組件。Figure 2F illustrates an optical assembly according to an exemplary embodiment.

圖3A繪示根據一例示性實施例之一系統。Figure 3A illustrates a system according to an exemplary embodiment.

圖3B繪示根據一例示性實施例之一系統。Figure 3B illustrates a system according to an exemplary embodiment.

圖3C繪示根據一例示性實施例之一系統。Figure 3C illustrates a system according to an exemplary embodiment.

圖4A繪示根據一例示性實施例之一光學系統。Figure 4A illustrates an optical system according to an exemplary embodiment.

圖4B繪示根據一例示性實施例之一光學系統。Figure 4B illustrates an optical system according to an exemplary embodiment.

圖5繪示根據一例示性實施例之一方法。Figure 5 illustrates a method according to an exemplary embodiment.

10:光源 10:Light source

12:光 12:Light

14:光之至少一第一部分 14:Light at least one part one

16:經發射光之一第二部分 16: Emitted Light Part 1

100:系統 100:System

110:光學組件 110:Optical components

112:容器 112: Container

114:光耦合材料 114: Optical coupling materials

116:反射表面 116: Reflective surface

118:平面鏡部分 118: Plane mirror part

119:曲面鏡部分 119: Curved mirror part

130:光阻劑材料 130: Photoresist material

132:垂直結構 132:Vertical structure

134:傾斜結構 134: Inclined structure

140:基板 140:Substrate

142:第一表面 142: First surface

160:孔隙遮罩/孔隙板 160:Aperture Mask/Aperture Plate

162:開口 162:Open your mouth

170:光罩 170: Photomask

Claims (16)

一種光學系統,其包括:一光學總成,其經組態以引導由一光源發射之光以依複數個不同角度照明一光阻劑材料以便使該光阻劑材料中之複數個不同傾斜結構(angled structure)同時曝光,其中該光阻劑材料覆疊一基板之一第一表面之至少一部分,且其中該光學總成包括:一容器,其容納至少部分基於該複數個不同角度選擇之一光耦合材料;一反射表面,其經配置以反射該經發射光之至少一第一部分以按該複數個不同角度照明該光阻劑材料,其中該反射表面包括對應於該複數個不同角度之複數個平面鏡部分;及一孔隙遮罩,其放置於該光源與該基板之間,其中該孔隙遮罩包括一或多個開口,各開口對應於該光阻劑材料中之一各自所要結構,且其中經透射穿過各開口之該經發射光之至少一部分使該開口所對應之該各自所要結構曝光。 An optical system comprising: an optical assembly configured to direct light emitted by a light source to illuminate a photoresist material at a plurality of different angles so as to cause a plurality of different tilted structures in the photoresist material (angled structure) simultaneously exposed, wherein the photoresist material covers at least a portion of a first surface of a substrate, and wherein the optical assembly includes: a container that contains one of the plurality of different angle selections based at least in part on Optical coupling material; a reflective surface configured to reflect at least a first portion of the emitted light to illuminate the photoresist material at the plurality of different angles, wherein the reflective surface includes a plurality of corresponding to the plurality of different angles a plane mirror portion; and an aperture mask positioned between the light source and the substrate, wherein the aperture mask includes one or more openings, each opening corresponding to a respective desired structure in the photoresist material, and Wherein at least a portion of the emitted light transmitted through each opening exposes the respective desired structure corresponding to the opening. 如請求項1之系統,其中該複數個不同角度包括:相對於該第一表面之42度、45度及48度。 The system of claim 1, wherein the plurality of different angles include: 42 degrees, 45 degrees and 48 degrees relative to the first surface. 如請求項1之系統,其中該複數個不同角度包括相對於該第一表面之選自30度與60度之間之一角度範圍之複數個角度。 The system of claim 1, wherein the plurality of different angles include a plurality of angles relative to the first surface selected from an angle range between 30 degrees and 60 degrees. 如請求項1之系統,其中該反射表面包括一或多個曲面鏡部分。 The system of claim 1, wherein the reflective surface includes one or more curved mirror portions. 如請求項1之系統,其中該各自所要結構包括至少一個垂直結構及至少一個傾斜結構。 The system of claim 1, wherein the respective desired structures include at least one vertical structure and at least one inclined structure. 如請求項5之系統,其中該孔隙遮罩包括一第一開口,其中該第一開口經組態以容許該經發射光之該第一部分與該反射表面之一第一部分相互作用,且其中該反射表面之該第一部分經組態以重新引導該經發射光之該第一部分以使該至少一個傾斜結構曝光。 The system of claim 5, wherein the aperture mask includes a first opening, wherein the first opening is configured to allow the first portion of the emitted light to interact with a first portion of the reflective surface, and wherein the The first portion of the reflective surface is configured to redirect the first portion of the emitted light to expose the at least one tilted structure. 如請求項5之系統,其中該孔隙遮罩包括一第二開口,且其中該第二開口經組態以容許該經發射光之一第二部分使該至少一個垂直結構曝光。 The system of claim 5, wherein the aperture mask includes a second opening, and wherein the second opening is configured to allow a second portion of the emitted light to expose the at least one vertical structure. 如請求項1之系統,其中該容器之一第一表面之至少一部分及該容器之一第二表面之至少一部分係透明的,其中該經發射光透過該第一表面之該透明部分進入該容器,且其中該經發射光透過該第二表面之該透明部分照明該光阻劑材料。 The system of claim 1, wherein at least a portion of a first surface of the container and at least a portion of a second surface of the container are transparent, and wherein the emitted light enters the container through the transparent portion of the first surface , and wherein the emitted light illuminates the photoresist material through the transparent portion of the second surface. 如請求項1之系統,其進一步包括接近該光阻劑材料配置之一光罩,其中該光罩經組態以界定該光阻劑材料中之個別所要結構。 The system of claim 1, further comprising a photomask disposed proximate the photoresist material, wherein the photomask is configured to define individual desired structures in the photoresist material. 如請求項1之系統,其中該光學總成進一步包括經組態以移除該光學總成內之雜散光之一裝置。 The system of claim 1, wherein the optical assembly further includes a device configured to remove stray light within the optical assembly. 如請求項1之系統,其中該光源包括一各向異性準直光源。 The system of claim 1, wherein the light source includes an anisotropic collimated light source. 如請求項1之系統,其中該光耦合材料包括以下之至少一者:水、乙二醇及甘油。 The system of claim 1, wherein the optical coupling material includes at least one of the following: water, ethylene glycol, and glycerin. 如請求項1之系統,其中該基板浸潤在該光耦合材料中,使得該光阻劑材料面向該容器之一表面,其中該容器之該表面之至少一部分係透明的,且其中來自該光源之該經發射光透過該容器之該表面之該透明部分進入該容器。 The system of claim 1, wherein the substrate is soaked in the optical coupling material such that the photoresist material faces a surface of the container, wherein at least a portion of the surface of the container is transparent, and wherein the light from the light source The emitted light enters the container through the transparent portion of the surface of the container. 一種製造一光學裝置之方法,其包括:在一光學總成之一個端附近放置一基板,其中光阻劑材料覆疊該基板之一第一表面之至少一部分,且其中該光學總成包括:(i)一容器,其容納一光耦合材料;及(ii)一反射表面;引起一光源將光發射至該光學總成中,其中該反射表面反射該經發射光之至少一第一部分以依複數個不同角度照明該光阻劑材料,藉此使該光阻劑材料中之複數個不同傾斜結構之至少一部分同時曝光,其中該反射表面包括對應於該複數個不同角度之複數個平面鏡部分;及在該光學總成之一表面上或附近覆疊一孔隙遮罩,其中該孔隙遮罩包括一或多個開口,各開口對應於該光阻劑材料中之一各自所要結構,且其中經透射穿過各開口之該經發射光之至少一部分使該開口所對應之該各自所要結構曝光。 A method of manufacturing an optical device comprising: placing a substrate near one end of an optical assembly, wherein a photoresist material covers at least a portion of a first surface of the substrate, and wherein the optical assembly includes: (i) a container containing an optical coupling material; and (ii) a reflective surface; causing a light source to emit light into the optical assembly, wherein the reflective surface reflects at least a first portion of the emitted light in accordance with Illuminating the photoresist material at a plurality of different angles, thereby simultaneously exposing at least a portion of a plurality of different tilted structures in the photoresist material, wherein the reflective surface includes a plurality of plane mirror portions corresponding to the plurality of different angles; and overlaying an aperture mask on or near a surface of the optical assembly, wherein the aperture mask includes one or more openings, each opening corresponding to a respective desired structure in the photoresist material, and wherein the aperture mask is At least a portion of the emitted light transmitted through each opening exposes the respective desired structure corresponding to the opening. 如請求項14之方法,其中該複數個不同角度包括:相對於該第一表面之42度、45度及48度。 The method of claim 14, wherein the plurality of different angles include: 42 degrees, 45 degrees and 48 degrees relative to the first surface. 如請求項14之方法,其中該各自所要結構包括至少一個垂直結構及至少一個傾斜結構,其中該孔隙遮罩包括一第一開口,其中該第一開口經組態以容許該經發射光之該第一部分與該反射表面之一第一部分相互作用,且其中該反射表面之該第一部分經組態以重新引導該經發射光之該第一部分以使該至少一個傾斜結構曝光。 The method of claim 14, wherein the respective desired structures include at least one vertical structure and at least one tilted structure, wherein the aperture mask includes a first opening, wherein the first opening is configured to allow the emitted light to The first portion interacts with a first portion of the reflective surface, and wherein the first portion of the reflective surface is configured to redirect the first portion of the emitted light to expose the at least one tilted structure.
TW109136105A 2019-10-29 2020-10-19 Non-telecentric light guide elements TWI812890B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/666,952 US11131934B2 (en) 2019-10-29 2019-10-29 Non-telecentric light guide elements
US16/666,952 2019-10-29

Publications (2)

Publication Number Publication Date
TW202131104A TW202131104A (en) 2021-08-16
TWI812890B true TWI812890B (en) 2023-08-21

Family

ID=75587053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136105A TWI812890B (en) 2019-10-29 2020-10-19 Non-telecentric light guide elements

Country Status (2)

Country Link
US (4) US11131934B2 (en)
TW (1) TWI812890B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131929B2 (en) * 2018-11-07 2021-09-28 Waymo Llc Systems and methods that utilize angled photolithography for manufacturing light guide elements
US11131934B2 (en) 2019-10-29 2021-09-28 Waymo Llc Non-telecentric light guide elements
IL279275A (en) * 2020-12-06 2022-07-01 Elbit Systems C4I And Cyber Ltd Device, systems and methods for scene image acquisition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056145A (en) * 2004-08-20 2006-03-02 Kagawa Univ Manufacturing method of inclined structure and mother mold for mold manufactured by the method
US20110091813A1 (en) * 2009-10-21 2011-04-21 Gm Global Technology Operations, Ins. Dynamic projection method for micro-truss foam fabrication
TW201216006A (en) * 2010-05-06 2012-04-16 Zeiss Carl Smt Gmbh Illumination system of a microlithographic projection exposure apparatus

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150703A (en) 1980-04-23 1981-11-21 Dainippon Printing Co Ltd Direction-selective light shielding or reflecting sheet and its production
CA1211868A (en) 1982-04-16 1986-09-23 Yoshikazu Nishiwaki Method of forming diffraction gratings and optical branching filter elements produced thereby
JPS607405A (en) 1983-06-28 1985-01-16 Omron Tateisi Electronics Co Manufacture of optical waveguide
US4842405A (en) 1987-04-03 1989-06-27 El Sherif Mahmoud Process for producing a grating on an optical fiber
JPS63250602A (en) 1987-04-08 1988-10-18 Hitachi Ltd Manufacture of diffraction grating
JPH01306886A (en) 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
JPH0267559A (en) 1988-09-01 1990-03-07 Mitsubishi Electric Corp Interference exposure device
JPH04100082A (en) 1990-08-20 1992-04-02 Fujitsu Ltd Method and device for generating reflection type hologram
JPH04113383A (en) 1990-09-04 1992-04-14 Asahi Glass Co Ltd Manufacture of curved-surface hologram
US5263111A (en) 1991-04-15 1993-11-16 Raychem Corporation Optical waveguide structures and formation methods
JPH0667607A (en) 1992-08-19 1994-03-11 Dainippon Printing Co Ltd Production of display formed by using diffraction grating
US5879866A (en) * 1994-12-19 1999-03-09 International Business Machines Corporation Image recording process with improved image tolerances using embedded AR coatings
JP3526224B2 (en) * 1998-10-20 2004-05-10 シャープ株式会社 Processing method and optical component
US6525296B2 (en) * 1998-10-20 2003-02-25 Sharp Kabushiki Kaisha Method of processing and optical components
JP2001006175A (en) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp Method and apparatus for recording information to optical recording medium
US6501868B1 (en) * 1999-10-15 2002-12-31 Matsushita Electric Industrial Co., Ltd. Optical waveguide device, coherent light source, integrated unit, and optical pickup
US6882477B1 (en) 1999-11-10 2005-04-19 Massachusetts Institute Of Technology Method and system for interference lithography utilizing phase-locked scanning beams
US6510263B1 (en) 2000-01-27 2003-01-21 Unaxis Balzers Aktiengesellschaft Waveguide plate and process for its production and microtitre plate
GB0018629D0 (en) 2000-07-29 2000-09-13 Secr Defence Process for making a periodic profile
US6608722B2 (en) 2000-08-01 2003-08-19 James Cowan Directional diffuser
US7253425B2 (en) 2001-06-28 2007-08-07 E-Beam & Light, Inc. Method and apparatus for forming optical elements by inducing changes in the index of refraction by utilizing electron beam radiation
JP2003156832A (en) 2001-11-22 2003-05-30 Mitsubishi Electric Corp Photomask for aberration measurement, aberration measuring method, instrument for aberration measurement, and manufacturing method for the instrument
JP2004054003A (en) * 2002-07-22 2004-02-19 Mitsubishi Electric Corp Optoelectronic substrate
EP1542045B1 (en) 2002-09-20 2011-07-20 Toppan Printing Co., Ltd. Method of manufacturing an optical waveguide
JP2004133300A (en) 2002-10-11 2004-04-30 Sony Corp Metallic mold for waveguide and method of manufacturing waveguide
US6935792B2 (en) * 2002-10-21 2005-08-30 General Electric Company Optoelectronic package and fabrication method
US7110081B2 (en) * 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7932020B2 (en) 2003-07-10 2011-04-26 Takumi Technology Corporation Contact or proximity printing using a magnified mask image
JP2005129894A (en) 2003-10-03 2005-05-19 Nikon Corp Liquid immersion exposure apparatus
US6917456B2 (en) 2003-12-09 2005-07-12 Hewlett-Packard Development Company, L.P. Light modulator
JP4345522B2 (en) 2004-03-03 2009-10-14 株式会社デンソー X-ray material processing method
JP4698460B2 (en) * 2006-03-27 2011-06-08 オムロンレーザーフロント株式会社 Laser annealing equipment
CN101448632B (en) 2006-05-18 2012-12-12 3M创新有限公司 Process for making light guides with extraction structures and light guides produced thereby
JP4911682B2 (en) * 2006-07-20 2012-04-04 富士フイルム株式会社 Exposure equipment
JP2010014811A (en) 2008-07-01 2010-01-21 Sony Corp Exposure method and exposure device
US20100195082A1 (en) 2009-01-27 2010-08-05 Yoon Yong-Kyu Device, System, And Method For Multidirectional Ultraviolet Lithography
KR101037899B1 (en) 2010-03-24 2011-05-30 한국기계연구원 Apparatus and method for lithography
JP2011253151A (en) 2010-06-04 2011-12-15 Ushio Inc Rotational oblique exposure apparatus
TW201206006A (en) 2010-07-22 2012-02-01 Nat Univ Chin Yi Technology Battery charging and balancing system
JP2012068297A (en) 2010-09-21 2012-04-05 Ushio Inc Resist liquid-protective structure for rotary inclined exposure device and rotary inclined exposure device with the same
US8546048B2 (en) 2010-10-29 2013-10-01 Skyworks Solutions, Inc. Forming sloped resist, via, and metal conductor structures using banded reticle structures
WO2012081587A1 (en) 2010-12-14 2012-06-21 株式会社ニコン Inspection method, inspection device, exposure management method, exposure system, and semiconductor device
JP2012220919A (en) 2011-04-14 2012-11-12 Toppan Printing Co Ltd Photomask
JP5862391B2 (en) * 2012-03-19 2016-02-16 富士通株式会社 Optical coupling structure and optical transmission device
CN103630953B (en) 2012-08-22 2016-08-03 北京京东方光电科技有限公司 A kind of prism film and preparation method thereof and device
US8995807B1 (en) 2013-06-28 2015-03-31 Modilis Holdings Llc Laminated light guide collimator
US20150338718A1 (en) 2014-05-22 2015-11-26 Intel Corporation Acousto-optic deflector with multiple transducers for optical beam steering
US9348099B2 (en) * 2014-07-18 2016-05-24 Intel Corporation Optical coupler
US11114813B2 (en) * 2015-11-25 2021-09-07 Raytheon Company Integrated pumplight homogenizer and signal injector for high-power laser system
JP7149256B2 (en) * 2016-03-19 2022-10-06 ベロダイン ライダー ユーエスエー,インコーポレイテッド Integrated illumination and detection for LIDAR-based 3D imaging
US10061201B2 (en) 2016-10-24 2018-08-28 Hrl Laboratories, Llc Bottom up apparatus design for formation of self-propagating photopolymer waveguides
US10890650B2 (en) 2017-09-05 2021-01-12 Waymo Llc LIDAR with co-aligned transmit and receive paths
US10534143B1 (en) 2018-09-20 2020-01-14 Waymo Llc Methods for optical system manufacturing
US11520044B2 (en) * 2018-09-25 2022-12-06 Waymo Llc Waveguide diffusers for LIDARs
US10707195B2 (en) 2018-10-09 2020-07-07 Waymo Llc Multichannel monostatic rangefinder
US11131929B2 (en) * 2018-11-07 2021-09-28 Waymo Llc Systems and methods that utilize angled photolithography for manufacturing light guide elements
US11131934B2 (en) 2019-10-29 2021-09-28 Waymo Llc Non-telecentric light guide elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056145A (en) * 2004-08-20 2006-03-02 Kagawa Univ Manufacturing method of inclined structure and mother mold for mold manufactured by the method
US20110091813A1 (en) * 2009-10-21 2011-04-21 Gm Global Technology Operations, Ins. Dynamic projection method for micro-truss foam fabrication
TW201216006A (en) * 2010-05-06 2012-04-16 Zeiss Carl Smt Gmbh Illumination system of a microlithographic projection exposure apparatus

Also Published As

Publication number Publication date
US20210405536A1 (en) 2021-12-30
US11131934B2 (en) 2021-09-28
US20210124269A1 (en) 2021-04-29
US20230099679A1 (en) 2023-03-30
US11868050B2 (en) 2024-01-09
TW202131104A (en) 2021-08-16
US20240103380A1 (en) 2024-03-28
US11520236B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
TWI812890B (en) Non-telecentric light guide elements
JP7177925B2 (en) Systems and methods utilizing angled photolithography for manufacturing light guide elements
ES2643026T3 (en) Fluorescence microscope
JP2010500769A5 (en)
US10684460B2 (en) Optical adapter connectable to an image acquisition device, in particular intended to be used for microscopic observation
WO2017098657A1 (en) Observation device
KR100550409B1 (en) Light source unit and projection type display device using thereof
US5087112A (en) Optical magnifier apparatus
JP7080969B2 (en) How to manufacture an optical waveguide device
US6940641B2 (en) Fluorescence observation apparatus
JP5272652B2 (en) Imaging optical element, imaging optical device, and manufacturing method of imaging optical element
JP7406560B2 (en) Multi-channel close-up imaging device
JP5567973B2 (en) Illumination optics
JPH08220318A (en) Optical apparatus
JP4487359B2 (en) Stereo microscope and dark field illumination device
JP2002048906A (en) Diffraction optical device and optical system having the same, photographing device and observation device
JP2006194992A (en) Focus detecting device
JP4883467B2 (en) Light quantity measuring apparatus, exposure apparatus, and device manufacturing method
JP2676909B2 (en) Image reading device
JP2610236B2 (en) Auxiliary light device in focus detection device
JPH02289834A (en) Illuminator
JP2000258856A (en) Light source device
JP2007121322A (en) Prism for measuring total reflection absorption, and total reflection absorbing apparatus using the same
KR20040015648A (en) Exposure equipment for manufacturing semiconductor