TWI811875B - 投影鏡頭及投影裝置 - Google Patents
投影鏡頭及投影裝置 Download PDFInfo
- Publication number
- TWI811875B TWI811875B TW110145106A TW110145106A TWI811875B TW I811875 B TWI811875 B TW I811875B TW 110145106 A TW110145106 A TW 110145106A TW 110145106 A TW110145106 A TW 110145106A TW I811875 B TWI811875 B TW I811875B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- positive
- lens group
- negative
- crescent
- Prior art date
Links
- 230000009467 reduction Effects 0.000 claims abstract description 15
- 238000013459 approach Methods 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 2
- 230000003287 optical effect Effects 0.000 description 49
- 238000013461 design Methods 0.000 description 25
- 230000004075 alteration Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 238000003384 imaging method Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000012634 optical imaging Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013041 optical simulation Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Lenses (AREA)
- Securing Globes, Refractors, Reflectors Or The Like (AREA)
- Overhead Projectors And Projection Screens (AREA)
Abstract
一投影鏡頭,包括從鏡頭放大側到鏡頭縮小側依序排列的第一透鏡組、
正屈光度的第二透鏡組、正屈光度的第三透鏡組、光圈、第四透鏡組和第五透鏡組。第一透鏡組包含至少一透鏡,第二透鏡組包含至少一正屈光度的透鏡,第三透鏡組包含至少一正屈光度的透鏡,第四透鏡組包含至少三片透鏡,第五透鏡組包含至少一透鏡。鏡頭滿足7.5<LTW/EFLW<12.5的條件,LTW為鏡頭廣角端,鏡頭兩端最外側透鏡外表面所構成的長度,EFLW為鏡頭廣角端的有效焦距。鏡頭包括至少11片透鏡。當鏡頭從望遠端變焦到廣角端時,第二透鏡組只朝鏡頭放大側靠近,且第三透鏡組只朝鏡頭縮小側靠近。
Description
本發明關於一種光學鏡頭,特別是指一種投影鏡頭。
在眾多類型的顯示裝置中,投影裝置具有以較小的裝置體積投影出數倍於裝置表面積的大尺寸影像畫面的特性,因此在顯示領域中有著無法被取代的優勢。由於投影裝置是藉由投影鏡頭將光閥轉換的影像光束投射於螢幕上,因此影像畫面的品質深受投影鏡頭品質的影響。故投影鏡頭為投影裝置中一個關鍵的光學元件。
一般而言,投影鏡頭具有可變焦距的功能。利用投影鏡頭的變焦功能,投影裝置可達成縮放影像的功效。目前,投影裝置的主流是朝高亮度設計。達到高亮度的其中一種方式是令投影鏡頭採用大光圈的設計。然而,具變焦功能的投影鏡頭加工繁複且受限於較嚴苛的公差要求,故其較難以同時達到大光圈及高成像品質的特性。
本發明的其他目的和優點可以從本發明實施例所揭露的技術特徵中得到進一步的了解。
本發明之一實施例提出一種投影鏡頭,包括從鏡頭放大側到鏡頭縮小側依序排列的第一透鏡組、正屈光度的第二透鏡組、正屈光度的第三透鏡組、光圈、第四透鏡組和第五透鏡組。第一透鏡組包含至少一透鏡,第二透鏡組包含至少一正屈光度的透鏡,第三透鏡組包含至少一正屈光度的透鏡,第四透鏡組包含至少三片透鏡,第五透鏡組包含至少一透鏡。鏡頭滿足
7.5<LTW/EFLW<12.5的條件,LTW為鏡頭廣角端,鏡頭兩端最外側透鏡外表面所構成的長度,EFLW為鏡頭廣角端的有效焦距。鏡頭包括至少11片透鏡。當鏡頭從望遠端變焦到廣角端時,第二透鏡組只朝鏡頭放大側靠近,且第三透鏡組只朝鏡頭縮小側靠近。本實施例投影鏡頭可提供一種兼具良好的光學成像品質、低畸變量、低色差、大光圈與短總長的特性,且能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。
本發明之一實施例提出一種投影鏡頭,包括從鏡頭放大側到鏡頭縮小側依序排列的第一透鏡組、正屈光度的第二透鏡組、正屈光度的第三透鏡組、第四透鏡組和第五透鏡組。第一透鏡組包含至少一透鏡,第二透鏡組包含至少一正屈光度的透鏡,第三透鏡組包含至少一正屈光度的透鏡,第四透鏡組包含至少三片透鏡,第五透鏡組包含至少一透鏡。鏡頭的最小透光孔徑設於第三透鏡組和第四透鏡組之間。鏡頭滿足1<EFLW/DL<1.24的條件,其中,EFLW為鏡頭廣角端的有效焦距,DL為鏡頭最靠近鏡頭縮小側透鏡的直徑。鏡頭至少包括13片透鏡。當鏡頭從望遠端變焦到廣角端時,第二透鏡組與第三透鏡組,可分別朝向鏡頭兩端外側的相反方向移動。本實施例投影鏡頭可提供一種兼具良好的光學成像品質、低畸變量、低色差、大光圈與短總長的特性,且能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。
本發明之一實施例提出一種投影鏡頭,包括從鏡頭放大側到鏡頭縮小側依序排列的第一透鏡組、正屈光度的第二透鏡組、正屈光度的第三透鏡組、光圈、第四透鏡組和第五透鏡組。鏡頭滿足1.3<EFLW/EFLT<1.7的條件,EFLW為鏡頭廣角端的有效焦距,EFLT為鏡頭望遠端的有效焦距。鏡頭中具有屈光度的透鏡數量介於11和18之間。當鏡頭從望遠端變焦到廣角端時,第二透鏡組可朝第一透鏡組靠近,且第三透鏡組可朝第四透鏡組靠近。本實施例投影
鏡頭可提供一種兼具良好的光學成像品質、低畸變量、低色差、大光圈與短總長的特性,且能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。
藉由本發明實施例的設計,可提供一種兼具良好的光學成像品質、低畸變量(distortion)、低色差、大光圈與短總長的特性,且能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。再者,本發明實施例投影鏡頭包含11~18片鏡片。當投影鏡頭為廣角端時,投影鏡頭兩端最外側具有屈光度的透鏡外表面所構成的長度(LTW)小於240mm,能夠提供投射比(Throw Ratio)介於1.29~2.07之間、前群調焦、具大光圈(F#大於等於1.9)、高解析度、小型化、與短總長等特點,所以能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。
本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式,作詳細說明如下。
10a、10b、10c、10d、10e、10f:投影鏡頭
12:光軸
14:光圈
16:光路調整機構
18:稜鏡
120:光閥
130:螢幕
G1-G5:透鏡組
L1-L18:透鏡
S1-S35:表面
OS:放大側
IS:縮小側
P、Q:交點
D:鏡片直徑
圖1為依本發明一實施例之投影裝置100的光學結構示意圖。
圖2A與圖2B分別為本發明第一實施例投影鏡頭10a在廣角端(wide-end)和望遠端(Tele-end)的光學結構圖。
圖3A與圖3B分別為本發明第一實施例投影鏡頭10a在廣角端和望遠端的調制傳遞函數曲線(MTF)圖。
圖4A與圖4B分別為本發明第二實施例投影鏡頭10b在廣角端和望遠端的光學結構圖。
圖5A與圖5B分別為本發明第二實施例投影鏡頭10b在廣角端和望遠端的調制傳遞函數曲線圖。
圖6A與圖6B分別為本發明第三實施例投影鏡頭10c在廣角端和望遠端的光學結構圖。
圖7A與圖7B分別為本發明第三實施例投影鏡頭10c在廣角端和望遠端的調制傳遞函數曲線圖。
圖8A與圖8B分別為本發明第四實施例投影鏡頭10d在廣角端和望遠端的光學結構圖。
圖9A與圖9B分別為本發明第五實施例投影鏡頭10e在廣角端和望遠端的光學結構圖。
圖10A與圖10B分別為本發明第六實施例投影鏡頭10f在廣角端和望遠端的光學結構圖。
有關本發明前述及其他技術內容、特點與功效,在以下配合參考圖式的多個實施例的詳細說明中,將可清楚的呈現。另外,下列實施例中所使用的用語「第一」、「第二」是為了辨識相同或相似的元件而使用,且方向用語例如「前」、「後」等,僅是參考附加圖式的方向,並非用以限定所述元件。
圖1為本發明一實施例的投影裝置100的光學結構示意圖。請參照圖1,本實施例的投影裝置100包括照明單元110、光閥120、投影鏡頭10及螢幕130。照明單元110用以提供照明光束L1。在本實施例中,照明單元110可以是任何用以照射於光閥120的裝置,包含燈泡、雷射(laser)或LED等光源。光閥120配置於照明光束L1的傳遞路徑上,且用以將照明光束L1轉換成影像光束L2。在本實施例中,光閥120例如是數位微鏡元件(digital micro-mirror device,DMD)、矽基液晶面板(liquid-crystal-on-silicon panel)、液晶面板(LCD)或其他適當的空間光調變器(spatial light modulator,SLM)等。
圖2A和圖2B分別為圖1所示之投影鏡頭10的第一實施例的投影鏡頭10a在廣角端(wide-end)和望遠端(Tele-end)的光學結構示意圖。請參照圖1及圖2A-2B,本實施例的投影鏡頭10a配置於影像放大側OS及影像縮小側IS之間,在
投影裝置100中,影像放大側OS對應為螢幕130,影像縮小側IS對應為光閥120,投影鏡頭10a位於影像光束L2的傳遞路徑上,用以將來自光閥120的影像光束L2投射至螢幕130上,以在螢幕130上形成影像畫面(未圖示)。投影鏡頭10a包含第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈(最小透光孔徑)14、第四透鏡組G4和第五透鏡組G5,其中第一透鏡組G1配置於螢幕130與光閥120之間,第二透鏡組G2配置第一透鏡組G1與光閥120之間,第三透鏡組G3配置第二透鏡組G2與光閥120之間,第四透鏡組G4配置第三透鏡組G3與光閥120之間,第五透鏡組G5配置第四透鏡組G4與光閥120之間,光圈14配置第三透鏡組G3與第四透鏡組G4之間。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。本實施例的投影鏡頭100的F數值(F-number)在廣角端(wide-end)為1.9,在望遠端(Tele-end)為2.2,均大於或等於1.8,因此具有大光圈的光學特性。此外,第五透鏡組G5與光閥120之間可設有光路調整機構(SP)16、稜鏡(prism)18和透光保護蓋(圖中未顯示),例如玻璃蓋(cover glass),以保護光閥120。
在本實施例中,第一透鏡組G1、第二透鏡組G2、第三透鏡組G3光圈14、與第四透鏡組G4可沿著光軸12在光閥120與螢幕130之間相對移動,投影鏡頭10a的有效焦距(EFL)可隨之改變,進而使投影裝置100可具有縮放影像尺寸的效果。換言之,藉由第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈14、第四透鏡組G4的搭配,本實施例的投影裝置100可具有變焦的功能。在一實施例中,投影透鏡10a變焦時,第一透鏡組G1也可以相對於光閥120的距離為固定不動。
請參照圖2A,當欲使本實施例的投影裝置100的放大倍率較大時,第一透鏡組G1和第二透鏡組G2可趨向螢幕(投影鏡頭成像面)130移動,而第三透鏡組G3和第四透鏡組G4可趨向光閥120移動。此時,第一透鏡組G1和第二透鏡
組G2與光閥120之間的可變距離變大,而第三透鏡組G3、光圈14和第四透鏡組G4與光閥120之間的可變距離變小,此即稱為廣角端(wide-end)。請參照圖2B,當欲使本實施例的投影裝置100的放大倍率較小時,第一透鏡組G1和第二透鏡組G2可趨向光閥120移動,而第三透鏡組G3、光圈14和第四透鏡組G4可趨向螢幕(投影鏡頭成像面)130移動。此時,第一透鏡組G1和第二透鏡組G2與光閥120之間的可變距離變小,而第三透鏡組G3、光圈14和第四透鏡組G4與光閥120之間的可變距離變大,此即為望遠端(Tele-end)。此外,當投影距離(即第一透鏡組G1與螢幕130的距離)改變時,第一透鏡組G1可沿著光軸12相對於光閥120做細微的移動來對焦,而使螢幕130上的影像畫面由模糊變清晰。要注意的是,第五透鏡組G5相對於光閥120的距離都是固定不變,不管是在變焦(zooming)或對焦(focusing)。
本發明所謂的光學元件,係指元件具有部份或全部可反射或穿透的材質所構成,通常包含玻璃或塑膠所組成。例如是透鏡、稜鏡或是光圈。
一透鏡的物側面(或像側面)具有位於某區域的凸面部(或凹面部),是指該區域相較於徑向上緊鄰該區域的外側區域,朝平行於光軸的方向更為「向外凸起」(或「向內凹陷」)而言。
下文將舉例說明本實施例之投影鏡頭10a的各透鏡組的組成,但其並非用以限定本發明。請參照圖2A,在本實施例中,第一透鏡組G1包含第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4和第五透鏡L5。第二透鏡組G2包含第六透鏡L6。第三透鏡組G3包含第七透鏡L7和第八透鏡L8。第四透鏡組G4包含第九透鏡L9、第十透鏡L10、第十一透鏡L11、第十二透鏡L12、第十三透鏡L13和第十四透鏡L14。第五透鏡組G5包含第十五透鏡L15。於本實施例中,第一透鏡L1至第十五透鏡L15屈光度分別為正、負、負、負、正、正、負、正、負、正、負、負、正、正、正。所有透鏡均為玻璃球面透鏡,換言之,超
過五分之四的透鏡為玻璃球面透鏡。在一實施例中,玻璃球面透鏡可以用非球面透鏡取代。另外,兩透鏡相鄰的兩面有大致相同(曲率半徑差異小於0.005mm)或完全相同(實質相同)的曲率半徑且形成結合透鏡、膠合透鏡、雙合透鏡(doublet)或三合透鏡(triplet),例如本實施例的第七透鏡L7和第八透鏡L8,第十透鏡L10和第十一透鏡L11,以及第十二透鏡L12和第十三透鏡L13分別構成三組雙膠合透鏡,但本發明實施例並不以此為限制。再者,投影鏡頭10a中透鏡的數量、透鏡的形狀及光學特性皆可視實際需求做不同之設計。本發明各具體實施例之影像放大側OS均分別設於各圖之左側,而影像縮小側IS均設於各圖之右側,將不予重覆說明之。
本發明所指光圈14是指一孔徑光欄(Aperture Stop),光圈為一獨立元件或是整合於其他光學元件上。於本實施例中,光圈是利用機構件擋去周邊光線並保留中間部份透光的方式來達到類似的效果,而前述所謂的機構件可以是可調整的。所謂可調整,是指機構件的位置、形狀或是透明度的調整。或是,光圈也可以在透鏡表面塗佈不透明的吸光材料,並使其保留中央部份透光以達限制光路的效果。在本實施例中,光圈14設置於第三透鏡組G3和第四透鏡組G4之間。更詳細地說,光圈14配置於第八透鏡L8與第九透鏡L9之間,以控制入射光量。當光圈14的孔徑越大時,投影鏡頭10a可對應到越小的F數值(F-number)。進一步地說,F數值(F-number)小可代表入射光量增大,而達到高亮度。但,此時進入投影鏡頭10a中且遠離投影鏡頭10a之光軸12的光線也同時增加,進而造成像差問題。在本實施例中,由於光圈14可配置於距離光閥120較近之第八透鏡L8與第九透鏡L9間,所以光圈14可阻擋部分遠離光軸12的光線,進而使本實施例的投影鏡頭10a的光學特性佳。
各透鏡係定義有鏡片直徑。舉例而言,如圖2A所示,鏡片直徑是指該於光軸12兩端的鏡面轉折點P、Q於垂直光軸12方向上的距離(例如鏡片直徑
D)。再者,於本實施例中,第一透鏡L1的直徑(D1)為69.0mm,第十五透鏡L15的直徑(DL)為41.1mm。
在表一中,曲率半徑(mm)係指對應表面之曲率半徑,間距(mm)係指兩相鄰表面間於光軸12上之直線距離。舉例來說,表面S1之間距,即表面S1至表面S2間之距離,表面S28之間距,即表面S28至表面S29間之距離,欄中各透鏡與各光學元件所對應之厚度、折射率與阿貝數請參照同列中各間距、折射率與阿貝數對應之數值。表面S1、S2為第一透鏡L1的兩表面。表面S3、S4為第二透鏡L2的兩表面。有關於各表面的曲率半徑、間距等參數值,請參照表一,在此不再重述。
曲率半徑是指曲率的倒數。曲率半徑為正時,透鏡表面的球心在透鏡的影像縮小側方向。曲率半徑為負時,透鏡表面的球心在透鏡的影像放大側方向。而各透鏡之凸凹可見上表。在表二中,是分別列出投影鏡頭10a於廣角端及望遠端時的一些重要參數值。其中,D1、D2、D3和D4分別為第一透鏡組G1至第二透鏡組G2、第二透鏡組G2至第三透鏡組G3、第三透鏡組G3至光圈14以及第四透鏡組G4至第五透鏡組G5之間的距離。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。舉例而言,當D1為0.67毫米,D2為58.88毫米,而D3為29.43毫米,D4為0.3毫米時,投影鏡頭10a可處於廣角端(即具放大效果)。當D1為3.06毫米,D2為0.3毫米,而D3為39.64毫米,D4為24.07毫米時,投影鏡頭10a可處於望遠端(即具縮小效果)。
圖3A和3B為圖2A和圖2B的投影鏡頭10a的成像光學模擬數據圖。請參照圖3A,圖3A為廣角端的調制傳遞函數曲線圖(modulation transfer function,MTF),其橫軸為每週期/毫米之空間頻率(spatial frequency in cycles per millimeter),縱軸是光學轉移函數的模數(modulus of the OTF)。而圖3B為望遠端的調制傳遞函數曲線圖(modulation transfer function,MTF)。由於圖3A及圖3B
所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的投影鏡頭10a可達到良好的成像效果。
本發明的光圈值係以F/#來代表,如上表所標示者。本發明實施例中,F/#均大於等於1.8。在一實施例中,投影透鏡光圈值介於1.8和2.4之間,投射比(Throw Ratio)介於1.2和2.1之間。
本發明實施例中,投影鏡頭廣角端的總長係以LTW來表示,如上表所標示者。更明確的說,本實施例的總長是指投影鏡頭10a在廣角端,最接近影像放大側的透鏡表面S1與最接近影像縮小側的透鏡表面S28之間所構成的長度。投影鏡頭在廣角端的鏡頭總長(LTW)小於240mm。本發明實施例中,投影鏡頭在廣角端到光閥表面S29的總長係以TTL來表示,如上表所標示者。更明確的說,本實施例投影鏡頭在廣角端到光閥表面S29的總長是指投影鏡頭10a在廣角端最接近影像放大側的透鏡表面S1與光閥表面S29之間所構成的長度。投影鏡頭在廣角端的總長(TTL)小於290mm。本實施例投影鏡頭10a在廣角端最接近影像縮小側的透鏡表面S28到光閥表面S29的背焦長度,係以BFL來表示。在一實施例中,投影透鏡廣角端有效焦距介於20~25mm之間。在一實施例中,投影透鏡的總長(TTL)介於240~290mm之間。在一實施例中,投影透鏡的廣角端總長(LTW)介於170~240mm之間
本發明一實施例之投影鏡頭包含五個透鏡組,第一透鏡組例如可使用至少兩個負屈光度(Power)透鏡,但其並不限定。投影鏡頭的光圈數值約大於等於1.8。第四透鏡組包含至少兩個膠合透鏡以修正色差,膠合透鏡的透鏡之間沿光軸的最小距離小於等於0.01mm。每個膠合透鏡都包含曲率半徑實質相同或相近的對應鄰近的膠合表面。投影鏡頭具屈光度的透鏡總片數為11~18片,且具有至少阿貝數大於65的兩片透鏡,其中第四透鏡組中的至少一個膠合透鏡包含一片阿貝數大於65的透鏡,包含一片阿貝數小於30的透鏡。在一實施
例中,投影透鏡具有至少阿貝數大於70的兩片透鏡,其中第四透鏡組中的至少一個膠合透鏡包含一片阿貝數大於70的透鏡,包含一片阿貝數小於30的透鏡。
於一實施例中,投影鏡頭的透鏡符合7.5<LTW/EFLW<12.5的條件,於另一實施例符合8<LTW/EFLW<12的條件,於又另一實施例符合9<LTW/EFLW<11的條件,其中LTW為鏡頭廣角端時,鏡頭兩端最外側透鏡外表面所構成的長度,EFLW為鏡頭廣角端的有效焦距。當LTW/EFLW<7.5時,製造可行性低且鏡頭設計困難,當LTW/EFLW>12.5時,鏡頭總長較長,產品競爭性低且鏡頭整體重量較重。當投影鏡頭的透鏡符合7.5<LTW/EFLW<12.5,產品製造可行性高、且符合短小輕薄的要求。
於一實施例中,投影鏡頭的透鏡符合1<EFLW/DL<1.24的條件,於另一實施例符合1.02<EFLW/DL<1.22的條件,於又另一實施例符合1.04<EFLW/DL<1.2的條件,其中EFLW為鏡頭廣角端的有效焦距,DL為鏡頭最靠近鏡頭縮小側透鏡的直徑。當EFLW/DL<1時,成本變高且鏡頭設計困難,當EFLW/DL>1.24時,鏡頭收光效率差,無法滿足市場需求。當投影鏡頭的透鏡符合1<EFLW/DL<1.24,產品製造可行性高、且符合高亮度的要求。
於一實施例中,投影鏡頭符合1.3<EFLW/EFLT<1.7的條件,於另一實施例符合1.35<EFLW/EFLT<1.65的條件,於又另一實施例符合1.4<EFLW/EFLT<1.61的條件,EFLW為鏡頭廣角端的有效焦距,EFLT為鏡頭望遠端的有效焦距。當EFLW/EFLT<1.3時,變焦倍率太小,不符合市場需求,當EFLW/EFLT>1.7時,製造可行性低且鏡頭設計困難。當投影鏡頭的透鏡符合1.3<EFLW/EFLT<1.7,產品製造可行性高、且符合高變倍比的要求。
於一實施例中,投影鏡頭的透鏡可符合1.4<D1/DL<2.1,於另一實施例可符合1.45<D1/DL<2.05,於又另一實施例可符合1.5<D1/DL<2.0,其中D1為最靠近影像放大側的透鏡鏡片直徑,DL為最靠近影像縮小側的透鏡鏡片直
徑,藉以讓離開光閥的影像光以實質平行射出,以在有限空間中取得較佳的光學效果。
以下將說明本發明的投影鏡頭10的第二實施例投影鏡頭10b的設計。圖4A和圖4B是本發明第二實施例的投影鏡頭10b架構示意圖。投影鏡頭10b從影像放大端OS到影像縮小端IS依序包含第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈14、第四透鏡組G4和第五透鏡組G5。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。請參照圖4A,在本實施例中,第一透鏡組G1包含第一透鏡L1、第二透鏡L2、第三透鏡L3和第四透鏡L4。第二透鏡組G2包含第五透鏡L5、第六透鏡L6和第七透鏡L7。第三透鏡組G3包含第八透鏡L8。第四透鏡組G4包含第九透鏡L9、第十透鏡L10、第十一透鏡L11、第十二透鏡L12和第十三透鏡L13。第五透鏡組G5包含第十四透鏡L14。於本實施例中,投影鏡頭10b的第一透鏡L1至第十四透鏡L14的屈光度分別為正、負、負、負、正、負、正、正、負、正、負、負、正、正。所有透鏡均為玻璃球面透鏡,換言之,超過五分之四的透鏡為玻璃球面透鏡。本實施例的第九透鏡L9、第十透鏡L10和第十一透鏡L11構成三膠合透鏡,本實施例的第十二透鏡L12和第十三透鏡L13構成雙膠合透鏡。在一實施例中,三膠合透鏡也可由雙膠合透鏡取代。再者,於本實施例中,第一透鏡L1的直徑(D1)為68.4mm,第十四透鏡L14的直徑(DL)為43.0mm。投影鏡頭10b的透鏡及其周邊元件的設計參數如表三和表四所示。
S1的間距為表面S1到S2在光軸12的距離,S26的間距為表面S26到S27在光軸12的距離。
在表四中,是分別列出投影鏡頭10b於廣角端及望遠端時的一些重要參數值。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。
以下將說明本發明的投影鏡頭10的第三實施例投影鏡頭10c的設計。圖6A和圖6B是本發明第三實施例的投影鏡頭10c架構示意圖。投影鏡頭10c從影像放大端OS到影像縮小端IS依序包含第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈14、第四透鏡組G4和第五透鏡組G5。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。請參照圖6A,在本實施例中,第一透鏡組G1包含第一透鏡L1、第二透鏡L2和第三透鏡L3、第四透鏡L4和第五透鏡L5。第二透鏡組G2包含第六透鏡L6。第三透鏡組G3包含第七透鏡L7。第四透鏡組G4包含第八透鏡L8、第九透鏡L9、第十透鏡L10、第十一透鏡L11、第十二透鏡L12和第十三透鏡L13。第五透鏡組G5包含第十四透鏡L14。於本實施例中,投影鏡頭10c的第一透鏡L1至第十四透鏡L14的屈光度分別為正、負、負、負、正、正、正、負、正、負、負、正、正、正,第十四透鏡L14為非球面玻璃模造透鏡,其餘透鏡為球面玻璃透鏡。在一實施例中,玻璃球面透鏡可以用非球面透鏡取代。本實施例的第八透鏡L8、第九透鏡L9和第十透鏡L10構成三膠合透鏡,本實施例的第十一透鏡L11和第十二透鏡L12構成雙膠合透鏡。在一實施例中,三膠合透鏡也可由雙膠合透鏡取代。再者,於本實施例中,第一透鏡L1的直徑(D1)為69.0mm,第十四透鏡L14的直徑(DL)為38.7mm。投影鏡頭10c的透鏡及其周邊元件的設計參數如表五、表六和表七所示。
球面透鏡是指透鏡前面和後面的表面都分別是球形表面的一部份,而球形表面的曲率是固定的。非球面透鏡則是指透鏡前後表面中,至少一表面的曲率半徑會隨著中心軸而變化,可以用來修正像差。本發明如下的各個設計實例中,非球面多項式可用下列公式表示:
上述的公式(1)中,Z為光軸方向之偏移量(sag),c是密切球面(osculating sphere)的半徑之倒數,也就是接近光軸處的曲率半徑的倒數,k是二次曲面係數(conic),r是非球面高度,即為從透鏡中心往透鏡邊緣的高度。表二的A-F分別代表非球面多項式的4階項、6階項、8階項、10階項、12階項、14階項係數值。然而,下文中所列舉的資料並非用以限定本發明,任何所屬領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明的範疇內。
S1的間距為表面S1到S2在光軸12的距離,S26的間距為表面S26到S27在光軸12的距離。
表六列出本發明的第三實施例中,投影鏡頭10c的非球面透鏡L14表面的各階非球面係數及二次曲面係數值。
表中表面有出現的*係指該表面為非球面表面,而若未標示即為球面之意。
在表七中,是分別列出投影鏡頭10c於廣角端及望遠端時的一些重要參數值。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。
圖3、圖5和圖7分別為圖2、圖4和圖6的投影鏡頭10a、10b和10c的成像光學模擬數據圖。由於圖3、圖5和圖7所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的投影鏡頭10a、10b和10c可達到良好的成像效果。
以下將說明本發明的投影鏡頭10的第四實施例投影鏡頭10d的設計。圖8A和圖8B是本發明第四實施例的投影鏡頭10d架構示意圖。投影鏡頭10d
從影像放大端OS到影像縮小端IS依序包含第一透鏡組G1、第二透鏡組G2、光圈14、第三透鏡組G3、第四透鏡組G4和第五透鏡組G5。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。請參照圖8A,在本實施例中,第一透鏡組G1包含第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4、第五透鏡L5和第六透鏡L6。第二透鏡組G2包含第七透鏡L7和第八透鏡L8。第三透鏡組G3包含第九透鏡L9和第十透鏡L10。第四透鏡組G4包含第十一透鏡L11、第十二透鏡L12、第十三透鏡L13、第十四透鏡L14、第十五透鏡L15和第十六透鏡L16。第五透鏡組G5包含第十七透鏡L17和第十八透鏡L18。於本實施例中,投影鏡頭10d的第一透鏡L1至第十八透鏡L18的屈光度分別為正、負、負、負、負、正、正、正、負、正、負、正、負、負、正、正、正、負,所有透鏡均為玻璃球面透鏡,換言之,超過五分之四的透鏡為玻璃球面透鏡。在一實施例中,玻璃球面透鏡可以用非球面透鏡取代。本實施例的第九透鏡L9和第十透鏡L10、第十二透鏡L12和第十三透鏡L13、第十四透鏡L14和第十五透鏡L15分別構成三組雙膠合透鏡。再者,於本實施例中,第一透鏡L1的直徑(D1)為81.06mm,第十三透鏡L13的直徑(DL)為41.05mm。投影鏡頭10d的透鏡及其周邊元件的設計參數如表八和表九所示。
S1的間距為表面S1到S2在光軸12的距離,S34的間距為表面S34到S35在光軸12的距離。
在表九中,是分別列出投影鏡頭10d於廣角端及望遠端時的一些重要參數值。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。
在一實施例,第一透鏡L1可以用雙膠合透鏡取代,藉以改善色差。在一實施例中,第一透鏡L1可以用非球面塑膠透鏡取代,第十八透鏡L18可以用非球面玻璃模造透鏡取代,藉以改善像差。在一實施例,第八透鏡L8前面可以增加一透鏡,藉以改善像差,第八透鏡L8可以用雙膠合透鏡取代,藉以改善色差,第八透鏡L8後面亦可以增加一透鏡,藉以改善像差。在一實施例,雙膠合透鏡L9、L10可以用三膠合透鏡取代,藉以改善色差。在一實施例,第十一透鏡L11前面可以增加一透鏡,藉以改善像差。在一實施例,第十八透鏡L18可以用雙膠合透鏡取代,藉以改善色差。要注意的是,上述變化可單獨或組合使用,藉以改善色差或像差,提升投影鏡頭的光學效能。
以下將說明本發明的投影鏡頭10的第五實施例投影鏡頭10e的設計。圖9A和圖9B是本發明第五實施例的投影鏡頭10e架構示意圖。投影鏡頭10e從影像放大端OS到影像縮小端IS依序包含第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈14、第四透鏡組G4和第五透鏡組G5。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。請參照圖9A,在本實施例中,第一透鏡組G1包含第一透鏡L1、第二透鏡L2、第三透鏡L3和第四透鏡L4。第二透鏡組G2包含第五透鏡L5和第六透鏡L6。第三透鏡組G3包含第七透鏡L7。第四透鏡組G4包含第八透鏡L8、第九透鏡L9、第十透鏡L10、第十一透鏡L11和第十二透鏡L12。第五透鏡組G5包含第十三透鏡L13。於本實施例中,投影鏡頭10e的第一透鏡L1至第十三透鏡L13的屈光度分別為正、負、負、負、正、正、正、負、正、負、負、正、正。所有透鏡均為玻璃球面透鏡,換言之,超過五分之四的透鏡為玻璃球面透鏡。本實施例的第八透鏡L8、第九透鏡L9和第十透鏡L10構成三膠合透鏡,本實施例的第十一透鏡L11和第十二透鏡L12構成雙膠合透鏡。在一實施例中,三膠合透鏡也可由雙膠合透鏡取代。再者,
於本實施例中,第一透鏡L1的直徑(D1)為78.44mm,第十三透鏡L13的直徑(DL)為43.0mm。投影鏡頭10e的透鏡及其周邊元件的設計參數如表十和表十一所示。
S1的間距為表面S1到S2在光軸12的距離,S24的間距為表面S24到S25在光軸12的距離。
在表十一中,是分別列出投影鏡頭10e於廣角端及望遠端時的一些重要參數值。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。
以下將說明本發明的投影鏡頭10的第六實施例投影鏡頭10f的設計。圖10A和圖10B是本發明第六實施例的投影鏡頭10f架構示意圖。投影鏡頭10f從影像放大端OS到影像縮小端IS依序包含第一透鏡組G1、第二透鏡組G2、第三透鏡組G3、光圈14、第四透鏡組G4和第五透鏡組G5。第一透鏡組G1到第五透鏡組G5的屈光度(refractive power)分別為負、正、正、正、正。請參照圖10A,在本實施例中,第一透鏡組G1包含第一透鏡L1和第二透鏡L2。第二透鏡組G2包含第三透鏡L3。第三透鏡組G3包含第四透鏡L4。第四透鏡組G4包含第五透鏡L5、第六透鏡L6、第七透鏡L7、第八透鏡L8和第九透鏡L9。第五透鏡組G5包含第十透鏡L10和第十一透鏡L11。於本實施例中,投影鏡頭10f的第一透鏡L1至第十一透鏡L11的屈光度分別為負、負、正、正、負、正、負、負、正、正、正,第一透鏡L1為非球面塑膠透鏡,其餘透鏡為球面玻璃透鏡。在一實施例中,非球面塑膠透鏡可以用非球面玻璃透鏡取代。在一實施例中,玻璃球面透鏡可以用非球面透鏡取代。本實施例的第五透鏡L5、第六透鏡L6和第七透鏡L7構成三膠合透鏡,本實施例的第八透鏡L8和第九透鏡L9構成雙膠合透鏡。在一實施例中,三膠合透鏡也可由雙膠合透鏡取代。再者,於本實施例中,第一透鏡L1的直徑(D1)為65.07mm,第十一透鏡L11的直徑(DL)為42.07mm。投影鏡頭10f的透鏡及其周邊元件的設計參數如表十二、表十三和表十四所示。
S1的間距為表面S1到S2在光軸12的距離,S20的間距為表面S20到S21在光軸12的距離。
表十三列出本發明的第六實施例中,投影鏡頭10f的非球面透鏡L1表面的各階非球面係數及二次曲面係數值。
在表十四中,是分別列出投影鏡頭10f於廣角端及望遠端時的一些重要參數值。在本實施例中,D1、D2、D3、D4為可調(adjustable)的,藉以達到縮放的效果。
在一實施例,可以將第一透鏡L1和第二透鏡L2以一非球面透鏡取代,藉以縮短鏡頭總長。在一實施例中,三膠合透鏡L5、L6、L7可以用雙膠合透鏡取代,雙膠合透鏡L8、L9可以用非球面透鏡取代,藉以縮短鏡頭總長。在一實施例,可以將第十透鏡L10和第十一透鏡L11以一非球面玻璃透鏡取代,藉以改善像差和縮短鏡頭總長。要注意的是,上述變化可單獨或組合使用,藉以改善像差和縮短鏡頭總長,提升投影鏡頭的光學效能。
藉由本發明實施例的設計,綜上所述,本發明一實施例之投影裝置及投影鏡頭中,利用負屈光度的第一透鏡組和正屈光度的第二透鏡組、正屈光度的第三透鏡組、正屈光度的第四透鏡組和正屈光度的第五透鏡組可達成變焦的效果並產生F數值(F-number)大於或等於1.8。並且,利用在第一透鏡組或/和第五透鏡組中配置一非球面鏡可使投影鏡頭在大光圈的特性下仍可具有良好的成像品質,進而使投影裝置具有高亮度及優良的投影品質。
此外,在本發明一實施例中,藉由將光圈(最小透光孔徑)配置於較接近光閥之第三透鏡組和第四透鏡組之間,可將部分遠離光軸之光線濾除,而更進一步地提升投影裝置的投影品質。
藉由本發明實施例的設計,可提供一種兼具良好的光學成像品質、低畸變量(distortion)、低色差、大光圈與短總長的特性,且能提供較低的製造成
本及較佳的成像品質的投影鏡頭設計。再者,本發明實施例投影鏡頭包含11~18片鏡片。當投影鏡頭為廣角端時,投影鏡頭兩端最外側具有屈光度的透鏡表面在光軸上的距離(LTW)小於240mm,能夠提供具大光圈(F#大於等於1.8)、高解析度、小型化與短總長等特點,所以能提供較低的製造成本及較佳的成像品質的投影鏡頭設計。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。
10a:投影鏡頭
12:光軸
14:光圈
16:光路調整機構
18:稜鏡
120:光閥
130:螢幕
G1-G5:透鏡組
L1-L15:透鏡
S1-S29:表面
OS:放大側
IS:縮小側
P、Q:交點
D:鏡片直徑
Claims (10)
- 一投影鏡頭,包括:從該鏡頭放大側到該鏡頭縮小側依序排列的一第一透鏡組、一正屈光度的第二透鏡組、一正屈光度的第三透鏡組、一光圈、一第四透鏡組和一第五透鏡組;該第一透鏡組包含一透鏡;該第二透鏡組包含一正屈光度的透鏡;該第三透鏡組包含一正屈光度的透鏡;該第四透鏡組包含三片透鏡;該第五透鏡組包含一透鏡;該鏡頭滿足7.5<LTW/EFLW<12.5的條件,而該LTW為該鏡頭廣角端時,該鏡頭兩端最外側透鏡外表面所構成的長度,該EFLW為該鏡頭廣角端的有效焦距;該鏡頭至少包括11片透鏡;以及當該鏡頭從望遠端變焦到廣角端時,該第二透鏡組可朝該鏡頭放大側靠近,且該第三透鏡組可朝該鏡頭縮小側靠近。
- 一投影鏡頭,包括:從該鏡頭放大側到該鏡頭縮小側依序排列的一第一透鏡組、一正屈光度的第二透鏡組、一正屈光度的第三透鏡組、一第四透鏡組和一第五透鏡組;該第一透鏡組包含一透鏡;該第二透鏡組包含一正屈光度的透鏡;該第三透鏡組包含一正屈光度的透鏡;該第四透鏡組包含三片透鏡;該第五透鏡組包含一透鏡; 該鏡頭的最小透光孔徑設於該第三透鏡組和該第四透鏡組之間;該鏡頭滿足1<EFLW/DL<1.24的條件,其中,該EFLW為該鏡頭廣角端的有效焦距,該DL為該鏡頭最靠近該鏡頭縮小側透鏡的直徑;該鏡頭至少包括13片透鏡;以及當該鏡頭從望遠端變焦到廣角端時,該第二透鏡組與該第三透鏡組,可分別朝向該鏡頭兩端外側的相反方向移動。
- 一投影鏡頭,包括:從該鏡頭放大側到該鏡頭縮小側依序排列的一第一透鏡組、一正屈光度的第二透鏡組、一正屈光度的第三透鏡組、一光圈、一第四透鏡組和一第五透鏡組;該鏡頭滿足1.3<EFLW/EFLT<1.7的條件,EFLW為該鏡頭廣角端的有效焦距,EFLT為該鏡頭望遠端的有效焦距;該鏡頭中具有屈光度的透鏡數量介於11和18之間;以及當該鏡頭從望遠端變焦到廣角端時,該第二透鏡組可朝該第一透鏡組靠近,且該第三透鏡組可朝該第四透鏡組靠近。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中該投影鏡頭滿足下列條件之一:(1)該第一透鏡組包含1~7片透鏡,(2)該第二透鏡組包含1~5片透鏡,(3)該第三透鏡組包含1~3片透鏡,(4)該第四透鏡組包含3~7片透鏡,(5)該第五透鏡組包含1~3片透鏡。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中該投影鏡頭滿足下列條件之一:(1)光圈值(F-number)大於或等於1.8,(2)超過五分之四的透鏡為玻璃球面透鏡,(3)廣角端有效焦距介於20~25mm之間,(4)畸 變量(distortion)小於+-2%,(5)全部透鏡均為玻璃透鏡,(6)光圈值介於1.8和2.4之間,(7)投射比(Throw Ratio)介於1.2和2.1之間。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中該投影鏡頭滿足下列條件之一:(1)該第一透鏡組包含兩個負屈光度(Power)透鏡,(2)該第四透鏡組包含兩個膠合透鏡,(3)包含兩個阿貝數大於65的透鏡,(4)該第四透鏡組的至少一個膠合透鏡包含一片阿貝數大於65的透鏡,包含一片阿貝數小於30的透鏡,(5)該光圈或該最小透光孔徑和該縮小側之間包含兩個膠合透鏡,(6)該投影鏡頭最多包含18片透鏡,(7)該鏡頭最靠近該鏡頭放大側的具屈光度透鏡的材質為塑膠,(8)該鏡頭最靠近該鏡頭縮小側的具屈光度透鏡為玻璃模造透鏡,(9)該鏡頭包含非球面透鏡數目小於3。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中該投影鏡頭滿足下列條件之一:(1)該鏡頭的廣角端總長(LTW)小於240mm,(2)該鏡頭的總長(TTL)小於290mm,(3)1.4<D1/DL<2.1,其中D1為最靠近影像放大側的透鏡直徑,DL為最靠近影像縮小側的透鏡直徑,(4)該鏡頭的總長(TTL)介於240~290mm之間,(5)該鏡頭的廣角端總長(LTW)介於170~240mm之間,(6)該鏡頭變焦(zooming)時,第五透鏡組為固定,(7)該鏡頭變焦時,第二透鏡組、第三透鏡組和第四透鏡組彼此相對移動,(8)該鏡頭對焦(focusing)時,只有第一透鏡組移動。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中自該第一透鏡組到該第五透鏡組的一方向,該投影鏡頭滿足下列條件之一:(1)自該方向依序為新月、新月、平凹、新月、新月、雙凸、新月、平凸、新月、雙凸、新月、雙凹、雙凸、新月和新月透鏡,(2)自該方向依序為新月、新月、 新月、雙凹、新月、新月、雙凸、雙凸、雙凹、雙凸、新月、雙凹、雙凸和雙凸透鏡,(3)自該方向依序為新月、新月、新月、雙凹、新月、雙凸、新月、新月、雙凸、雙凹、雙凹、雙凸、雙凸和非球面透鏡,(4)自該方向依序為新月、新月、平凹、新月、新月、新月、新月、新月、新月、平凸、新月、雙凸、雙凹、雙凹、雙凸、新月、雙凸和雙凹透鏡,(5)自該方向依序為新月、新月、雙凹、雙凹、新月、雙凸、雙凸、雙凹、雙凸、新月、雙凹、雙凸和雙凸透鏡,(6)自該方向依序為非球面、雙凹、雙凸、雙凸、新月、雙凸、新月、雙凹、雙凸、新月和雙凸透鏡。
- 如申請專利範圍第1至3項任一項所述之投影鏡頭,其中自該第一透鏡組到該第五透鏡組的一方向,該投影鏡頭滿足下列條件之一:(1)自該方向透鏡的屈光度依序分別為正、負、負、負、正、正、負、正、負、正、負、負、正、正、正,(2)自該方向透鏡的屈光度依序分別為正、負、負、負、正、負、正、正、負、正、負、負、正、正,(3)自該方向透鏡的屈光度依序分別為正、負、負、負、正、正、正、負、正、負、負、正、正、正,(4)自該方向透鏡的屈光度依序分別為正、負、負、負、負、正、正、正、負、正、負、正、負、負、正、正、正、負,(5)自該方向透鏡的屈光度依序分別為正、負、負、負、正、正、正、負、正、負、負、正、正,(6)自該方向透鏡的屈光度依序分別為負、負、正、正、負、正、負、負、正、正、正,(7)自該方向透鏡組的屈光度依序分別為負、正、正、正、正。
- 一種投影裝置,包括:一照明單元,用以提供一照明光束; 一光閥,配置於該照明光束的傳遞路徑上,用以將該照明光束轉換為一影像光束;以及如申請專利範圍第1至3項任一項所述之投影鏡頭,位於該影像光束的傳遞路徑上以投射出該影像光束。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145106A TWI811875B (zh) | 2021-12-02 | 2021-12-02 | 投影鏡頭及投影裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145106A TWI811875B (zh) | 2021-12-02 | 2021-12-02 | 投影鏡頭及投影裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202323899A TW202323899A (zh) | 2023-06-16 |
TWI811875B true TWI811875B (zh) | 2023-08-11 |
Family
ID=87803579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110145106A TWI811875B (zh) | 2021-12-02 | 2021-12-02 | 投影鏡頭及投影裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI811875B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014104083A1 (ja) * | 2012-12-27 | 2014-07-03 | コニカミノルタ株式会社 | 変倍機能を有する投射レンズ及びプロジェクター |
US9746651B2 (en) * | 2015-03-16 | 2017-08-29 | Panasonic Intellectual Property Management Co., Ltd. | Zoom lens system and camera system |
TWI687735B (zh) * | 2017-05-19 | 2020-03-11 | 大陸商信泰光學(深圳)有限公司 | 投影鏡頭(十二) |
-
2021
- 2021-12-02 TW TW110145106A patent/TWI811875B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014104083A1 (ja) * | 2012-12-27 | 2014-07-03 | コニカミノルタ株式会社 | 変倍機能を有する投射レンズ及びプロジェクター |
US9746651B2 (en) * | 2015-03-16 | 2017-08-29 | Panasonic Intellectual Property Management Co., Ltd. | Zoom lens system and camera system |
TWI687735B (zh) * | 2017-05-19 | 2020-03-11 | 大陸商信泰光學(深圳)有限公司 | 投影鏡頭(十二) |
Also Published As
Publication number | Publication date |
---|---|
TW202323899A (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114859559A (zh) | 光学镜头 | |
TWI823882B (zh) | 鏡頭及其製造方法 | |
TWM586805U (zh) | 變焦投影鏡頭 | |
TW202102890A (zh) | 光學鏡頭及其製造方法 | |
TWI735245B (zh) | 光學鏡頭及其製造方法 | |
TW202008022A (zh) | 定焦鏡頭 | |
CN110687658A (zh) | 镜头及其制造方法 | |
TWI442085B (zh) | 投影鏡頭和投影裝置 | |
CN111123481A (zh) | 一种基于折反式光学镜片的超短焦投影镜头 | |
TW202011070A (zh) | 取像鏡頭及其製造方法 | |
TWI831882B (zh) | 變焦投影鏡頭 | |
TWI811875B (zh) | 投影鏡頭及投影裝置 | |
TWI814018B (zh) | 定焦投影鏡頭 | |
TWI818095B (zh) | 光學鏡頭及其製造方法 | |
TWI422895B (zh) | 鏡頭模組 | |
CN114089501B (zh) | 应用于投影的光学镜头 | |
CN212623314U (zh) | 一种微型光学镜头 | |
US8144401B2 (en) | Zoom lens | |
TWI819774B (zh) | 車用投影鏡頭 | |
TWI809587B (zh) | 投影鏡頭 | |
CN112578543B (zh) | 变焦投影镜头及投影机 | |
CN116466479A (zh) | 投影镜头以及投影装置 | |
JPH1130701A (ja) | 光学系及び変倍光学系 | |
TWI804795B (zh) | 光學鏡頭及其製造方法 | |
CN114114609B (zh) | 投影镜头 |