TWI810594B - Multilayer varistor and method of manufacturing the same - Google Patents
Multilayer varistor and method of manufacturing the same Download PDFInfo
- Publication number
- TWI810594B TWI810594B TW110123477A TW110123477A TWI810594B TW I810594 B TWI810594 B TW I810594B TW 110123477 A TW110123477 A TW 110123477A TW 110123477 A TW110123477 A TW 110123477A TW I810594 B TWI810594 B TW I810594B
- Authority
- TW
- Taiwan
- Prior art keywords
- insulating body
- inner conductive
- insulating
- buried
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 8
- 229910021645 metal ion Inorganic materials 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002791 soaking Methods 0.000 claims description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
本發明涉及一種壓敏電阻及其製作方法,特別是涉及一種多層式壓敏電阻及其製作方法。 The invention relates to a varistor and a manufacturing method thereof, in particular to a multilayer varistor and a manufacturing method thereof.
壓敏電阻(Varistor)是一種電子元件,也稱為Voltage Dependent Resistor(VDR),其電阻會隨著施加的電壓而變化,它具有類似於二極管的非線性特性(非歐姆電流-電壓特性)。然而,與二極管相反,它在兩個橫向電流方向上具有相同的特性。傳統上,壓敏電阻實際上是通過連接兩個整流器(例如反並聯配置的氧化銅或者氧化鍺整流器)來構造的。在低電壓下,壓敏電阻具有較高的電阻,該電阻會隨著電壓的升高而減小。現代的壓敏電阻主要基於燒結的陶瓷金屬氧化物材料,這些材料僅在微觀尺度上表現出方向性。這種類型通常稱為金屬氧化物壓敏電阻(MOV)。另外,壓敏電阻可以用作電路中的控製或者補償元件,以提供最佳工作條件或者防止過大的瞬態電壓。當壓敏電阻用來做為保護設備時,它們在觸發時會將過高電壓所產生的電流與敏感元件分流。 Varistor (Varistor) is an electronic component, also known as Voltage Dependent Resistor (VDR), its resistance changes with the applied voltage, and it has nonlinear characteristics (non-ohmic current-voltage characteristics) similar to diodes. However, contrary to a diode, it has the same characteristics in both lateral current directions. Traditionally, varistors are actually constructed by connecting two rectifiers, such as copper oxide or germanium oxide rectifiers in an antiparallel configuration. At low voltages, varistors have a high resistance that decreases as the voltage increases. Modern varistors are mainly based on sintered ceramic metal oxide materials, which exhibit directionality only on the microscopic scale. This type is commonly referred to as a Metal Oxide Varistor (MOV). In addition, varistors can be used as control or compensation elements in circuits to provide optimum operating conditions or to protect against excessive transient voltages. When varistors are used as protection devices, they shunt the current generated by the excessive voltage from the sensitive component when triggered.
本發明所要解決的技術問題在於,針對現有技術的不足提供一 種多層式壓敏電阻及其製作方法。 The technical problem to be solved by the present invention is to provide a A multilayer varistor and a manufacturing method thereof.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種多層式壓敏電阻的製作方法,其包括:提供一初始的多層式結構;對初始的多層式結構進行燒結,以形成一經燒結的多層式結構;將經燒結的多層式結構製作成一多層式堆疊結構,多層式堆疊結構包括一絕緣載體、設置在絕緣載體內的多個第一內導電層以及設置在絕緣載體內的多個第二內導電層,且多個第一內導電層與多個第二內導電層交替排列;以及,形成一外電極結構以部分地包覆多層式堆疊結構,外電極結構包括電性接觸多個第一內導電層的一第一外電極層以及電性接觸多個第二內導電層的一第二外電極層,且第一外電極層以及第二外電極層分別包覆多層式堆疊結構的一第一側端部以及一第二側端部。其中,將經燒結的多層式結構製作成多層式堆疊結構的步驟進一步包括步驟(A)或者步驟(B)。其中,步驟(A)包括:將經燒結的多層式結構浸泡在含有0.1%~4.9%濃度的鹼金屬的一第一種溶液中的時間介於30至120秒之間;將經燒結的多層式結構從第一種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟。其中,步驟(B)包括:將經燒結的多層式結構浸泡在包括含有0.1%~4.9%濃度的含鹼金屬離子之混合樹脂膠的一第二種溶液中;將經燒結的多層式結構從第二種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a multilayer varistor, which includes: providing an initial multilayer structure; sintering the initial multilayer structure to form A sintered multi-layer structure; the sintered multi-layer structure is made into a multi-layer stack structure, the multi-layer stack structure includes an insulating carrier, a plurality of first inner conductive layers arranged in the insulating carrier and a plurality of first inner conductive layers arranged in the insulating carrier A plurality of second inner conductive layers, and a plurality of first inner conductive layers and a plurality of second inner conductive layers are alternately arranged; and, forming an external electrode structure to partially cover the multi-layer stack structure, the external electrode structure includes electrical A first outer electrode layer contacting a plurality of first inner conductive layers and a second outer electrode layer electrically contacting a plurality of second inner conductive layers, and the first outer electrode layer and the second outer electrode layer are respectively coated with multiple layers A first side end and a second side end of the stacked structure. Wherein, the step of making the sintered multilayer structure into a multilayer stacked structure further includes step (A) or step (B). Wherein, the step (A) includes: soaking the sintered multilayer structure in a first solution containing alkali metal at a concentration of 0.1% to 4.9% for 30 to 120 seconds; immersing the sintered multilayer structure After the formula structure is taken out from the first solution, a drying step is performed to form a baked multi-layer structure; and a metal ion diffusion step is performed on the baked multi-layer structure at a temperature between 600°C and 800°C. Wherein, the step (B) includes: soaking the sintered multilayer structure in a second solution comprising a mixed resin glue containing alkali metal ions at a concentration of 0.1% to 4.9%; immersing the sintered multilayer structure from After the second solution is taken out, a drying step is performed to form a dried multilayer structure; and a metal ion diffusion step is performed on the dried multilayer structure at a temperature between 600° C. and 800° C.
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種多層式壓敏電阻,其包括:一多層式堆疊結構以及一外電極結構。多層式堆疊結構包括一絕緣載體、設置在絕緣載體內的多個第一內導電層以及設置在絕緣載體內的多個第二內導電層,且多個第一內導電層與多個第二 內導電層交替排列。外電極結構部分地包覆多層式堆疊結構,外電極結構包括電性接觸多個第一內導電層的一第一外電極層以及電性接觸多個第二內導電層的一第二外電極層,且第一外電極層以及第二外電極層分別包覆多層式堆疊結構的一第一側端部以及一第二側端部。其中,絕緣載體包括一絕緣上蓋、一絕緣下蓋以及連接於絕緣上蓋與絕緣下蓋之間的一絕緣本體,絕緣本體的周圍具有一第一外表面、一第二外表面、一第三外表面以及一第四外表面,且多個第一內導電層以及多個第二內導電層交替排列在絕緣本體內。 In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a multilayer varistor, which includes: a multilayer stack structure and an external electrode structure. The multi-layer stack structure includes an insulating carrier, a plurality of first inner conductive layers arranged in the insulating carrier, and a plurality of second inner conductive layers arranged in the insulating carrier, and the plurality of first inner conductive layers and the plurality of second inner conductive layers The inner conductive layers are arranged alternately. The outer electrode structure partially covers the multi-layer stack structure, and the outer electrode structure includes a first outer electrode layer electrically contacting a plurality of first inner conductive layers and a second outer electrode layer electrically contacting a plurality of second inner conductive layers layers, and the first external electrode layer and the second external electrode layer cover a first side end and a second side end of the multilayer stack structure respectively. Wherein, the insulating carrier includes an insulating upper cover, an insulating lower cover, and an insulating body connected between the insulating upper cover and the insulating lower cover, and the periphery of the insulating body has a first outer surface, a second outer surface, and a third outer surface. surface and a fourth outer surface, and a plurality of first inner conductive layers and a plurality of second inner conductive layers are alternately arranged in the insulating body.
更進一步來說,每一第一內導電層具有從絕緣本體的第一外表面裸露的一第一前裸露端、面向絕緣本體的第二外表面的一第一後內埋端、面向絕緣本體的第三外表面的一第一左內埋端以及面向絕緣本體的第四外表面的一第一右內埋端,第一前裸露端電性接觸第一外電極層,第一後內埋端相對應於第一前裸露端且被包覆在絕緣本體內,第一左內埋端連接於第一前裸露端與第一後內埋端之間且被包覆在絕緣本體內,且第一右內埋端連接於第一前裸露端與第一後內埋端之間且被包覆在絕緣本體內。其中,第二內導電層具有從絕緣本體的第二外表面裸露的一第二前裸露端、面向絕緣本體的第一外表面的一第二後內埋端、面向絕緣本體的第四外表面的一第二左內埋端以及面向絕緣本體的第三外表面的一第二右內埋端,第二前裸露端電性接觸第二外電極層,第二後內埋端相對應於第二前裸露端且被包覆在絕緣本體內,第二左內埋端連接於第二前裸露端與第二後內埋端之間且被包覆在絕緣本體內,且第二右內埋端連接於第二前裸露端與第二後內埋端之間且被包覆在絕緣本體內。 Furthermore, each first inner conductive layer has a first exposed front end exposed from the first outer surface of the insulating body, a first rear buried end facing the second outer surface of the insulating body, and a first buried end facing the second outer surface of the insulating body. A first left buried end on the third outer surface of the insulating body and a first right buried end facing the fourth outer surface of the insulating body, the first exposed front end electrically contacts the first external electrode layer, and the first rear buried end The end corresponds to the first front exposed end and is covered in the insulating body, the first left buried end is connected between the first front exposed end and the first rear buried end and is covered in the insulating body, and The first right embedded end is connected between the first exposed front end and the first rear embedded end and is covered in the insulating body. Wherein, the second inner conductive layer has a second front exposed end exposed from the second outer surface of the insulating body, a second rear buried end facing the first outer surface of the insulating body, and a fourth outer surface facing the insulating body A second left buried end and a second right buried end facing the third outer surface of the insulating body, the second front exposed end electrically contacts the second external electrode layer, and the second rear buried end corresponds to the first The two front exposed ends are covered in the insulating body, the second left buried end is connected between the second front exposed end and the second rear buried end and covered in the insulating body, and the second right buried end The end is connected between the second front exposed end and the second rear buried end and is covered in the insulating body.
更進一步來說,絕緣載體符合下列的條件:G與T1的比值為1:0.3~1.0,G與T2的比值為1:0.3~1.0,D11與G的比值為1:0.3~1.0,D12與G的比值為1:0.3~1.0,D21與G的比值為1:0.3~1.0,且D22與G的比值為1:0.3~1.0。 其中,T1為絕緣上蓋的厚度,T2為絕緣下蓋的厚度,G為彼此相鄰的第一內導電層與第二內導電層之間的距離,D11為第一內導電層的第一左內埋端與絕緣本體的第三外表面之間的距離,D12為第一內導電層的第一右內埋端與絕緣本體的第四外表面之間的距離,D21為第二內導電層的第二左內埋端與絕緣本體的第四外表面之間的距離,D22為第二內導電層的第二右內埋端與絕緣本體的第三外表面之間的距離。 Furthermore, the insulation carrier meets the following conditions: the ratio of G to T1 is 1:0.3~1.0, the ratio of G to T2 is 1:0.3~1.0, the ratio of D11 to G is 1:0.3~1.0, and the ratio of D12 to G is 1:0.3~1.0. The ratio of G is 1:0.3~1.0, the ratio of D21 to G is 1:0.3~1.0, and the ratio of D22 to G is 1:0.3~1.0. Among them, T1 is the thickness of the insulating upper cover, T2 is the thickness of the insulating lower cover, G is the distance between the first inner conductive layer and the second inner conductive layer adjacent to each other, and D11 is the first left side of the first inner conductive layer. The distance between the buried end and the third outer surface of the insulating body, D12 is the distance between the first right embedded end of the first inner conductive layer and the fourth outer surface of the insulating body, and D21 is the second inner conductive layer D22 is the distance between the second right buried end of the second inner conductive layer and the third outer surface of the insulating body.
本發明的其中一有益效果在於,本發明所提供的一種多層式壓敏電阻的製作方法,其能通過“將經燒結的多層式結構浸泡在含有0.1%~4.9%濃度的鹼金屬的一第一種溶液中的時間介於30至120秒之間;將經燒結的多層式結構從第一種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟”或者“將經燒結的多層式結構浸泡在包括含有0.1%~4.9%濃度的含鹼金屬離子之混合樹脂膠的一第二種溶液中;將經燒結的多層式結構從第二種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟”的技術方案,以降低漏電流(leakage current)並且提升通流容量(即最大峰值電流值(maximum peak current))。 One of the beneficial effects of the present invention is that the method of manufacturing a multilayer varistor provided by the present invention can be achieved by "immersing the sintered multilayer structure in a first alkali metal containing 0.1%~4.9% concentration. the time in one solution is between 30 and 120 seconds; removing the sintered multilayer structure from the first solution followed by a baking step to form a baked multilayer structure; and at a temperature of 600°C ~800°C, carry out the metal ion diffusion step on the baked multilayer structure" or "immerse the sintered multilayer structure in a mixed resin glue containing alkali metal ions at a concentration of 0.1%~4.9% In the second solution; taking the sintered multi-layer structure out of the second solution and then performing a drying step to form a baked multi-layer structure; The dry multi-layer structure carries out the metal ion diffusion step" technical solution to reduce the leakage current and improve the flow capacity (that is, the maximum peak current value (maximum peak current)).
本發明的另外一有益效果在於,本發明所提供的一種多層式壓敏電阻,其能通過“G與T1的比值為1:0.3~1.0”、“G與T2的比值為1:0.3~1.0”、“D11與G的比值為1:0.3~1.0”、“D12與G的比值為1:0.3~1.0”、“D21與G的比值為1:0.3~1.0”以及“D22與G的比值為1:0.3~1.0”的技術方案,以降低漏電流(leakage current)並且提升通流容量(即最大峰值電流值(maximum peak current))。 Another beneficial effect of the present invention is that the multilayer varistor provided by the present invention can pass the "ratio of G to T1: 1:0.3~1.0", "the ratio of G to T2: 1:0.3~1.0" ", "The ratio of D11 to G is 1: 0.3~1.0", "The ratio of D12 to G is 1: 0.3~1.0", "The ratio of D21 to G is 1: 0.3~1.0" and "The ratio of D22 to G 1: 0.3~1.0” technical solution to reduce leakage current and increase flow capacity (ie maximum peak current value (maximum peak current)).
為使能進一步瞭解本發明的特徵及技術內容,請參閱以下有關 本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 For enabling a further understanding of the present invention's features and technical content, please refer to the following relevant The detailed description and drawings of the present invention, however, the provided drawings are only for reference and illustration, and are not intended to limit the present invention.
V:多層式壓敏電阻 V: multilayer varistor
1:多層式堆疊結構 1: Multi-layer stacking structure
1001:第一側端部 1001: first side end
1002:第二側端部 1002: second side end
10:絕緣載體 10: Insulation carrier
101:絕緣上蓋 101: Insulation upper cover
102:絕緣下蓋 102: Insulation lower cover
103:絕緣本體 103: insulating body
1031:第一外表面 1031: first outer surface
1032:第二外表面 1032: second outer surface
1033:第三外表面 1033: the third outer surface
1034:第四外表面 1034: the fourth outer surface
11:第一內導電層 11: The first inner conductive layer
110F:第一前裸露端 110F: First front exposed end
110B:第一後內埋端 110B: the first rear embedded end
110L:第一左內埋端 110L: The first left embedded end
110R:第一右內埋端 110R: The first right embedded end
12:第二內導電層 12: Second inner conductive layer
120F:第二前裸露端 120F: Second front exposed end
120B:第二後內埋端 120B: the second rear embedded end
120L:第二左內埋端 120L: The second left embedded end
120R:第二右內埋端 120R: The second right embedded end
2:外電極結構 2: External electrode structure
21:第一外電極層 21: The first outer electrode layer
22:第二外電極層 22: The second outer electrode layer
T1,T2:厚度 T1, T2: Thickness
G:間距 G: Spacing
D11,D12,D21,D22:距離 D11, D12, D21, D22: distance
圖1為本發明第一實施例所提供的多層式壓敏電阻的製作方法的流程圖。 FIG. 1 is a flow chart of the manufacturing method of the multilayer varistor provided by the first embodiment of the present invention.
圖2為本發明第二實施例所提供的多層式堆疊結構的其中一觀看角度的立體示意圖。 FIG. 2 is a schematic perspective view of one viewing angle of the multi-layer stack structure provided by the second embodiment of the present invention.
圖3為本發明第二實施例所提供的多層式堆疊結構的另外一觀看角度的立體示意圖。 FIG. 3 is a schematic perspective view of another viewing angle of the multi-layer stack structure provided by the second embodiment of the present invention.
圖4為本發明第二實施例所提供的多層式堆疊結構的剖面示意圖。 FIG. 4 is a schematic cross-sectional view of a multi-layer stack structure provided by a second embodiment of the present invention.
圖5為本發明第二實施例所提供的多層式壓敏電阻的其中一觀看角度的立體示意圖。 FIG. 5 is a schematic perspective view of one viewing angle of the multilayer varistor provided by the second embodiment of the present invention.
圖6為本發明第二實施例所提供的多層式壓敏電阻的另外一觀看角度的立體示意圖。 FIG. 6 is a perspective view of another viewing angle of the multilayer varistor provided by the second embodiment of the present invention.
圖7為本發明第二實施例所提供的多層式壓敏電阻的剖面示意圖。 FIG. 7 is a schematic cross-sectional view of a multilayer varistor provided by a second embodiment of the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“多層式壓敏電阻及其製作方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以實行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離 本發明的構思下進行各種修改與變更。另外,本發明的圖式僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 The following is a description of the implementation of the "multilayer varistor and its manufacturing method" disclosed in the present invention through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and the details in this specification can also be based on different viewpoints and applications, without departing from Various modifications and changes are made under the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.
[第一實施例] [first embodiment]
參閱圖1至圖7所示,本發明第一實施例提供一種多層式壓敏電阻的製作方法,其包括:首先,如圖1所示,提供一初始的多層式結構(步驟S100);接著,如圖1所示,對初始的多層式結構進行燒結,以形成一經燒結的多層式結構(步驟S102);然後,配合圖1以及圖2至圖4所示,將經燒結的多層式結構製作成一多層式堆疊結構1,多層式堆疊結構1包括一絕緣載體10、設置在絕緣載體10內的多個第一內導電層11以及設置在絕緣載體10內的多個第二內導電層12(步驟S104);接下來,配合圖1以及圖5至圖7所示,形成一外電極結構2以部分地包覆多層式堆疊結構1,外電極結構2包括電性接觸多個第一內導電層11的一第一外電極層21以及電性接觸多個第二內導電層12的一第二外電極層22(步驟S106)。值得注意的是,多個第一內導電層11與多個第二內導電層12交替排列(如圖2至圖4所示),並且第一外電極層21以及第二外電極層22分別包覆多層式堆疊結構1的一第一側端部1001以及一第二側端部1002(如圖5至圖7所示)。舉例來說,初始的多層式結構可以是多層式壓敏電阻生胚,其整體外形以及內部構造會與圖2至圖4所顯示的多層式堆疊結構1近似。另外,經燒結的多層式結構可以是多層式壓敏電阻熟胚,其整體外形以及內部構造會與圖2至圖4所顯示的多層式堆疊結構1近似。然而,本發明不以上述所舉的例子為限。 Referring to FIGS. 1 to 7, the first embodiment of the present invention provides a method for manufacturing a multilayer varistor, which includes: first, as shown in FIG. 1, providing an initial multilayer structure (step S100); then , as shown in Figure 1, the initial multi-layer structure is sintered to form a sintered multi-layer structure (step S102); then, as shown in Figure 1 and Figure 2 to Figure 4, the sintered multi-layer structure Manufactured into a multi-layer stack structure 1, the multi-layer stack structure 1 includes an insulating carrier 10, a plurality of first inner conductive layers 11 arranged in the insulating carrier 10, and a plurality of second inner conductive layers 12 arranged in the insulating carrier 10 (Step S104); Next, as shown in FIG. 1 and FIGS. A first outer electrode layer 21 of the conductive layer 11 and a second outer electrode layer 22 electrically contact the plurality of second inner conductive layers 12 (step S106 ). It should be noted that a plurality of first inner conductive layers 11 and a plurality of second inner conductive layers 12 are alternately arranged (as shown in FIGS. 2 to 4 ), and the first outer electrode layers 21 and the second outer electrode layers 22 are respectively A first side end 1001 and a second side end 1002 of the multi-layer stack structure 1 are covered (as shown in FIGS. 5 to 7 ). For example, the initial multilayer structure may be a multilayer varistor green body, and its overall shape and internal structure will be similar to the multilayer stack structure 1 shown in FIGS. 2 to 4 . In addition, the sintered multi-layer structure may be a multi-layer varistor cooked blank, and its overall shape and internal structure will be similar to the multi-layer stack structure 1 shown in FIGS. 2 to 4 . However, the present invention is not limited to the above-mentioned examples.
更進一步來說,如圖1所示,將經燒結的多層式結構製作成多層 式堆疊結構1的步驟S104進一步舉例來說可以是步驟(A)或者步驟(B)。其中,步驟(A)包括:首先,將經燒結的多層式結構浸泡在含有“0.1%~4.9%濃度的鹼金屬(LiNO3)”的一第一種溶液(金屬離子溶液)中的時間介於30至120秒之間(步驟S1040(A));接著,將經燒結的多層式結構從第一種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構(步驟S1042(A));然後,在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟(步驟S1044(A))。另外,步驟(B)包括:首先,將經燒結的多層式結構浸泡在包括含有“0.1%~4.9%濃度的含鹼金屬離子之混合樹脂膠”的一第二種溶液(金屬離子溶液)中(步驟S1040(B));接著,將經燒結的多層式結構從第二種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構(步驟S1042(B));然後,在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟(步驟S1044(B))。 Furthermore, as shown in FIG. 1 , the step S104 of making the sintered multi-layer structure into a multi-layer stacked structure 1 can be, for example, step (A) or step (B). Wherein, the step (A) includes: firstly, immersing the sintered multilayer structure in a first solution (metal ion solution) containing "0.1%~4.9% concentration of alkali metal (LiNO 3 )" for a period of time Between 30 and 120 seconds (step S1040(A)); then, the sintered multilayer structure is taken out from the first solution and then subjected to a drying step to form a baked multilayer structure (step S1042( A)); then, at a temperature between 600° C. and 800° C., the metal ion diffusion step is performed on the baked multilayer structure (step S1044 (A)). In addition, the step (B) includes: first, immersing the sintered multilayer structure in a second solution (metal ion solution) containing "a mixed resin glue containing alkali metal ions at a concentration of 0.1% to 4.9%" (step S1040(B)); then, take out the sintered multilayer structure from the second solution and perform a drying step to form a baked multilayer structure (step S1042(B)); then, in The temperature is between 600° C. and 800° C., and the metal ion diffusion step is performed on the baked multilayer structure (step S1044 (B)).
舉例來說,如圖1所示,在對初始的多層式結構進行燒結的步驟S102之前,製作方法進一步包括:預先對初始的多層式結構進行加熱(步驟S101)。另外,在預先對初始的多層式結構進行加熱的步驟S101中,初始的多層式結構是在溫度介於400℃~600℃之間進行加熱。此外,在對初始的多層式結構進行燒結的步驟S102中,初始的多層式結構是在溫度介於800℃~1000℃之間進行燒結。然而,本發明不以上述所舉的例子為限。 For example, as shown in FIG. 1 , before the step S102 of sintering the initial multilayer structure, the manufacturing method further includes: preheating the initial multilayer structure (step S101 ). In addition, in the step S101 of pre-heating the initial multi-layer structure, the initial multi-layer structure is heated at a temperature between 400°C and 600°C. In addition, in the step S102 of sintering the initial multi-layer structure, the initial multi-layer structure is sintered at a temperature between 800°C and 1000°C. However, the present invention is not limited to the above-mentioned examples.
[第二實施例] [Second embodiment]
參閱圖2至圖7所示,本發明第二實施例提供一種多層式壓敏電阻V,多層式壓敏電阻V是使用第一實施例所提供的製作方法所製成,並且多層式壓敏電阻V包括一多層式堆疊結構1以及一外電極結構2。更進一步來說,多層式堆疊結構1包括一絕緣載體10、設置在絕緣載體10內的多個第一內導電層11以及設置在絕緣載體10內的多個第二內導電層12,並且多個第一內導電 層11與多個第二內導電層12交替排列。另外,外電極結構2包括電性接觸多個第一內導電層11的一第一外電極層21以及電性接觸多個第二內導電層12的一第二外電極層22,並且第一外電極層21以及第二外電極層22分別包覆多層式堆疊結構1的一第一側端部1001以及一第二側端部1002。 Referring to Fig. 2 to Fig. 7, the second embodiment of the present invention provides a multilayer varistor V, the multilayer varistor V is manufactured by using the manufacturing method provided in the first embodiment, and the multilayer varistor The resistor V includes a multilayer stack structure 1 and an external electrode structure 2 . Furthermore, the multi-layer stack structure 1 includes an insulating carrier 10, a plurality of first inner conductive layers 11 arranged in the insulating carrier 10, and a plurality of second inner conductive layers 12 arranged in the insulating carrier 10, and more first internal conduction Layers 11 are alternately arranged with a plurality of second inner conductive layers 12 . In addition, the external electrode structure 2 includes a first external electrode layer 21 electrically contacting a plurality of first internal conductive layers 11 and a second external electrode layer 22 electrically contacting a plurality of second internal conductive layers 12, and the first The external electrode layer 21 and the second external electrode layer 22 respectively cover a first side end 1001 and a second side end 1002 of the multilayer stack structure 1 .
更進一步來說,配合圖2至圖4所示,絕緣載體10包括一絕緣上蓋101、一絕緣下蓋102以及連接於絕緣上蓋101與絕緣下蓋102之間的一絕緣本體103。另外,絕緣本體103的周圍具有一第一外表面1031、一第二外表面1032、一第三外表面1033以及一第四外表面1034,並且多個第一內導電層11以及多個第二內導電層12交替排列在絕緣本體103內。 Furthermore, as shown in FIG. 2 to FIG. 4 , the insulating carrier 10 includes an insulating upper cover 101 , an insulating lower cover 102 and an insulating body 103 connected between the insulating upper cover 101 and the insulating lower cover 102 . In addition, the periphery of the insulating body 103 has a first outer surface 1031, a second outer surface 1032, a third outer surface 1033 and a fourth outer surface 1034, and a plurality of first inner conductive layers 11 and a plurality of second inner conductive layers The inner conductive layers 12 are alternately arranged in the insulating body 103 .
更進一步來說,配合圖2與圖4所示,每一第一內導電層11具有從絕緣本體103的第一外表面1031裸露的一第一前裸露端110F、面向絕緣本體103的第二外表面1032的一第一後內埋端110B、面向絕緣本體103的第三外表面1033的一第一左內埋端110L以及面向絕緣本體103的第四外表面1034的一第一右內埋端110R。再者,配合圖2、圖4、圖5與圖7所示,第一前裸露端110F電性接觸第一外電極層21,第一後內埋端110B相對應於第一前裸露端110F且被包覆在絕緣本體103內,第一左內埋端110L連接於第一前裸露端110F與第一後內埋端110B之間且被包覆在絕緣本體103內,並且第一右內埋端110R連接於第一前裸露端110F與第一後內埋端110B之間且被包覆在絕緣本體103內。 Furthermore, as shown in FIG. 2 and FIG. 4 , each first inner conductive layer 11 has a first exposed front end 110F exposed from the first outer surface 1031 of the insulating body 103 , and a second exposed end 110F facing the insulating body 103 . A first rear buried end 110B of the outer surface 1032, a first left buried end 110L facing the third outer surface 1033 of the insulating body 103, and a first right buried end facing the fourth outer surface 1034 of the insulating body 103 terminal 110R. Furthermore, as shown in FIG. 2 , FIG. 4 , FIG. 5 and FIG. 7 , the first exposed front end 110F is in electrical contact with the first external electrode layer 21 , and the first rear embedded end 110B corresponds to the first exposed front end 110F. And is covered in the insulating body 103, the first left inner buried end 110L is connected between the first front exposed end 110F and the first rear buried end 110B and is covered in the insulating body 103, and the first right inner The buried terminal 110R is connected between the first exposed front terminal 110F and the first buried rear terminal 110B and is encapsulated in the insulating body 103 .
更進一步來說,配合圖3與圖4所示,第二內導電層12具有從絕緣本體103的第二外表面1032裸露的一第二前裸露端120F、面向絕緣本體103的第一外表面1031的一第二後內埋端120B、面向絕緣本體103的第四外表面1034的一第二左內埋端120L以及面向絕緣本體103的第三外表面1033的一第二右內埋端120R。再者,配合圖3、圖4、圖6與圖7所示,第二前裸露端120F電性接觸第二外電極層22,第二後內埋端120B相對應於第二前裸露端120F且 被包覆在絕緣本體103內,第二左內埋端120L連接於第二前裸露端120F與第二後內埋端120B之間且被包覆在絕緣本體103內,並且第二右內埋端120R連接於第二前裸露端120F與第二後內埋端120B之間且被包覆在絕緣本體103內。 Furthermore, as shown in FIG. 3 and FIG. 4 , the second inner conductive layer 12 has a second exposed front end 120F exposed from the second outer surface 1032 of the insulating body 103 , facing the first outer surface of the insulating body 103 A second rear buried end 120B of 1031, a second left buried end 120L facing the fourth outer surface 1034 of the insulating body 103, and a second right buried end 120R facing the third outer surface 1033 of the insulating body 103 . Furthermore, as shown in FIG. 3 , FIG. 4 , FIG. 6 and FIG. 7 , the second front exposed end 120F is electrically in contact with the second external electrode layer 22 , and the second rear buried end 120B corresponds to the second front exposed end 120F. and Covered in the insulating body 103, the second left embedded end 120L is connected between the second front exposed end 120F and the second rear embedded end 120B and is covered in the insulating body 103, and the second right embedded The end 120R is connected between the second front exposed end 120F and the second rear buried end 120B and is encapsulated in the insulating body 103 .
值得注意的是,配合圖2至圖4所示,絕緣載體10符合下列的條件:G與T1的比值為1:0.3~1.0,G與T2的比值為1:0.3~1.0,D11與G的比值為1:0.3~1.0,D12與G的比值為1:0.3~1.0,D21與G的比值為1:0.3~1.0,並且D22與G的比值為1:0.3~1.0。其中,如圖4所示,T1為絕緣上蓋101的厚度,T2為絕緣下蓋102的厚度,並且G為彼此相鄰的第一內導電層11與第二內導電層12之間的間距。如圖2所示,D11為第一內導電層11的第一左內埋端110L與絕緣本體103的第三外表面1033之間的距離,並且D12為第一內導電層11的第一右內埋端110R與絕緣本體103的第四外表面1034之間的距離。如圖3所示,D21為第二內導電層12的第二左內埋端120L與絕緣本體103的第四外表面1034之間的距離,並且D22為第二內導電層12的第二右內埋端120R與絕緣本體103的第三外表面1033之間的距離。 It is worth noting that, as shown in Figures 2 to 4, the insulating carrier 10 meets the following conditions: the ratio of G to T1 is 1:0.3~1.0, the ratio of G to T2 is 1:0.3~1.0, the ratio of D11 to G The ratio is 1:0.3~1.0, the ratio of D12 to G is 1:0.3~1.0, the ratio of D21 to G is 1:0.3~1.0, and the ratio of D22 to G is 1:0.3~1.0. Wherein, as shown in FIG. 4 , T1 is the thickness of the insulating upper cover 101 , T2 is the thickness of the insulating lower cover 102 , and G is the distance between the first inner conductive layer 11 and the second inner conductive layer 12 adjacent to each other. As shown in FIG. 2 , D11 is the distance between the first left buried end 110L of the first inner conductive layer 11 and the third outer surface 1033 of the insulating body 103, and D12 is the first right end of the first inner conductive layer 11. The distance between the buried end 110R and the fourth outer surface 1034 of the insulating body 103 . As shown in FIG. 3 , D21 is the distance between the second left buried end 120L of the second inner conductive layer 12 and the fourth outer surface 1034 of the insulating body 103 , and D22 is the second right end of the second inner conductive layer 12 . The distance between the buried end 120R and the third outer surface 1033 of the insulating body 103 .
請參考下列的表一,本發明以具有一預定的長(2.2±0.2mm)、寬(1.7±0.2mm)、厚(1.7±0.2mm)的絕緣載體10以及包括多個第一內導電層11與多個第二內導電層12的總層數採用8層來進行實驗,其實驗結果如下所示:
[實施例的有益效果] [Advantageous Effects of Embodiment]
本發明的其中一有益效果在於,本發明所提供的一種多層式壓敏電阻的製作方法,其能通過“將經燒結的多層式結構浸泡在含有0.1%~4.9%濃度的鹼金屬的一第一種溶液中的時間介於30至120秒之間;將經燒結的多層式結構從第一種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟”或者“將經燒結的多層式結構浸泡在包括含有0.1%~4.9%濃度的含鹼金屬離子之混合樹脂膠的一第二種溶液中;將經燒結的多層式結構從第二種溶液中取出後進行烤乾步驟,以形成一經烤乾的多層式結構;以及在溫度600℃~800℃之間,對經烤乾的多層式結構進行金屬離子擴散步驟”的技術方案,以降低漏電流(leakage current)並且提升通流容量(即最大峰值電流值(maximum peak current))。 One of the beneficial effects of the present invention is that the method of manufacturing a multilayer varistor provided by the present invention can be achieved by "immersing the sintered multilayer structure in a first alkali metal containing 0.1%~4.9% concentration. the time in one solution is between 30 and 120 seconds; removing the sintered multilayer structure from the first solution followed by a baking step to form a baked multilayer structure; and at a temperature of 600°C ~800°C, carry out the metal ion diffusion step on the baked multilayer structure" or "immerse the sintered multilayer structure in a mixed resin glue containing alkali metal ions at a concentration of 0.1%~4.9% In the second solution; taking the sintered multi-layer structure out of the second solution and then performing a drying step to form a baked multi-layer structure; The dry multi-layer structure carries out the metal ion diffusion step" technical solution to reduce the leakage current and improve the flow capacity (that is, the maximum peak current value (maximum peak current)).
本發明的另外一有益效果在於,本發明所提供的一種多層式壓敏電阻,其能通過“G與T1的比值為1:0.3~1.0”、“G與T2的比值為1:0.3~1.0”、“D11與G的比值為1:0.3~1.0”、“D12與G的比值為1:0.3~1.0”、“D21與G的比值為1:0.3~1.0”以及“D22與G的比值為1:0.3~1.0”的技術方案,以降低漏電流(leakage current)並且提升通流容量(即最大峰值電流值(maximum peak current))。 Another beneficial effect of the present invention is that the multilayer varistor provided by the present invention can pass the "ratio of G to T1: 1:0.3~1.0", "the ratio of G to T2: 1:0.3~1.0" ", "The ratio of D11 to G is 1: 0.3~1.0", "The ratio of D12 to G is 1: 0.3~1.0", "The ratio of D21 to G is 1: 0.3~1.0" and "The ratio of D22 to G 1: 0.3~1.0” technical solution to reduce leakage current and increase flow capacity (ie maximum peak current value (maximum peak current)).
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
1:多層式堆疊結構 1: Multi-layer stacking structure
10:絕緣載體 10: Insulation carrier
1031:第一外表面 1031: first outer surface
1032:第二外表面 1032: second outer surface
1033:第三外表面 1033: the third outer surface
1034:第四外表面 1034: the fourth outer surface
11:第一內導電層 11: The first inner conductive layer
110F:第一前裸露端 110F: First front exposed end
110B:第一後內埋端 110B: the first rear embedded end
110L:第一左內埋端 110L: The first left embedded end
110R:第一右內埋端 110R: The first right embedded end
12:第二內導電層 12: Second inner conductive layer
120F:第二前裸露端 120F: Second front exposed end
120B:第二後內埋端 120B: the second rear embedded end
120L:第二左內埋端 120L: The second left embedded end
120R:第二右內埋端 120R: The second right embedded end
G:間距 G: Spacing
D11,D12:距離 D11, D12: distance
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110123477A TWI810594B (en) | 2021-06-28 | 2021-06-28 | Multilayer varistor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110123477A TWI810594B (en) | 2021-06-28 | 2021-06-28 | Multilayer varistor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202301385A TW202301385A (en) | 2023-01-01 |
TWI810594B true TWI810594B (en) | 2023-08-01 |
Family
ID=86658186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110123477A TWI810594B (en) | 2021-06-28 | 2021-06-28 | Multilayer varistor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI810594B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010089279A2 (en) * | 2009-02-03 | 2010-08-12 | Epcos Ag | Varistor ceramic, multi-layer structural element comprising said varistor ceramic, production method for said varistor ceramic |
US20150145639A1 (en) * | 2013-11-23 | 2015-05-28 | Huazhong University Of Science And Technology | Laminated chip composite resistor combining thermistor and varistor and preparation method thereof |
US20160314880A1 (en) * | 2013-06-28 | 2016-10-27 | Epcos Ag | Method for Producing a Multi-Layer Varistor Component and a Multi-Layer Varistor Component |
CN106782956A (en) * | 2016-09-29 | 2017-05-31 | 立昌先进科技股份有限公司 | A kind of method for preparing MLV and by its obtained piezo-resistance |
CN210778080U (en) * | 2019-11-11 | 2020-06-16 | 东莞令特电子有限公司 | Multilayer chip varistor |
CN112820488A (en) * | 2020-12-30 | 2021-05-18 | 淮安市泽邦电子有限公司 | Multilayer chip varistor and method for producing same |
TWM618287U (en) * | 2021-06-28 | 2021-10-11 | 佳邦科技股份有限公司 | Multilayer varistor |
-
2021
- 2021-06-28 TW TW110123477A patent/TWI810594B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010089279A2 (en) * | 2009-02-03 | 2010-08-12 | Epcos Ag | Varistor ceramic, multi-layer structural element comprising said varistor ceramic, production method for said varistor ceramic |
US20160314880A1 (en) * | 2013-06-28 | 2016-10-27 | Epcos Ag | Method for Producing a Multi-Layer Varistor Component and a Multi-Layer Varistor Component |
US20150145639A1 (en) * | 2013-11-23 | 2015-05-28 | Huazhong University Of Science And Technology | Laminated chip composite resistor combining thermistor and varistor and preparation method thereof |
CN106782956A (en) * | 2016-09-29 | 2017-05-31 | 立昌先进科技股份有限公司 | A kind of method for preparing MLV and by its obtained piezo-resistance |
CN210778080U (en) * | 2019-11-11 | 2020-06-16 | 东莞令特电子有限公司 | Multilayer chip varistor |
CN112820488A (en) * | 2020-12-30 | 2021-05-18 | 淮安市泽邦电子有限公司 | Multilayer chip varistor and method for producing same |
TWM618287U (en) * | 2021-06-28 | 2021-10-11 | 佳邦科技股份有限公司 | Multilayer varistor |
Also Published As
Publication number | Publication date |
---|---|
TW202301385A (en) | 2023-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7235492B2 (en) | chip varistor | |
US20150068792A1 (en) | Multilayer ceramic capacitor and board having multilayer ceramic capacitor embedded therein | |
JPH04333295A (en) | Electrostrictive effect element and manufacture thereof | |
CN109585105A (en) | Electronic component | |
JP5652465B2 (en) | Chip varistor | |
CN116130243A (en) | Electronic component | |
TWM618287U (en) | Multilayer varistor | |
TWI810594B (en) | Multilayer varistor and method of manufacturing the same | |
KR20190058239A (en) | Multilayer ceramic capacitor and method of manufacturing the same | |
JP2018056559A (en) | Multilayer varistor and method for producing the same | |
KR102150552B1 (en) | Composite electronic component | |
US11551872B2 (en) | Multilayer ceramic capacitor | |
CN215496229U (en) | Multilayer piezoresistor | |
KR102546723B1 (en) | Method for manufacturing chip-type ceramic electronic components | |
US20240212892A1 (en) | Laminated ceramic component | |
CN115579200A (en) | Multilayer piezoresistor and manufacturing method thereof | |
US11967445B2 (en) | NTC thermistor element | |
WO2021065807A1 (en) | Ntc thermistor element | |
JP2013168526A (en) | Multilayer electronic component and manufacturing method therefor | |
JP7322793B2 (en) | Chip varistor manufacturing method and chip varistor | |
JP4957155B2 (en) | Barista | |
JP2022067771A (en) | Electronic component | |
KR101882996B1 (en) | Multilayer Ceramic Capacitor and Manufacturing Method Thereof | |
JPH09134807A (en) | Voltage-dependent nonlinear resistor ceramic device | |
CN116387033A (en) | Multilayer electronic component |