TWI810413B - 從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組 - Google Patents

從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組 Download PDF

Info

Publication number
TWI810413B
TWI810413B TW108143413A TW108143413A TWI810413B TW I810413 B TWI810413 B TW I810413B TW 108143413 A TW108143413 A TW 108143413A TW 108143413 A TW108143413 A TW 108143413A TW I810413 B TWI810413 B TW I810413B
Authority
TW
Taiwan
Prior art keywords
port
controller
logic
automatic recovery
recovery logic
Prior art date
Application number
TW108143413A
Other languages
English (en)
Other versions
TW202109296A (zh
Inventor
永綿 鄧
布魯恩施泰納 馬修
Original Assignee
英屬開曼群島商鴻騰精密科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英屬開曼群島商鴻騰精密科技股份有限公司 filed Critical 英屬開曼群島商鴻騰精密科技股份有限公司
Publication of TW202109296A publication Critical patent/TW202109296A/zh
Application granted granted Critical
Publication of TWI810413B publication Critical patent/TWI810413B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing
    • G06F11/0781Error filtering or prioritizing based on a policy defined by the user or on a policy defined by a hardware/software module, e.g. according to a severity level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/073Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a memory management context, e.g. virtual memory or cache management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0721Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
    • G06F11/0724Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU] in a multiprocessor or a multi-core unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/0757Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/076Error or fault detection not based on redundancy by exceeding limits by exceeding a count or rate limit, e.g. word- or bit count limit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Debugging And Monitoring (AREA)
  • Small-Scale Networks (AREA)

Abstract

一種光通信模組,用以當所述光通信模組的控制器探測到奇偶校驗錯誤時,從系統硬體故障中執行自動恢復。如果所述控制器執行錯誤檢查操作確認沒有發生錯誤,則從其第一端口輸出具有預設屬性的心音訊號。控制器的第二端口接收來自位於控制器外部的自動控制邏輯的芯片復位訊號。所述自動恢復邏輯監控其第一端口來確認在其第一端口是否存在具有預設屬性的心音訊號,並從其第二端口輸出芯片復位訊號至控制器的第二端口。從自動恢復邏輯的第二端口輸出的芯片復位訊號處於第一或者第二狀態分別取決於心音訊號在其第一端口處存在或者不存在。

Description

從系統硬體故障中執行自動恢復的方法及使用該方法的 光通信模組
本發明有關一種從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組,尤指一種當系統硬體故障發生時光通信模組的控制器中執行自動恢復的方法。
在光通信網路中,光通信模組(例如光收發器、發射器和接收器模組)通常用於通過光波導發射和接收光訊號,光波導通常為光纖。光收發器模組包括發射端和接收端。在發射端,由光源產生光束,光源通常為激光光源。光耦合系統接收光束,並將光束光耦合至光纖的端面上。所述光耦合系統通常包括一個或多個反射、折射和/或衍射元件,其將已調製的光束耦合至光纖的端面上。
發射端的光源驅動器電路輸出電驅動訊號來驅動所述光源。在接收端,從光纖端面穿出的光訊號由光耦合系統耦合至光通信模組的光檢測器上,比如正本負二極體(PIN二極體)。所述光檢測器將光訊號轉換成電訊號。接收端的接收電路處理這些電訊號以恢復數據。
光通信模組的操作通常由執行軟體和/或固件電腦指令的控制器來控制。所述控制器通常控制所述光源驅動電路及所述接收電路,並且也可以控制用於與模組外部設備通信的接口。舉個例子,所述控制器可以產生控制訊號使得光源驅動電路基於指示測量光源產生的光訊號強度的反饋訊號來調整輸出到光源的電驅動訊號。另一個例子,所述控制器可以產生傳遞至接收電路的自動增益控制(Automatic Gain Control,下文稱AGC)電路的控制訊號,以基於由控制器接收的回饋訊號來調整AGC的增益。
所述控制器通常為微型控制器包括固態儲存設備,例如靜態隨機存取存儲器(Static Random Acoess Memory,下文稱SRAM),其用於儲存數據及電腦指令,所述微型控制器包括固件來控制微型控制器的各項操作。在光通信模組中使用的一些微型控制器通過奇偶校驗位對數據進行編碼,並執行SRAM奇偶校驗檢查以確認是否發生了損害數據完整性的奇偶校驗錯誤。當微型控制器檢測到了SRAM奇偶校驗錯誤時,微型控制器通常會執行系統硬體故障。出於安全性的原因,當發生了系統硬體故障,通常會禁用SRAM,以防止執行微型控制器的固件例行程式。微型控制器將會一直保持在這種禁用狀態中,導致光通信模組性能下降。此外,在這種禁用狀態下,由於系統硬體故障而導致微型控制器無法通知用戶。用戶唯一的選擇就是執行外部模組復位。
因此,存在一種需求,使得在發生SRAM奇偶校驗錯誤後,光通信模組的控制器能夠執行自動恢復。
本發明的主要目的在於提供一種從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組,其可靠性好。
為實現上述目的,本發明可採用以下技術方案:
一種光通信模組,其可從系統硬體故障中自動恢復,所述光通信模組包括:第一控制器,所述第一控制器包括第一端口、第二端口及芯片復位電路,所述第一控制器可執行錯誤檢查操作以確定是否已經發生了錯誤,所述第一控制器產生具有預設屬性的心音訊號,並且如果錯誤檢查操作確定沒有發生錯誤,所述第一控制器從所述第一端口輸出所述心音訊號,所述第二端口接收處於第一或第二狀態的芯片復位訊號,其中如果所述第二端口接收的芯片復位定訊號處於第二狀態,所述第一控制器的芯片復位電路就會執行芯片復位操作,及自動恢復邏輯,所述自動恢復邏輯位於所述第一控制器的外部,其包括分別與所述第一控制器的第一端口及第二端口通信的第一端口及第二端口,所述自動恢復邏輯監控所述自動恢復邏輯的第一端口以確定具有預設屬性的所述心音訊號在所述自動恢復邏輯的第一端口處存在或者不存在,並且輸出所述芯片復位訊號從所述自動恢復邏輯的第二端口至所述第一控制器的第二端口,從所述自動恢復邏輯的第二端口輸出的芯片復位訊號處於第一狀態或者第二狀態分別取決於具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口上存在或者不存在。
為實現上述目的,本發明亦可採用以下方法:
一種在光通信模組中用以從系統硬體故障中執行自動恢復的方法,其包括:在光通信模組的第一控制器中,執行錯誤檢查操作以確認是否發生了錯誤;所述第一控制器包括第一及第二端口,當執行所述錯誤檢查操作時,如果所述第一控制器確認沒有發生錯誤,則產生具有預設屬性的心音訊號並從所述第一控制器的第一端口輸出所述心音訊號;光通信模組的自動恢復邏輯,位於所述第一控制器外部並且包括第一端口,所述自動回復邏輯的第一端口和所述第一控制器的第一端口通信,在所述自動恢復邏輯中,監控所述自動恢復邏輯的第一端口,以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口是否存在; 所述自動恢復邏輯包括第二端口,在所述自動恢復邏輯中,從所述自動恢復邏輯的第二端口輸出芯片復位訊號至所述第一控制器的第二端口,其中,所述芯片復位訊號處於第一或者第二狀態分別取決於所述心音訊號在所述自動恢復邏輯的第一端口存在或者不存在;以及如果所述第一控制器的第二端口接收到的芯片復位訊號處於第二狀態,則通過第一控制器的芯片復位電路執行芯片復位操作。
為實現上述目的,本發明可以採用以下技術方案:
一種使用電腦程式在光通信模組的控制器執行錯誤檢查操作,以確認已經發生了錯誤,並執行了系統硬體故障後,從系統硬體故障中執行自動恢復的方法,所述電腦程式包括儲存在非暫時性電腦可讀介質中的電腦代碼,所述方法包括以下步驟:在所述控制器的第一邏輯中執行第一程式碼片段,導致產生具有預設屬性的心音訊號,並且當執行錯誤檢查操作時,如果所述控制器確認沒有發生錯誤,則從所述控制器的第一端口輸出具有預設屬性的心音訊號,其中,光通信模組的自動恢復邏輯位於所述控制器的外部,所述自動恢復邏輯包括第一端口,用於和控制器的第一端口通信,所述自動恢復邏輯監控所述自動恢復邏輯的第一端口,以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口是否存在,所述自動恢復邏輯從所述自動恢復邏輯的第二端口輸出芯片復位訊號至所述控制器的第二端口,所述芯片復位訊號處於第一或者第二狀態分別取決於具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口處存在或者不存在,如果在所述控制器的第二端口處接收到的芯片復位訊號處於第二狀態,則所述控制器的芯片復位電路執行芯片復位操作。
為實現上述目的,本發明還可以採用以下技術方案:
一種使用電腦程式在光通信模組的控制器的系統硬體故障中執行自動恢復的方法,所述控制器執行錯誤檢查操作以確認是否發生了錯誤,如果沒有發生錯誤,則從所述控制器的第一端口輸出具有預設屬性的心音訊號,所述電腦程式的電腦代碼儲存在非暫時性電腦可讀介質中,所述方法包括以下步驟:在所述光通信模組的自動恢復邏輯中執行第一程式碼片段,所述自動恢復邏輯位於所述控制器的外部並且包括和所述控制器的第一端口通信的第一端口,所述第一程式碼片段監控自動恢復邏輯的第一端口以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口處是否存在;以及在所述自動恢復邏輯中執行第二程式碼片段,導致從自動恢復邏輯的第二端口輸出芯片復位訊號至控制器的第二端口,其中,所述芯片復位訊號處於第一或者第二狀態分別取決於具有預設屬性的心音訊號在自動恢復邏輯的第一端口存在或者不存在,如果控制器的第二端口接收到的芯片復位訊號處於第二狀態,所述控制器的芯片復位電路則執行芯片復位操作。
與先前技術相比,本發明的光通信模組及方法可以使得在發生SRAM奇偶校驗錯誤後,光通信模組的控制器能夠執行自動恢復。
1:光通信模組
2:光源驅動電路
3:光源陣列
4:接收電路
5:探測器陣列
6:訊號
10:自動恢復邏輯
20:控制器
30:設備
31、32:端口
35:復位訊號
36:預設屬性的訊號
37:芯片復位硬體
40:工作任務隊列
41:監控任務
42:心音訊號發生器任務
43:溫度監控任務
44:激光偏置監控任務
45:偏置控制任務
51:計時器邏輯
52:計時器到期邏輯
60:事件記錄邏輯
403:第三曲線
第一圖係根據本發明代表實施例的光通信模組的框圖,其包括自動恢復邏輯,使得當光通信模組的控制器確認檢測到奇偶校驗錯誤後進行自動復位;第二圖係第一圖顯示的根據本發明代表實施例的控制器和自動恢復邏輯的框圖,其中與產生具有預設波形訊號相關聯的任務,在儲存於控制器的SRAM設備中的固件上執行; 第三圖係由第一圖所示的控制器產生的心音訊號的預設波形的示例及由第一圖所示的自動恢復邏輯產生的復位訊號的示例的時序圖;第四圖係代表根據本發明代表實施例的方法的流程圖。
本文描述的代表實施例指具有控制器的光通信模組,當控制器檢測到特定的錯誤時,所述控制器從發生的系統硬體故障中執行自動恢復。根據代表實施例,所述光通信模組包括控制器及位於控制器外部的自動恢復邏輯。所述控制器的第一及第二端口分別與所述自動恢復邏輯的第一及第二端口通信。所述控制器執行錯誤檢查操作以確認是否發生了錯誤。如果錯誤檢查操作確認沒有發生錯誤,則所述控制器產生並且從控制器的第一端口輸出具有預設屬性的心音訊號。控制器的第二端口接收來自所述自動恢復邏輯的第二端口的芯片復位訊號,所述芯片復位訊號處於第一或第二狀態。如果所述芯片復位訊號處於第二狀態,所述控制器的芯片復位電路則會執行芯片復位操作。所述自動恢復邏輯監控自動恢復邏輯的第一端口以確認具有預設屬性的心音訊號在所述自動邏輯的第一端口是否存在,如果不存在所述心音訊號,則將所述芯片復位訊號置於第二狀態。
參考第一圖至第四圖,將會描述提供早期解決方案的系統和方法的一些代表實施例,相同的附圖標記表示相同的部件、元件或特徵。應當注意的是,圖中的特徵、元件或部件並非旨在按照比例繪製,而是將重點放在展示發明原理和概念上。應當注意的是,正如本領域普通技術人員可以理解的那樣,本發明的原理和概念不限於在此描述的代表實施例。
在接下來的細節描述中,出於解釋而非限制性的目的,闡述了公開具體細節的示例實施例,以便提供對根據本說明的實施例的透徹理解。然而 得益于本領域普通技術人員可以顯而易見的是根據本說明的脫離本文公開的具體細節的其他實施例仍然在所附權利要求的範圍內。此外,可以省略對公知設備和方法的描述,以免模糊對代表實施例的描述。這些方法和裝置顯然在本說明的範圍內。還應該理解的是,這裡使用的詞語“示例”,應為非排他性和非限制性的。
這裡使用的術語僅是用來描述而不在於限制特定的實施例。所定義的術語除了在相關背景中通常理解和接受的技術、科技或普通含義。
除非上下文另有明確規定,否則術語“一”,“一個”和“該”包括單數和複數指示物。因此,例如,“一個設備”包括一個設備和多個設備。術語“實質的”或“基本上”意指在本領域技術人員可接受的限度或程度內。術語“大約”意指在本領域普通技術人員可接受的限度或量內。
這裡使用的術語“存儲器”或“存儲器設備”旨在表示能夠存儲電腦指令或電腦代碼的非暫時性電腦可讀存儲介質,用於由一個或多個處理器執行。這裡對“存儲器”或“存儲器設備”的引用應該被解釋為一個或多個存儲器或存儲器設備。例如,存儲器可以是同一電腦系統內的多個存儲器。存儲器還可以是分佈在多個電腦系統或計算設備之間的多個存儲器。
這裡使用的術語“處理器”,“處理設備”或“處理邏輯”是可互換的,並且包含至少一個電子設備,該電子設備被配置為執行處理訊號的一個或多個處理算法。電子設備可以以硬體,軟體或固件或其組合來執行算法。這裡對包括“處理器”或“處理設備”或“處理邏輯”的系統的引用應該被解釋為一個或多個處理器或處理核。例如,處理器可以是多核處理器。處理器還可以指在單個電腦系統內的處理器集合或分佈在多個電腦系統中的處理器集合。電腦程式的指令可以由單個處理器或多個處理器執行,這些處理器可以在 同一設備內或者可以分佈在多個設備上。這裡使用的術語“控制器”表示如這裡定義的那些術語包括處理器,處理設備或處理邏輯的電子設備。
第一圖顯示的是根據代表實施例的光通信模組1的框圖,其包括自動恢復邏輯10,在光通信模組1的控制器20已經確認探測到奇偶校驗錯誤後,所述自動恢復邏輯10會自動復位所述控制器20。所述光通信模組1可以是光收發器模組、光發射器模組或者光接收器模組。光通信模組1可以包括各種配置,但通常包括比如控制器20、光源驅動電路2、光源陣列3、接收電路4及光探測器陣列5。光源陣列3具有M個光源,M為大於或等於1的正整數。光探測器陣列5具有N個光探測器,N為大於或等於1的正整數。M個光源可以是例如M個相應的激光二極體(例如垂直腔面激光發射器(Vertical Cavity Surface Emitting Laser,下稱VCSEL),邊緣發射激光二極體等)。N個光探測器可以是例如N個相應的光電極體(例如PIN二極體)。
光源驅動電路2可以具有多個配置,但通常配置為將一個或多個驅動訊號6傳遞至所述光源陣列3。比如,如果光源為VCSEL,那麼光源驅動電路2通常將調製和偏置電流訊號傳遞至各VCSEL。在光通信模組中通常使用監控光電二極體監控來監控激光二極體產生的光的強度,並且通常使用控制器接收來自監控光電二極體的回饋訊號,使得光源驅動電路2基於監控值來調整傳遞至激光二極體的調製及/或偏置電流訊號。儘管監控光電二極體並未在第一圖中顯示,然它們可以包含在光通信模組1中,並且由控制器20監控以控制光源驅動電路2。
接收電路4可以具有各種配置和部件,但通常包括接收器積成電路(Integrated Circuit,下文稱IC),時鐘和數據恢復(Clock and Data Recovery,下文稱CDR)電路,跨阻放大器(Transimpedance Amplifier,下文稱TIA),直流(Direct Current,下文稱DC)偏置消除電路及自動增益控制(Automatic Gain Control,下文稱 AGC)電路。一些或者所有這些部件通常至少部分地由控制器20控制。例如,控制器20可以設置DC偏移消除電路和AGC電路的放大器級的初始增益值。
控制器20包括固態儲存器設備30,用以儲存由控制器20執行的電腦指令(例如,固件),並可以儲存各種類型的數據。根據代表實施例,固態儲存器設備30為SRAM設備。根據代表實施例,控制器20通過奇偶校驗檢位對儲存在SRAM設備30中的比特進行編碼。這裡使用的各種奇偶校驗檢位編碼技術都是已知的,正如本領域普通技術人員可以理解的那樣。本發明的原理和概念不限於使用的奇偶校驗檢位編碼技術。正如本領域所公知的,光通信模組中使用的控制器使用各種位錯誤探測技術,以為了保持儲存在控制器的SRAM設備中的比特的高完整性而檢查位錯誤。根據代表實施例,控制器使用一個或多個類似的位錯誤探測技術以探測儲存在SRAM設備30中的比特的錯誤。因此,控制器20配置為執行奇偶校驗位編碼技術以通過奇偶校驗校驗對儲存在SRAM設備30中的比特進行編碼,並執行錯誤探測技術以確認是否發生了奇偶校驗錯誤。
如上所述,當一些在已知光通信模組中使用的已知控制器確認已經探測到奇偶校驗錯誤,它們會發出系統硬體故障,防止它們執行任何額外任務。這裡使用的術語“系統硬體故障”,指發生在光通信模組的控制器中的故障,其會阻止控制器執行額外操作,包括執行固件指令。這樣的控制器會保持這種禁用狀態直到它們在控制器IC芯片集的特定端子上接收到額外的復位訊號。為了演示根據本發明原理和概念的代表性實施例,在第一圖中,假定控制器20為類似的控制器,其被配置為在端口31接收復位訊號。因此,如果控制器20沒有包括自動恢復邏輯10,並探測到發生了SRAM奇偶校驗錯誤,使用者將不得不在光通信模組1上制動手動部分以使得復位訊號應用於端口31。用自動恢復邏輯10裝備控制器20可以確保當控制器20確認發生了SRAM奇偶校驗錯誤後,通 過復位訊號35自動應用於端口31,從而控制器20從系統硬體故障中自動恢復。復位訊號35使得控制器20的芯片復位硬體37執行芯片復位操作。
應當注意的是雖然參考探測奇偶校驗錯誤來使控制器20執行系統硬體故障來描述本發明的原理和概念,本發明的原理和概念同樣適用於當探測到其他錯誤時控制器從系統硬體故障中自動恢復。出於描述的目的,將會參考探測到奇偶校驗錯誤來描述代表實施例。
控制器20被配置為當控制器20沒有探測到奇偶校驗錯誤,從主控制器20的輸出端子32上輸出具有預設屬性的訊號36至自動恢復邏輯10。自動恢復邏輯10監控訊號36以確認其是否具有預設屬性。只要自動恢復邏輯10探測到預設屬性,復位訊號35就會保持解除斷言。如果自動恢復邏輯10沒有探測到預設屬性,自動恢復邏輯10就會斷言復位訊號35,其使得控制器20的芯片復位硬體37執行立即芯片復位。
這裡使用的術語“預設屬性”,代表可以歸因於生成訊號36並且可以由自動恢復邏輯10識別的方法的特性。例如,預設屬性可以為在預設閾值時間段PTH內出現的訊號36的上升沿的Q個事件,其中Q為大於或等於1的正整數。在該示例中,如果自動恢復邏輯10沒有探測到PTH內至少Q個上升沿,自動恢復邏輯10就會確認訊號36為不存在。作為另一個示例,預設屬性可以為訊號36的預設忙閑度(例如,訊號36接通時間和關閉時間的相對持續時間)。例如,訊號36可以具有至少10%的忙閑度,週期對應包含在SRAM設備30的工作隊列中的一系列工作任務。在該示例中,如果自動恢復邏輯10在控制器20執行包含在工作隊列中的任務的至少10%的時間內沒有探測到邏輯1電平,則自動恢復邏輯10確認訊號36不存在。
控制器20探測到奇偶校驗錯誤的事件中,控制器20執行上述系統硬體故障,如本領域中已知的。如上所述,當控制器20執行系統硬體故障,其 會停止執行所有任務,包括執行儲存在SRAM設備30中的固件指令。根據優選實施例,儲存在SRAM設備30中的固件指令包括一個或多個指令,或程式碼片段,使得具有預設屬性的訊號36從輸出端子32輸出。因此,當探測到奇偶校驗錯誤,導致控制器20停止執行儲存在SRAM設備30中的固件指令,具有預設屬性的訊號36就不會從輸出端口32輸出。自動恢復邏輯10監控從端口32輸出的訊號,並探測具有預設屬性的訊號36何時消失。如果自動恢復邏輯10確認從端口32輸出的訊號36不存在,例如,在預設時間段沒有探測到預設屬性,自動恢復邏輯10就會發送復位訊號35至輸入端口31,使得芯片復位硬體37執行控制器20的芯片復位。執行芯片復位操作的方式、操作的結果及用於執行操作的硬體都是公知的,因此,為了簡潔起見,在這裡將不再描述。
第二圖為第一圖中根據代表實施例的控制器20和自動恢復邏輯10的框圖,其中與產生具有預設屬性的訊號36相關聯的任務,在儲存於控制器的SRAM設備中的固件上執行。SRAM設備30包括固件工作任務隊列40,其在預設序列中保持固件指令,以由控制器20在預設序列中執行。控制器20包括一個或多個處理器,其被配置為執行多種處理任務,包括執行儲存在固件工作任務隊列40中的任務。出於示例性目的,固件工作任務隊列40顯示為保持工作任務0至n+i,n和i都是正整數。固件工作任務0至n的示例分別顯示為VCC監控任務41、心音訊號發生器任務42、溫度監控任務43、激光偏置監控任務44及數模轉換器(Digital-to-Analog Converter,下文稱DAC)偏置控制任務45。心音訊號發生器任務42為用以產生具有預設屬性的訊號36的固件,其在下文中稱為心音訊號36。
第三圖顯示的是控制器20產生的心音訊號36的示例及自動恢復邏輯10產生的復位訊號35的示例的時序圖。根據代表實施例,心音訊號36具有可變頻率和可變週期,因為其可能不總是花費相同的時間來執行所有包含在固件工作任務隊列40中的任務。根據代表實施例,心音訊號36的預設屬性為從最小 幅度值Amp_Min至最大幅度值Amp_Max的上升沿,其分別對應在預設閾值時間段TTH內的邏輯0電平和邏輯1電平,根據代表實施例,其是比一個固件工作任務隊列40的週期時間T週期略大的時間段。因此,TTH的值略大於控制器20執行所有包含在工作任務隊列40中的任務的時間T週期的值。
第三圖顯示的示例中,時間段T1,T2及T3對應小於TTH的時間段,並且因此導致自動恢復邏輯10確認訊號36存在。只要自動恢復邏輯10探測到存在訊號36,它就會將芯片復位訊號35保持在解除斷言狀態,如第三圖所示。如果自動恢復邏輯10探測到在預設時間段TTH內心音訊號36不存在,其就會產生由控制器20的端口31接收的芯片復位訊號35,然後使得芯片復位硬體37執行芯片復位操作。預設時間段TTH至少略大於T週期,正如第三圖所示,並且可以為R乘T週期,R大於1。在一些情況下,R可以遠大於1,例如2×,10×,100×TTH。如果自動恢復邏輯10在預設閾值時間段TTH內沒有探測到上升沿,自動恢復邏輯10就會斷言傳送到控制器20的端口31的復位訊號35。根據代表實施例,芯片復位訊號35會保持解除斷言狀態(邏輯1電平)直要自動恢復邏輯10探測到存在心音訊號36,然當自動恢復邏輯10探測到在時間段TTH內不存在心音訊號36時,其就會斷言(邏輯0電平)一段時間T4。
示例中使用術語“斷言”和“解除斷言”來分別表示芯片復位訊號35的邏輯0電平和邏輯1電平,然它們也可以使用本文提供的描述如本領域普通技術人員可以理解的那樣來表示芯片復位訊號35的邏輯1電平和邏輯0電平。
再次參考第二圖,根據代表實施例,自動恢復邏輯10包括計時器邏輯51,其被配置為當計時器邏輯51沒有探測到心音訊號36的存在時遞增計數。每次自動恢復邏輯10接收到或探測到心音訊號36,計時器邏輯51的計數就會歸零,然後計數再次開始遞增。自動恢復邏輯10包括計時器到期邏輯52,其被配置為確認計時器邏輯51的計時器是否已經到期。由計時器邏輯51及計時器 到期邏輯52執行的任務可以通過多種方式實現。例如,計時器邏輯51可以被配置為當計數達到對應TTH(即,計時器到期)的值時,將SRAM設備30中的特定寄存器位元設定為1,而當計數歸零時將寄存器位設定為0,即當自動恢復邏輯10接收到心音訊號36時。在這種情況下,對應計時器到期邏輯52的判定框52每次框51代表的操作被執行時(例如,每次計數遞增時)就會檢查寄存器位的值,並確認寄存器位為1還是為0。如果計時器到期邏輯52確認寄存器位元為1,意味著計時器已經到期,自動恢復邏輯10則會輸出斷言復位訊號35至端口31,從而使得芯片復位硬體37執行芯片復位操作。
一旦執行了芯片復位操作,控制器20就會恢復執行包含在固件工作任務隊列40中的任務,包括產生心音訊號36的心音訊號發生器任務42。如上所述,每次計時器邏輯51接收到心音訊號36,即,探測到存在心音訊號的預設屬性,其就會通過將計數歸零並重新開始計數遞增來重啟計時器。
如上所述,已知在光通信模組中使用的一些控制器包括邏輯以執行SRAM奇偶校驗檢查來確認是否已經發生了奇偶校驗錯誤,並且如果發生,就會導致系統硬體故障。第二圖中框54-56代表確認是否發生了SRAM奇偶校驗錯誤的過程,並且如果發生了,則會導致系統硬體故障。由於這些過程都是已知的並且在公開範圍之外,出於簡潔,在這將不提供對其執行方式的詳細討論。
在框54和55中,控制器20執行SRAM奇偶校驗分別檢查並確認是否探測到SRAM奇偶校驗錯誤。如果框55中確認奇偶校驗沒有問題,即沒有探測到奇偶校驗錯誤,包含在固件工作任務隊列40中的任務則會被繼續執行,這意味著計時器邏輯51繼續會重置並重啟計時器。如果框55中確認奇偶校驗有問題,即探測到奇偶校驗錯誤,控制器20則會執行框56代表的系統硬體故障。當發生了這樣的情況,包含在固件工作任務隊列40的任務則會停止執行,這意味著計時器邏輯51將會繼續遞增計數,從而導致計時器到期,並且計時器到期邏輯52 使得自動恢復邏輯10斷言發送到端口31的復位訊號35,從而使得芯片復位硬體37執行芯片復位操作。
實現用於在控制器20的固件中產生心音訊號36的任務的優點之一是相對於硬體,其允許通過固件來對任務做出修改,通過硬體修改則需要重新設計控制器20及需要大量生產新控制器。例如,如果修改訊號36的占空比是必要的,相關的修改可以通過增加或者修改儲存在固件工作任務隊列40中的任務而相對容易地實現。然而應當注意的是,可以在固件、軟體、硬體或者其組合中執行產生心音訊號36的任務。實現這種任務的方式可以取決於各種因素,正如本領域普通技術人員根據描述的內容可以理解的那樣。
本系統和方法的另一個優點是其可以記錄奇偶校驗事件。根據代表實施例,自動恢復邏輯10包括可選事件記錄邏輯60,其被配置為記錄奇偶校驗事件的時序的資訊。根據代表實施例,每次計時器到期邏輯52確認計時器已經到期,即自動恢復邏輯10無法再探測到心音訊號36,事件記錄邏輯60記錄代表奇偶校驗錯誤的時序的條目。這提供了奇偶校驗錯誤何時發生及芯片復位操作何時發生的診斷資訊。這些資訊在確認奇偶校驗錯誤原因時十分有用。根據上述討論的已知控制器,當探測到奇偶校驗事件使用者需要手動復位控制器,並且使用者只能猜測奇偶校驗錯誤發生的原因和時間。光通信模組1的自動恢復邏輯10包括所述事件記錄邏輯60可以使得這些資訊用於診斷或者其他目的。
例如,在已知的光通信模組中使用的已知的控制器已經確認正在探測奇偶校驗錯誤,然錯誤的來源不容易被識別。經過調查發現,這個特定的奇偶校驗錯誤是由於質子或中子攻擊後,導致在控制器的SRAM設備中的單個比特改變了狀態。儘管探測到了所述奇偶校驗錯誤,但仍然需要大量的調查來確認該錯誤的原因。此外,所述奇偶校驗錯誤導致系統硬體故障,並且控制器無法從其中自動恢復。本系統和方法對於這些問題提供一些解決方案。
優選的,自動恢復邏輯10是位於控制器20外部的設備。自動恢復邏輯10可以是例如微型控制器。用於這種目的的微型控制器可以是相對簡單的微型控制器,其只需要有一根端子用於監控心音訊號36及一根端子用於輸出復位訊號35,儘管其也可以包括其他端子用於執行額外的操作。與框51、52及60的操作相關聯的功能並不太複雜,因此,用於這種目的的微型控制器可以相對便宜,這對於滿足光通信模組工業中的預算約束十分重要。其他類型的處理設備也可以用於這種目的,包括例如專用積體電路(Application Specific Integrated Circuit,下文稱ASIC)、數位訊號處理器(Digital Signal Processor,下文稱DSP)、微型處理器、可程式設計邏輯陣列(Programmable Logic Array,下文稱PLA)、可程式設計閘陣列(Programmable Gate Array,下文稱PGA)。自動恢復邏輯10可以通過硬體、軟體和/或固件、或其組合實現。
可選事件記錄邏輯60可以將資訊記錄在作為自動恢復邏輯10的組成部分的記憶元件中,或者其可以將資訊從自動恢復邏輯10中輸出至外部設備中以儲存在一些其他外部儲存設備中。例如,這些資訊可以記錄在控制器20內的儲存器中。
儘管自動恢復邏輯10在控制器20的外部,所述自動恢復邏輯10和控制器20也可以是同一個IC芯片的一部分。自動恢復邏輯10與控制器20通常以分開的IC芯片來實現,它們之間通過各芯片的一些輸入/輸出端子來實現電性連接。
第四圖是代表根據代表實施例的方法的流程圖,其用於當錯誤檢查操作確認發生錯誤後,從系統硬體故障中執行自動恢復。出於說明的目的,參考第一圖和第二圖來描述本方法,然而應當理解的是,本方法不限於使用第一圖和第二圖中的控制器20和自動恢復邏輯10的配置來執行。換句話說,與第一圖和第二圖中的控制器和自動恢復邏輯不同的配置也可以用於執行本方法。 出於說明的目的,第四圖中的流程圖代表的方法將會通過參考當奇偶校驗檢查操作確認發生了奇偶校驗錯誤後從系統硬體故障中執行自動恢復來描述。應當注意的是,本發明的原理和概念也可以適用於其他類型的可導致系統硬體故障的錯誤和錯誤檢查操作。
框61代表光通信模組的控制器(例如,控制器20)執行奇偶校驗錯誤檢查操作已確認是否發生了奇偶校驗錯誤的過程。框62代表控制器產生具有預設屬性的訊號,並且如果奇偶校驗檢查操作確認沒有發生奇偶校驗錯誤則從控制器的第一端口(例如,端口32)輸出該訊號的過程。奇偶校驗檢查操作通常在控制器的硬體中執行,而與產生並輸出具有預設屬性的訊號相關聯的操作通常在控制器的固件中執行(例如,固件工作任務隊列40的框42)。框63代表位於控制器外部的自動恢復邏輯(例如,自動恢復邏輯10)監控自動恢復邏輯的第一端口,以確認具有預設屬性的訊號在自動恢復邏輯的第一端口處是否存在的過程。框64代表自動恢復邏輯從自動恢復邏輯的第二端口輸出芯片復位訊號的過程,所述芯片復位訊號處於第一狀態或者第二狀態分別取決於具有預設屬性的訊號在自動恢復邏輯的第一端口存在或者不存在。
如上所述,如果控制器探測到奇偶校驗錯誤,其會停止輸出具有預設屬性的訊號,並且自動恢復邏輯將會探測到預設屬性的消失,從而使得其斷言芯片復位訊號。如框65所示,所述芯片復位硬體接收芯片復位訊號,並當芯片復位訊號從第一狀態(解除斷言)改變至第二狀態(斷言)時,執行芯片復位操作。
第四圖的流程圖還包括當計時器到期也就是已經在控制器中探測到奇偶校驗錯誤時,通過事件記錄邏輯(例如,邏輯60)執行事件記錄的可選過程66。根據代表實施例,將芯片復位訊號置於第二狀態(例如,斷言)會觸發事件記錄邏輯記錄事件資訊。
有許多方法可以配置自動恢復邏輯10及控制器20來執行上述任務。如上所述,可以產生具有各種預設屬性的訊號36,所以與產生訊號36及探測訊號36相關的過程也可以變化。正如本領域普通技術人員可以理解的那樣,鑒於本發明提供的描述,可以對上述系統和方法進行許多修改,這些修改在本發明原理和概念的範圍內。
應該注意的是為了說明本發明的原理和概念,已經參考一些說明性或代表性的實施例描述了本發明。例如雖然參考了控制器20和自動恢復邏輯10的特定的配置和實現方式來描述了代表實施例,其他配置和實現方式也是可能的,正如本領域普通技術人員理解的那樣。所以正如本領域普通技術人員理解的那樣,本發明的原理和概念在這方面不受限制。本領域普通技術人員可以理解,對於本文描述的代表實施例可以進行一些修改,修改的內容也在本發明的範圍之內。
1:光通信模組
2:光源驅動電路
3:光源陣列
4:接收電路
5:探測器陣列
6:訊號
10:自動恢復邏輯
20:控制器
30:設備
31、32:端口
35:復位訊號
36:預設屬性的訊號
37:芯片復位硬體

Claims (21)

  1. 一種光通信模組,其可從系統硬體故障中自動恢復,所述光通信模組包括:第一控制器,所述第一控制器包括第一端口、第二端口及芯片復位電路,所述第一控制器可執行錯誤檢查操作以確定是否已經發生了錯誤,所述第一控制器產生具有預設屬性的心音訊號,並且如果錯誤檢查操作確定沒有發生錯誤,所述第一控制器從所述第一端口輸出所述心音訊號,所述第二端口接收處於第一或第二狀態的芯片復位訊號,其中如果所述第二端口接收的芯片復位定訊號處於第二狀態,所述第一控制器的芯片復位電路就會執行芯片復位操作;及自動恢復邏輯,所述自動恢復邏輯位於所述第一控制器的外部,其包括分別與所述第一控制器的第一端口及第二端口通信的第一端口及第二端口,所述自動恢復邏輯監控所述自動恢復邏輯的第一端口以確定具有預設屬性的所述心音訊號在所述自動恢復邏輯的第一端口處存在或者不存在,並且輸出所述芯片復位訊號從所述自動恢復邏輯的第二端口至所述第一控制器的第二端口,從所述自動恢復邏輯的第二端口輸出的芯片復位訊號處於第一狀態或者第二狀態分別取決於具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口上存在或者不存在,所述自動恢復邏輯包括事件記錄邏輯,其記錄所述自動邏輯何時確認具有預設屬性的心音訊號從所述自動恢復邏輯的第一端口處消失的指示。
  2. 如請求項1所述的光通信模組,其中所述第一控制器執行的錯誤檢查操作為奇偶校驗錯誤檢查操作以確定奇偶校驗錯誤是否已經發生。
  3. 如請求項2所述的光通信模組,其中所述第一控制器包括第一處理邏輯及存儲設備,所述第一處理邏輯設置成執行多個任務,其中至少一個任務正在執行生成具有預設的屬性的心音訊號的算法,並 且如果所述第一控制器確定沒有發生奇偶校驗錯誤,則從所述第一控制器的第一端口輸出所述心音訊號。
  4. 如請求項3所述的光通信模組,其中所述自動恢復邏輯包括第二處理邏輯,其被設置為監控所述自動恢復邏輯的第一端口以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口處是否存在,並且從所述自動恢復邏輯的第二端口輸出芯片復位訊號。
  5. 如請求項4所述的光通信模組,其中所述第一控制器的存儲設備為靜態隨機存取存儲器。
  6. 如請求項5所述的光通信模組,其中所述光通信模組包括第一芯片,所述第一控制器是在所述第一芯片上與靜態隨機存取存儲器集成的第一微型控制器。
  7. 如請求項6所述的光通信模組,其中所述光通信模組包括第二微型控制器,所述自動恢復邏輯為所述第二微型控制器的邏輯,所述第一微型控制器的第一和第二端口分別對應第一微型控制器的第一和第二端子,所述自動恢復邏輯的第一和第二端口分別對應所述第二微型控制器的第一和第二端子,所述第一微型控制器的第二端子為第一微型控制器的復位端子。
  8. 如請求項4所述的光通信模組,其中所述第一处理邏輯包括固件作業任務隊列,並且其中所述一個任務包括隊列中包含的固件電腦代碼段。
  9. 如請求項8所述的光通信模組,其中如果所述第一控制器確認發生了奇偶校驗錯誤,所述第一處理邏輯停止執行任何包含在固件工作任務隊列中的任務,包括所述至少一個任務,並且所述至少一個 任務的停止執行會導致具有預設的心音訊號從所述自動恢復邏輯的第一端口處消失。
  10. 如請求項4所述的光通信模組,其中所述第二处理邏輯包括計時器邏輯及計時器到期邏輯,所述計時器邏輯監控所述自動恢復邏輯的第一端口並且如果具有預設屬性的心音訊號從所述自動恢復邏輯的第一端口消失則啟動計時器,所述計時器到期邏輯確定所述計時器何時到期,並且當所述計時器到期後所述計時器到期邏輯將所述芯片復位訊號從第一狀態改為第二狀態。
  11. 如請求項10所述的光通信模組,其中所述第二邏輯進一步包括事件記錄邏輯,其記錄計時器何時到期的指示。
  12. 一種在光通信模組中用以從系統硬體故障中執行自動恢復的方法,其包括:在光通信模組的第一控制器中,執行錯誤檢查操作以確認是否發生了錯誤;所述第一控制器包括第一及第二端口,當執行所述錯誤檢查操作時,如果所述第一控制器確認沒有發生錯誤,則產生具有預設屬性的心音訊號並從所述第一控制器的第一端口輸出所述心音訊號;光通信模組的自動恢復邏輯,位於所述第一控制器外部並且包括第一端口,所述自動回復邏輯的第一端口和所述第一控制器的第一端口通信,在所述自動恢復邏輯中,監控所述自動恢復邏輯的第一端口,以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口是否存在;所述自動恢復邏輯包括第二端口,在所述自動恢復邏輯中,從所述自動恢復邏輯的第二端口輸出芯片復位訊號至所述第一控制器的第 二端口,其中,所述芯片復位訊號處於第一或者第二狀態分別取決於所述心音訊號在所述自動恢復邏輯的第一端口存在或者不存在;以及如果所述第一控制器的第二端口接收到的芯片復位訊號處於第二狀態,則通過第一控制器的芯片復位電路執行芯片復位操作,通過自動恢復邏輯的時間記錄邏輯,記錄所述自動恢復邏輯何時確認具有預設屬性的心音訊號從所述自動恢復邏輯的第一端口消失的指示。
  13. 如請求項12所述的方法,其中由所述第一控制器執行的錯誤檢查操作為奇偶校驗錯誤檢查操作,其可用來確認是否發生了奇偶校驗錯誤。
  14. 如請求項13所述的方法,其中所述第一控制器包括第一處理邏輯,所述第一處理邏輯包括固件工作任務隊列,並且其中如果沒有發生奇偶校驗錯誤,則從所述第一控制器的第一端口產生並輸出具有預設屬性的心音訊號的步驟由包含在隊列中的固件電腦代碼實施,並由所述第一處理邏輯執行。
  15. 如請求項14所述的方法,其中如果第一控制器確認已經發生了奇偶校驗錯誤,則所述第一處理邏輯停止執行包含在所述固件工作任務隊列中的任何任務,包括從所述第一控制器的第一端口產生和輸出具有預設屬性的心音訊號,從而導致具有預設屬性的心音訊號從所述自動恢復邏輯的第一端口處消失。
  16. 如請求項15所述的方法,其中所述自動恢復邏輯包括計時器邏輯及計時器到期邏輯,所述計時器邏輯監控所述自動恢復邏輯的第一端口,並且如果具有預設屬性的心音訊號從所述自動恢復邏輯的第一端口處消失則啟動計時器,所述計時器到期邏輯確定計時器何時 到期並當所述計時器到期時將所述芯片復位訊號從第一狀態改為第二狀態。
  17. 如請求項16所述的方法,其中進一步包括:通過自動恢復邏輯的事件記錄邏輯,記錄計時器何時到期的指示。
  18. 一種使用電腦程式在光通信模組的控制器執行錯誤檢查操作,以確認已經發生了錯誤,並執行了系統硬體故障後,從系統硬體故障中執行自動恢復的方法,所述電腦程式包括儲存在非暫時性電腦可讀介質中的電腦代碼,所述方法包括以下步驟:在所述控制器的第一邏輯中執行第一程式碼片段,導致產生具有預設屬性的心音訊號,並且當執行錯誤檢查操作時,如果所述控制器確認沒有發生錯誤,則從所述控制器的第一端口輸出具有預設屬性的心音訊號,其中,光通信模組的自動恢復邏輯位於所述控制器的外部,所述自動恢復邏輯包括第一端口,用於和控制器的第一端口通信,所述自動恢復邏輯監控所述自動恢復邏輯的第一端口,以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口是否存在,所述自動恢復邏輯從所述自動恢復邏輯的第二端口輸出芯片復位訊號至所述控制器的第二端口,所述芯片復位訊號處於第一或者第二狀態分別取決於具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口處存在或者不存在,如果在所述控制器的第二端口處接收到的芯片復位訊號處於第二狀態,則所述控制器的芯片復位電路執行芯片復位操作。
  19. 如請求項18所述的方法,其中所述錯誤檢查操作為奇偶校驗錯誤檢查操作,用以確認是否發生了奇偶校驗錯誤。
  20. 一種使用電腦程式在光通信模組的控制器的系統硬體故障中執行自動恢復的方法,所述控制器執行錯誤檢查操作以確認是否發生了錯誤,如果沒有發生錯誤,則從所述控制器的第一端口輸出具有預設屬性的心音訊號,所述電腦程式的電腦代碼儲存在非暫時性電腦可讀介質中,所述方法包括以下步驟:在所述光通信模組的自動恢復邏輯中執行第一程式碼片段,所述自動恢復邏輯位於所述控制器的外部並且包括和所述控制器的第一端口通信的第一端口,所述第一程式碼片段監控自動恢復邏輯的第一端口以確認具有預設屬性的心音訊號在所述自動恢復邏輯的第一端口處是否存在;以及在所述自動恢復邏輯中執行第二程式碼片段,導致從自動恢復邏輯的第二端口輸出芯片復位訊號至控制器的第二端口,其中,所述芯片復位訊號處於第一或者第二狀態分別取決於具有預設屬性的心音訊號在自動恢復邏輯的第一端口存在或者不存在,如果控制器的第二端口接收到的芯片復位訊號處於第二狀態,所述控制器的芯片復位電路則執行芯片復位操作。
  21. 如請求項20所述的方法,其中所述錯誤檢查操作為奇偶校驗錯誤檢查操作,以檢測奇偶校驗錯誤。
TW108143413A 2018-11-30 2019-11-28 從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組 TWI810413B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/206,017 US10936399B2 (en) 2018-11-30 2018-11-30 System and method for performing automatic recovery after a system hard fault has occurred in a controller of an optical communications module
US16/206,017 2018-11-30

Publications (2)

Publication Number Publication Date
TW202109296A TW202109296A (zh) 2021-03-01
TWI810413B true TWI810413B (zh) 2023-08-01

Family

ID=70849252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108143413A TWI810413B (zh) 2018-11-30 2019-11-28 從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組

Country Status (3)

Country Link
US (1) US10936399B2 (zh)
CN (1) CN111262621B (zh)
TW (1) TWI810413B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296998B (zh) * 2021-06-22 2024-08-13 中国第一汽车股份有限公司 数据通信异常恢复方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7334167B2 (en) * 2002-07-01 2008-02-19 Advanced Digital Broadcast S.A. Circuit for detection of internal microprocessor watchdog device execution and method for resetting microprocessor system
US20150052340A1 (en) * 2013-08-15 2015-02-19 Nxp B.V. Task execution determinism improvement for an event-driven processor
US20160335149A1 (en) * 2015-05-11 2016-11-17 Silicon Laboratories Inc. Peripheral Watchdog Timer
CN106533870A (zh) * 2016-11-09 2017-03-22 湖南戈人自动化科技有限公司 一种运动控制系统信号传输方法
US20170123884A1 (en) * 2015-11-04 2017-05-04 Quanta Computer Inc. Seamless automatic recovery of a switch device
US20170195042A1 (en) * 2016-01-04 2017-07-06 DASAN Networks, Inc Optical ethernet apparatus capable of reset control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424666B2 (en) 2005-09-26 2008-09-09 Intel Corporation Method and apparatus to detect/manage faults in a system
US7681089B2 (en) 2007-02-20 2010-03-16 Dot Hill Systems Corporation Redundant storage controller system with enhanced failure analysis capability
US8938736B2 (en) * 2009-07-07 2015-01-20 Dell Products L.P. System and method for providing redundancy for management controller
WO2014186621A1 (en) * 2013-05-15 2014-11-20 Ripple Llc Systems and methods for electrical stimulation of neural tissue
US20170269984A1 (en) 2016-03-18 2017-09-21 Qualcomm Incorporated Systems and methods for improved detection of processor hang and improved recovery from processor hang in a computing device
US10635350B2 (en) * 2018-01-23 2020-04-28 Western Digital Technologies, Inc. Task tail abort for queued storage tasks
US11023302B2 (en) * 2018-03-07 2021-06-01 Dell Products L.P. Methods and systems for detecting and capturing host system hang events

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7334167B2 (en) * 2002-07-01 2008-02-19 Advanced Digital Broadcast S.A. Circuit for detection of internal microprocessor watchdog device execution and method for resetting microprocessor system
US20150052340A1 (en) * 2013-08-15 2015-02-19 Nxp B.V. Task execution determinism improvement for an event-driven processor
US20160335149A1 (en) * 2015-05-11 2016-11-17 Silicon Laboratories Inc. Peripheral Watchdog Timer
US20170123884A1 (en) * 2015-11-04 2017-05-04 Quanta Computer Inc. Seamless automatic recovery of a switch device
US20170195042A1 (en) * 2016-01-04 2017-07-06 DASAN Networks, Inc Optical ethernet apparatus capable of reset control
CN106533870A (zh) * 2016-11-09 2017-03-22 湖南戈人自动化科技有限公司 一种运动控制系统信号传输方法

Also Published As

Publication number Publication date
CN111262621B (zh) 2022-06-24
US10936399B2 (en) 2021-03-02
US20200174877A1 (en) 2020-06-04
CN111262621A (zh) 2020-06-09
TW202109296A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
US20140348501A1 (en) Embedded apparatus to monitor simulated brillouin scattering from raman amplifier in fiber optics transmission system
JP2010141774A (ja) 光送受信機
CN102752045B (zh) 光网络单元光模块
US7215688B2 (en) Disable/enable control for laser driver eye safety
TWI810413B (zh) 從系統硬體故障中執行自動恢復的方法及使用該方法的光通信模組
US8155159B2 (en) Method and apparatus for calibrating burst mode laser transmitters
JPS62203435A (ja) 単一伝送路双方向光通信装置
JP2017532909A (ja) アクティブ光ケーブルにおける受信器結合効率、リンクマージンおよびリンクトポロジーを決定する方法
JP2011061579A (ja) 通信システム
CN109217922B (zh) 一种光模块上报接收信号丢失告警的方法及装置
JP4584563B2 (ja) 光伝送システム
US7356681B2 (en) Transient transceiver clock configuration
US20140016944A1 (en) Method, device, and system for saving energy in optical communication
US8184985B2 (en) Control circuit for optical transmitter/receiver
JP2022062673A (ja) 安全にレーザー出射を制御する方法及びシステム
JP2016208164A (ja) 通信装置、通信システム、および通信方法
JP3714605B2 (ja) オープン・ループ並列光リンクおよび光パワー調整方法
US10270525B2 (en) Information processing apparatus and a method of determining whether or not to transmit failure information
US20160373186A1 (en) Compensating for optical signal degradation
JP2011145208A (ja) 基板
US20160087400A1 (en) Operating vertical-cavity surface-emitting lasers
JP4259304B2 (ja) 光増幅用制御装置
US8687958B2 (en) Intelligent optical module capable of restarting remotely from host system
JP2010085183A (ja) 出力監視装置
US8253275B2 (en) Connection error avoidance for apparatus connected to a power supply