TWI809372B - Methods and apparatus for slot configuration for sidelink communication - Google Patents

Methods and apparatus for slot configuration for sidelink communication Download PDF

Info

Publication number
TWI809372B
TWI809372B TW110112931A TW110112931A TWI809372B TW I809372 B TWI809372 B TW I809372B TW 110112931 A TW110112931 A TW 110112931A TW 110112931 A TW110112931 A TW 110112931A TW I809372 B TWI809372 B TW I809372B
Authority
TW
Taiwan
Prior art keywords
side link
configuration
sidelink
parameter set
link
Prior art date
Application number
TW110112931A
Other languages
Chinese (zh)
Other versions
TW202139769A (en
Inventor
陳滔
Original Assignee
新加坡商聯發科技(新加坡)私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/084193 external-priority patent/WO2021203411A1/en
Application filed by 新加坡商聯發科技(新加坡)私人有限公司 filed Critical 新加坡商聯發科技(新加坡)私人有限公司
Publication of TW202139769A publication Critical patent/TW202139769A/en
Application granted granted Critical
Publication of TWI809372B publication Critical patent/TWI809372B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Abstract

Aspects of the disclosure provide a method of sidelink slot configuration. The method can include obtaining a sidelink (SL) (pre-)configuration for an SL operation using an SL by a user equipment (UE) in a wireless network, wherein the UE is configured with a Uu link with a base station in the wireless network; receiving a time division duplex (TDD) uplink/downlink (UL/DL) configuration; determining an SL slot configuration for the SL based on the SL (pre-)configuration, the TDD UL/DL configuration, and a reference numerology; and performing SL transceiving through the SL based on the determined SL slot configuration.

Description

側鏈路時隙配置方法與裝置Sidelink time slot configuration method and device

本發明總體有關於無線通訊,以及,更具體地,有關於側鏈路(sidelink,SL)的時隙配置和資源配置。The present invention relates generally to wireless communications, and, more specifically, to sidelink (SL) slot allocation and resource allocation.

5G無線電接入技術將成為現代接入網的關鍵元件,它將解決高通訊量增長和日益增長的高頻寬連接需求。在3GPP新無線電(new radio,NR)中,SL持續演進。借助支援的新功能,SL為裝置到裝置的通訊提供了低延遲、高可靠性和高輸送量。車用通訊(vehicle to everything,V2X)中支援SL測量。單播、組播和廣播均可支援V2X SL通訊。為了支援高效的SL通訊,SL資源配置需要考慮SL路徑和Uu鏈路路徑的不同配置要求和場景。資源配置包括通道狀態資訊參考信號(channel state information reference signal,CSI-RS)資源配置和報告,以及用於SL通訊的頻寬部分(bandwidth part,BWP)配置。此外,SL的時隙配置與現有的Uu鏈路具有通用屬性。SL和Uu鏈路共用配置資訊可提高系統效率。但是,SL可配置有不同的參數集(numerology),時隙配置需要額外的步驟。5G radio access technology will be a key element of modern access networks that will address high traffic growth and the increasing need for high-bandwidth connections. In 3GPP new radio (new radio, NR), SL continues to evolve. With new features supported, SL provides low latency, high reliability, and high throughput for device-to-device communications. SL measurement is supported in vehicle to everything (V2X). Unicast, multicast and broadcast can all support V2X SL communication. In order to support efficient SL communication, SL resource configuration needs to consider different configuration requirements and scenarios of SL path and Uu link path. Resource configuration includes channel state information reference signal (channel state information reference signal, CSI-RS) resource configuration and reporting, and bandwidth part (BWP) configuration for SL communication. In addition, the slot configuration of SL has common properties with existing Uu links. Sharing configuration information between SL and Uu links improves system efficiency. However, SL can be configured with different parameter sets (numerology), and slot configuration requires additional steps.

因此,SL時隙配置和側鏈路資源配置需要改進和增強。Therefore, SL slot configuration and side link resource configuration need to be improved and enhanced.

本發明一實施例提供一種側鏈路時隙配置方法,包括:由使用者設備在無線網路中通過側鏈路獲取側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中基地台連接的Uu鏈路;接收時分雙工上行鏈路/下行鏈路配置; 基於所述側鏈路(預)配置、時分雙工上行鏈路/下行鏈路配置和參考參數集確定所述側鏈路的側鏈路時隙配置;以及基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。An embodiment of the present invention provides a side link time slot configuration method, including: the user equipment acquires side link (pre)configuration for side link operation through the side link in the wireless network, wherein the user equipment The device is configured with a Uu link connected to the base station in the wireless network; receives a time division duplex uplink/downlink configuration; based on the side link (pre)configuration, time division duplex uplink determining a side link time slot configuration of the side link through a road/downlink configuration and a reference parameter set; and performing side link transceiving through the side link based on the determined side link time slot configuration.

本發明另一實施例提供一種使用者設備,包括:收發機,用來在無線網路中發送和接收射頻信號;側鏈路配置模組,用來在無線網路中通過側鏈路獲取側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中基地台連接的Uu鏈路;同步模組,用來接收時分雙工上行鏈路/下行鏈路配置; 側鏈路時隙模組,用來基於所述側鏈路(預)配置、時分雙工上行鏈路/下行鏈路配置和參考參數集確定所述側鏈路的側鏈路時隙配置;以及側鏈路控制模組,用來基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。Another embodiment of the present invention provides a user equipment, including: a transceiver, used to send and receive radio frequency signals in a wireless network; a side link configuration module, used to obtain a side link through a side link in a wireless network link (pre)configuration for side link operation, wherein the user equipment is configured with a Uu link connected to a base station in the wireless network; a synchronization module for receiving time division duplex uplink road/downlink configuration; a sidelink slot module for determining said sidelink based on said sidelink (pre)configuration, time division duplex uplink/downlink configuration and a reference parameter set The side link time slot configuration; and a side link control module, configured to perform side link transceiving through the side link based on the determined side link time slot configuration.

現詳細給出關於本發明的一些實施例作為參考,其示例在附圖中描述。Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.

在NR無線網路中,使能了SL。NR V2X支援CSI-RS的傳輸。 CSI-RS在物理側鏈路共用通道(physical sidelink shared channel,PSSCH)中傳輸,並且只有在高層(higher layer)信令使能了SL CQI/RI報告時才可傳輸。來自RX UE的SL CQI/RI報告由側鏈路控制資訊(sidelink control information,SCI)在實體層使能,以幫助TX UE進行鏈路適配(link adaption)。 Uu上的傳統CSI報告是在實體層執行的。訊框結構的參數集定義了訊框/時隙結構,例如子載波間隔(subcarrier spacing,SCS)和符號長度。與LTE網路不同,NR網路中的參數集支援不同類型的SCS。 SL通訊的時隙配置需要考慮SL和Uu鏈路之間的參數集差異。On the NR wireless network, SL is enabled. NR V2X supports the transmission of CSI-RS. The CSI-RS is transmitted in the physical sidelink shared channel (PSSCH) and can only be transmitted when SL CQI/RI reporting is enabled by higher layer signaling. SL CQI/RI reporting from RX UEs is enabled at the physical layer by sidelink control information (SCI) to assist TX UEs in link adaptation. Traditional CSI reporting on Uu is performed at the physical layer. The frame structure parameter set defines the frame/slot structure, such as subcarrier spacing (SCS) and symbol length. Unlike LTE networks, the parameter sets in NR networks support different types of SCS. The time slot configuration for SL communication needs to take into account the difference in parameter sets between SL and Uu links.

第1圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性無線網路(系統)的系統示意圖。無線系統100包括形成分佈在地理區域上的網路的一個或多個固定基本設施單元。基本設施單元也可以被稱為接入點、接入終端、基地台、節點B、演進節點B(eNode-B)、下一代節點B(gNB)或本領域中使用的其他術語。網路可以是同構網路也可以是異構網路,可以採用相同或不同頻率進行部署。gNB 101是NR網路中的示範性基地台。FIG. 1 is a system schematic diagram of an exemplary wireless network (system) for sidelink time slot configuration and resource configuration according to an embodiment of the present invention. Wireless system 100 includes one or more fixed infrastructure units forming a network distributed over a geographical area. An infrastructure unit may also be called an access point, access terminal, base station, Node-B, evolved Node-B (eNode-B), next-generation Node-B (gNB), or other terminology used in the art. Networks can be homogeneous or heterogeneous, and can be deployed on the same or different frequencies. gNB 101 is an exemplary base station in the NR network.

無線網路100還包括多個通訊裝置或行動站,如使用者設備(user equipment,UE)111、112、113、114、115、116和117。無線網路100中的示例性行動裝置具有SL能力。行動裝置可與一個或多個基地台(如gNB 101)建立一個或多個連接。UE 111具有與gNB 101之間的接入鏈路,包括上行鏈路(uplink,UL)和下行鏈路(downlink,DL)。也由gNB 101提供服務的UE 112也可與gNB 101建立UL和DL。UE 111與UE 112建立SL。UE 111與UE 112都是覆蓋範圍內的裝置。車輛上的行動裝置(例如行動裝置113、114和115)也具有SL能力。行動裝置113和114被gNB 101覆蓋。覆蓋範圍內的裝置113與覆蓋範圍內的裝置114建立SL。車輛上的行動裝置115是覆蓋範圍外的裝置。覆蓋範圍內的行動裝置114與覆蓋範圍外的裝置115建立SL。在其他實施例中,諸如UE 116和117之類的行動裝置可能都處於覆蓋範圍之外,但可通過側鏈路與另外的一個或多個行動裝置進行分組資料的發送和接收。The wireless network 100 also includes a plurality of communication devices or mobile stations, such as user equipment (UE) 111 , 112 , 113 , 114 , 115 , 116 and 117 . Exemplary mobile devices in wireless network 100 are SL capable. A mobile device can establish one or more connections with one or more base stations (eg, gNB 101 ). UE 111 has an access link with gNB 101, including uplink (uplink, UL) and downlink (downlink, DL). A UE 112 also served by gNB 101 may also establish UL and DL with gNB 101 . UE 111 establishes SL with UE 112 . Both UE 111 and UE 112 are devices within coverage. Mobile devices on the vehicle, such as mobile devices 113, 114, and 115, are also SL capable. Mobile devices 113 and 114 are covered by gNB 101 . The device 113 within the coverage establishes an SL with the device 114 within the coverage. The mobile device 115 on the vehicle is an out-of-coverage device. The in-coverage mobile device 114 establishes an SL with the out-of-coverage device 115 . In other embodiments, mobile devices such as UEs 116 and 117 may both be out of coverage, but may transmit and receive packet data with one or more other mobile devices via sidelinks.

第1圖進一步示出了用於側鏈路時隙配置和資源配置的基地台和行動裝置/UE的簡化方塊示意圖。gNB 101具有天線156,其發送和接收無線電信號。耦接於該天線的RF收發器電路153從天線156接收RF信號,將RF信號轉換為基帶信號,並將基帶信號發送到處理器152。RF收發器153還將從處理器152接收到的基帶信號轉換為RF信號,並發送到天線156。處理器152處理接收到的基帶信號,並調用不同的功能模組來執行gNB 101中的功能特性。記憶體151存儲程式指令和資料154以控制gNB 101的操作。gNB 101還包括一組控制模組155,用來執行功能任務以與行動站通訊。FIG. 1 further shows a simplified block diagram of a base station and a mobile device/UE for sidelink slot allocation and resource allocation. The gNB 101 has an antenna 156, which transmits and receives radio signals. The RF transceiver circuit 153 coupled to the antenna receives RF signals from the antenna 156 , converts the RF signals to baseband signals, and sends the baseband signals to the processor 152 . The RF transceiver 153 also converts the baseband signal received from the processor 152 to an RF signal and sends it to the antenna 156 . The processor 152 processes the received baseband signal, and invokes different functional modules to execute the functional characteristics in the gNB 101 . The memory 151 stores program instructions and data 154 to control the operation of the gNB 101 . The gNB 101 also includes a set of control modules 155 for performing functional tasks to communicate with mobile stations.

UE 111具有天線165,用於發送和接收無線電信號。耦接於該天線的RF收發器電路163從天線165接收RF信號,將RF信號轉換為基帶信號,並將基帶信號發送到處理器162。在一實施例中,RF收發器可包括兩個RF模組(未示出)。第一RF模組用於高頻(high frequency,HF)發送和接收;另一RF模組不同於HF收發器,用於不同頻段的發送和接收。RF收發器163還將從處理器162接收到的基帶信號轉換為RF信號,並發送到天線165。處理器162處理接收到的基帶信號,並調用不同的功能模組來執行UE 111中的功能特性。記憶體161存儲程式指令和資料164以控制UE 111的操作。天線165向gNB 101的天線156發送上行鏈路傳送,並從gNB 101的天線156接收下行鏈路傳送。UE 111 has an antenna 165 for sending and receiving radio signals. The RF transceiver circuit 163 coupled to the antenna receives RF signals from the antenna 165 , converts the RF signals to baseband signals, and sends the baseband signals to the processor 162 . In one embodiment, the RF transceiver may include two RF modules (not shown). The first RF module is used for high frequency (high frequency, HF) transmission and reception; the other RF module is different from the HF transceiver and used for transmission and reception of different frequency bands. The RF transceiver 163 also converts the baseband signal received from the processor 162 into an RF signal and sends it to the antenna 165 . The processor 162 processes the received baseband signal, and invokes various functional modules to perform functions in the UE 111 . The memory 161 stores program instructions and data 164 to control the operation of the UE 111 . Antenna 165 sends uplink transmissions to antenna 156 of gNB 101 and receives downlink transmissions from antenna 156 of gNB 101 .

UE 111還包括一組控制模組,用於執行功能任務。這些功能模組可通過電路、軟體、韌體或上述的組合實現。SL配置模組191使用無線網路中的SL來獲取用於SL操作的SL(預)配置,其中UE被配置有與無線網路中基地台進行連接的Uu鏈路。同步模組192接收時分雙工(time division duplex,TDD)UL/DL配置。SL時隙模組193基於SL(預)配置、TDD UL/DL配置以及參考參數集確定用於SL的SL時隙配置。SL控制模組194基於所確定的SL時隙配置來執行通過SL的SL收發。UE 111 also includes a set of control modules for performing functional tasks. These functional modules can be realized by circuits, software, firmware or a combination of the above. The SL configuration module 191 obtains SL (pre-)configuration for SL operation using the SL in the wireless network, where the UE is configured with a Uu link connecting with the base station in the wireless network. The synchronization module 192 receives a time division duplex (TDD) UL/DL configuration. The SL slot module 193 determines the SL slot configuration for SL based on the SL (pre)configuration, the TDD UL/DL configuration and the reference parameter set. The SL control module 194 performs SL transceiving over SL based on the determined SL slot configuration.

第2圖係根據本發明實施例的具有NR無線電介面堆疊的集中化上層的示範性NR無線系統示意圖。中央單元(central unit,CU)/gNB節點的上層(upper layer)和分散式單元(distributed unit,DU)/gNB節點的下層(lower layer)之間可能有不同的協議劃分選擇。中央單元和gNB下層之間的功能劃分可能取決於傳輸層。由於較高的協議層在頻寬、延遲、同步和抖動方面對傳輸層的性能要求較低,中央單元和gNB下層之間的低性能傳輸可以使能NR無線電堆疊的高協定層在中央單元中得到支援。在一實施例中,服務資料適配協定 (service data adaptation protocol,SDAP)和分組資料彙聚協定(packet data convergence protocol,PDCP)層位於中央單元,而無線電鏈路控制(radio link control,RLC)、介質存取控制(media access control,MAC)和物理(physical,PHY)層位於分散式單元。核心單元(core unit)201與具有gNB上層252的中央單元211連接。在一實施例250中,gNB上層252包括PDCP層和可選的SDAP層。中央單元211與分散式單元221、222和223連接,其中分散式單元221、222和223分別對應於小區231、232和233。分散式單元221、222和223包括gNB下層251。在一實施例中,gNB下層251包括PHY、MAC和RLC層。在另一實施例260中,每個gNB具有包括SDAP、PDCP、RLC、MAC和PHY層的協議堆疊261。FIG. 2 is a schematic diagram of an exemplary NR wireless system with a centralized upper layer of an NR radio interface stack according to an embodiment of the present invention. There may be different protocol division options between the central unit (CU)/gNB node upper layer (upper layer) and distributed unit (DU)/gNB node lower layer (lower layer). The functional division between the central unit and gNB lower layers may depend on the transport layer. Since higher protocol layers have lower performance requirements on the transport layer in terms of bandwidth, latency, synchronization, and jitter, low-performance transport between the central unit and lower gNB layers can enable high-protocol layers of the NR radio stack in the central unit get support. In one embodiment, service data adaptation protocol (service data adaptation protocol, SDAP) and packet data convergence protocol (packet data convergence protocol, PDCP) layers are located in the central unit, and radio link control (radio link control, RLC), The media access control (media access control, MAC) and physical (physical, PHY) layers are located in distributed units. A core unit 201 is connected to a central unit 211 with a gNB upper layer 252 . In an embodiment 250, the gNB upper layer 252 includes a PDCP layer and an optional SDAP layer. The central unit 211 is connected to decentralized units 221, 222 and 223, wherein the distributed units 221, 222 and 223 correspond to the cells 231, 232 and 233, respectively. The distributed units 221 , 222 and 223 include a gNB lower layer 251 . In one embodiment, gNB lower layer 251 includes PHY, MAC and RLC layers. In another embodiment 260, each gNB has a protocol stack 261 comprising SDAP, PDCP, RLC, MAC and PHY layers.

第3圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性頂層功能示意圖。 UE 301和UE 302分別通過Uu鏈路311和312與NR網路中的gNB 303連接。在一實施例中,為UE 301和UE 302配置側鏈路313。FIG. 3 is a schematic diagram of exemplary top-level functions for sidelink time slot configuration and resource configuration according to an embodiment of the present invention. UE 301 and UE 302 are connected to gNB 303 in the NR network through Uu links 311 and 312 respectively. In one embodiment, side link 313 is configured for UE 301 and UE 302 .

在一實施例321中,SL時隙配置是基於參考參數集。UE獲得側鏈路配置和TDD下行鏈路/上行鏈路配置。SL時隙配置是基於Uu鏈路參數集和側鏈路參數集得出的。 UE獲得用於時隙配置的參考樣式(pattern),並通過考慮不同的細微性(granularity)來獲得SL時隙樣式或UL時隙樣式。In an embodiment 321, the SL slot configuration is based on a reference parameter set. UE obtains sidelink configuration and TDD downlink/uplink configuration. The SL slot configuration is derived based on the Uu link parameter set and the side link parameter set. The UE obtains a reference pattern (pattern) for slot configuration, and obtains an SL slot pattern or an UL slot pattern by considering different granularities.

在另一實施例322中,為側鏈路通訊執行CSI-RS資源配置。對於用於CSI測量的CSI-RS傳輸來說,可根據用於CSI請求的SCI欄位(如第二階段SCI)的存在和CSI-RS資源的配置進行速率匹配。具體來說,CSI請求欄位的存在與否可決定是否進行速率匹配,而CSI-RS資源的配置可用於決定如何做速率匹配。另外,CSI-RS資源可映射到傳輸傳輸塊(transport block,TB)的物理側鏈路共用通道(physical sidelink shared channel,PSSCH)資源上。換句話說,它不能被映射到發送第二階段SCI的PSSCH和/或攜帶第一階段SCI的PSSCH上。在其他實施例中,可將其擊穿(punctured)以降低複雜性。應當在SCI(如第二階段SCI)和/或高層信令中指示假定的CSI表,以使UE基於CSI測量來得到適當的CSI索引。In another embodiment 322, CSI-RS resource allocation is performed for sidelink communication. For CSI-RS transmission for CSI measurement, rate matching can be performed according to the presence of the SCI field for CSI request (eg, Phase 2 SCI) and the configuration of CSI-RS resources. Specifically, the presence or absence of the CSI request field can determine whether to perform rate matching, and the configuration of CSI-RS resources can be used to determine how to perform rate matching. In addition, the CSI-RS resource may be mapped to a physical sidelink shared channel (physical sidelink shared channel, PSSCH) resource for transmitting a transport block (transport block, TB). In other words, it cannot be mapped to the PSSCH that transmits the second-stage SCI and/or the PSSCH that carries the first-stage SCI. In other embodiments, it may be punctured to reduce complexity. The assumed CSI table should be indicated in the SCI (such as the second phase SCI) and/or high layer signaling, so that the UE can obtain the appropriate CSI index based on the CSI measurement.

在又一實施例323中,可為SL通訊執行資源池配置和分配。對於資源池分配來說,可引入特殊的子通道以容納非子通道大小的倍數或小於子通道大小的資源(或資源塊(resource block,RB))。對於此類特殊子通道,可將其限於PSSCH傳輸或FDM複用的PSSCH和物理側鏈路控制通道(physical sidelink control channel,PSCCH)的傳輸。在一實施例中,如果PSCCH可用,則PSCCH可以跨越SL時隙中除GP符號和物理側鏈路回饋通道(physical sidelink feedback channel,PSFCH)符號之外的所有符號。可以用不同的子通道大小配置多個資源池,UE可隨機或基於規則(如資源池的優先順序)來選擇資源池。In yet another embodiment 323, resource pool configuration and allocation may be performed for SL communications. For resource pool allocation, special subchannels can be introduced to accommodate resources (or resource blocks (RB)) that are not multiples of the subchannel size or smaller than the subchannel size. For such a special subchannel, it can be limited to PSSCH transmission or FDM multiplexed PSSCH and physical sidelink control channel (physical sidelink control channel, PSCCH) transmission. In an embodiment, if the PSCCH is available, the PSCCH may span all symbols in the SL slot except GP symbols and physical sidelink feedback channel (PSFCH) symbols. Multiple resource pools can be configured with different sub-channel sizes, and the UE can select a resource pool randomly or based on rules (such as the priority of resource pools).

在一實施例中,可基於UL時隙配置和參考參數集得到SL時隙配置。In an embodiment, the SL slot configuration can be obtained based on the UL slot configuration and the reference parameter set.

第4圖係根據本發明實施例的包括NR訊框和時隙結構的側鏈路時隙配置的示範性示意圖。示例性NR訊框結構410示出了訊框411、子訊框412和時隙413。10ms的訊框411包括10個子訊框,每個子訊框具有1ms。子訊框412包括一個或多個時隙,這取決於參數集中的子載波間隔。每個時隙包含多個符號。420示出了NR參數集中的示例性參數。參數集由SCS和迴圈首碼(cyclic prefix,CP)開銷定義。NR網路支援多個SCS。將基礎SCS通過整數進行縮放可得到多個SCS。420示出了用於參數集配置的SCS參數。NR網路支援多個SCS,包括15kHz、30kHz、60kHz、120kHz等。參數集參數μ是{0、1、2、3,…}的整數,每個整數對應於一個SCS。每個NR子訊框具有1ms的長度,每個子訊框的時隙數基於SCS,等於2µ。時隙持續時間為1/2µms。在其他實施例中,NR網路支援更多的SCS,如240kHz。420示出了示例性參數。FIG. 4 is an exemplary diagram of a sidelink slot configuration including NR frame and slot structure according to an embodiment of the present invention. An exemplary NR frame structure 410 shows a frame 411, a subframe 412, and a time slot 413. A 10 ms frame 411 includes 10 subframes, each subframe is 1 ms. Subframe 412 includes one or more time slots, depending on the subcarrier spacing in the parameter set. Each slot contains multiple symbols. 420 shows exemplary parameters in the NR parameter set. The parameter set is defined by the SCS and the cyclic prefix (CP) overhead. The NR network supports multiple SCSs. Scaling the base SCS by an integer yields multiple SCSs. 420 shows SCS parameters for parameter set configuration. The NR network supports multiple SCSs, including 15kHz, 30kHz, 60kHz, 120kHz, etc. The parameter set parameter μ is an integer of {0, 1, 2, 3, ...}, each integer corresponds to one SCS. Each NR subframe has a length of 1 ms, and the number of slots per subframe is based on the SCS, equal to 2µ. The slot duration is 1/2µms. In other embodiments, the NR network supports more SCS, such as 240kHz. 420 shows exemplary parameters.

在NR網路中,支援多個SCS用於時隙配置。在當前系統中,時隙可被分類為下行鏈路、上行鏈路、混合UL和DL傳輸。在TDD中,可將時隙配置為用於UL和DL的混合使用。 NR TDD使用靈活的時隙配置。 NR中的時隙格式配置可以是靜態、半靜態和動態的。可通過信令消息,如無線資源控制(radio resource control,RRC)消息,支援靜態和半靜態時隙配置。用於時隙配置的動態配置使用物理下行鏈路控制通道(physical downlink control channel,PDCCH)下行鏈路控制資訊(downlink control information,DCI)。可通過RRC消息(如tdd-UL-DL-ConfigurationCommon)實現時隙配置。時隙配置可僅配置一種樣式,也可以配置兩種樣式。430示出了僅配置有樣式1和參數集參數為μref 的示例性時隙。單個UL/DL樣式以dl-UL-TransmissionPeriodicity 431週期性傳送。週期431中的總時隙數基於週期和所配置SCS確定。 DL時隙432的數量和UL時隙433的數量在週期431內配置。DL/靈活(D/F)時隙434中DL符號的數量以及靈活/UL(F/ D)時隙435中UL符號的數量也可進行配置。In NR networks, multiple SCSs are supported for slot configuration. In current systems, slots can be classified into downlink, uplink, mixed UL and DL transmissions. In TDD, slots can be configured for mixed use of UL and DL. NR TDD uses a flexible slot configuration. Slot format configuration in NR can be static, semi-static and dynamic. Static and semi-static slot configuration may be supported through signaling messages, such as radio resource control (RRC) messages. Dynamic configuration for slot configuration uses physical downlink control channel (PDCCH) downlink control information (DCI). Slot configuration can be achieved through RRC messages such as tdd-UL-DL-ConfigurationCommon. The time slot configuration can only be configured with one type, or two types can be configured. 430 shows an example slot configured with only style 1 and parameter set parameter μ ref . A single UL/DL pattern is periodically transmitted with dl-UL-TransmissionPeriodicity 431 . The total number of slots in a cycle 431 is determined based on the cycle and the configured SCS. The number of DL slots 432 and the number of UL slots 433 are configured in a cycle 431 . The number of DL symbols in DL/flexible (D/F) slots 434 and the number of UL symbols in flexible/UL (F/D) slots 435 are also configurable.

利用配置參數,可從TDD UL/DL配置中匯出與所配置樣式相關聯的UL時隙。在一實施例中,TDD UL/DL配置由系統區塊(system information block,SIB)承載。當Uu鏈路和側鏈路的參數集不同時,側鏈路時隙的數量還基於SL和Uu鏈路之間的參數集差異。UL時隙的數量也基於參數集差異。440示出了基於Uu鏈路/介面與側鏈路之間的參數集差異來得到側鏈路時隙配置的示例性場景。參照430的示範例,側鏈路時隙配置使用TDD UL/DL配置資訊來匯出側鏈路時隙數量。在一實施例中,假設Uu介面μref =2。側鏈路配置442具有與上行鏈路時隙數量相同的側鏈路時隙。當μ=1時,側鏈路配置443被配置為側鏈路時隙的數量是上行鏈路時隙的一半。類似地,μ=3時,側鏈路配置441被配置為側鏈路時隙的數量是上行鏈路時隙的兩倍。此外,如444所示,當側鏈路和Uu鏈路具有不同的參數集時,參數集差異會導致基於上行鏈路符號數量和參考參數集產生額外的側鏈路時隙。側鏈路時隙配置中的側鏈路時隙數量基於參考參數集。Using configuration parameters, the UL slots associated with the configured pattern can be derived from the TDD UL/DL configuration. In one embodiment, the TDD UL/DL configuration is carried by a system information block (SIB). When the parameter sets of Uu link and side link are different, the number of side link slots is also based on the parameter set difference between SL and Uu link. The number of UL slots is also based on parameter set differences. 440 shows an example scenario where the sidelink slot configuration is derived based on a parameter set difference between the Uu link/interface and the sidelink. Referring to the example of 430, the sidelink slot configuration uses TDD UL/DL configuration information to export the number of sidelink slots. In one embodiment, it is assumed that the Uu interface μ ref =2. Sidelink configuration 442 has the same number of sidelink slots as uplink slots. When μ=1, the sidelink configuration 443 is configured such that the number of sidelink slots is half that of uplink slots. Similarly, when μ=3, the sidelink configuration 441 is configured such that the number of sidelink slots is twice that of uplink slots. In addition, as indicated at 444, when the sidelink and Uu link have different parameter sets, the parameter set difference may result in additional sidelink slots based on the number of uplink symbols and the reference parameter set. The number of sidelink slots in the sidelink slot configuration is based on the reference parameter set.

第5圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置的示例圖。 UE 501和UE 502在NR網路中分別通過Uu鏈路511和512與gNB 503連接。 UE 501和UE 502被配置有用於側鏈路513的側鏈路配置。UE基於用於時隙配置的參考樣式和參考參數集確定側鏈路時隙配置520。SL時隙配置520配置僅包括SL符號的SL時隙數量和/或位置。 SL時隙配置520包括SL週期配置521和SL時隙數量的配置522。UE在側鏈路同步信號塊(sidelink synchronization signal block,S-SSB)550中承載/指示配置521和522。對於S-SSB中承載用於確定可用SL時隙的TDD UL/DL資訊來說,可從Uu介面(如SIB消息)獲取的S-SSB中指示與每個週期的UL時隙相關的單週期樣式和雙週期樣式。包括週期配置和樣式指示的SL週期配置521可通過TDD UL/DL配置552獲得。在一實施例中,TDD UL/DL配置552由SIB消息承載。Fig. 5 is an example diagram of side link time slot configuration based on a reference parameter set according to an embodiment of the present invention. UE 501 and UE 502 are connected to gNB 503 through Uu links 511 and 512 respectively in the NR network. UE 501 and UE 502 are configured with a sidelink configuration for sidelink 513 . The UE determines 520 the sidelink slot configuration based on the reference pattern and reference parameter set for slot configuration. The SL slot configuration 520 configures the number and/or location of SL slots including only SL symbols. The SL slot configuration 520 includes an SL cycle configuration 521 and a configuration 522 of the number of SL slots. The UE carries/indicates the configurations 521 and 522 in a sidelink synchronization signal block (S-SSB) 550 . For the TDD UL/DL information carried in the S-SSB to determine the available SL slots, the single cycle associated with the UL slots of each cycle is indicated in the S-SSB obtained from the Uu interface (e.g. SIB message) style and double-period style. SL cycle configuration 521 including cycle configuration and pattern indication can be obtained through TDD UL/DL configuration 552 . In one embodiment, the TDD UL/DL configuration 552 is carried by a SIB message.

S-SSB中的比特有限,所以不能攜帶所有組合。為了節省比特,對於雙週期中每個週期相同的樣式,即{P1=n,P2=n}來說,可將相同的指示通過不同的細微性用於不同的n值。例如,對於雙週期模式{P1,P2}={5,5}來說,樣式{5,5}的連續SL或UL時隙由一些比特指示。對於P1和P2具有相同週期的其他樣式,即{2,2}、{2.5,2.5}和{10,10}來說,可參照用於樣式{5,5}的SL或UL時隙指示,得出相應的資訊和參數集的差異。如430和440所示,當配置了如430的參考樣式時,UE可基於430中的參考樣式配置來推導SL或UL時隙配置。440中的配置適用于側鏈路和上行鏈路時隙配置,其參數集與參考參數集µref 不同。The bits in the S-SSB are limited, so not all combinations can be carried. To save bits, for the same pattern for each of the double periods, ie {P1=n, P2=n}, the same indication can be used with different nuances for different values of n. For example, for a two-period pattern {P1, P2} = {5, 5}, consecutive SL or UL slots of pattern {5, 5} are indicated by some bits. For other patterns where P1 and P2 have the same period, i.e. {2, 2}, {2.5, 2.5} and {10, 10}, refer to the SL or UL slot indication for pattern {5, 5}, The corresponding information and parameter set differences are derived. As shown in 430 and 440 , when the reference pattern as in 430 is configured, the UE may derive the SL or UL slot configuration based on the reference pattern configuration in 430 . The configuration in 440 applies to sidelink and uplink slot configurations with different parameter sets than the reference parameter set µ ref .

可通過Uu鏈路時隙配置532和側鏈路參數集531得到SL時隙的數量522。Uu鏈路時隙配置532包括Uu鏈路參數集或參考參數集535,以及UL時隙數量或參考時隙數量536。上述UL時隙僅包括UL符號。可從TDD UL/DL配置552獲得Uu鏈路時隙配置532。SL參數集531可被(預)配置以用於所述側鏈路操作。在一實施例中,可從SL信令消息553(如RRC消息)獲得SL參數集531。在又一實施例中,對於eNB/gNB從一個頻率換到另一頻率以用於SL操作的TDD UL/DL配置的載波間指示來說,可通過用於SL操作的基地台信令,如用於SL操作的專用RRC或SIB消息,來指示與用於SL頻率的TDD UL/DL配置相關的參數集。在一實施例中,參考參數集為Uu鏈路參數集。根據不同的實施例,參考參數集和所述側鏈路參數集(預)配置有相同或不同的參數集。The number of SL slots 522 can be obtained through the Uu link slot configuration 532 and the side link parameter set 531 . The Uu link slot configuration 532 includes a Uu link parameter set or reference parameter set 535 and a UL slot number or reference slot number 536 . The above-mentioned UL slot includes only UL symbols. Uu link slot configuration 532 may be obtained from TDD UL/DL configuration 552 . The SL parameter set 531 may be (pre)configured for the sidelink operation. In an embodiment, the SL parameter set 531 may be obtained from an SL signaling message 553 (eg, an RRC message). In yet another embodiment, for inter-carrier indication of TDD UL/DL configuration for eNB/gNB to switch from one frequency to another for SL operation, signaling by base station for SL operation can be done, such as Dedicated RRC or SIB message for SL operation to indicate parameter set related to TDD UL/DL configuration for SL frequency. In one embodiment, the reference parameter set is a Uu link parameter set. According to various embodiments, the reference parameter set and said sidelink parameter set are (pre)configured with the same or different parameter sets.

第6圖係根據本發明實施例的用於側鏈路CSI-RS資源配置的示範性示意圖。在一實施例中,配置用於SL CSI測量的CSI-RS 610。在一實施例611中,配置610將資源映射到用於TB傳輸的PSSCH的符號上。在另一實施例612中,使用被擊穿資源。對於用於CSI測量的CSI-RS傳輸來說,可根據用於CSI請求的SCI欄位(如第二階段SCI)的存在和CSI-RS資源的配置進行速率匹配。另外,在一實施例中,CSI-RS資源被映射在發送TB的PSSCH資源上。 CSI-RS資源不能被映射到發送第二階段SCI的PSSCH以及/或者承載第一階段SCI的PSSCH,因為UE需要減速率匹配以解碼攜帶CSI請求欄位的第一階段SCI和第二階段SCI。由於第二階段SCI的資源大小可能會發生變化,因此確切的CSI-RS資源位置也可能會發生變化,從而避免第二階段SCI和第一階段SCI資源之間發生衝突。 CSI-RS資源只能被映射到用於TB傳輸的PSSCH的符號上(即沒有任何第一階段SCI和第二階段SCI傳輸)。在一實施例中,可根據第一階段SCI和/或第二階段SCI的時間/頻率資源隱式得出確切的CSI-RS資源位置,或者可根據配置來得到確切的CSI-RS資源位置。在另一實施例中,SL CSI-RS資源可被擊穿。對於UE接收器而言這些將是透明的,而性能下降幅度很小或可忽略。FIG. 6 is an exemplary diagram for configuring sidelink CSI-RS resources according to an embodiment of the present invention. In an embodiment, a CSI-RS 610 for SL CSI measurement is configured. In an embodiment 611, the configuration 610 maps resources onto symbols of the PSSCH for TB transmission. In another embodiment 612, punctured resources are used. For CSI-RS transmission for CSI measurement, rate matching can be performed according to the presence of the SCI field for CSI request (eg, Phase 2 SCI) and the configuration of CSI-RS resources. In addition, in an embodiment, the CSI-RS resource is mapped on the PSSCH resource for transmitting the TB. The CSI-RS resources cannot be mapped to the PSSCH that transmits the stage 2 SCI and/or the PSSCH that carries the stage 1 SCI because the UE needs deceleration rate matching to decode the stage 1 SCI and the stage 2 SCI carrying the CSI request field. Since the resource size of the second-stage SCI may change, the exact CSI-RS resource location may also change, so as to avoid conflicts between the second-stage SCI and the first-stage SCI resources. CSI-RS resources can only be mapped to symbols of the PSSCH for TB transmission (ie without any phase 1 SCI and phase 2 SCI transmission). In an embodiment, the exact CSI-RS resource position can be obtained implicitly according to the time/frequency resource of the first-stage SCI and/or the second-stage SCI, or can be obtained according to configuration. In another embodiment, SL CSI-RS resources can be punctured. These will be transparent to the UE receiver with little or negligible performance degradation.

在另一實施例中,配置了用於CSI報告的SL CSI表620。在一實施例621中,SL CSI報告資源按資源池/ BWP配置。在另一實施例622中,在SCI欄位中指示SL CSI報告資源。對於SL CSI報告來說,可為每個資源池/ BWP配置假定的SL CSI表(例如64QAM、256QAM或超可靠低延遲通訊(ultra reliable low latency communication,URLLC)表),以及/或者假定的SL CSI表可通過PC5-RRC在UE之間進行交換。在其他實施例中,可在SCI欄位(如第二階段SCI)中從一組(預)配置CSI表中指示出假定的SL CSI表。如此,基於從對應於不同SL MCS表的不同假定的SL CSI表中得到的SL CSI報告,可在SL MCS表之間進行動態切換。在一實施例中,SCI和/或高層信令僅指示一個假定的CSI表,報告的CSI與這種假定隱式關聯。在另一實施例中,指示多個假定的CSI表。UE可以報告與假定的CSI表索引相關聯的CSI,即不同的CSI報告關聯不同的CSI表。在配置了多個CSI資源的情況下,UE可以報告與對應的CSI-RS資源索引相關聯的CSI結果。In another embodiment, a SL CSI table 620 for CSI reporting is configured. In an embodiment 621, SL CSI reporting resources are configured by resource pool/BWP. In another embodiment 622, the SL CSI reporting resource is indicated in the SCI field. For SL CSI reporting, an assumed SL CSI table (e.g. 64QAM, 256QAM, or ultra reliable low latency communication (URLLC) table), and/or an assumed SL CSI table can be configured per resource pool/BWP CSI tables can be exchanged between UEs through PC5-RRC. In other embodiments, the assumed SL CSI table may be indicated in the SCI field (eg Phase 2 SCI) from a set of (pre-)configured CSI tables. In this way, dynamic switching between SL MCS tables may be performed based on SL CSI reports derived from different hypothetical SL CSI tables corresponding to different SL MCS tables. In an embodiment, the SCI and/or high-level signaling only indicates an assumed CSI table, and the reported CSI is implicitly associated with this assumption. In another embodiment, multiple assumed CSI tables are indicated. The UE may report the CSI associated with the assumed CSI table index, that is, different CSI reports are associated with different CSI tables. In case multiple CSI resources are configured, the UE may report the CSI result associated with the corresponding CSI-RS resource index.

第7圖係根據本發明實施例的側鏈路BWP配置和分配的示範性示意圖 。在NR網路中,子通道配置有N個RB。 SL BWP配置710通過RB的數量而不是子通道大小的倍數來配置SL BWP。FIG. 7 is an exemplary schematic diagram of sidelink BWP configuration and allocation according to an embodiment of the present invention. In an NR network, a subchannel is configured with N RBs. The SL BWP configuration 710 configures the SL BWP by the number of RBs instead of a multiple of the subchannel size.

在一實施例711中,一個或多個資源池可被配置為利用最小化分段資源(minimized fragmented resources)(即非子通道大小的倍數或小於子通道大小)來充分利用所有資源。例如,可將多個資源池配置為具有不同的子通道大小,以使得分段資源非常有限。UE可隨機或基於規則(如資源池的優先順序)來選擇資源池。In an embodiment 711, one or more resource pools may be configured to utilize minimized fragmented resources (ie, not a multiple of the sub-channel size or smaller than the sub-channel size) to fully utilize all resources. For example, multiple resource pools can be configured with different subchannel sizes so that segment resources are very limited. The UE can select a resource pool randomly or based on rules (such as priority order of resource pools).

在另一實施例712中,可將分段資源配置為PSSCH和/或PSCCH和/或PSFCH傳輸採用分離的資源池。可為資源池配置任意數量的PRB。In another embodiment 712, segmented resources may be configured to use separate resource pools for PSSCH and/or PSCCH and/or PSFCH transmission. Any number of PRBs can be configured for a resource pool.

在又一實施例713中,SL BWP中的最多(或至少)一個資源池可以配置有不是子通道大小的倍數的RB。例如,可為SL BWP配置多個資源池,其中最多(或至少)一個資源池所配置的RB不是子通道大小的倍數。PSSCH的發送/接收將限於那些為子通道大小倍數的資源。資源池的最小子通道索引中的最小RB索引是資源池的最小RB索引。可將資源池中剩餘的RB(即小於子通道大小的RB)指定為特殊子通道,上述特殊子通道可用於PSSCH傳輸,但不能用於PSCCH傳輸,即可視為一種用於PSSCH傳輸的補充子通道。這種特殊子通道可通過FDM複用來承載PSCCH和PSSCH。在這種情況下,PSCCH可在SL時隙中除GP符號和PSFCH符號之外的所有符號上進行傳輸(如果可用)。In yet another embodiment 713, at most (or at least) one resource pool in the SL BWP may be configured with RBs that are not a multiple of the subchannel size. For example, multiple resource pools may be configured for the SL BWP, where at most (or at least) one resource pool is configured with RBs that are not a multiple of the size of the subchannel. PSSCH transmission/reception will be limited to those resources that are multiples of the subchannel size. The smallest RB index in the smallest subchannel index of the resource pool is the smallest RB index of the resource pool. The remaining RBs in the resource pool (that is, RBs smaller than the subchannel size) can be designated as special subchannels. The above special subchannels can be used for PSSCH transmission, but cannot be used for PSCCH transmission, which can be regarded as a supplementary subchannel for PSSCH transmission. aisle. This special sub-channel can carry PSCCH and PSSCH through FDM multiplexing. In this case, PSCCH may be transmitted on all symbols in the SL slot except GP symbols and PSFCH symbols (if available).

第8圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置進程的示範性流程圖。在步驟801,UE在無線網路中通過SL獲取SL(預)配置用於SL操作,其中UE配置有與無線網路中基地台連接的Uu鏈路。在步驟802,UE接收TDD UL/DL配置。在步驟803,UE基於SL配置、TDD UL/DL配置和參考參數集確定SL的SL時隙配置。在步驟804,UE基於所確定的SL時隙配置來通過SL進行SL收發。FIG. 8 is an exemplary flow chart of a sidelink slot configuration process based on a reference parameter set according to an embodiment of the present invention. In step 801, the UE acquires SL (pre)configuration for SL operation through SL in the wireless network, wherein the UE is configured with a Uu link connected to the base station in the wireless network. At step 802, the UE receives a TDD UL/DL configuration. In step 803, the UE determines the SL slot configuration of the SL based on the SL configuration, the TDD UL/DL configuration and the reference parameter set. In step 804, the UE performs SL transceiving through SL based on the determined SL time slot configuration.

在一實施例中,存儲介質(如電腦可讀存儲介質)儲存有程式,上述程式被執行時使得UE執行本發明的實施例。In an embodiment, a storage medium (such as a computer-readable storage medium) stores a program, and when the above program is executed, the UE executes the embodiment of the present invention.

雖然本發明已就較佳實施例揭露如上,然其並非用以限制本發明。在不脫離申請專利範圍所界定的本發明的保護範圍內,當可對各實施例中的各特徵進行各種變更、潤飾和組合。Although the present invention has been disclosed above with respect to preferred embodiments, it is not intended to limit the present invention. Various changes, modifications and combinations can be made to each feature in each embodiment without departing from the scope of protection of the present invention defined by the patent scope of the application.

100:無線系統 111-117、301-302、501-502:使用者設備 101、303、503:基地台 151、161:記憶體 152、162:處理器 153、163:收發器 154、164:程式 155:控制模組 156、165:天線 191:SL配置模組 192:同步模組 193:SL時隙模組 194:SL控制模組 201:核心單元 211:中央單元 221-223:分散式單元 231-233:小區 250、260、321-323、611-612、621-622、711-713:實施例 251:gNB下層 252:gNB上層 261:協議堆疊 311、312、511、512:Uu鏈路 313、513:SL 410:訊框結構 411:訊框 412:子訊框 413、432-435:時隙 420:參數集 430:時隙配置 431:週期 440-444、520:側鏈路時隙配置 521:SL週期配置 522:SL時隙數量的配置 531:側鏈路參數集 532:Uu鏈路時隙配置 535:Uu鏈路參數集 536:UL時隙數量 550:S-SSB 552:TDD UL/DL配置 553:SL信令 610:用於SL CSI測量的CSI-RS 620:用於CSI報告的SL CSI表 710:SL BWP配置 801-804:步驟100: wireless system 111-117, 301-302, 501-502: user equipment 101, 303, 503: base stations 151, 161: memory 152, 162: Processor 153, 163: Transceiver 154, 164: program 155: Control module 156, 165: Antenna 191: SL configuration module 192: Synchronization module 193:SL time slot module 194:SL control module 201: Core unit 211:Central unit 221-223: Decentralized Units 231-233: Community 250, 260, 321-323, 611-612, 621-622, 711-713: Examples 251: gNB lower layer 252: gNB upper layer 261: Protocol stacking 311, 312, 511, 512: Uu link 313, 513: SL 410: frame structure 411: Frame 412: subframe 413, 432-435: time slot 420: parameter set 430: Time slot configuration 431: cycle 440-444, 520: side link time slot configuration 521: SL cycle configuration 522: Configuration of the number of SL time slots 531: side link parameter set 532: Uu link time slot configuration 535: Uu link parameter set 536: Number of UL time slots 550:S-SSB 552:TDD UL/DL configuration 553: SL signaling 610: CSI-RS for SL CSI measurement 620: SL CSI form for CSI reporting 710: SL BWP configuration 801-804: Steps

透過參考附圖閱讀後續之詳細描述和示例,可以更全面地理解本申請,其中: 第1圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性無線網路(系統)的系統示意圖。 第2圖係根據本發明實施例的具有NR無線電介面堆疊的集中化上層的示範性NR無線系統示意圖。 第3圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性頂層功能示意圖。 第4圖係根據本發明實施例的包括NR訊框和時隙結構的側鏈路時隙配置的示範性示意圖。 第5圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置的示例圖。 第6圖係根據本發明實施例的用於側鏈路CSI-RS資源配置的示範性示意圖。 第7圖係根據本發明實施例的側鏈路BWP配置和分配的示範性示意圖。 第8圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置進程的示範性流程圖。A more complete understanding of this application can be had by reading the ensuing detailed description and examples with reference to the accompanying drawings, in which: FIG. 1 is a system schematic diagram of an exemplary wireless network (system) for sidelink time slot configuration and resource configuration according to an embodiment of the present invention. FIG. 2 is a schematic diagram of an exemplary NR wireless system with a centralized upper layer of an NR radio interface stack according to an embodiment of the present invention. FIG. 3 is a schematic diagram of exemplary top-level functions for sidelink time slot configuration and resource configuration according to an embodiment of the present invention. FIG. 4 is an exemplary diagram of a sidelink slot configuration including NR frame and slot structure according to an embodiment of the present invention. Fig. 5 is an example diagram of side link time slot configuration based on a reference parameter set according to an embodiment of the present invention. FIG. 6 is an exemplary diagram for configuring sidelink CSI-RS resources according to an embodiment of the present invention. FIG. 7 is an exemplary schematic diagram of sidelink BWP configuration and allocation according to an embodiment of the present invention. FIG. 8 is an exemplary flow chart of a sidelink slot configuration process based on a reference parameter set according to an embodiment of the present invention.

801-804:步驟801-804: Steps

Claims (8)

一種側鏈路時隙配置方法,包括:由一使用者設備在一無線網路中通過一側鏈路獲取一側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中一基地台連接的一Uu鏈路;接收一時分雙工上行鏈路/下行鏈路配置;基於所述側鏈路(預)配置、所述時分雙工上行鏈路/下行鏈路配置和一參考參數集確定所述側鏈路的一側鏈路時隙配置;以及基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發,其中,所述側鏈路時隙配置用於配置僅包括側鏈路符號的側鏈路時隙數量和/或位置,所述僅包括側鏈路符號的側鏈路時隙數量通過僅包括上行鏈路符號的時隙數量、所述參考參數集和一側鏈路參數集得到。 A side link time slot configuration method, comprising: obtaining a side link (pre)configuration for side link operation by a user equipment in a wireless network through a side link, wherein the user equipment is configured by configured with a Uu link connected to a base station in said wireless network; receiving a time division duplex uplink/downlink configuration; based on said side link (pre)configuration, said time division duplex determining a sidelink time slot configuration for the sidelink with an uplink/downlink configuration and a reference parameter set; and performing a sidelink through the sidelink based on the determined sidelink time slot configuration Transceiver, wherein the side link slot configuration is used to configure the number and/or location of side link slots that only include side link symbols, and the number of side link slots that only include side link symbols is passed The number of time slots including only uplink symbols, the reference parameter set and one side link parameter set are obtained. 如請求項1所述之側鏈路時隙配置方法,其中,所述參考參數集為一Uu鏈路參數集,所述Uu鏈路參數集和所述側鏈路參數集(預)配置有相同或不同的參數集。 The side link time slot configuration method as described in claim 1, wherein the reference parameter set is a Uu link parameter set, and the Uu link parameter set and the side link parameter set are (pre)configured with Same or different parameter sets. 如請求項1所述之側鏈路時隙配置方法,其中,所述參考參數集與所述時分雙工上行鏈路/下行鏈路配置有關。 The sidelink time slot configuration method according to claim 1, wherein the reference parameter set is related to the time division duplex uplink/downlink configuration. 如請求項1所述之側鏈路時隙配置方法,其中,所述側鏈路參數集被(預)配置以用於所述側鏈路操作。 The sidelink time slot configuration method according to claim 1, wherein the sidelink parameter set is (pre)configured for the sidelink operation. 如請求項4所述之側鏈路時隙配置方法,其中,所述側鏈路參數集通過接收一信令消息被(預)配置,其中所述信令消息為一專用無線電資源控制消息或一系統區塊消息。 The side link time slot configuration method according to claim 4, wherein the side link parameter set is (pre)configured by receiving a signaling message, wherein the signaling message is a dedicated radio resource control message or A system block message. 如請求項1所述之側鏈路時隙配置方法,其中,所述僅包括 上行鏈路符號的時隙數量通過所述時分雙工上行鏈路/下行鏈路配置獲取。 The side link time slot configuration method as claimed in claim 1, wherein the only includes The number of time slots for uplink symbols is obtained through the TDD uplink/downlink configuration. 如請求項1所述之側鏈路時隙配置方法,其中,所述僅包括側鏈路符號的側鏈路時隙數量在一側鏈路同步信號塊中承載。 The method for configuring side link time slots according to claim 1, wherein the number of side link time slots including only side link symbols is carried in a side link synchronization signal block. 一種使用者設備,包括:一收發器,用來在一無線網路中發送和接收射頻信號;一側鏈路配置模組,用來在所述無線網路中通過一側鏈路獲取一側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中一基地台連接的一Uu鏈路;一同步模組,用來接收一時分雙工上行鏈路/下行鏈路配置;一側鏈路時隙模組,用來基於所述側鏈路(預)配置、所述時分雙工上行鏈路/下行鏈路配置和一參考參數集確定所述側鏈路的一側鏈路時隙配置;以及一側鏈路控制模組,用來基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發,其中,所述側鏈路時隙配置用於配置僅包括側鏈路符號的側鏈路時隙數量和/或位置,所述僅包括側鏈路符號的側鏈路時隙數量通過僅包括上行鏈路符號的時隙數量、所述參考參數集和一側鏈路參數集得到。 A user equipment, comprising: a transceiver, used to send and receive radio frequency signals in a wireless network; a side link configuration module, used to obtain a side link through a side link in the wireless network link (pre)configuration for side link operation, wherein the user equipment is configured with a Uu link connected to a base station in the wireless network; a synchronization module for receiving a time division dual a dual uplink/downlink configuration; a sidelink time slot module for use based on said sidelink (pre)configuration, said time division duplex uplink/downlink configuration and a reference parameter determining the side link time slot configuration of the side link; and a side link control module, configured to perform side link transceiving through the side link based on the determined side link time slot configuration , wherein the side link slot configuration is used to configure the number and/or position of side link slots that only include side link symbols, and the number of side link slots that only include side link symbols is configured by including only The number of time slots of uplink symbols, the reference parameter set and one side link parameter set are obtained.
TW110112931A 2020-04-10 2021-04-09 Methods and apparatus for slot configuration for sidelink communication TWI809372B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/084193 2020-04-10
PCT/CN2020/084193 WO2021203411A1 (en) 2020-04-10 2020-04-10 Enhancement for sl communication
CN202110360115.1 2021-04-02
CN202110360115.1A CN113573410A (en) 2020-04-10 2021-04-02 Side link time slot configuration method and user equipment

Publications (2)

Publication Number Publication Date
TW202139769A TW202139769A (en) 2021-10-16
TWI809372B true TWI809372B (en) 2023-07-21

Family

ID=78006833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112931A TWI809372B (en) 2020-04-10 2021-04-09 Methods and apparatus for slot configuration for sidelink communication

Country Status (2)

Country Link
US (1) US20210321369A1 (en)
TW (1) TWI809372B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210368489A1 (en) * 2020-05-23 2021-11-25 Qualcomm Incorporated Cqi table selection in sidelink
WO2022016916A1 (en) * 2020-07-23 2022-01-27 Apple Inc. Systems and methods for providing system information via ue-to-network relay

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398438B2 (en) * 2013-05-10 2016-07-19 Futurewei Technologies, Inc. System and method for TDD configuration for D2D open discovery
WO2017026983A1 (en) * 2015-08-10 2017-02-16 Intel Corporation Enhanced physical signal structure for lte v2v communications
CN110419192A (en) * 2017-03-03 2019-11-05 高通股份有限公司 For communicating the signaling being multiplexed to low delay communication and sidelinks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096171B2 (en) * 2019-01-11 2021-08-17 Lg Electronics Inc. Method and apparatus for performing BWP-based communication in NR V2X
WO2020180098A1 (en) * 2019-03-04 2020-09-10 엘지전자 주식회사 Information on sidelink resource
CN117729635A (en) * 2020-04-08 2024-03-19 Oppo广东移动通信有限公司 Time domain resource determining method and device and terminal equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398438B2 (en) * 2013-05-10 2016-07-19 Futurewei Technologies, Inc. System and method for TDD configuration for D2D open discovery
WO2017026983A1 (en) * 2015-08-10 2017-02-16 Intel Corporation Enhanced physical signal structure for lte v2v communications
CN110419192A (en) * 2017-03-03 2019-11-05 高通股份有限公司 For communicating the signaling being multiplexed to low delay communication and sidelinks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TSG RAN WG1 Meeting #AH1901, R1-1900966, Taipei, January 21st – 25th, 2019.^&rn^(網址 https://portal.3gpp.org/ngppapp/TdocList.aspx?meetingId=32820)^&rn^
3GPP TSG-RAN WG2 # 104, R2-1816517, Spokane, USA, 12th – 16th November 2018. ^&rn^(網址https://www.3gpp.org/DynaReport/TDocExMtg--R2-104--18808.htm)^&rn^;3GPP TSG RAN WG1 Meeting #AH1901, R1-1900966, Taipei, January 21st – 25th, 2019.^&rn^(網址 https://portal.3gpp.org/ngppapp/TdocList.aspx?meetingId=32820)^&rn^ *

Also Published As

Publication number Publication date
US20210321369A1 (en) 2021-10-14
TW202139769A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
US11483867B2 (en) Apparatus and method for handling bandwidth part configuration for random access channel procedure in wireless communication system
US20230180268A1 (en) Method for integrated access backhaul resource multiplexing
US20180063858A1 (en) System and Method for Co-existence of Low-Latency and Latency-Tolerant Communication Resources
CN108496387A (en) Base station apparatus, terminal installation and communication means
CN111630914A (en) Listen-before-talk and channel access priority classes for physical uplink control channels in new radio unlicensed
WO2020029777A1 (en) Resource configuration method and apparatus
TWI773413B (en) Enhanced reliability for downlink control information (dci) reception from multiple transmit receive points (m-trp)
CN104854801A (en) Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station
CN108496388A (en) Base station apparatus, terminal installation and communication means
CN107079382B (en) Method and apparatus for supporting multiple radio access technologies
EP2611245A1 (en) Method, equipment and system for adjusting configuration of spectrum resources
TWI788825B (en) Methods and apparatus for sidelink channel state information reporting
TWI809372B (en) Methods and apparatus for slot configuration for sidelink communication
CN115606144A (en) Reduced SL-SS (sidelink synchronization signal) transmission of S-SSB (sidelink synchronization signal block) on demand
CN113966639A (en) Parameter override rules for multiple SPS/CG configurations
CN116134931A (en) Scheduling request transmission on a direct device feedback channel for direct device communication
CN115136726A (en) Distributed Side Link (SL) architecture and protocol stack
WO2021109358A1 (en) System and method for sidelink configuration
CN115152161A (en) Enhancements for providing protection signals in an IAB network
JP2022532574A (en) Reference coordinates for 2-step RACH resource configuration
CN113573410A (en) Side link time slot configuration method and user equipment
WO2022014272A1 (en) Terminal, base station, and communication method
WO2022074884A1 (en) Terminal, base station, and communication method
JP2023547767A (en) Cancellation order for scheduled uplink repeat transmissions with different priorities
CN116548032A (en) Multiple access reporting of channel occupancy information