TW202139769A - Methods and apparatus for slot configuration for sidelink communication - Google Patents

Methods and apparatus for slot configuration for sidelink communication Download PDF

Info

Publication number
TW202139769A
TW202139769A TW110112931A TW110112931A TW202139769A TW 202139769 A TW202139769 A TW 202139769A TW 110112931 A TW110112931 A TW 110112931A TW 110112931 A TW110112931 A TW 110112931A TW 202139769 A TW202139769 A TW 202139769A
Authority
TW
Taiwan
Prior art keywords
side link
configuration
time slot
parameter set
slot configuration
Prior art date
Application number
TW110112931A
Other languages
Chinese (zh)
Other versions
TWI809372B (en
Inventor
陳滔
Original Assignee
新加坡商聯發科技(新加坡)私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/084193 external-priority patent/WO2021203411A1/en
Application filed by 新加坡商聯發科技(新加坡)私人有限公司 filed Critical 新加坡商聯發科技(新加坡)私人有限公司
Publication of TW202139769A publication Critical patent/TW202139769A/en
Application granted granted Critical
Publication of TWI809372B publication Critical patent/TWI809372B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Abstract

Aspects of the disclosure provide a method of sidelink slot configuration. The method can include obtaining a sidelink (SL) (pre-)configuration for an SL operation using an SL by a user equipment (UE) in a wireless network, wherein the UE is configured with a Uu link with a base station in the wireless network; receiving a time division duplex (TDD) uplink/downlink (UL/DL) configuration; determining an SL slot configuration for the SL based on the SL (pre-)configuration, the TDD UL/DL configuration, and a reference numerology; and performing SL transceiving through the SL based on the determined SL slot configuration.

Description

側鏈路時隙配置方法與裝置Side link time slot configuration method and device

本發明總體有關於無線通訊,以及,更具體地,有關於側鏈路(sidelink,SL)的時隙配置和資源配置。The present invention generally relates to wireless communication, and, more specifically, to sidelink (sidelink, SL) time slot configuration and resource configuration.

5G無線電接入技術將成為現代接入網的關鍵元件,它將解決高通訊量增長和日益增長的高頻寬連接需求。在3GPP新無線電(new radio,NR)中,SL持續演進。借助支援的新功能,SL為裝置到裝置的通訊提供了低延遲、高可靠性和高輸送量。車用通訊(vehicle to everything,V2X)中支援SL測量。單播、組播和廣播均可支援V2X SL通訊。為了支援高效的SL通訊,SL資源配置需要考慮SL路徑和Uu鏈路路徑的不同配置要求和場景。資源配置包括通道狀態資訊參考信號(channel state information reference signal,CSI-RS)資源配置和報告,以及用於SL通訊的頻寬部分(bandwidth part,BWP)配置。此外,SL的時隙配置與現有的Uu鏈路具有通用屬性。SL和Uu鏈路共用配置資訊可提高系統效率。但是,SL可配置有不同的參數集(numerology),時隙配置需要額外的步驟。5G radio access technology will become a key component of modern access networks, and it will address the growth of high communication volume and the ever-increasing demand for high-bandwidth connections. In 3GPP new radio (NR), SL continues to evolve. With the support of new features, SL provides low latency, high reliability and high throughput for device-to-device communication. Support SL measurement in vehicle to everything (V2X). Unicast, multicast and broadcast all support V2X SL communication. In order to support efficient SL communication, SL resource allocation needs to consider the different configuration requirements and scenarios of the SL path and the Uu link path. Resource configuration includes channel state information reference signal (CSI-RS) resource configuration and reporting, and bandwidth part (BWP) configuration for SL communication. In addition, the time slot configuration of SL has common attributes with existing Uu links. SL and Uu links share configuration information to improve system efficiency. However, SL can be configured with different parameter sets (numerology), and time slot configuration requires additional steps.

因此,SL時隙配置和側鏈路資源配置需要改進和增強。Therefore, SL time slot configuration and side link resource configuration need to be improved and enhanced.

本發明一實施例提供一種側鏈路時隙配置方法,包括:由使用者設備在無線網路中通過側鏈路獲取側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中基地台連接的Uu鏈路;接收時分雙工上行鏈路/下行鏈路配置; 基於所述側鏈路(預)配置、時分雙工上行鏈路/下行鏈路配置和參考參數集確定所述側鏈路的側鏈路時隙配置;以及基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。An embodiment of the present invention provides a side link time slot configuration method, which includes: obtaining a side link (pre) configuration for side link operation by a user equipment through a side link in a wireless network, wherein the user The device is configured with a Uu link connected to the base station in the wireless network; receiving time division duplex uplink/downlink configuration; based on the side link (pre) configuration, time division duplex uplink The path/downlink configuration and reference parameter set determine the side link time slot configuration of the side link; and perform side link transmission and reception through the side link based on the determined side link time slot configuration.

本發明另一實施例提供一種使用者設備,包括:收發機,用來在無線網路中發送和接收射頻信號;側鏈路配置模組,用來在無線網路中通過側鏈路獲取側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中基地台連接的Uu鏈路;同步模組,用來接收時分雙工上行鏈路/下行鏈路配置; 側鏈路時隙模組,用來基於所述側鏈路(預)配置、時分雙工上行鏈路/下行鏈路配置和參考參數集確定所述側鏈路的側鏈路時隙配置;以及側鏈路控制模組,用來基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。Another embodiment of the present invention provides a user equipment, including: a transceiver, used to send and receive radio frequency signals in a wireless network; a side link configuration module, used to obtain a side link in a wireless network The link (pre) configuration is used for side link operation, wherein the user equipment is configured with a Uu link connected to the base station in the wireless network; a synchronization module is used to receive the time division duplex uplink Path/downlink configuration; side link time slot module, used to determine the side link based on the side link (pre)configuration, time division duplex uplink/downlink configuration and reference parameter set The side link time slot configuration; and the side link control module, which is used to perform side link transmission and reception through the side link based on the determined side link time slot configuration.

現詳細給出關於本發明的一些實施例作為參考,其示例在附圖中描述。Now some embodiments of the present invention are given in detail for reference, and examples thereof are described in the accompanying drawings.

在NR無線網路中,使能了SL。NR V2X支援CSI-RS的傳輸。 CSI-RS在物理側鏈路共用通道(physical sidelink shared channel,PSSCH)中傳輸,並且只有在高層(higher layer)信令使能了SL CQI/RI報告時才可傳輸。來自RX UE的SL CQI/RI報告由側鏈路控制資訊(sidelink control information,SCI)在實體層使能,以幫助TX UE進行鏈路適配(link adaption)。 Uu上的傳統CSI報告是在實體層執行的。訊框結構的參數集定義了訊框/時隙結構,例如子載波間隔(subcarrier spacing,SCS)和符號長度。與LTE網路不同,NR網路中的參數集支援不同類型的SCS。 SL通訊的時隙配置需要考慮SL和Uu鏈路之間的參數集差異。In the NR wireless network, SL is enabled. NR V2X supports the transmission of CSI-RS. The CSI-RS is transmitted in the physical sidelink shared channel (PSSCH), and can only be transmitted when the higher layer (higher layer) signaling enables the SL CQI/RI report. The SL CQI/RI report from the RX UE is enabled at the physical layer by sidelink control information (SCI) to help the TX UE perform link adaptation (link adaptation). The traditional CSI report on Uu is performed at the physical layer. The parameter set of the frame structure defines the frame/slot structure, such as subcarrier spacing (SCS) and symbol length. Unlike the LTE network, the parameter set in the NR network supports different types of SCS. The time slot configuration of SL communication needs to consider the parameter set difference between SL and Uu links.

第1圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性無線網路(系統)的系統示意圖。無線系統100包括形成分佈在地理區域上的網路的一個或多個固定基本設施單元。基本設施單元也可以被稱為接入點、接入終端、基地台、節點B、演進節點B(eNode-B)、下一代節點B(gNB)或本領域中使用的其他術語。網路可以是同構網路也可以是異構網路,可以採用相同或不同頻率進行部署。gNB 101是NR網路中的示範性基地台。Figure 1 is a system schematic diagram of an exemplary wireless network (system) for side link time slot configuration and resource configuration according to an embodiment of the present invention. The wireless system 100 includes one or more fixed infrastructure units that form a network distributed over a geographic area. The basic facility unit may also be called an access point, an access terminal, a base station, a node B, an evolved node B (eNode-B), a next generation node B (gNB), or other terms used in the art. The network can be a homogeneous network or a heterogeneous network, and can be deployed at the same or different frequencies. gNB 101 is an exemplary base station in the NR network.

無線網路100還包括多個通訊裝置或行動站,如使用者設備(user equipment,UE)111、112、113、114、115、116和117。無線網路100中的示例性行動裝置具有SL能力。行動裝置可與一個或多個基地台(如gNB 101)建立一個或多個連接。UE 111具有與gNB 101之間的接入鏈路,包括上行鏈路(uplink,UL)和下行鏈路(downlink,DL)。也由gNB 101提供服務的UE 112也可與gNB 101建立UL和DL。UE 111與UE 112建立SL。UE 111與UE 112都是覆蓋範圍內的裝置。車輛上的行動裝置(例如行動裝置113、114和115)也具有SL能力。行動裝置113和114被gNB 101覆蓋。覆蓋範圍內的裝置113與覆蓋範圍內的裝置114建立SL。車輛上的行動裝置115是覆蓋範圍外的裝置。覆蓋範圍內的行動裝置114與覆蓋範圍外的裝置115建立SL。在其他實施例中,諸如UE 116和117之類的行動裝置可能都處於覆蓋範圍之外,但可通過側鏈路與另外的一個或多個行動裝置進行分組資料的發送和接收。The wireless network 100 also includes multiple communication devices or mobile stations, such as user equipment (UE) 111, 112, 113, 114, 115, 116, and 117. The exemplary mobile device in the wireless network 100 has SL capability. The mobile device can establish one or more connections with one or more base stations (such as gNB 101). The UE 111 has an access link with the gNB 101, including uplink (UL) and downlink (DL). The UE 112, which is also served by the gNB 101, can also establish UL and DL with the gNB 101. UE 111 and UE 112 establish an SL. Both UE 111 and UE 112 are devices within coverage. Mobile devices on the vehicle (such as mobile devices 113, 114, and 115) also have SL capabilities. Mobile devices 113 and 114 are covered by gNB 101. The device 113 in the coverage area establishes an SL with the device 114 in the coverage area. The mobile device 115 on the vehicle is an out-of-coverage device. The mobile device 114 within the coverage area establishes an SL with the device 115 outside the coverage area. In other embodiments, mobile devices such as UE 116 and 117 may be out of coverage, but can send and receive packet data with one or more mobile devices through a side link.

第1圖進一步示出了用於側鏈路時隙配置和資源配置的基地台和行動裝置/UE的簡化方塊示意圖。gNB 101具有天線156,其發送和接收無線電信號。耦接於該天線的RF收發器電路153從天線156接收RF信號,將RF信號轉換為基帶信號,並將基帶信號發送到處理器152。RF收發器153還將從處理器152接收到的基帶信號轉換為RF信號,並發送到天線156。處理器152處理接收到的基帶信號,並調用不同的功能模組來執行gNB 101中的功能特性。記憶體151存儲程式指令和資料154以控制gNB 101的操作。gNB 101還包括一組控制模組155,用來執行功能任務以與行動站通訊。Figure 1 further shows a simplified block diagram of a base station and mobile device/UE for side link time slot configuration and resource configuration. The gNB 101 has an antenna 156, which transmits and receives radio signals. The RF transceiver circuit 153 coupled to the antenna receives the RF signal from the antenna 156, converts the RF signal into a baseband signal, and sends the baseband signal to the processor 152. The RF transceiver 153 also converts the baseband signal received from the processor 152 into an RF signal, and transmits it to the antenna 156. The processor 152 processes the received baseband signal, and calls different functional modules to execute the functional characteristics in the gNB 101. The memory 151 stores program instructions and data 154 to control the operation of the gNB 101. The gNB 101 also includes a set of control modules 155 for performing functional tasks to communicate with the mobile station.

UE 111具有天線165,用於發送和接收無線電信號。耦接於該天線的RF收發器電路163從天線165接收RF信號,將RF信號轉換為基帶信號,並將基帶信號發送到處理器162。在一實施例中,RF收發器可包括兩個RF模組(未示出)。第一RF模組用於高頻(high frequency,HF)發送和接收;另一RF模組不同於HF收發器,用於不同頻段的發送和接收。RF收發器163還將從處理器162接收到的基帶信號轉換為RF信號,並發送到天線165。處理器162處理接收到的基帶信號,並調用不同的功能模組來執行UE 111中的功能特性。記憶體161存儲程式指令和資料164以控制UE 111的操作。天線165向gNB 101的天線156發送上行鏈路傳送,並從gNB 101的天線156接收下行鏈路傳送。The UE 111 has an antenna 165 for transmitting and receiving radio signals. The RF transceiver circuit 163 coupled to the antenna receives the RF signal from the antenna 165, converts the RF signal into a baseband signal, and sends the baseband signal to the processor 162. In an embodiment, the RF transceiver may include two RF modules (not shown). The first RF module is used for high frequency (HF) transmission and reception; the other RF module is different from the HF transceiver and is used for transmission and reception in different frequency bands. The RF transceiver 163 also converts the baseband signal received from the processor 162 into an RF signal, and transmits it to the antenna 165. The processor 162 processes the received baseband signal, and calls different functional modules to execute the functional characteristics in the UE 111. The memory 161 stores program instructions and data 164 to control the operation of the UE 111. The antenna 165 sends uplink transmissions to the antenna 156 of the gNB 101 and receives downlink transmissions from the antenna 156 of the gNB 101.

UE 111還包括一組控制模組,用於執行功能任務。這些功能模組可通過電路、軟體、韌體或上述的組合實現。SL配置模組191使用無線網路中的SL來獲取用於SL操作的SL(預)配置,其中UE被配置有與無線網路中基地台進行連接的Uu鏈路。同步模組192接收時分雙工(time division duplex,TDD)UL/DL配置。SL時隙模組193基於SL(預)配置、TDD UL/DL配置以及參考參數集確定用於SL的SL時隙配置。SL控制模組194基於所確定的SL時隙配置來執行通過SL的SL收發。The UE 111 also includes a set of control modules for performing functional tasks. These functional modules can be implemented by circuits, software, firmware, or a combination of the above. The SL configuration module 191 uses the SL in the wireless network to obtain the SL (pre) configuration for the SL operation, where the UE is configured with a Uu link to connect to the base station in the wireless network. The synchronization module 192 receives a time division duplex (TDD) UL/DL configuration. The SL time slot module 193 determines the SL time slot configuration for the SL based on the SL (pre) configuration, the TDD UL/DL configuration, and the reference parameter set. The SL control module 194 performs SL transmission and reception through the SL based on the determined SL time slot configuration.

第2圖係根據本發明實施例的具有NR無線電介面堆疊的集中化上層的示範性NR無線系統示意圖。中央單元(central unit,CU)/gNB節點的上層(upper layer)和分散式單元(distributed unit,DU)/gNB節點的下層(lower layer)之間可能有不同的協議劃分選擇。中央單元和gNB下層之間的功能劃分可能取決於傳輸層。由於較高的協議層在頻寬、延遲、同步和抖動方面對傳輸層的性能要求較低,中央單元和gNB下層之間的低性能傳輸可以使能NR無線電堆疊的高協定層在中央單元中得到支援。在一實施例中,服務資料適配協定 (service data adaptation protocol,SDAP)和分組資料彙聚協定(packet data convergence protocol,PDCP)層位於中央單元,而無線電鏈路控制(radio link control,RLC)、介質存取控制(media access control,MAC)和物理(physical,PHY)層位於分散式單元。核心單元(core unit)201與具有gNB上層252的中央單元211連接。在一實施例250中,gNB上層252包括PDCP層和可選的SDAP層。中央單元211與分散式單元221、222和223連接,其中分散式單元221、222和223分別對應於小區231、232和233。分散式單元221、222和223包括gNB下層251。在一實施例中,gNB下層251包括PHY、MAC和RLC層。在另一實施例260中,每個gNB具有包括SDAP、PDCP、RLC、MAC和PHY層的協議堆疊261。FIG. 2 is a schematic diagram of an exemplary NR wireless system with a centralized upper layer of NR radio interface stacking according to an embodiment of the present invention. There may be different protocol partitioning options between the upper layer of the central unit (CU)/gNB node and the lower layer of the distributed unit (DU)/gNB node. The division of functions between the central unit and the gNB lower layer may depend on the transport layer. Since the higher protocol layers have lower performance requirements for the transmission layer in terms of bandwidth, delay, synchronization and jitter, the low performance transmission between the central unit and the gNB lower layer can enable the high protocol layer of the NR radio stack in the central unit Get support. In one embodiment, the service data adaptation protocol (SDAP) and packet data convergence protocol (PDCP) layers are located in the central unit, and the radio link control (RLC), The media access control (MAC) and physical (PHY) layers are located in distributed units. The core unit 201 is connected to a central unit 211 having a gNB upper layer 252. In an embodiment 250, the gNB upper layer 252 includes a PDCP layer and an optional SDAP layer. The central unit 211 is connected to the decentralized units 221, 222, and 223, where the decentralized units 221, 222, and 223 correspond to the cells 231, 232, and 233, respectively. The distributed units 221, 222, and 223 include the gNB lower layer 251. In an embodiment, the gNB lower layer 251 includes PHY, MAC, and RLC layers. In another embodiment 260, each gNB has a protocol stack 261 including SDAP, PDCP, RLC, MAC, and PHY layers.

第3圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性頂層功能示意圖。 UE 301和UE 302分別通過Uu鏈路311和312與NR網路中的gNB 303連接。在一實施例中,為UE 301和UE 302配置側鏈路313。Figure 3 is a schematic diagram of an exemplary top-level function for side link time slot configuration and resource configuration according to an embodiment of the present invention. UE 301 and UE 302 are connected to gNB 303 in the NR network through Uu links 311 and 312, respectively. In an embodiment, side links 313 are configured for UE 301 and UE 302.

在一實施例321中,SL時隙配置是基於參考參數集。UE獲得側鏈路配置和TDD下行鏈路/上行鏈路配置。SL時隙配置是基於Uu鏈路參數集和側鏈路參數集得出的。 UE獲得用於時隙配置的參考樣式(pattern),並通過考慮不同的細微性(granularity)來獲得SL時隙樣式或UL時隙樣式。In an embodiment 321, the SL time slot configuration is based on a reference parameter set. The UE obtains the side link configuration and the TDD downlink/uplink configuration. The SL time slot configuration is based on the Uu link parameter set and the side link parameter set. The UE obtains a reference pattern for time slot configuration, and obtains the SL time slot pattern or the UL time slot pattern by considering different granularities.

在另一實施例322中,為側鏈路通訊執行CSI-RS資源配置。對於用於CSI測量的CSI-RS傳輸來說,可根據用於CSI請求的SCI欄位(如第二階段SCI)的存在和CSI-RS資源的配置進行速率匹配。具體來說,CSI請求欄位的存在與否可決定是否進行速率匹配,而CSI-RS資源的配置可用於決定如何做速率匹配。另外,CSI-RS資源可映射到傳輸傳輸塊(transport block,TB)的物理側鏈路共用通道(physical sidelink shared channel,PSSCH)資源上。換句話說,它不能被映射到發送第二階段SCI的PSSCH和/或攜帶第一階段SCI的PSSCH上。在其他實施例中,可將其擊穿(punctured)以降低複雜性。應當在SCI(如第二階段SCI)和/或高層信令中指示假定的CSI表,以使UE基於CSI測量來得到適當的CSI索引。In another embodiment 322, CSI-RS resource configuration is performed for side link communication. For the CSI-RS transmission used for CSI measurement, rate matching can be performed according to the existence of the SCI field (such as the second stage SCI) used for the CSI request and the configuration of the CSI-RS resource. Specifically, the presence or absence of the CSI request field can determine whether to perform rate matching, and the configuration of CSI-RS resources can be used to determine how to perform rate matching. In addition, CSI-RS resources can be mapped to physical sidelink shared channel (PSSCH) resources of a transport block (transport block, TB). In other words, it cannot be mapped to the PSSCH that transmits the second-stage SCI and/or the PSSCH that carries the first-stage SCI. In other embodiments, it can be punctured to reduce complexity. The assumed CSI table should be indicated in the SCI (such as the second stage SCI) and/or high-level signaling, so that the UE can obtain an appropriate CSI index based on the CSI measurement.

在又一實施例323中,可為SL通訊執行資源池配置和分配。對於資源池分配來說,可引入特殊的子通道以容納非子通道大小的倍數或小於子通道大小的資源(或資源塊(resource block,RB))。對於此類特殊子通道,可將其限於PSSCH傳輸或FDM複用的PSSCH和物理側鏈路控制通道(physical sidelink control channel,PSCCH)的傳輸。在一實施例中,如果PSCCH可用,則PSCCH可以跨越SL時隙中除GP符號和物理側鏈路回饋通道(physical sidelink feedback channel,PSFCH)符號之外的所有符號。可以用不同的子通道大小配置多個資源池,UE可隨機或基於規則(如資源池的優先順序)來選擇資源池。In yet another embodiment 323, resource pool configuration and allocation may be performed for SL communication. For resource pool allocation, special sub-channels can be introduced to accommodate resources (or resource blocks (resource block, RB)) that are not multiples of the sub-channel size or smaller than the sub-channel size. For such special sub-channels, it can be limited to PSSCH transmission or FDM multiplexed PSSCH and physical sidelink control channel (PSCCH) transmission. In an embodiment, if the PSCCH is available, the PSCCH may span all symbols in the SL time slot except for the GP symbol and the physical sidelink feedback channel (physical sidelink feedback channel, PSFCH) symbol. Multiple resource pools can be configured with different sub-channel sizes, and the UE can select resource pools randomly or based on rules (such as the priority order of resource pools).

在一實施例中,可基於UL時隙配置和參考參數集得到SL時隙配置。In an embodiment, the SL time slot configuration can be obtained based on the UL time slot configuration and the reference parameter set.

第4圖係根據本發明實施例的包括NR訊框和時隙結構的側鏈路時隙配置的示範性示意圖。示例性NR訊框結構410示出了訊框411、子訊框412和時隙413。10ms的訊框411包括10個子訊框,每個子訊框具有1ms。子訊框412包括一個或多個時隙,這取決於參數集中的子載波間隔。每個時隙包含多個符號。420示出了NR參數集中的示例性參數。參數集由SCS和迴圈首碼(cyclic prefix,CP)開銷定義。NR網路支援多個SCS。將基礎SCS通過整數進行縮放可得到多個SCS。420示出了用於參數集配置的SCS參數。NR網路支援多個SCS,包括15kHz、30kHz、60kHz、120kHz等。參數集參數μ是{0、1、2、3,…}的整數,每個整數對應於一個SCS。每個NR子訊框具有1ms的長度,每個子訊框的時隙數基於SCS,等於2µ。時隙持續時間為1/2µms。在其他實施例中,NR網路支援更多的SCS,如240kHz。420示出了示例性參數。FIG. 4 is an exemplary schematic diagram of a side link time slot configuration including an NR frame and a time slot structure according to an embodiment of the present invention. An exemplary NR frame structure 410 shows a frame 411, a sub-frame 412, and a time slot 413. The 10 ms frame 411 includes 10 sub-frames, each of which has 1 ms. The subframe 412 includes one or more time slots, depending on the subcarrier spacing in the parameter set. Each slot contains multiple symbols. 420 shows exemplary parameters in the NR parameter set. The parameter set is defined by the SCS and cyclic prefix (CP) overhead. NR network supports multiple SCS. Multiple SCSs can be obtained by scaling the basic SCS by integers. 420 shows SCS parameters used for parameter set configuration. The NR network supports multiple SCS, including 15kHz, 30kHz, 60kHz, 120kHz, etc. The parameter set parameter μ is an integer of {0, 1, 2, 3,...}, and each integer corresponds to a SCS. Each NR subframe has a length of 1ms, and the number of time slots in each subframe is based on SCS, which is equal to 2µ. The time slot duration is 1/2 µms. In other embodiments, the NR network supports more SCS, such as 240kHz. 420 shows exemplary parameters.

在NR網路中,支援多個SCS用於時隙配置。在當前系統中,時隙可被分類為下行鏈路、上行鏈路、混合UL和DL傳輸。在TDD中,可將時隙配置為用於UL和DL的混合使用。 NR TDD使用靈活的時隙配置。 NR中的時隙格式配置可以是靜態、半靜態和動態的。可通過信令消息,如無線資源控制(radio resource control,RRC)消息,支援靜態和半靜態時隙配置。用於時隙配置的動態配置使用物理下行鏈路控制通道(physical downlink control channel,PDCCH)下行鏈路控制資訊(downlink control information,DCI)。可通過RRC消息(如tdd-UL-DL-ConfigurationCommon)實現時隙配置。時隙配置可僅配置一種樣式,也可以配置兩種樣式。430示出了僅配置有樣式1和參數集參數為μref 的示例性時隙。單個UL/DL樣式以dl-UL-TransmissionPeriodicity 431週期性傳送。週期431中的總時隙數基於週期和所配置SCS確定。 DL時隙432的數量和UL時隙433的數量在週期431內配置。DL/靈活(D/F)時隙434中DL符號的數量以及靈活/UL(F/ D)時隙435中UL符號的數量也可進行配置。In the NR network, multiple SCSs are supported for time slot configuration. In the current system, time slots can be classified into downlink, uplink, hybrid UL and DL transmission. In TDD, time slots can be configured for mixed use of UL and DL. NR TDD uses flexible time slot configuration. The slot format configuration in NR can be static, semi-static and dynamic. It can support static and semi-static time slot configuration through signaling messages, such as radio resource control (radio resource control, RRC) messages. The dynamic configuration for time slot configuration uses physical downlink control channel (physical downlink control channel, PDCCH) downlink control information (DCI). Time slot configuration can be realized through RRC messages (such as tdd-UL-DL-ConfigurationCommon). The time slot configuration can be configured with only one style or two styles. 430 shows an exemplary time slot configured with only pattern 1 and a parameter set parameter of μ ref. A single UL/DL pattern is periodically transmitted in dl-UL-TransmissionPeriodicity 431. The total number of time slots in the period 431 is determined based on the period and the configured SCS. The number of DL time slots 432 and the number of UL time slots 433 are configured in the period 431. The number of DL symbols in the DL/flexible (D/F) time slot 434 and the number of UL symbols in the flexible/UL (F/D) time slot 435 can also be configured.

利用配置參數,可從TDD UL/DL配置中匯出與所配置樣式相關聯的UL時隙。在一實施例中,TDD UL/DL配置由系統區塊(system information block,SIB)承載。當Uu鏈路和側鏈路的參數集不同時,側鏈路時隙的數量還基於SL和Uu鏈路之間的參數集差異。UL時隙的數量也基於參數集差異。440示出了基於Uu鏈路/介面與側鏈路之間的參數集差異來得到側鏈路時隙配置的示例性場景。參照430的示範例,側鏈路時隙配置使用TDD UL/DL配置資訊來匯出側鏈路時隙數量。在一實施例中,假設Uu介面μref =2。側鏈路配置442具有與上行鏈路時隙數量相同的側鏈路時隙。當μ=1時,側鏈路配置443被配置為側鏈路時隙的數量是上行鏈路時隙的一半。類似地,μ=3時,側鏈路配置441被配置為側鏈路時隙的數量是上行鏈路時隙的兩倍。此外,如444所示,當側鏈路和Uu鏈路具有不同的參數集時,參數集差異會導致基於上行鏈路符號數量和參考參數集產生額外的側鏈路時隙。側鏈路時隙配置中的側鏈路時隙數量基於參考參數集。Utilizing the configuration parameters, the UL time slot associated with the configured pattern can be exported from the TDD UL/DL configuration. In an embodiment, the TDD UL/DL configuration is carried by a system information block (SIB). When the parameter sets of the Uu link and the side link are different, the number of side link time slots is also based on the parameter set difference between the SL and Uu link. The number of UL time slots is also based on the parameter set difference. 440 shows an exemplary scenario in which the side link time slot configuration is obtained based on the parameter set difference between the Uu link/interface and the side link. Referring to the example of 430, the side link time slot configuration uses TDD UL/DL configuration information to export the number of side link time slots. In one embodiment, it is assumed that the Uu interface μ ref =2. The side link configuration 442 has the same number of side link time slots as the number of uplink time slots. When μ=1, the side link configuration 443 is configured such that the number of side link time slots is half of the uplink time slots. Similarly, when μ=3, the side link configuration 441 is configured such that the number of side link time slots is twice the number of uplink time slots. In addition, as shown in 444, when the side link and the Uu link have different parameter sets, the difference in the parameter sets may cause additional side link time slots based on the number of uplink symbols and the reference parameter set. The number of side link time slots in the side link time slot configuration is based on the reference parameter set.

第5圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置的示例圖。 UE 501和UE 502在NR網路中分別通過Uu鏈路511和512與gNB 503連接。 UE 501和UE 502被配置有用於側鏈路513的側鏈路配置。UE基於用於時隙配置的參考樣式和參考參數集確定側鏈路時隙配置520。SL時隙配置520配置僅包括SL符號的SL時隙數量和/或位置。 SL時隙配置520包括SL週期配置521和SL時隙數量的配置522。UE在側鏈路同步信號塊(sidelink synchronization signal block,S-SSB)550中承載/指示配置521和522。對於S-SSB中承載用於確定可用SL時隙的TDD UL/DL資訊來說,可從Uu介面(如SIB消息)獲取的S-SSB中指示與每個週期的UL時隙相關的單週期樣式和雙週期樣式。包括週期配置和樣式指示的SL週期配置521可通過TDD UL/DL配置552獲得。在一實施例中,TDD UL/DL配置552由SIB消息承載。Figure 5 is an exemplary diagram of side link time slot configuration based on a reference parameter set according to an embodiment of the present invention. UE 501 and UE 502 are respectively connected to gNB 503 through Uu links 511 and 512 in the NR network. UE 501 and UE 502 are configured with a side link configuration for side link 513. The UE determines the side link time slot configuration 520 based on the reference pattern and reference parameter set used for the time slot configuration. The SL slot configuration 520 configuration only includes the number and/or location of SL slots of SL symbols. The SL time slot configuration 520 includes an SL period configuration 521 and a configuration 522 of the number of SL time slots. The UE carries/indicates configurations 521 and 522 in a sidelink synchronization signal block (S-SSB) 550. For the TDD UL/DL information carried in the S-SSB used to determine the available SL time slots, the S-SSB that can be obtained from the Uu interface (such as SIB messages) indicates the single cycle related to the UL time slot of each cycle Style and dual-cycle style. The SL period configuration 521 including the period configuration and the pattern indication can be obtained through the TDD UL/DL configuration 552. In an embodiment, the TDD UL/DL configuration 552 is carried by the SIB message.

S-SSB中的比特有限,所以不能攜帶所有組合。為了節省比特,對於雙週期中每個週期相同的樣式,即{P1=n,P2=n}來說,可將相同的指示通過不同的細微性用於不同的n值。例如,對於雙週期模式{P1,P2}={5,5}來說,樣式{5,5}的連續SL或UL時隙由一些比特指示。對於P1和P2具有相同週期的其他樣式,即{2,2}、{2.5,2.5}和{10,10}來說,可參照用於樣式{5,5}的SL或UL時隙指示,得出相應的資訊和參數集的差異。如430和440所示,當配置了如430的參考樣式時,UE可基於430中的參考樣式配置來推導SL或UL時隙配置。440中的配置適用于側鏈路和上行鏈路時隙配置,其參數集與參考參數集µref 不同。The bits in S-SSB are limited, so all combinations cannot be carried. In order to save bits, for the same pattern in each cycle in the double cycle, that is, {P1=n, P2=n}, the same indication can be used for different values of n through different nuances. For example, for the two-period mode {P1, P2}={5, 5}, the consecutive SL or UL time slots of the pattern {5, 5} are indicated by some bits. For other patterns with the same period of P1 and P2, namely {2, 2}, {2.5, 2.5} and {10, 10}, please refer to the SL or UL time slot indication for pattern {5, 5}, Draw the difference of the corresponding information and parameter set. As shown in 430 and 440, when a reference pattern such as 430 is configured, the UE may derive the SL or UL time slot configuration based on the reference pattern configuration in 430. The configuration in 440 is applicable to side link and uplink time slot configuration, and its parameter set is different from the reference parameter set µ ref .

可通過Uu鏈路時隙配置532和側鏈路參數集531得到SL時隙的數量522。Uu鏈路時隙配置532包括Uu鏈路參數集或參考參數集535,以及UL時隙數量或參考時隙數量536。上述UL時隙僅包括UL符號。可從TDD UL/DL配置552獲得Uu鏈路時隙配置532。SL參數集531可被(預)配置以用於所述側鏈路操作。在一實施例中,可從SL信令消息553(如RRC消息)獲得SL參數集531。在又一實施例中,對於eNB/gNB從一個頻率換到另一頻率以用於SL操作的TDD UL/DL配置的載波間指示來說,可通過用於SL操作的基地台信令,如用於SL操作的專用RRC或SIB消息,來指示與用於SL頻率的TDD UL/DL配置相關的參數集。在一實施例中,參考參數集為Uu鏈路參數集。根據不同的實施例,參考參數集和所述側鏈路參數集(預)配置有相同或不同的參數集。The number of SL time slots 522 can be obtained through the Uu link time slot configuration 532 and the side link parameter set 531. The Uu link time slot configuration 532 includes a Uu link parameter set or reference parameter set 535, and the number of UL time slots or the number of reference time slots 536. The above UL time slot includes only UL symbols. The Uu link time slot configuration 532 can be obtained from the TDD UL/DL configuration 552. The SL parameter set 531 may be (pre-)configured for the side link operation. In an embodiment, the SL parameter set 531 may be obtained from the SL signaling message 553 (such as an RRC message). In yet another embodiment, for the inter-carrier indication of the eNB/gNB switching from one frequency to another frequency for TDD UL/DL configuration for SL operation, the base station signaling for SL operation may be used, such as A dedicated RRC or SIB message for SL operation to indicate the parameter set related to the TDD UL/DL configuration for the SL frequency. In an embodiment, the reference parameter set is a Uu link parameter set. According to different embodiments, the reference parameter set and the side link parameter set (pre) are configured with the same or different parameter sets.

第6圖係根據本發明實施例的用於側鏈路CSI-RS資源配置的示範性示意圖。在一實施例中,配置用於SL CSI測量的CSI-RS 610。在一實施例611中,配置610將資源映射到用於TB傳輸的PSSCH的符號上。在另一實施例612中,使用被擊穿資源。對於用於CSI測量的CSI-RS傳輸來說,可根據用於CSI請求的SCI欄位(如第二階段SCI)的存在和CSI-RS資源的配置進行速率匹配。另外,在一實施例中,CSI-RS資源被映射在發送TB的PSSCH資源上。 CSI-RS資源不能被映射到發送第二階段SCI的PSSCH以及/或者承載第一階段SCI的PSSCH,因為UE需要減速率匹配以解碼攜帶CSI請求欄位的第一階段SCI和第二階段SCI。由於第二階段SCI的資源大小可能會發生變化,因此確切的CSI-RS資源位置也可能會發生變化,從而避免第二階段SCI和第一階段SCI資源之間發生衝突。 CSI-RS資源只能被映射到用於TB傳輸的PSSCH的符號上(即沒有任何第一階段SCI和第二階段SCI傳輸)。在一實施例中,可根據第一階段SCI和/或第二階段SCI的時間/頻率資源隱式得出確切的CSI-RS資源位置,或者可根據配置來得到確切的CSI-RS資源位置。在另一實施例中,SL CSI-RS資源可被擊穿。對於UE接收器而言這些將是透明的,而性能下降幅度很小或可忽略。Figure 6 is an exemplary schematic diagram for side link CSI-RS resource configuration according to an embodiment of the present invention. In an embodiment, CSI-RS 610 for SL CSI measurement is configured. In an embodiment 611, the configuration 610 maps resources to PSSCH symbols used for TB transmission. In another embodiment 612, a breakdown resource is used. For the CSI-RS transmission used for CSI measurement, rate matching can be performed according to the existence of the SCI field (such as the second stage SCI) used for the CSI request and the configuration of the CSI-RS resource. In addition, in an embodiment, the CSI-RS resource is mapped on the PSSCH resource for transmitting the TB. CSI-RS resources cannot be mapped to the PSSCH transmitting the second-stage SCI and/or the PSSCH carrying the first-stage SCI, because the UE needs to match the deceleration rate to decode the first-stage SCI and the second-stage SCI that carry the CSI request field. Since the resource size of the second-stage SCI may change, the exact CSI-RS resource location may also change, so as to avoid conflicts between the second-stage SCI and the first-stage SCI resources. CSI-RS resources can only be mapped to PSSCH symbols used for TB transmission (that is, there is no first-stage SCI and second-stage SCI transmission). In an embodiment, the exact CSI-RS resource location can be obtained implicitly according to the time/frequency resources of the first stage SCI and/or the second stage SCI, or the exact CSI-RS resource location can be obtained according to the configuration. In another embodiment, SL CSI-RS resources can be broken down. For the UE receiver, these will be transparent, and the performance degradation will be small or negligible.

在另一實施例中,配置了用於CSI報告的SL CSI表620。在一實施例621中,SL CSI報告資源按資源池/ BWP配置。在另一實施例622中,在SCI欄位中指示SL CSI報告資源。對於SL CSI報告來說,可為每個資源池/ BWP配置假定的SL CSI表(例如64QAM、256QAM或超可靠低延遲通訊(ultra reliable low latency communication,URLLC)表),以及/或者假定的SL CSI表可通過PC5-RRC在UE之間進行交換。在其他實施例中,可在SCI欄位(如第二階段SCI)中從一組(預)配置CSI表中指示出假定的SL CSI表。如此,基於從對應於不同SL MCS表的不同假定的SL CSI表中得到的SL CSI報告,可在SL MCS表之間進行動態切換。在一實施例中,SCI和/或高層信令僅指示一個假定的CSI表,報告的CSI與這種假定隱式關聯。在另一實施例中,指示多個假定的CSI表。UE可以報告與假定的CSI表索引相關聯的CSI,即不同的CSI報告關聯不同的CSI表。在配置了多個CSI資源的情況下,UE可以報告與對應的CSI-RS資源索引相關聯的CSI結果。In another embodiment, an SL CSI table 620 for CSI reporting is configured. In an embodiment 621, SL CSI report resources are configured according to resource pool/BWP. In another embodiment 622, the SL CSI report resource is indicated in the SCI field. For SL CSI reports, an assumed SL CSI table (such as 64QAM, 256QAM or ultra reliable low latency communication (URLLC) table) and/or an assumed SL can be configured for each resource pool/BWP The CSI table can be exchanged between UEs through PC5-RRC. In other embodiments, a hypothetical SL CSI table may be indicated from a set of (pre-)configured CSI tables in the SCI field (such as the second stage SCI). In this way, based on SL CSI reports obtained from different hypothetical SL CSI tables corresponding to different SL MCS tables, it is possible to dynamically switch between SL MCS tables. In an embodiment, the SCI and/or high-level signaling only indicates a hypothetical CSI table, and the reported CSI is implicitly associated with this hypothesis. In another embodiment, multiple hypothetical CSI tables are indicated. The UE may report the CSI associated with the assumed CSI table index, that is, different CSI reports are associated with different CSI tables. In the case where multiple CSI resources are configured, the UE may report the CSI result associated with the corresponding CSI-RS resource index.

第7圖係根據本發明實施例的側鏈路BWP配置和分配的示範性示意圖 。在NR網路中,子通道配置有N個RB。 SL BWP配置710通過RB的數量而不是子通道大小的倍數來配置SL BWP。Figure 7 is an exemplary schematic diagram of side link BWP configuration and allocation according to an embodiment of the present invention. In the NR network, the sub-channel is configured with N RBs. The SL BWP configuration 710 configures the SL BWP by the number of RBs instead of a multiple of the subchannel size.

在一實施例711中,一個或多個資源池可被配置為利用最小化分段資源(minimized fragmented resources)(即非子通道大小的倍數或小於子通道大小)來充分利用所有資源。例如,可將多個資源池配置為具有不同的子通道大小,以使得分段資源非常有限。UE可隨機或基於規則(如資源池的優先順序)來選擇資源池。In an embodiment 711, one or more resource pools may be configured to utilize minimized fragmented resources (that is, a multiple of or less than the sub-channel size) to make full use of all resources. For example, multiple resource pools can be configured to have different subchannel sizes, so that segmentation resources are very limited. The UE can select the resource pool randomly or based on rules (such as the priority order of the resource pool).

在另一實施例712中,可將分段資源配置為PSSCH和/或PSCCH和/或PSFCH傳輸採用分離的資源池。可為資源池配置任意數量的PRB。In another embodiment 712, the segmented resources may be configured to use separate resource pools for PSSCH and/or PSCCH and/or PSFCH transmission. Any number of PRBs can be configured for the resource pool.

在又一實施例713中,SL BWP中的最多(或至少)一個資源池可以配置有不是子通道大小的倍數的RB。例如,可為SL BWP配置多個資源池,其中最多(或至少)一個資源池所配置的RB不是子通道大小的倍數。PSSCH的發送/接收將限於那些為子通道大小倍數的資源。資源池的最小子通道索引中的最小RB索引是資源池的最小RB索引。可將資源池中剩餘的RB(即小於子通道大小的RB)指定為特殊子通道,上述特殊子通道可用於PSSCH傳輸,但不能用於PSCCH傳輸,即可視為一種用於PSSCH傳輸的補充子通道。這種特殊子通道可通過FDM複用來承載PSCCH和PSSCH。在這種情況下,PSCCH可在SL時隙中除GP符號和PSFCH符號之外的所有符號上進行傳輸(如果可用)。In another embodiment 713, the most (or at least) one resource pool in the SL BWP may be configured with RBs that are not a multiple of the subchannel size. For example, multiple resource pools can be configured for the SL BWP, where the RB configured by the most (or at least) one resource pool is not a multiple of the subchannel size. PSSCH transmission/reception will be limited to those resources that are multiples of the subchannel size. The smallest RB index in the smallest subchannel index of the resource pool is the smallest RB index of the resource pool. The remaining RBs in the resource pool (that is, RBs smaller than the size of the subchannel) can be designated as special subchannels. The above special subchannels can be used for PSSCH transmission, but cannot be used for PSCCH transmission, which can be regarded as a supplementary subchannel for PSSCH transmission. aisle. This special subchannel can carry PSCCH and PSSCH through FDM multiplexing. In this case, PSCCH can be transmitted on all symbols except GP symbols and PSFCH symbols in the SL slot (if available).

第8圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置進程的示範性流程圖。在步驟801,UE在無線網路中通過SL獲取SL(預)配置用於SL操作,其中UE配置有與無線網路中基地台連接的Uu鏈路。在步驟802,UE接收TDD UL/DL配置。在步驟803,UE基於SL配置、TDD UL/DL配置和參考參數集確定SL的SL時隙配置。在步驟804,UE基於所確定的SL時隙配置來通過SL進行SL收發。Fig. 8 is an exemplary flow chart of the configuration process of the side link time slot based on the reference parameter set according to an embodiment of the present invention. In step 801, the UE obtains an SL (pre) configuration for SL operation through SL in the wireless network, where the UE is configured with a Uu link connected to a base station in the wireless network. In step 802, the UE receives the TDD UL/DL configuration. In step 803, the UE determines the SL time slot configuration of the SL based on the SL configuration, the TDD UL/DL configuration and the reference parameter set. In step 804, the UE performs SL transmission and reception through the SL based on the determined SL time slot configuration.

在一實施例中,存儲介質(如電腦可讀存儲介質)儲存有程式,上述程式被執行時使得UE執行本發明的實施例。In one embodiment, a storage medium (such as a computer-readable storage medium) stores a program, and when the above-mentioned program is executed, the UE executes the embodiment of the present invention.

雖然本發明已就較佳實施例揭露如上,然其並非用以限制本發明。在不脫離申請專利範圍所界定的本發明的保護範圍內,當可對各實施例中的各特徵進行各種變更、潤飾和組合。Although the present invention has been disclosed above for the preferred embodiments, it is not intended to limit the present invention. Without departing from the scope of protection of the present invention defined by the scope of the patent application, various changes, modifications and combinations can be made to the features in the embodiments.

100:無線系統 111-117、301-302、501-502:使用者設備 101、303、503:基地台 151、161:記憶體 152、162:處理器 153、163:收發器 154、164:程式 155:控制模組 156、165:天線 191:SL配置模組 192:同步模組 193:SL時隙模組 194:SL控制模組 201:核心單元 211:中央單元 221-223:分散式單元 231-233:小區 250、260、321-323、611-612、621-622、711-713:實施例 251:gNB下層 252:gNB上層 261:協議堆疊 311、312、511、512:Uu鏈路 313、513:SL 410:訊框結構 411:訊框 412:子訊框 413、432-435:時隙 420:參數集 430:時隙配置 431:週期 440-444、520:側鏈路時隙配置 521:SL週期配置 522:SL時隙數量的配置 531:側鏈路參數集 532:Uu鏈路時隙配置 535:Uu鏈路參數集 536:UL時隙數量 550:S-SSB 552:TDD UL/DL配置 553:SL信令 610:用於SL CSI測量的CSI-RS 620:用於CSI報告的SL CSI表 710:SL BWP配置 801-804:步驟100: wireless system 111-117, 301-302, 501-502: user equipment 101, 303, 503: base station 151, 161: Memory 152, 162: Processor 153, 163: Transceiver 154, 164: Program 155: Control Module 156, 165: Antenna 191: SL configuration module 192: Synchronization module 193: SL time slot module 194: SL control module 201: core unit 211: Central Unit 221-223: Distributed unit 231-233: Community 250, 260, 321-323, 611-612, 621-622, 711-713: Examples 251: gNB lower layer 252: gNB upper layer 261: Protocol Stack 311, 312, 511, 512: Uu link 313, 513: SL 410: frame structure 411: frame 412: subframe 413, 432-435: time slot 420: parameter set 430: Time slot configuration 431: cycle 440-444, 520: Side link time slot configuration 521: SL cycle configuration 522: Configuration of the number of SL time slots 531: Side link parameter set 532: Uu link time slot configuration 535: Uu link parameter set 536: Number of UL time slots 550: S-SSB 552: TDD UL/DL configuration 553: SL signaling 610: CSI-RS for SL CSI measurement 620: SL CSI table for CSI report 710: SL BWP configuration 801-804: steps

透過參考附圖閱讀後續之詳細描述和示例,可以更全面地理解本申請,其中: 第1圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性無線網路(系統)的系統示意圖。 第2圖係根據本發明實施例的具有NR無線電介面堆疊的集中化上層的示範性NR無線系統示意圖。 第3圖係根據本發明實施例的用於側鏈路時隙配置和資源配置的示範性頂層功能示意圖。 第4圖係根據本發明實施例的包括NR訊框和時隙結構的側鏈路時隙配置的示範性示意圖。 第5圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置的示例圖。 第6圖係根據本發明實施例的用於側鏈路CSI-RS資源配置的示範性示意圖。 第7圖係根據本發明實施例的側鏈路BWP配置和分配的示範性示意圖。 第8圖係根據本發明實施例的基於參考參數集的側鏈路時隙配置進程的示範性流程圖。You can understand this application more comprehensively by reading the detailed description and examples that follow with reference to the accompanying drawings, in which: Figure 1 is a system schematic diagram of an exemplary wireless network (system) for side link time slot configuration and resource configuration according to an embodiment of the present invention. FIG. 2 is a schematic diagram of an exemplary NR wireless system with a centralized upper layer of NR radio interface stacking according to an embodiment of the present invention. Figure 3 is a schematic diagram of an exemplary top-level function for side link time slot configuration and resource configuration according to an embodiment of the present invention. FIG. 4 is an exemplary schematic diagram of a side link time slot configuration including an NR frame and a time slot structure according to an embodiment of the present invention. Figure 5 is an exemplary diagram of side link time slot configuration based on a reference parameter set according to an embodiment of the present invention. Figure 6 is an exemplary schematic diagram for side link CSI-RS resource configuration according to an embodiment of the present invention. Figure 7 is an exemplary schematic diagram of side link BWP configuration and allocation according to an embodiment of the present invention. Fig. 8 is an exemplary flow chart of the configuration process of the side link time slot based on the reference parameter set according to an embodiment of the present invention.

801-804:步驟801-804: steps

Claims (10)

一種側鏈路時隙配置方法,包括: 由一使用者設備在一無線網路中通過一側鏈路獲取一側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中一基地台連接的一Uu鏈路; 接收一時分雙工上行鏈路/下行鏈路配置; 基於所述側鏈路(預)配置、所述時分雙工上行鏈路/下行鏈路配置和一參考參數集確定所述側鏈路的一側鏈路時隙配置;以及 基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。A side link time slot configuration method, including: A side link (pre) configuration is acquired by a user equipment in a wireless network through a side link for side link operation, wherein the user equipment is configured to be connected to a base station in the wireless network A Uu link connected to each station; Receive a time division duplex uplink/downlink configuration; Determining the side link time slot configuration of the side link based on the side link (pre) configuration, the time division duplex uplink/downlink configuration, and a reference parameter set; and Perform side link transmission and reception through the side link based on the determined side link time slot configuration. 如請求項1所述之側鏈路時隙配置方法,其中,所述側鏈路時隙配置用於配置僅包括側鏈路符號的側鏈路時隙數量和/或位置。The side link time slot configuration method according to claim 1, wherein the side link time slot configuration is used to configure the number and/or position of side link time slots that only include side link symbols. 如請求項2所述之側鏈路時隙配置方法,其中,所述僅包括側鏈路符號的側鏈路時隙數量通過僅包括上行鏈路符號的時隙數量、所述參考參數集和一側鏈路參數集得到。The side link time slot configuration method according to claim 2, wherein the number of side link time slots including only side link symbols is determined by the number of time slots including only uplink symbols, the reference parameter set, and One side link parameter set is obtained. 如請求項3所述之側鏈路時隙配置方法,其中,所述參考參數集為一Uu鏈路參數集,所述Uu鏈路參數集和所述側鏈路參數集(預)配置有相同或不同的參數集。The side link time slot configuration method according to claim 3, wherein the reference parameter set is a Uu link parameter set, and the Uu link parameter set and the side link parameter set (pre-)configured The same or different parameter sets. 如請求項3所述之側鏈路時隙配置方法,其中,所述參考參數集與所述時分雙工上行鏈路/下行鏈路配置有關。The side link time slot configuration method according to claim 3, wherein the reference parameter set is related to the time division duplex uplink/downlink configuration. 如請求項3所述之側鏈路時隙配置方法,其中,所述側鏈路參數集被(預)配置以用於所述側鏈路操作。The side link time slot configuration method according to claim 3, wherein the side link parameter set is (pre-)configured for the side link operation. 如請求項6所述之側鏈路時隙配置方法,其中,所述側鏈路參數集通過接收一信令消息被(預)配置,其中所述信令消息為一專用無線電資源控制消息或一系統區塊消息。The side link time slot configuration method according to claim 6, wherein the side link parameter set is (pre-)configured by receiving a signaling message, wherein the signaling message is a dedicated radio resource control message or A system block message. 如請求項3所述之側鏈路時隙配置方法,其中,所述僅包括上行鏈路符號的時隙數量通過所述時分雙工上行鏈路/下行鏈路配置獲取。The side link time slot configuration method according to claim 3, wherein the number of time slots including only uplink symbols is obtained through the time division duplex uplink/downlink configuration. 如請求項2所述之側鏈路時隙配置方法,其中,所述僅包括側鏈路符號的側鏈路時隙數量在一側鏈路同步信號塊中承載。The side link time slot configuration method according to claim 2, wherein the number of side link time slots including only side link symbols is carried in a side link synchronization signal block. 一種使用者設備,包括: 一收發器,用來在一無線網路中發送和接收射頻信號; 一側鏈路配置模組,用來在所述無線網路中通過一側鏈路獲取一側鏈路(預)配置用於側鏈路操作,其中所述使用者設備被配置有與所述無線網路中一基地台連接的一Uu鏈路; 一同步模組,用來接收一時分雙工上行鏈路/下行鏈路配置; 一側鏈路時隙模組,用來基於所述側鏈路(預)配置、所述時分雙工上行鏈路/下行鏈路配置和一參考參數集確定所述側鏈路的一側鏈路時隙配置;以及 一側鏈路控制模組,用來基於所確定的所述側鏈路時隙配置通過所述側鏈路進行側鏈路收發。A user equipment including: A transceiver for sending and receiving radio frequency signals in a wireless network; The side link configuration module is used to obtain a side link (pre) configuration for side link operation through a side link in the wireless network, wherein the user equipment is configured with the A Uu link connected to a base station in a wireless network; A synchronization module for receiving a time division duplex uplink/downlink configuration; A side link time slot module, used to determine one side of the side link based on the side link (pre) configuration, the time division duplex uplink/downlink configuration, and a reference parameter set Link time slot configuration; and The side link control module is used to perform side link transmission and reception through the side link based on the determined side link time slot configuration.
TW110112931A 2020-04-10 2021-04-09 Methods and apparatus for slot configuration for sidelink communication TWI809372B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/084193 2020-04-10
PCT/CN2020/084193 WO2021203411A1 (en) 2020-04-10 2020-04-10 Enhancement for sl communication
CN202110360115.1A CN113573410A (en) 2020-04-10 2021-04-02 Side link time slot configuration method and user equipment
CN202110360115.1 2021-04-02

Publications (2)

Publication Number Publication Date
TW202139769A true TW202139769A (en) 2021-10-16
TWI809372B TWI809372B (en) 2023-07-21

Family

ID=78006833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112931A TWI809372B (en) 2020-04-10 2021-04-09 Methods and apparatus for slot configuration for sidelink communication

Country Status (2)

Country Link
US (1) US20210321369A1 (en)
TW (1) TWI809372B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210368489A1 (en) * 2020-05-23 2021-11-25 Qualcomm Incorporated Cqi table selection in sidelink
BR112023000698A2 (en) * 2020-07-23 2023-02-07 Apple Inc SYSTEMS AND METHODS FOR PROVIDING SYSTEM INFORMATION VIA EU-TO-NETWORK RETRANSMISSION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398438B2 (en) * 2013-05-10 2016-07-19 Futurewei Technologies, Inc. System and method for TDD configuration for D2D open discovery
DE112015006792T5 (en) * 2015-08-10 2018-04-26 Intel Corporation Advanced physical signal structure for LTE V2V communication
US10244522B2 (en) * 2017-03-03 2019-03-26 Qualcomm Incorporated Signaling for multiplexing of low latency communication and sidelink communications
US11096171B2 (en) * 2019-01-11 2021-08-17 Lg Electronics Inc. Method and apparatus for performing BWP-based communication in NR V2X
US11937218B2 (en) * 2019-03-04 2024-03-19 Lg Electronics Inc. Information on sidelink resource
KR20220164523A (en) * 2020-04-08 2022-12-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Time domain resource determination method and device, terminal device

Also Published As

Publication number Publication date
US20210321369A1 (en) 2021-10-14
TWI809372B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US20230180268A1 (en) Method for integrated access backhaul resource multiplexing
CN109561508B (en) Time division duplex wireless communication system
US20230254191A1 (en) Communication apparatuses, methods, system, programs and recording media
TW202019228A (en) Method and user equipment of determining listen before talk and channel access priority class
CN108496387A (en) Base station apparatus, terminal installation and communication means
TWI773413B (en) Enhanced reliability for downlink control information (dci) reception from multiple transmit receive points (m-trp)
WO2021146998A1 (en) Method and apparatus for determining initial bandwidth part (bwp), and storage medium
CN108496388A (en) Base station apparatus, terminal installation and communication means
JP2018509042A (en) High-performance NLOS wireless backhaul frame structure
WO2021032065A1 (en) Resource multiplexing method and apparatus
TWI788825B (en) Methods and apparatus for sidelink channel state information reporting
TWI809372B (en) Methods and apparatus for slot configuration for sidelink communication
CN113966639A (en) Parameter override rules for multiple SPS/CG configurations
CN116134931A (en) Scheduling request transmission on a direct device feedback channel for direct device communication
WO2021109358A1 (en) System and method for sidelink configuration
JP2022532574A (en) Reference coordinates for 2-step RACH resource configuration
CN113573410A (en) Side link time slot configuration method and user equipment
WO2016118927A1 (en) Low overhead signaling for point to multipoint nlos wireless backhaul
WO2022030075A1 (en) Terminal, base station, and communication method
US20240129972A1 (en) Comb and partial interlace-based sidelink feedback channel transmission
WO2022030040A1 (en) Terminal and sidelink communication control method
WO2024034228A1 (en) Communication device and communication method
WO2022209097A1 (en) Communication device and communication method
WO2023013204A1 (en) Terminal, base station, and communication method
TWI834704B (en) Fractally enhanced kernel polar coding