TWI807982B - Liquid alloy thermal paste and the method of fabrication the same - Google Patents

Liquid alloy thermal paste and the method of fabrication the same Download PDF

Info

Publication number
TWI807982B
TWI807982B TW111132926A TW111132926A TWI807982B TW I807982 B TWI807982 B TW I807982B TW 111132926 A TW111132926 A TW 111132926A TW 111132926 A TW111132926 A TW 111132926A TW I807982 B TWI807982 B TW I807982B
Authority
TW
Taiwan
Prior art keywords
liquid alloy
metal
liquid
oxide
gallium
Prior art date
Application number
TW111132926A
Other languages
Chinese (zh)
Other versions
TW202411397A (en
Inventor
鄭博文
鄭安芸
鄭安修
林弘書
Original Assignee
酷樂材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 酷樂材料科技股份有限公司 filed Critical 酷樂材料科技股份有限公司
Priority to TW111132926A priority Critical patent/TWI807982B/en
Application granted granted Critical
Publication of TWI807982B publication Critical patent/TWI807982B/en
Priority to US18/240,937 priority patent/US20240067855A1/en
Publication of TW202411397A publication Critical patent/TW202411397A/en

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A liquid alloy thermal paste comprises: a liquid alloy and a trace element, the liquid alloy and the trace element are stirred and reformed to a paste-like liquid alloy mixture that is viscous and does not flow easily, and the liquid alloy mixture is used as the liquid alloy thermal paste.

Description

液態合金散熱膏及液態合金散熱膏之製造方法Liquid alloy thermal paste and method for manufacturing liquid alloy thermal paste

本發明係關於一種液態合金散熱膏及液態合金散熱膏之製造方法,特別是關於不易外漏、方便設置且具高散熱性能的液態合金散熱膏及該液態合金散熱膏之製造方法。 The invention relates to a liquid alloy heat dissipation paste and a method for manufacturing the liquid alloy heat dissipation paste, in particular to a liquid alloy heat dissipation paste that is not easy to leak, easy to install and has high heat dissipation performance, and a method for manufacturing the liquid alloy heat dissipation paste.

現今人類生活中使用大量的電子裝置,作為電子裝置內的處理器或電子元件,在運轉時會產生龐大的熱量,使處理器或電子元件的溫度過高而造成損壞,縮短了處理器或電子元件的使用壽命。為了讓這些處理器或電子元件能夠長時間運作,並且維持其使用壽命,則處理器或電子元件的散熱成為了至關重要的課題。 Nowadays, a large number of electronic devices are used in human life. As processors or electronic components in electronic devices, huge heat will be generated during operation, which will cause damage to the processor or electronic components due to overheating, and shorten the service life of the processor or electronic components. In order to allow these processors or electronic components to operate for a long time and maintain their service life, the heat dissipation of the processors or electronic components has become a crucial issue.

常見的散熱方式,例如於處理器或電子元件的熱源上方設置散熱膏、散熱元件等,藉由其容易導熱的特性以提高處理器或電子元件的散熱性能。習知的散熱膏可分為非液態散熱膏及液態散熱膏。非液態散熱膏雖然具有易於設置的優點,但其導熱性能不佳,無法有效地將處理器或電子元件的熱傳導至散熱元件。另一方面,液態散熱膏雖然具有良好的導熱性能,但其液態的特性而難以均勻地塗佈於處理器或電子元件的表面上。此外,液態散熱膏也有容易自處理器或電子元件的表面溢出,導致周圍電路短路的問題。 Common heat dissipation methods, such as disposing heat dissipation paste and heat dissipation components above the heat source of the processor or electronic components, can improve the heat dissipation performance of the processor or electronic components by virtue of their easy heat conduction characteristics. Conventional heat dissipation pastes can be classified into non-liquid heat dissipation pastes and liquid heat dissipation pastes. While non-liquid thermal paste has the advantage of being easy to set up, it doesn't conduct heat well enough to effectively transfer heat from the processor or electronic components to the cooling element. On the other hand, although the liquid thermal paste has good thermal conductivity, it is difficult to evenly coat the surface of the processor or electronic components due to its liquid nature. In addition, the liquid heat dissipation paste is also prone to overflow from the surface of the processor or electronic components, causing a short circuit in the surrounding circuits.

因此,本發明的目的即在提供一種液態合金散熱膏及液態合金散熱膏之製造方法。 Therefore, the object of the present invention is to provide a liquid alloy heat dissipation paste and a method for manufacturing the liquid alloy heat dissipation paste.

本發明為解決習知技術之問題所採用之技術手段係提供一種液態合金散熱膏,係包含:一液態合金,係包括一液態金屬及複數個固態金屬,藉由該液態金屬及複數個該固態金屬的混合而將該液態金屬及複數個該固態金屬予以達到合金化或共晶化;一微量元素;其中,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物,而以該液態合金混合物作為液態合金散熱膏。 The technical means adopted by the present invention to solve the problems of the conventional technology is to provide a liquid alloy thermal paste, which includes: a liquid alloy, which includes a liquid metal and a plurality of solid metals, and the liquid metal and the plurality of solid metals are alloyed or eutectic by mixing the liquid metal and the plurality of solid metals; mixture, and the liquid alloy mixture is used as liquid alloy thermal grease.

在本發明的一實施例中係提供一種液態合金散熱膏,其中該液態金屬係包括鎵,該固態金屬係包括銦及錫,該液態合金散熱膏係包括60至80重量百分比的鎵、15至25重量百分比的銦及5-15重量百分比的錫。 In one embodiment of the present invention, a liquid alloy heat dissipation paste is provided, wherein the liquid metal system includes gallium, the solid metal system includes indium and tin, and the liquid alloy heat dissipation paste system includes 60 to 80 weight percent gallium, 15 to 25 weight percent indium, and 5-15 weight percent tin.

在本發明的一實施例中係提供一種液態合金散熱膏,其中該微量元素係選自硼、鋁、鎵及銦的ⅢA族元素;碳、矽、鍺、錫及鉛的ⅣA族元素;氮、磷、砷、銻及鉍的ⅤA族元素;以及硒及碲的ⅥA族元素中的其中一種或多種元素。 In one embodiment of the present invention, a liquid alloy thermal paste is provided, wherein the trace element is selected from group IIIA elements of boron, aluminum, gallium, and indium; group IVA elements of carbon, silicon, germanium, tin, and lead; group VA elements of nitrogen, phosphorus, arsenic, antimony, and bismuth; and one or more elements of group VIA elements of selenium and tellurium.

在本發明的一實施例中係提供一種液態合金散熱膏,更包含有一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。 In one embodiment of the present invention, a liquid alloy thermal paste is provided, which further includes a heat-conducting particle, and the heat-conducting particle is metal, metal oxide, metal nitride or carbon-based material.

在本發明的一實施例中係提供一種液態合金散熱膏,其中該金屬為銅、鋅、鋁或鎵,該金屬氧化物為氧化銅、氧化鋅或氧化鎵,該金屬氮化物為氮化鋁或氮化鎵,該碳基材料為石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 In one embodiment of the present invention, a liquid alloy thermal paste is provided, wherein the metal is copper, zinc, aluminum or gallium, the metal oxide is copper oxide, zinc oxide or gallium oxide, the metal nitride is aluminum nitride or gallium nitride, and the carbon-based material is graphene, graphene oxide, carbon nanotubes, graphite, diamond or artificial diamond.

本發明為解決習知技術之問題所採用之另一技術手段係提供一種液態合金散熱膏之製造方法,係包含:一混合步驟,係將一液態金屬及複數 個固態金屬予以混合;一合金化步驟,係將該液態金屬及複數個該固態金屬及予以達到合金化或共晶化而形成一液態合金;一過濾步驟,係將該液態合金予以過濾以去除雜質;一改質步驟,係於經過濾的該液態合金添加一微量元素,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物;一分散步驟,將該液態合金混合物予以分散使該液態合金中的金屬粒子分布均勻;以及一脫氣步驟,將經分散的該液態合金混合物予以脫氣而將該液態合金中的氣體予以排除,以經脫氣的該液態合金混合物作為液態合金散熱膏。 Another technical means adopted by the present invention to solve the problems of the prior art is to provide a method for manufacturing liquid alloy thermal paste, which includes: a mixing step, which is to mix a liquid metal and a plurality of A solid metal is mixed; an alloying step is to alloy or eutectic the liquid metal and a plurality of the solid metals to form a liquid alloy; a filtering step is to filter the liquid alloy to remove impurities; a modification step is to add a trace element to the filtered liquid alloy, and to form a viscous liquid alloy mixture in a paste form that is not easy to flow by stirring the liquid alloy and the trace element for modification; a dispersion step is to disperse the liquid alloy mixture. The metal particles in the liquid alloy are uniformly distributed; and a degassing step, degassing the dispersed liquid alloy mixture to remove the gas in the liquid alloy, and using the degassed liquid alloy mixture as a liquid alloy thermal paste.

在本發明的一實施例中係提供一種液態合金散熱膏之製造方法,其中該混合步驟係將60至80重量百分比的鎵、15至25重量百分比的銦及5-15重量百分比錫予以混合,該合金化步驟係將該鎵、銦及錫予以達到合金化或共晶化。 In one embodiment of the present invention, a method for manufacturing a liquid alloy thermal paste is provided, wherein the mixing step is to mix 60 to 80 weight percent gallium, 15 to 25 weight percent indium and 5-15 weight percent tin, and the alloying step is to alloy or eutecticize the gallium, indium and tin.

在本發明的一實施例中係提供一種液態合金散熱膏之製造方法,其中該改質步驟中添加的該微量元素係選自硼、鋁、鎵及銦的ⅢA族元素;碳、矽、鍺、錫及鉛的ⅣA族元素;氮、磷、砷、銻及鉍的ⅤA族元素;以及硒及碲的ⅥA族元素中的其中一種或多種元素。 In one embodiment of the present invention, a method for manufacturing a liquid alloy thermal paste is provided, wherein the trace element added in the modifying step is one or more elements selected from Group IIIA elements of boron, aluminum, gallium, and indium; Group IVA elements of carbon, silicon, germanium, tin, and lead; Group VA elements of nitrogen, phosphorus, arsenic, antimony, and bismuth; and one or more elements of Group VIA elements of selenium and tellurium.

在本發明的一實施例中係提供一種液態合金散熱膏之製造方法,於該改質步驟之後且於該分散步驟之前更包含有一添加步驟,係於經改質的該液態合金中添加一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。 In one embodiment of the present invention, there is provided a method for manufacturing a liquid alloy thermal paste. After the modifying step and before the dispersion step, it further includes an adding step, which is to add a heat-conducting particle to the modified liquid alloy. The heat-conducting particle is metal, metal oxide, metal nitride or carbon-based material.

在本發明的一實施例中係提供一種液態合金散熱膏之製造方法,其中該金屬為銅、鋅、鋁或鎵,該金屬氧化物為氧化銅、氧化鋅或氧化鎵,該金屬氮化物為氮化鋁或氮化鎵,該碳基材料為石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 In one embodiment of the present invention, there is provided a method for manufacturing liquid alloy thermal paste, wherein the metal is copper, zinc, aluminum or gallium, the metal oxide is copper oxide, zinc oxide or gallium oxide, the metal nitride is aluminum nitride or gallium nitride, and the carbon-based material is graphene, graphene oxide, carbon nanotubes, graphite, diamond or artificial diamond.

經由本發明所採用之技術手段,本發明的液態合金散熱膏的型態穩定不易流動,且具有良好的附著性,能夠均勻地塗佈於處理器或電子元件的表面上,具有優良的散熱性能,並且能夠避免自處理器或電子元件的表面溢出,導致周圍電路短路的問題。 Through the technical means adopted in the present invention, the liquid alloy thermal paste of the present invention is stable and difficult to flow, and has good adhesion, can be evenly coated on the surface of the processor or electronic components, has excellent heat dissipation performance, and can avoid overflow from the surface of the processor or electronic components, resulting in the short circuit of the surrounding circuits.

10:液態合金散熱膏 10: Liquid alloy thermal paste

20:基板 20: Substrate

21:電子元件 21: Electronic components

30:散熱器 30: Radiator

40:散熱鰭片 40: cooling fins

S101:混合步驟 S101: mixing step

S102:合金化步驟 S102: Alloying step

S103:過濾步驟 S103: filtering step

S104:改質步驟 S104: modification step

S105:添加步驟 S105: adding steps

S106:分散步驟 S106: Dispersing step

S107:脫氣步驟 S107: degassing step

〔第1圖〕係表示根據本發明的一實施例中於電子元件上設置散熱膏及散熱元件的示意圖。 [FIG. 1] is a schematic view showing disposing thermal paste and thermal components on electronic components according to an embodiment of the present invention.

〔第2圖〕係表示根據本發明的另一實施例中於電子元件上設置散熱膏及散熱元件的示意圖。 [FIG. 2] is a schematic diagram showing disposing thermal paste and thermal components on electronic components according to another embodiment of the present invention.

〔第3圖〕係表示根據本發明的液態合金散熱膏之製造方法的流程圖。 [FIG. 3] is a flow chart showing the method of manufacturing the liquid alloy thermal paste according to the present invention.

〔第4圖〕係表示根據本發明的液態合金散熱膏的散熱性能的折線圖。 [Fig. 4] is a line graph showing the heat dissipation performance of the liquid alloy heat dissipation paste according to the present invention.

〔第5圖〕係表示根據本發明的液態合金散熱膏的另一散熱性能的折線圖。 [Fig. 5] is a line graph showing another heat dissipation performance of the liquid alloy heat dissipation paste according to the present invention.

以下根據第1圖至第5圖,而說明本發明的實施方式。該說明並非為限制本發明的實施方式,而為本發明之實施例的一種。 Embodiments of the present invention will be described below based on FIGS. 1 to 5 . This description is not intended to limit the implementation of the present invention, but is one of the examples of the present invention.

依據本發明的一實施例的一液態合金散熱膏10,係包含:一液態合金及一微量元素。 A liquid alloy thermal paste 10 according to an embodiment of the present invention includes: a liquid alloy and a trace element.

該液態合金,係包括一液態金屬及複數個固態金屬,藉由該液態金屬及複數個該固態金屬的混合而將該液態金屬及複數個該固態金屬予以達到合金化或共晶化。 The liquid alloy includes a liquid metal and a plurality of solid metals, and the liquid metal and the plurality of solid metals are alloyed or eutectic by mixing the liquid metal and the plurality of solid metals.

依據本發明的一實施例的一液態合金散熱膏10中,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物,而以該液態合金混合物作為液態合金散熱膏。 In a liquid alloy thermal paste 10 according to an embodiment of the present invention, the liquid alloy mixture and the trace elements are stirred to modify to form a viscous liquid alloy mixture in a pasty state that is not easy to flow, and the liquid alloy mixture is used as the liquid alloy heat dissipation paste.

第1圖係表示根據本發明的一實施例中於電子元件上設置散熱膏及散熱元件的示意圖。第2圖係表示根據本發明的另一實施例中於電子元件上設置散熱膏及散熱元件的示意圖。 FIG. 1 is a schematic diagram of disposing heat dissipation paste and heat dissipation components on electronic components according to an embodiment of the present invention. FIG. 2 is a schematic diagram of disposing heat dissipation paste and heat dissipation components on electronic components according to another embodiment of the present invention.

如第1圖所示,依據本發明的一實施例的一液態合金散熱膏10經塗佈而位於設置在基板20上的電子元件21的上表面與作為一散熱元件的散熱器30的下表面之間,以及位於散熱器30的上表面與作為另一散熱元件的散熱鰭片40的下表面之間。 As shown in FIG. 1, a liquid alloy thermal paste 10 according to an embodiment of the present invention is coated and located between the upper surface of the electronic component 21 disposed on the substrate 20 and the lower surface of the heat sink 30 as a heat dissipation element, and between the upper surface of the heat sink 30 and the lower surface of the heat dissipation fin 40 as another heat dissipation element.

在本實施例中,本發明的液態合金散熱膏10作為熱界面材料(Thermal Interface Material,TIM)而發揮散熱的功能。 In this embodiment, the liquid alloy heat dissipation paste 10 of the present invention functions as a thermal interface material (Thermal Interface Material, TIM) to perform heat dissipation.

以現今的技術而言,不論如何加工,散熱元件的表面仍會有粗糙不平的部分,所以當兩個散熱元件的表面接觸在一起的時候,不可能形成毫無空隙的完全接觸,仍會有一些空氣夾雜在空隙之中,而空氣的導熱係數非常之小,因此就造成了比較大的接觸熱阻,而導致散熱性能的低落。 According to the current technology, no matter how it is processed, the surface of the heat dissipation element will still have rough and uneven parts. Therefore, when the surfaces of two heat dissipation elements are in contact, it is impossible to form a complete contact without gaps. There will still be some air mixed in the gaps. The thermal conductivity of air is very small, which causes a relatively large contact thermal resistance, resulting in a decrease in heat dissipation performance.

使用熱界面材料(Thermal Interface Material,TIM)就可以填充這個空氣間隙,可以降低接觸熱阻,提高散熱性能。 The air gap can be filled by using thermal interface material (TIM), which can reduce contact thermal resistance and improve heat dissipation performance.

詳細而言,如第1圖所示,依據本發明的一實施例中,位於電子元件21的上表面與散熱器30的下表面之間的液態合金散熱膏10,作為一般所謂的TIM 1,將電子元件21運作時所產生的熱能予以傳遞至散熱器30。 In detail, as shown in FIG. 1 , according to an embodiment of the present invention, the liquid alloy thermal paste 10 located between the upper surface of the electronic component 21 and the lower surface of the heat sink 30, as a so-called TIM 1, transfers heat energy generated by the electronic component 21 to the heat sink 30 during operation.

再者,依據本發明的一實施例中,位於散熱器30的上表面與作為另一散熱元件的散熱鰭片40的下表面之間的液態合金散熱膏10,作為一般所謂 的TIM 2,將傳遞至散熱器30的熱予以傳遞至散熱鰭片40,再藉由散熱鰭片40將熱予以散發出去。 Furthermore, according to an embodiment of the present invention, the liquid alloy heat dissipation paste 10 located between the upper surface of the heat sink 30 and the lower surface of the heat dissipation fin 40 as another heat dissipation element is generally called The TIM 2 transfers the heat transferred to the heat sink 30 to the heat dissipation fins 40 , and then dissipates the heat through the heat dissipation fins 40 .

當然,本發明不限於第1圖的設置方式,亦可如第2圖所示,依據本發明的另一實施例中,液態合金散熱膏10經塗佈而位於設置在基板20上的電子元件21的上表面與作為一散熱元件的散熱鰭片40的下表面之間。 Of course, the present invention is not limited to the arrangement shown in FIG. 1, and may also be shown in FIG. 2. According to another embodiment of the present invention, the liquid alloy heat dissipation paste 10 is coated and located between the upper surface of the electronic component 21 disposed on the substrate 20 and the lower surface of the heat dissipation fin 40 as a heat dissipation element.

在本實施例中,位於電子元件21的上表面與作為一散熱元件的散熱鰭片40的下表面之間的液態合金散熱膏10,作為一般所謂的TIM 1.5,將電子元件21運作時所產生的熱能直接傳遞至散熱鰭片40進行散熱。 In this embodiment, the liquid alloy heat dissipation paste 10 located between the upper surface of the electronic component 21 and the lower surface of the heat dissipation fin 40 as a heat dissipation element, as a so-called TIM 1.5, directly transfers the heat energy generated by the operation of the electronic component 21 to the heat dissipation fin 40 for heat dissipation.

藉由本發明的液態合金散熱膏10,作為優良的熱界面材料(Thermal Interface Material,TIM),在電子元件21與散熱器30之間及散熱器30與散熱鰭片40之間形成良好的散熱通道,而能夠有效地將電子元件21運作時所產生的熱予以散發出去。 With the liquid alloy thermal paste 10 of the present invention, as an excellent thermal interface material (Thermal Interface Material, TIM), a good heat dissipation channel is formed between the electronic component 21 and the heat sink 30 and between the heat sink 30 and the heat dissipation fins 40, and can effectively dissipate the heat generated by the electronic component 21 during operation.

再者,本發明的液態合金散熱膏10的型態穩定不易流動,且具有良好的附著性,能夠均勻地塗佈於處理器或電子元件的表面上,能夠避免自處理器或電子元件的表面溢出,導致周圍電路短路的問題。 Furthermore, the liquid alloy thermal paste 10 of the present invention is stable and difficult to flow, and has good adhesion, can be evenly coated on the surface of the processor or electronic components, and can avoid overflowing from the surface of the processor or electronic components, resulting in the short circuit of the surrounding circuits.

依據本發明的一實施例的一液態合金散熱膏10中,該液態金屬係包括鎵,該固態金屬係包括銦及錫,該液態合金散熱膏係包括60至80重量百分比的鎵、15至25重量百分比的銦及5-15重量百分比的錫。 In a liquid alloy heat dissipation paste 10 according to an embodiment of the present invention, the liquid metal system includes gallium, the solid metal system includes indium and tin, and the liquid alloy heat dissipation paste system includes 60 to 80 weight percent gallium, 15 to 25 weight percent indium, and 5-15 weight percent tin.

依據本發明的一實施例的一液態合金散熱膏10中,該微量元素係選自ⅢA族元素、ⅣA族元素、ⅤA族元素及ⅥA族元素中的其中一種或多種元素。 In a liquid alloy thermal paste 10 according to an embodiment of the present invention, the trace element is one or more elements selected from group IIIA elements, group IVA elements, group VA elements and group VIA elements.

作為Ⅲ族元素,可例舉有:硼(B)、鋁(Al)、鎵(Ga)及銦(In)等。作為Ⅳ族元素,可例舉有:碳(C)、矽(Si)、鍺(Ge)、錫(Sn)及鉛(Pb)等。作為Ⅴ族元素,可例舉有:氮(N)、磷(P)、砷(As)、銻(Sb)及鉍(Bi)。作為Ⅵ族元素,可例舉有:硒(Se)及碲(Te)等。 Examples of group III elements include boron (B), aluminum (Al), gallium (Ga), and indium (In). Examples of group IV elements include carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb). Examples of group V elements include nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). Selenium (Se) and tellurium (Te) etc. are mentioned as a group VI element.

依據本發明的一實施例的一液態合金散熱膏10更包含有一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。 A liquid alloy thermal paste 10 according to an embodiment of the present invention further includes a thermally conductive particle, and the thermally conductive particle is metal, metal oxide, metal nitride or carbon-based material.

作為該金屬,可例舉有:銅、鋅、鋁或鎵。作為該金屬氧化物,可例舉有:氧化銅、氧化鋅或氧化鎵。作為該金屬氮化物,可例舉有:氮化鋁或氮化鎵。作為該碳基材料,可例舉有:石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 As this metal, copper, zinc, aluminum, or gallium may be mentioned. As the metal oxide, copper oxide, zinc oxide, or gallium oxide may, for example, be mentioned. Examples of the metal nitride include aluminum nitride and gallium nitride. Examples of the carbon-based material include graphene, graphene oxide, carbon nanotubes, graphite, diamond, and artificial diamond.

以下根據第3圖而說明依據本發明的液態合金散熱膏之製造方法。第3圖係表示根據本發明的液態合金散熱膏之製造方法的流程圖。 The manufacturing method of the liquid alloy thermal paste according to the present invention will be described below according to FIG. 3 . Fig. 3 is a flow chart showing a method of manufacturing liquid alloy thermal paste according to the present invention.

如圖所示,根據本發明的液態合金散熱膏之製造方法係包含:一混合步驟S101、一合金化步驟S102、一過濾步驟S103、一改質步驟S104、一分散步驟S106及一脫氣步驟S107。 As shown in the figure, the manufacturing method of liquid alloy thermal paste according to the present invention includes: a mixing step S101, an alloying step S102, a filtering step S103, a modifying step S104, a dispersion step S106 and a degassing step S107.

根據本發明的液態合金散熱膏之製造方法中,該混合步驟S101係將一液態金屬及複數個固態金屬予以混合。 According to the manufacturing method of the liquid alloy thermal paste of the present invention, the mixing step S101 is to mix a liquid metal and a plurality of solid metals.

詳細而言,該混合步驟S101係將鎵、銦及錫予以混合。例如,取60至80重量百分比的鎵、15至25重量百分比的銦及5-15重量百分比的錫,並將溫度控制在40℃至100℃的情況下進行混合。 In detail, the mixing step S101 is to mix gallium, indium and tin. For example, 60 to 80 weight percent of gallium, 15 to 25 weight percent of indium and 5 to 15 weight percent of tin are used for mixing while controlling the temperature at 40°C to 100°C.

接著進入該合金化步驟S102,而將該液態金屬及複數個該固態金屬予以達到合金化或共晶化而形成液態合金。 Then enter the alloying step S102, and the liquid metal and the plurality of solid metals are alloyed or eutectic to form a liquid alloy.

接著進入該過濾步驟S103。在該過濾步驟S103中,將該液態合金予以過濾以去除雜質。 Then enter the filtering step S103. In the filtering step S103, the liquid alloy is filtered to remove impurities.

接著進入該改質步驟S104。在該改質步驟S104中,於經過濾的該液態合金添加一微量元素,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物。 Then enter the modifying step S104. In the modifying step S104, a trace element is added to the filtered liquid alloy, and the liquid alloy and the trace element are stirred to modify to form a viscous liquid alloy mixture in a paste state that is not easy to flow.

詳細而言,可取0.01至0.5重量百分比的微量元素添加至經過濾之該液態合金中。其中該改質步驟S104中添加的該微量元素係選自硼、鋁、鎵及銦的ⅢA族元素;碳、矽、鍺、錫及鉛的ⅣA族元素;氮、磷、砷、銻及鉍的ⅤA族元素;以及硒及碲的ⅥA族元素中的其中一種或多種元素。 Specifically, 0.01 to 0.5 weight percent of trace elements can be added to the filtered liquid alloy. The trace elements added in the modifying step S104 are selected from Group IIIA elements of boron, aluminum, gallium, and indium; Group IVA elements of carbon, silicon, germanium, tin, and lead; Group VA elements of nitrogen, phosphorus, arsenic, antimony, and bismuth; and one or more elements of Group VIA elements of selenium and tellurium.

接著進入該分散步驟S106。在該分散步驟S106中,將該液態合金混合物予以分散使該液態合金中的金屬粒子分布均勻。 Then proceed to the dispersing step S106. In the dispersing step S106, the liquid alloy mixture is dispersed so that the metal particles in the liquid alloy are evenly distributed.

作為將該液態合金混合物予以分散的方法,可使用例如:流體剪力混合機(Hydrodynamic shear-based mixer)、捏合機(Kneader)、攪拌球磨機(Stirred ball mill)、輥磨機(Roller mill)、盤磨機(Disc mill)或超音波均質機(Ultrasonic homogenizer)等裝置,將該液態合金混合物中的金屬粒子予以分布均勻地分散。 As a method for dispersing the liquid alloy mixture, for example, devices such as a Hydrodynamic shear-based mixer, a Kneader, a Stirred ball mill, a Roller mill, a Disc mill, or an Ultrasonic homogenizer can be used to distribute and disperse the metal particles in the liquid alloy mixture evenly.

接著進入該脫氣步驟S107。在該脫氣步驟S107中,將經分散的該液態合金混合物予以脫氣而將該液態合金中的氣體予以排除,以經脫氣的該液態合金混合物作為液態合金散熱膏。 Then enter the degassing step S107. In the degassing step S107, the dispersed liquid alloy mixture is degassed to remove the gas in the liquid alloy, and the degassed liquid alloy mixture is used as liquid alloy thermal paste.

作為將該液態合金混合物予以脫氣的方法,可使用例如離心脫泡機(Planetary centrifugal degassing mixer)、真空離心脫泡機(Vacuum Planetary centrifugal degassing mixer)、雙行星攪拌脫泡機(Double Planetary agitational degassing mixer)、雙行星真空攪拌脫泡機(Vacuum Double Planetary agitational degassing mixer)或真空混合脫泡機(Vacuum degassing mixer)等裝置,將經分散的該液態合金混合物予以脫氣而將該液態合金中的氣體予以排除。 As a method for degassing the liquid alloy mixture, for example, a centrifugal degassing mixer (Planetary centrifugal degassing mixer), a vacuum centrifugal degassing mixer (Vacuum Planetary centrifugal degassing mixer), a double planetary agitational degassing mixer (Double Planetary agitational degassing mixer), a double planetary vacuum agitational degassing mixer (Vacuum Double Planetary agitational degassing mixer) can be used. mixer) or vacuum degassing mixer (Vacuum degassing mixer) and other devices to degas the dispersed liquid alloy mixture and remove the gas in the liquid alloy.

再者,本發明不限於此,如第3圖所示,依據本發明的液態合金散熱膏之製造方法中,於該改質步驟S104之後且於該分散步驟S106之前可更包含有一添加步驟S105,係於經改質的該液態合金中添加一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。其中,該金屬為銅、鋅、 鋁或鎵,該金屬氧化物為氧化銅、氧化鋅或氧化鎵,該金屬氮化物為氮化鋁或氮化鎵,該碳基材料為石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 Moreover, the present invention is not limited thereto. As shown in FIG. 3 , in the method for manufacturing liquid alloy thermal paste according to the present invention, after the modification step S104 and before the dispersion step S106, an adding step S105 may be further included, which is to add a heat-conducting particle to the modified liquid alloy, and the heat-conducting particle is metal, metal oxide, metal nitride or carbon-based material. Among them, the metals are copper, zinc, Aluminum or gallium, the metal oxide is copper oxide, zinc oxide or gallium oxide, the metal nitride is aluminum nitride or gallium nitride, and the carbon-based material is graphene, graphene oxide, carbon nanotubes, graphite, diamond or artificial diamond.

第4圖係表示根據本發明的液態合金散熱膏的散熱性能的折線圖。第5圖係表示根據本發明的液態合金散熱膏的另一散熱性能的折線圖。第4圖及第5圖中,縱軸為熱阻係數,橫軸為施加於散熱膏的壓力。 Fig. 4 is a line graph showing the heat dissipation performance of the liquid alloy heat dissipation paste according to the present invention. Fig. 5 is a line graph showing another heat dissipation performance of the liquid alloy heat dissipation paste according to the present invention. In Figures 4 and 5, the vertical axis is the thermal resistance coefficient, and the horizontal axis is the pressure applied to the thermal paste.

熱阻係數愈小表示散熱性能愈好。當施加於散熱膏的壓力提高,使得散熱膏中的導熱成分愈為緻密時,使熱傳導的效率提高,熱阻係數降低,散熱性能愈好。但是,當施加於散熱膏的壓力大於20PSI時,散熱膏的熱阻係數則不會再有明顯的變化。習知的金屬散熱膏的熱阻係數,最低可達約0.025℃cm2/W。 The smaller the thermal resistance coefficient, the better the heat dissipation performance. When the pressure applied to the heat dissipation paste is increased, the heat conduction components in the heat dissipation paste are denser, the efficiency of heat conduction is improved, the thermal resistance coefficient is reduced, and the heat dissipation performance is better. However, when the pressure applied to the thermal paste is greater than 20PSI, the thermal resistivity of the thermal paste will not change significantly. The thermal resistance coefficient of conventional metal thermal pastes can be as low as about 0.025° C. cm 2 /W.

第4圖中,GLL、GLP++、GLP+、GLP-M、GLP及GLP-L皆為根據本發明的液態合金散熱膏之製造方法所製造的液態合金散熱膏。由第4圖可知,根據本發明的液態合金散熱膏皆有穩定的散熱性能。再者,GLP+有與習知的金屬散熱膏同樣的散熱性能,而GLL及GLP++則有較習知的金屬散熱膏更為優異的散熱性能。 In Fig. 4, GLL, GLP++, GLP+, GLP-M, GLP, and GLP-L are all liquid alloy heat dissipation pastes manufactured according to the method for manufacturing liquid alloy heat dissipation pastes of the present invention. It can be seen from FIG. 4 that all the liquid alloy heat dissipation pastes according to the present invention have stable heat dissipation performance. Furthermore, GLP+ has the same heat dissipation performance as the conventional metal heat dissipation paste, while GLL and GLP++ have better heat dissipation performance than the conventional metal heat dissipation paste.

第5圖中,GLP+-1、GLP+-2及GLP+-3亦皆為根據本發明的液態合金散熱膏之製造方法所製造的液態合金散熱膏。由第5圖可知,根據本發明的液態合金散熱膏皆有穩定的散熱性能,且與習知的金屬散熱膏相比,具有同樣甚至更為優異的散熱性能。 In Fig. 5, GLP+-1, GLP+-2 and GLP+-3 are all liquid alloy heat dissipation pastes manufactured according to the manufacturing method of liquid alloy heat dissipation paste of the present invention. It can be seen from FIG. 5 that the liquid alloy heat dissipation paste according to the present invention has stable heat dissipation performance, and compared with the conventional metal heat dissipation paste, it has the same or even better heat dissipation performance.

經由本發明所採用之技術手段,本發明的液態合金散熱膏10的型態穩定不易流動,且具有良好的附著性,能夠均勻地塗佈於處理器或電子元件的表面上,具有優良的散熱性能,並且能夠避免自處理器或電子元件的表面溢出,導致周圍電路短路的問題。再者,經由本發明的液態合金散熱膏之製造方 法,能夠製造型態穩定不易流動、具有良好的附著性、優良的散熱性能,並且能夠避免自處理器或電子元件的表面溢出,導致周圍電路短路問題的液態合金散熱膏。 Through the technical means adopted in the present invention, the liquid alloy heat dissipation paste 10 of the present invention is stable and difficult to flow, and has good adhesion, can be evenly coated on the surface of the processor or electronic components, has excellent heat dissipation performance, and can avoid overflow from the surface of the processor or electronic components, resulting in the short circuit of the surrounding circuits. Furthermore, through the manufacturing method of the liquid alloy thermal paste of the present invention The method can produce a liquid alloy thermal paste that is stable in shape, not easy to flow, has good adhesion, excellent heat dissipation performance, and can avoid overflowing from the surface of the processor or electronic components, causing short circuit problems in the surrounding circuits.

以上之敘述以及說明僅為本發明之較佳實施例之說明,對於此項技術具有通常知識者當可依據以下所界定申請專利範圍以及上述之說明而作其他之修改,惟此些修改仍應是為本發明之發明精神而在本發明之權利範圍中。 The above descriptions and descriptions are only descriptions of the preferred embodiments of the present invention. Those who have common knowledge of this technology can make other modifications according to the scope of the patent application defined below and the above descriptions. However, these modifications should still be the spirit of the present invention and within the scope of rights of the present invention.

10:液態合金散熱膏 10: Liquid alloy thermal paste

20:基板 20: Substrate

21:電子元件 21: Electronic components

30:散熱器 30: Radiator

40:散熱鰭片 40: cooling fins

Claims (6)

一種液態合金散熱膏,係包含:一液態合金,係包括一液態金屬及複數個固態金屬,該液態金屬係包括60至80重量百分比的鎵,該固態金屬係包括15至25重量百分比的銦及5至15重量百分比的錫,藉由該液態金屬及複數個該固態金屬的混合而將該液態金屬及複數個該固態金屬予以達到合金化或共晶化;以及一微量元素,其重量百分比為0.01至0.5重量百分比,該微量元素係選自硼、鋁、鎵及銦的ⅢA族元素;碳、矽、鍺、錫及鉛的ⅣA族元素;氮、磷、砷、銻及鉍的ⅤA族元素;以及硒及碲的ⅥA族元素中的其中一種或多種元素;其中,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物,而以該液態合金混合物作為液態合金散熱膏。 A liquid alloy heat sink, which contains: a liquid alloy, including a liquid metal and a plural solid metal. The liquid metal system includes a 60 to 80 percentage percentage of 镓. The solid metal system includes a 15 to 25 percentage tin with a weight percentage of 5 to 15 percentage. The metal and plurals of the solid metal can reach alloy or crystallize; and a trace element, its weight percentage is 0.01 to 0.5 percentage percentage. This trace element is selected from the IIIA elements of boron, aluminum, 镓, and 铟; carbon, silicon, tin, tin, and lead; Elements; and one or more elements in the elements of selenium and tadpoles; among them, stirred the liquid alloy and the trace element to form a liquid alloy mixture that is sticky and not easy to flow, and the liquid alloy mixture is used as a liquid alloy heat sink. 如請求項1所述之液態合金散熱膏,更包含有一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。 The liquid alloy heat dissipation paste as described in claim 1 further includes a heat conduction particle, and the heat conduction particle is metal, metal oxide, metal nitride or carbon-based material. 如請求項2所述之液態合金散熱膏,其中該金屬為銅、鋅、鋁或鎵,該金屬氧化物為氧化銅、氧化鋅或氧化鎵,該金屬氮化物為氮化鋁或氮化鎵,該碳基材料為石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 Liquid alloy thermal paste as described in Claim 2, wherein the metal is copper, zinc, aluminum or gallium, the metal oxide is copper oxide, zinc oxide or gallium oxide, the metal nitride is aluminum nitride or gallium nitride, and the carbon-based material is graphene, graphene oxide, carbon nanotubes, graphite, diamond or artificial diamond. 一種液態合金散熱膏之製造方法,係包含:一混合步驟,係將一液態金屬及複數個固態金屬予以混合,該液態金屬係包括60至80重量百分比的鎵,該固態金屬係包括15至25重量百分比的銦及5-15重量百分比的錫;一合金化步驟,係將該液態金屬及複數個該固態金屬予以達到合金化或共晶化而形成一液態合金; 一過濾步驟,係將該液態合金予以過濾以去除雜質;一改質步驟,係於經過濾的該液態合金添加0.01至0.5重量百分比的一微量元素,該微量元素係選自硼、鋁、鎵及銦的ⅢA族元素;碳、矽、鍺、錫及鉛的ⅣA族元素;氮、磷、砷、銻及鉍的ⅤA族元素;以及硒及碲的ⅥA族元素中的其中一種或多種元素,藉由將該液態合金及該微量元素予以攪拌以改質而形成具有黏性而呈不易流動的一膏狀型態的液態合金混合物;一分散步驟,將該液態合金混合物予以分散使該液態合金中的金屬粒子分布均勻;以及一脫氣步驟,將經分散的該液態合金混合物予以脫氣而將該液態合金中的氣體予以排除,以經脫氣的該液態合金混合物作為液態合金散熱膏。 A method for manufacturing a liquid alloy thermal paste, comprising: a mixing step of mixing a liquid metal and a plurality of solid metals, the liquid metal comprising 60 to 80 weight percent of gallium, the solid metal comprising 15 to 25 weight percent of indium and 5-15 weight percent of tin; an alloying step of alloying or eutecticizing the liquid metal and the plurality of solid metals to form a liquid alloy; A filtering step is to filter the liquid alloy to remove impurities; a modification step is to add 0.01 to 0.5 weight percent of a trace element to the filtered liquid alloy, the trace element is selected from group IIIA elements of boron, aluminum, gallium and indium; group IVA elements of carbon, silicon, germanium, tin and lead; group VA elements of nitrogen, phosphorus, arsenic, antimony and bismuth; Stirring the trace elements for modification to form a viscous and difficult-to-flow liquid alloy mixture in a pasty state; a dispersing step, dispersing the liquid alloy mixture so that the metal particles in the liquid alloy are evenly distributed; and a degassing step, degassing the dispersed liquid alloy mixture to remove the gas in the liquid alloy, and using the degassed liquid alloy mixture as a liquid alloy thermal paste. 如請求項4所述之液態合金散熱膏之製造方法,於該改質步驟之後且於該分散步驟之前更包含有一添加步驟,係於經改質的該液態合金中添加一導熱微粒,該導熱微粒係為金屬、金屬氧化物、金屬氮化物或碳基材料。 The manufacturing method of the liquid alloy thermal paste as described in claim 4 further includes an adding step after the modification step and before the dispersion step, which is to add a heat-conducting particle to the modified liquid alloy, and the heat-conducting particle is a metal, metal oxide, metal nitride or carbon-based material. 如請求項5所述之液態合金散熱膏之製造方法,其中該金屬為銅、鋅、鋁或鎵,該金屬氧化物為氧化銅、氧化鋅或氧化鎵,該金屬氮化物為氮化鋁或氮化鎵,該碳基材料為石墨烯、氧化石墨烯、奈米碳管、石墨、金剛石或人造金剛石。 The manufacturing method of liquid alloy thermal paste as described in Claim 5, wherein the metal is copper, zinc, aluminum or gallium, the metal oxide is copper oxide, zinc oxide or gallium oxide, the metal nitride is aluminum nitride or gallium nitride, and the carbon-based material is graphene, graphene oxide, carbon nanotubes, graphite, diamond or artificial diamond.
TW111132926A 2022-08-31 2022-08-31 Liquid alloy thermal paste and the method of fabrication the same TWI807982B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111132926A TWI807982B (en) 2022-08-31 2022-08-31 Liquid alloy thermal paste and the method of fabrication the same
US18/240,937 US20240067855A1 (en) 2022-08-31 2023-08-31 Liquid alloy thermal paste and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111132926A TWI807982B (en) 2022-08-31 2022-08-31 Liquid alloy thermal paste and the method of fabrication the same

Publications (2)

Publication Number Publication Date
TWI807982B true TWI807982B (en) 2023-07-01
TW202411397A TW202411397A (en) 2024-03-16

Family

ID=88149120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111132926A TWI807982B (en) 2022-08-31 2022-08-31 Liquid alloy thermal paste and the method of fabrication the same

Country Status (1)

Country Link
TW (1) TWI807982B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970058A (en) * 2016-07-21 2016-09-28 深圳市大材液态金属科技有限公司 Novel liquid metal, and preparation method and application thereof
CN114921676A (en) * 2022-05-27 2022-08-19 江阴镓力材料科技有限公司 Liquid metal in-situ composite graphene thermal interface material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970058A (en) * 2016-07-21 2016-09-28 深圳市大材液态金属科技有限公司 Novel liquid metal, and preparation method and application thereof
CN114921676A (en) * 2022-05-27 2022-08-19 江阴镓力材料科技有限公司 Liquid metal in-situ composite graphene thermal interface material and preparation method thereof

Also Published As

Publication number Publication date
TW202411397A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
CN108129841B (en) Liquid metal insulation heat conduction material and preparation method thereof
US6365973B1 (en) Filled solder
TW503544B (en) Thermal joint and method of use
US6797758B2 (en) Morphing fillers and thermal interface materials
TWI411691B (en) Metal thermal interface material and heat dissipation device
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
WO2018161416A1 (en) Liquid metal thermal interface material with melt-back property and preparation method thereof
CN110643331B (en) Liquid metal heat-conducting paste and preparation method and application thereof
US8080499B2 (en) Nanodiamond thermal grease
CN101760035B (en) The using method of thermal interfacial material and this thermal interfacial material
CN105474418B (en) Electrothermal module and heat conversion device comprising the electrothermal module
CN102585773A (en) Phase-change heat-conduction interface material and preparation method thereof
KR20150082914A (en) Thermoelectric moudule and device using the same
JPH0853664A (en) Thermally conductive material and its production, method for cooling electronic part, method for cooling circuit board, and method for mounting electronic part
CN110724869B (en) High-thermal-conductivity leakproof heat conduction material and preparation method and application thereof
TWI807982B (en) Liquid alloy thermal paste and the method of fabrication the same
US20140174492A1 (en) Thermoelectric material and method for manufacturing the same
TWI519636B (en) High thermal conductivity composite solder
JP5966504B2 (en) Solder joint structure, power module, power module substrate with heat sink, solder joint structure manufacturing method, power module manufacturing method, heat sink power module substrate manufacturing method
TW202411396A (en) Hybrid thermal greases with high thermal conductivity and insulated electrical conductivity
US20240067855A1 (en) Liquid alloy thermal paste and fabrication method thereof
TWI740332B (en) Method for reducing surface tension between indium-bismuth alloy and substrate by coating rosin as well as composite material manufactured by the method
CN114276785A (en) Metal-based phase-change interface heat conduction material, preparation method and application thereof
CN113755138A (en) Thermal interface material and electronic device comprising same
TW202125735A (en) Use of indium-bismuth alloy for heat dissipation reducing the porosity and improving the heat dissipation effect