TWI807553B - A manufacturing method of memory device including semiconductor element - Google Patents

A manufacturing method of memory device including semiconductor element Download PDF

Info

Publication number
TWI807553B
TWI807553B TW110148463A TW110148463A TWI807553B TW I807553 B TWI807553 B TW I807553B TW 110148463 A TW110148463 A TW 110148463A TW 110148463 A TW110148463 A TW 110148463A TW I807553 B TWI807553 B TW I807553B
Authority
TW
Taiwan
Prior art keywords
conductor layer
layer
semiconductor
gate
gate conductor
Prior art date
Application number
TW110148463A
Other languages
Chinese (zh)
Other versions
TW202243133A (en
Inventor
原田望
作井康司
Original Assignee
新加坡商新加坡優尼山帝斯電子私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商新加坡優尼山帝斯電子私人有限公司 filed Critical 新加坡商新加坡優尼山帝斯電子私人有限公司
Publication of TW202243133A publication Critical patent/TW202243133A/en
Application granted granted Critical
Publication of TWI807553B publication Critical patent/TWI807553B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

A N+layer 11a which is connected to a source line SL located at both ends of Si pillars 12a to 12d standing in the vertical direction, N+layers 13a, 13c which are connected to a bit line BL1, N+layers 13b and 13d which are connected to a bit line BL2, a TiN layer 18a which is connected to a metal plate line PL1 that surrounds a gate HfO2 layer 17 surrounding the Si pillars 12a to 12d and is connected between the Si pillars 12a and 12b, a TiN layer 18b which is connected to a plate line PL2 connected between the Si pillars 12c and 12d, a TiN layer 26b which is connected to a word line WL1 that surrounds a gate HfO2 layer 17b surrounding the Si pillars 12a to 12d and is connected between the Si pillars 12a, 12b, and a TiN layer 26b which is connected to a word line WL2 connected between the Si pillars 12c and 12d are formed on a substrate 10. Voltages applied to the source line SL, the plate lines PL1, PL2, the word lines WL1, WL2, and the bit lines BL1, BL2 are controlled so as to perform a data holding operation of holding a hole group generated due to the impact ionization phenomenon in the Si pillars 12a to 12b, and a data erase operation of removing the hole group from the Si pillars 12a to 12d.

Description

包含半導體元件之記憶裝置的製造方法 Method for manufacturing memory device including semiconductor element

本發明係關於一種包含半導體元件之記憶裝置的製造方法。 The invention relates to a manufacturing method of a memory device including a semiconductor element.

近年來,LSI(Large Scale Integration,大型積體電路)技術開發上,有記憶體元件的高密集化及高性能化之需求。 In recent years, in the development of LSI (Large Scale Integration, large-scale integrated circuit) technology, there is a demand for high density and high performance of memory components.

通常的平面型MOS電晶體中,其通道係朝沿著半導體基板之上表面的水平方向延伸。相對於此,SGT(Surrounding Gate Transistor;環繞式閘極電晶體)的通道係相對於半導體基板之上表面沿垂直的方向延伸(例如參照專利文獻1、非專利文獻1)。因此,相較於平面型MOS電晶體,SGT更可達成半導體裝置的高密度化。使用此SGT作為選擇電晶體,可進行連接有電容器之DRAM(Dynamic Random Access Memory,動態隨機存取記憶體。例如參照非專利文獻2)、連接有電阻可變元件的PCM(Phase Change Memory,相變化記憶體。例如參照非專利文獻3)、RRAM(Resistive Random Access Memory,電阻式隨機存取記憶體。例如參照非專利文獻4)、及藉由電流使自旋磁矩的方向變化而使電阻變化的 MRAM(Magnetoresistive Random Access,磁阻式隨機存取記憶體。例如參照非專利文獻5)等的高密集化。此外,亦有不具有電容器之由一個MOS電晶體所構成的DRAM記憶體單元(參照非專利文獻7)等。本案係關於不具有電阻可變元件、電容器等之可僅由MOS電晶體所構成的動態快閃記憶體。 In a common planar MOS transistor, its channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the channel of the SGT (Surrounding Gate Transistor; Surrounding Gate Transistor) extends in a direction perpendicular to the upper surface of the semiconductor substrate (for example, refer to Patent Document 1 and Non-Patent Document 1). Therefore, compared with planar MOS transistors, SGT can achieve higher density of semiconductor devices. Using this SGT as a selection transistor, DRAM (Dynamic Random Access Memory, dynamic random access memory, dynamic random access memory, for example, refer to non-patent literature 2) connected with capacitors, PCM (Phase Change Memory, phase change memory, for example, referring to non-patent literature 3), RRAM (Resistive Random Access Memory, resistive random access memory, referring to non-patent literature 4), and the direction of the spin magnetic moment is changed by current. variable resistance High densification such as MRAM (Magnetoresistive Random Access, magnetoresistive random access memory. For example, refer to Non-Patent Document 5). In addition, there is also a DRAM memory cell composed of one MOS transistor without a capacitor (see Non-Patent Document 7). This case relates to a dynamic flash memory that can only be composed of MOS transistors without resistance variable elements, capacitors, etc.

圖7係顯示前述不具有電容器之由一個MOS電晶體所構成之DRAM記憶體單元的寫入動作,圖8係顯示動作上的問題點,圖9係顯示讀取動作(參照非專利文獻7至10)。 FIG. 7 shows the writing operation of the aforementioned DRAM memory cell composed of a MOS transistor without a capacitor, FIG. 8 shows the problems in the operation, and FIG. 9 shows the reading operation (refer to non-patent documents 7 to 10).

圖7係顯示DRAM記憶體單元的寫入動作。圖7(a)係顯示“1”寫入狀態。在此,記憶體單元係形成於SOI(Silicon on Insulator,絕緣層覆矽)基板100,於源極N+層103連接有源極線SL,於汲極N+層104連接有位元線BL,於閘極導體層105連接有字元線WL,且藉由MOS電晶體110a的浮體(Floating Body)102而構成,不具有電容器,以一個MOS電晶體110a構成DRAM的記憶體單元。另外,浮體102的正下方係與SOI基板的SiO2層101相接。以一個MOS電晶體110a構成之記憶體單元進行“1”的寫入之際,係使MOS電晶體110a在線性區域動作。亦即,從源極N+層103延伸之電子的通道107中具有夾止點108而不會到達連接有位元線的汲極N+層104。如此,若連接於汲極N+層104之位元線BL與連接於閘極導體層105的字元線WL皆設為高電壓,使閘極電壓為汲極電壓的約1/2左右而使MOS電晶體110a動作,則在汲極N+層104附近的夾止點108中,電場強度成為最大。結果,從源極N+層103朝向汲極N+層104流動之經加速的電子會與Si的晶格撞擊,而會因為在該時點所失去的運動能 量而產生電子、電洞對(撞擊游離現象)。所產生之大部分的電子(未圖示)係到達汲極N+層104。此外,極小部分之極熱的電子係越過閘極氧化膜109而到達閘極導體層105。並且,同時產生的電洞106則將浮體102充電。此時,由於浮體102為P型Si,故所產生的電洞係有助於作為多數載子的增量。浮體102係被所產生的電洞106所充滿致使浮體102的電壓比源極N+層103更提高至Vb以上時,進一步產生的電洞會對源極N+層103放電。在此,Vb係源極N+層103與P層之浮體102之間之PN接合的內建電壓,約0.7V。圖7(b)係顯示浮體102已被所產生之電洞106飽和充電的情形。 FIG. 7 shows the writing operation of a DRAM memory cell. Fig. 7(a) shows the "1" writing state. Here, the memory cell is formed on an SOI (Silicon on Insulator, silicon-on-insulator) substrate 100, the source N + layer 103 is connected to the source line SL, the drain N + layer 104 is connected to the bit line BL, and the gate conductor layer 105 is connected to the word line WL. The memory cell of DRAM. In addition, the directly below the floating body 102 is in contact with the SiO 2 layer 101 of the SOI substrate. When writing "1" into a memory cell constituted by one MOS transistor 110a, the MOS transistor 110a is operated in a linear region. That is, the channel 107 for electrons extending from the source N + layer 103 has a pinch point 108 in it and does not reach the drain N + layer 104 to which the bit line is connected. In this way, if both the bit line BL connected to the drain N + layer 104 and the word line WL connected to the gate conductor layer 105 are set to a high voltage, and the gate voltage is about 1/2 of the drain voltage to operate the MOS transistor 110a, then the electric field intensity becomes maximum at the pinch point 108 near the drain N + layer 104. As a result, the accelerated electrons flowing from the source N + layer 103 toward the drain N + layer 104 collide with the Si lattice, and electron-hole pairs are generated due to the kinetic energy lost at that point (impact ionization phenomenon). Most of the generated electrons (not shown) reach the drain N + layer 104 . In addition, a very small portion of extremely hot electrons passes through the gate oxide film 109 to reach the gate conductor layer 105 . Moreover, the electric hole 106 generated at the same time charges the floating body 102 . At this time, since the floating body 102 is P-type Si, the generated holes contribute to the increment of majority carriers. The floating body 102 is filled with the generated holes 106 so that the voltage of the floating body 102 is higher than that of the source N + layer 103 to be above Vb, and further generated holes will discharge the source N + layer 103 . Here, Vb is the built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, about 0.7V. FIG. 7( b ) shows the situation that the floating body 102 has been saturated charged by the generated electric hole 106 .

接著使用圖7(c)來說明記憶體單元110的“0”的寫入動作。對於共通的選擇字元線WL,隨機地存在有寫入“1”的記憶體單元110a及寫入“0”的記憶體單元110b。圖7(c)係顯示從“1”的寫入狀態改寫為“0”的寫入狀態的情形。寫入“0”時,將位元線BL的電壓設為負偏壓,將汲極N+層104與P層的浮體102之間的PN接合設為正偏壓。結果,先前周期產生於浮體102的電洞106係流向連接有位元線BL的汲極N+層104。若寫入動作結束,則會獲得圖7(b)所示之被所產生之電洞106充滿的記憶體單元110a以及圖7(c)所示之所產生之電洞已被排出之記憶體單元110b之二個記憶體單元的狀態。被電洞106所充滿之記憶體單元110a之浮體102的電位係高於已無所產生之電洞的浮體102。因此,記憶體單元110a的臨限值電壓係低於記憶體單元110b的臨限值電壓,成為如圖7(d)所示的情形。 Next, the writing operation of "0" in the memory cell 110 will be described using FIG. 7( c ). For the common selected word line WL, the memory cell 110 a written with “1” and the memory cell 110 b written with “0” exist randomly. FIG. 7( c ) shows the situation of rewriting from the written state of "1" to the written state of "0". When “0” is written, the voltage of the bit line BL is set as a negative bias, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is set as a positive bias. As a result, the hole 106 generated in the floating body 102 in the previous cycle flows to the drain N + layer 104 connected to the bit line BL. If the writing operation ends, the state of two memory cells of the memory cell 110a shown in FIG. 7( b) filled with the generated electric hole 106 and the memory cell 110b shown in FIG. 7( c) that the generated electric hole has been discharged will be obtained. The potential of the floating body 102 of the memory cell 110a filled with the holes 106 is higher than that of the floating body 102 without any generated holes. Therefore, the threshold voltage of the memory cell 110a is lower than the threshold voltage of the memory cell 110b, as shown in FIG. 7( d ).

接著,使用圖8來說明此種由一個MOS電晶體所構成之記憶體單元之動作上的問題點。如圖8(a)所示,浮體102的電容CFB係電容CWL、接合電容CSL、接合電容CBL的總和,以 Next, problems in the operation of such a memory cell composed of one MOS transistor will be described using FIG. 8 . As shown in Figure 8(a), the capacitance C FB of the floating body 102 is the sum of the capacitance C WL , the junction capacitance C SL , and the junction capacitance C BL , which is expressed as

CFB=CWL+CBL+CSL (1) C FB =C WL +C BL +C SL (1)

來表示。其中,電容CWL係連接有字元線的閘極與浮體102間的電容。接合電容CSL係連接有源極線的源極N+層103與浮體102之間之PN接合的接合電容。接合電容CBL係連接有位元線的源極N+層104與浮體102之間之PN接合的接合電容。因此,若寫入時字元線電壓VWL振盪,則成為記憶體單元之記憶節點(接點)之浮體102的電壓亦會受到其影響,成為如圖8(b)所示的情形,若寫入時字元線電壓VWL從0V上升至VProgWL,則浮體102的電壓VFB係從字元線電壓變化前之初始狀態之電壓VFB1,因字元線的電容耦合而上升至VFB2。其電壓變化量△VFBTo represent. Wherein, the capacitor C WL is the capacitor between the gate connected to the word line and the floating body 102 . The junction capacitance C SL is the junction capacitance of the PN junction between the source N + layer 103 connected to the source line and the floating body 102 . The junction capacitance C BL is the junction capacitance of the PN junction between the source N + layer 104 connected to the bit line and the floating body 102 . Therefore, if the word line voltage V WL oscillates during writing, the voltage of the floating body 102 which becomes the memory node ( contact) of the memory cell will also be affected by it, and a situation as shown in FIG . Its voltage variation △V FB to

△VFB=VFB1-VFB2 △V FB =V FB1 -V FB2

=CWL/(CWL+CBL+CSL)×CProgWL (2) =C WL /(C WL +C BL +C SL )×C ProgWL (2)

來表示。 To represent.

在此,以β=CWL/(CWL+CBL+CSL) (3) Here, β=C WL /(C WL +C BL +C SL ) (3)

來表示時,將β稱為耦合率。此種記憶體單元中,CWL的貢獻率較大,例如CWL:CBL:CSL=8:1:1。此時,β=0.8。若字元線例如寫入時為5V而寫入結束後成為0V,則浮體102會因為字元線與浮體102的電容耦合而承受振盪雜訊達5V×β=4V。因此,會有無法充分取得寫入時之浮體”1”電位與”0”電位的電位差的差分邊限的問題點。 To express, β is called the coupling rate. In this type of memory unit, the contribution ratio of C WL is relatively large, for example, C WL : C BL : C SL =8:1:1. At this time, β=0.8. For example, if the word line is 5V during writing and becomes 0V after writing, the floating body 102 will suffer oscillation noise of 5V×β=4V due to the capacitive coupling between the word line and the floating body 102 . Therefore, there is a problem in that the difference margin of the potential difference between the "1" potential and the "0" potential of the floating body at the time of writing cannot be sufficiently obtained.

圖9係顯示讀取動作。圖9(a)係顯示“1”的寫入狀態,圖9(b)係顯示“0”的寫入狀態。然而,實際上,即使以“1”寫入對浮體102寫入了Vb,字元線因寫入結束而返回0V時,浮體102即會降低為負偏壓。要寫入“0”之際,由於會變得更負偏壓,因此在寫入之際無法充分地增大“1”與“0”的電位差的差分邊限。對本DRAM記憶體單元而言,如此的動作差分小係成為重大的問題。而且,亦有要將此DRAM記憶體單元高密度化的課題。此外,亦有在SOI(Silicon on Insulator,絕緣層覆矽)層上使用二個MOS電晶體來形成一個記憶體單元而成的記憶體元件(例如參照專利文獻4、5)。此等元件中,區分二個MOS電晶體的浮體通道之成為源極或汲極之N+層係連接於絕緣層而形成。藉由此N+層連接於絕緣層,二個MOS電晶體的浮體通道即電性分離。因此,積蓄有屬於信號電荷之電洞群之經分離之浮體通道的電壓係如前所述,會因為施加於各個MOS電晶體之閘極電極的脈衝電壓而與(2)式所示同樣地大幅地變化。因此,會有無法充分地增大寫入之際之”1”與”0”之電位差的差分邊限的問題。 Figure 9 shows the reading action. FIG. 9(a) shows the writing state of "1", and Fig. 9(b) shows the writing state of "0". However, actually, even if Vb is written into the floating body 102 by writing "1", when the word line returns to 0V due to the completion of writing, the floating body 102 will be lowered to a negative bias. When "0" is written, since the bias becomes more negative, the difference margin of the potential difference between "1" and "0" cannot be sufficiently increased at the time of writing. For this DRAM memory cell, such a small difference in motion becomes a serious problem. Furthermore, there is also a problem of increasing the density of the DRAM memory cells. In addition, there are also memory devices that use two MOS transistors on an SOI (Silicon on Insulator) layer to form a memory cell (for example, refer to Patent Documents 4 and 5). In these devices, the N + layer that distinguishes the floating body channel of the two MOS transistors and becomes the source or drain is connected to the insulating layer and formed. By connecting the N + layer to the insulating layer, the floating body channels of the two MOS transistors are electrically separated. Therefore, the voltage of the separated floating body channel in which the hole group belonging to the signal charge is stored changes greatly as shown in equation (2) by the pulse voltage applied to the gate electrode of each MOS transistor as described above. Therefore, there is a problem that the difference margin of the potential difference between "1" and "0" at the time of writing cannot be sufficiently increased.

[先前技術文獻] [Prior Art Literature]

[專利文獻] [Patent Document]

專利文獻1:日本特開平2-188966號公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2-188966

專利文獻2:日本特開平3-171768號公報 Patent Document 2: Japanese Patent Application Laid-Open No. 3-171768

專利文獻3:日本特許第3957774號公報 Patent Document 3: Japanese Patent No. 3957774

專利文獻4:US2008/0137394A1 Patent Document 4: US2008/0137394A1

專利文獻5:US2003/0111681A1 Patent Document 5: US2003/0111681A1

[非專利文獻] [Non-patent literature]

【0001】 【0001】

非專利文獻1:Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) Non-Patent Document 1: Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991)

非專利文獻2:H.Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: “4F2 DRAM Cell with Vertical Pillar Transistor(VPT),” 2011 Proceeding of the European Solid-State Device Research Conference, (2011) Non-Patent Document 2: H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: “4F2 DRAM Cell with Vertical Pillar Transistor(VPT),” 2011 Proceeding of the European Solid-State Device Research Confer ence, (2011)

非專利文獻3:H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: “Phase Change Memory,” Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) Non-Patent Document 3: H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: “Phase Change Memory,” Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010)

非專利文獻4:T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : “Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V,” IEDM (2007) Non-Patent Document 4: T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama: “Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipol ar Voltage Source of less than 3V,” IEDM (2007)

非專利文獻5:W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: “Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology,” IEEE Transaction on Electron Devices, pp.1-9 (2015) Non-Patent Document 5: W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: “Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology,” IEEE Transaction on Electron Devices, pp.1-9 (2015)

非專利文獻6:M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron,” IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) Non-Patent Document 6: M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron,” IEEE Electron Device Letter, Vol. 31, No.5, pp.405-40 7 (2010)

非專利文獻7:J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012) Non-Patent Document 7: J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012)

非專利文獻8:T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). Non-Patent Document 8: T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002).

非專利文獻9:T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama: “Floating Body RAM Technology and its Scalability to 32nm Node and Beyond,” IEEE IEDM (2006). Non-Patent Document 9: T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Ino h, T. Hamamoto, A. Nitayama: “Floating Body RAM Technology and its Scalability to 32nm Node and Beyond,” IEEE IEDM (2006).

非專利文獻10:E. Yoshida: “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE IEDM (2006). Non-Patent Document 10: E. Yoshida: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE IEDM (2006).

非專利文獻11:J.Y. Song, W. Y. Choi, J. H. Park, J. D. Lee, and B-G. Park: “Design Optimization of Gate-All-Around (GAA) MOSFETs,” IEEE Trans. Electron Devices, vol. 5, no. 3, pp.186-191, May 2006. Non-Patent Document 11: J.Y. Song, W. Y. Choi, J. H. Park, J. D. Lee, and B-G. Park: “Design Optimization of Gate-All-Around (GAA) MOSFETs,” IEEE Trans. Electron Devices, vol. 5, no. 3, pp.186-191, May 2006.

非專利文獻12:N. Loubet, et al.: “Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET,” 2017 IEEE Symposium on VLSI Technology Digest of Technical Papers, T17-5, T230-T231, June 2017. Non-Patent Document 12: N. Loubet, et al.: “Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET,” 2017 IEEE Symposium on VLSI Technology Digest of Technical Papers, T17-5, T230-T231, June 2017.

非專利文獻13:H. Jiang, N. Xu, B. Chen, L. Zeng1, Y. He, G. Du, X. Liu and X. Zhang: “Experimental investigation of self heating effect (SHE) in multiple-fin SOI FinFETs,”Semicond. Sci. Technol. 29 (2014) 115021 (7pp). Non-Patent Document 13: H. Jiang, N. Xu, B. Chen, L. Zeng1, Y. He, G. Du, X. Liu and X. Zhang: “Experimental investigation of self heating effect (SHE) in multiple-fin SOI FinFETs,” Semicond. Sci. Technol. 29 (2014) 115021 (7pp ).

非專利文獻14:E. Yoshida, and T. Tanaka: “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-697,Apr. 2006. Non-Patent Document 14: E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 69 2-697, Apr. 2006.

使用SGT之記憶裝置之無電容器的一個電晶體型的DRAM(增益單元)中,字元線與浮動體之SGT之基體的電容結合耦合較大,在資料讀取時、寫入時等時候字元線的電位振盪時,即會有直接被作為是對於SGT基體傳遞的雜訊的問題。結果,引起誤讀取、記憶資料之誤改寫的問 題,而難以達到無電容器的一個電晶體型的DRAM(增益單元)的實用化。因此,必須解決上述問題並且將記憶體單元高密度化。 In a transistor-type DRAM (gain unit) without a capacitor in a memory device using SGT, the capacitive coupling between the word line and the SGT substrate of the floating body is relatively large. When the potential of the word line oscillates when data is read or written, there will be a problem that it will be directly regarded as noise transmitted to the SGT substrate. As a result, problems of misreading and misrewriting of memory data are caused. However, it is difficult to realize the practical application of a one-transistor DRAM (gain unit) without a capacitor. Therefore, it is necessary to solve the above problems and increase the density of memory cells.

為了解決上述問題,本發明提供一種包含柱狀半導體元件之記憶裝置的製造方法,該記憶裝置係進行:資料保持動作,係控制對於第一閘極導體層、第二閘極導體層、第三閘極導體層、第四閘極導體層、第一雜質區域及第二雜質區域施加的電壓,而將藉由撞擊游離現象或閘極引發汲極洩漏電流所形成的電洞群保持在第一半導體柱、第二半導體柱、第三半導體柱及第四半導體柱的任一者或各者的內部;及資料抹除動作,係控制對於前述第一閘極導體層、前述第二閘極導體層、前述第三閘極導體層、前述第四閘極導體層、前述第一雜質區域及前述第二雜質區域施加的電壓,而將前述電洞群從前述第一至第四半導體柱的任一者或各者的內部予以去除;前述製造方法係具有下列步驟: In order to solve the above-mentioned problems, the present invention provides a method of manufacturing a memory device comprising a columnar semiconductor element. The memory device is to perform: a data retention operation, which is to control the voltage applied to the first gate conductor layer, the second gate conductor layer, the third gate conductor layer, the fourth gate conductor layer, the first impurity region, and the second impurity region, and to maintain the hole group formed by the impact free phenomenon or the drain leakage current caused by the gate in any one or each of the first semiconductor pillar, the second semiconductor pillar, the third semiconductor pillar, and the fourth semiconductor pillar; and the data erasing operation. Controlling the voltage applied to the first gate conductor layer, the second gate conductor layer, the third gate conductor layer, the fourth gate conductor layer, the first impurity region, and the second impurity region to remove the hole group from any or each of the first to fourth semiconductor pillars; the manufacturing method has the following steps:

在基板上形成前述第一半導體柱和前述第二半導體柱、及前述第三半導體柱和前述第四半導體柱的步驟,前述第一半導體柱和第二半導體柱係朝垂直方向站立,而且俯視觀察時在第一方向上鄰接地配置,前述第三半導體柱和第四半導體柱係在平行於前述第一方向的第二方向上鄰接地配置; The step of forming the first semiconductor column and the second semiconductor column, and the third semiconductor column and the fourth semiconductor column on the substrate, wherein the first semiconductor column and the second semiconductor column stand in a vertical direction and are arranged adjacently in the first direction when viewed from above, and the third semiconductor column and the fourth semiconductor column are arranged adjacently in a second direction parallel to the first direction;

形成包圍著前述第一半導體柱至第四半導體柱的第一絕緣層的步驟; a step of forming a first insulating layer surrounding the aforementioned first to fourth semiconductor pillars;

形成前述第一閘極導體層和前述第二閘極導體層的步驟,前述第一閘極導體層係包圍前述第一絕緣層,而且在垂直方向上,其上表面位置位於前述第一半導體柱至第四半導體柱的下方,而且在前述第一方向上於前述 第一半導體柱和前述第二半導體柱之間相連著,前述第二閘極導體層係在前述第二方向上之前述第三半導體柱和前述第四半導體柱之間相連著; The step of forming the aforementioned first gate conductor layer and the aforementioned second gate conductor layer, the aforementioned first gate conductor layer surrounds the aforementioned first insulating layer, and in the vertical direction, its upper surface is located below the aforementioned first to fourth semiconductor columns, and in the aforementioned first direction, in the aforementioned The first semiconductor column is connected with the aforementioned second semiconductor column, and the aforementioned second gate conductor layer is connected between the aforementioned third semiconductor column and the aforementioned fourth semiconductor column in the aforementioned second direction;

將垂直方向上的前述第一閘極導體層、和比前述第二閘極導體層更上部的前述第一絕緣層進行蝕刻,而於前述第一半導體柱至第四半導體柱的下部形成第一閘極絕緣層的步驟; Etching the first gate conductor layer in the vertical direction and the first insulating layer above the second gate conductor layer, and forming a first gate insulating layer at the bottom of the first to fourth semiconductor pillars;

以在垂直方向上與前述第一閘極絕緣層相接而且包圍第一半導體柱至第四半導體柱之側面之方式形成第二閘極絕緣層的步驟; A step of forming a second gate insulating layer in a vertical direction in contact with the first gate insulating layer and surrounding the side surfaces of the first to fourth semiconductor pillars;

形成前述第三閘極導體層和前述第四閘極導體層的步驟,前述第三閘極導體層係包圍前述第二閘極絕緣層,而且在垂直方向上,其上表面位置位於前述第一半導體柱至第四半導體柱的頂部下方,而且在前述第一方向上於前述第一半導體柱和前述第二半導體柱之間相連著,而且在垂直方向上與前述第一閘極導體層分離,前述第四閘極導體層係在排列於前述第二方向之前述第三半導體柱和前述第四半導體柱之間相連著,且在垂直方向上與前述第二閘極導體層分離; The step of forming the third gate conductor layer and the fourth gate conductor layer, the third gate conductor layer surrounds the second gate insulating layer, and in the vertical direction, its upper surface is located below the tops of the first to fourth semiconductor pillars, and is connected between the first semiconductor pillar and the second semiconductor pillar in the first direction, and is separated from the first gate conductor layer in the vertical direction, the fourth gate conductor layer is connected between the third semiconductor pillar and the fourth semiconductor pillar arranged in the second direction, and in the vertical direction separated from the aforementioned second gate conductor layer;

在形成前述第一至第四半導體柱之前或之後,形成和前述第二半導體柱、前述第三半導體柱及前述第四半導體柱之底部相連之前述第一雜質區域的步驟; Before or after forming the first to fourth semiconductor pillars, a step of forming the first impurity region connected to the bottom of the second semiconductor pillar, the third semiconductor pillar, and the fourth semiconductor pillar;

在形成前述第一至第四半導體柱之前或之後,在前述第一至第四半導體柱之頂部的各者形成前述第二雜質區域的步驟;及 A step of forming the aforementioned second impurity region on each of the tops of the aforementioned first to fourth semiconductor columns before or after forming the aforementioned first to fourth semiconductor columns; and

形成第一配線導體層和第二配線導體層的步驟,前述第一配線導體層係與前述第一半導體柱及前述第三半導體柱之頂部的前述第二雜質區域相連,前述第二配線導體層係與前述第二半導體柱及前述第四半導體柱之頂部的前述第二雜質區域相連。 The step of forming a first wiring conductor layer and a second wiring conductor layer, the first wiring conductor layer is connected to the second impurity region on the top of the first semiconductor pillar and the third semiconductor pillar, the second wiring conductor layer is connected to the second impurity region on the top of the second semiconductor pillar and the fourth semiconductor pillar.

上述包含柱狀半導體元件之記憶裝置的製造方法中,於俯視觀察時,包圍前述第一半導體柱及前述第二半導體柱之前述第一閘極絕緣層的二條外周線與連結前述第一半導體柱和前述第二半導體柱之中心之第一線之交點之中相向之二點間的第一長度,係比包圍前述第一半導體柱及前述第三半導體柱之前述第二閘極絕緣層的二條外周線與連結前述第一半導體柱和前述第三半導體柱之中心之第二線之交點之中相向之二點間的第二長度更小; In the above method of manufacturing a memory device comprising a columnar semiconductor element, when viewed from above, the first length between the two outer perimeter lines of the first gate insulating layer surrounding the first semiconductor column and the second semiconductor column and the intersection point of the first line connecting the center of the first semiconductor column and the aforementioned second semiconductor column and the first length between the two points of intersection between the two outer perimeter lines of the aforementioned second gate insulating layer surrounding the first semiconductor column and the aforementioned third semiconductor column and the second line connecting the center of the first semiconductor column and the aforementioned third semiconductor column The second length between the two points is smaller;

前述第二長度係比位於前述第二線上且包圍前述第一半導體柱之前述第一閘極導體層之厚度的第三長度的二倍更大; The aforementioned second length is greater than twice the third length of the thickness of the aforementioned first gate conductor layer located on the aforementioned second line and surrounding the aforementioned first semiconductor pillar;

前述第一長度係比前述第三長度的二倍更小。 The aforementioned first length is smaller than twice the aforementioned third length.

上述包含柱狀半導體元件之記憶裝置的製造方法中,更具有下列步驟: In the above method of manufacturing a memory device comprising a columnar semiconductor element, the following steps are further included:

在形成前述第一閘極絕緣層之後,於前述第一閘極絕緣層的外周部,形成其上表面位置在垂直方向上成為前述第一閘極導體層及前述第二閘極導體層之上端之第一導體層的步驟; After forming the first gate insulating layer, forming a first conductor layer whose upper surface is positioned vertically to be the upper ends of the first gate conductor layer and the second gate conductor layer on the outer periphery of the first gate insulating layer;

形成第一遮罩材料層、第二遮罩材料層及第三遮罩材料層的步驟,前述第一遮罩材料層係位於前述第一至第四半導體柱的頂部上,前述第二遮罩材料層係包圍前述第一至第四半導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第三遮罩材料層係在前述第三半導體柱和前述第四半導體柱之間相連著,而且與前述第二遮罩材料層分離;及 The step of forming a first mask material layer, a second mask material layer and a third mask material layer, the first mask material layer is located on the top of the first to fourth semiconductor pillars, the second mask material layer surrounds the sides of the first to fourth semiconductor pillars, and is connected between the first semiconductor pillar and the second semiconductor pillar, and the third mask material layer is connected between the third semiconductor pillar and the fourth semiconductor pillar, and is separated from the second mask material layer; and

以前述第一遮罩材料層、前述第二遮罩材料層及前述第三遮罩材料層作為遮罩,將前述第一導體層進行蝕刻,而形成前述第一閘極導體層及前述第二閘極導體層的步驟。 Using the first mask material layer, the second mask material layer and the third mask material layer as masks, etching the first conductor layer to form the first gate conductor layer and the second gate conductor layer.

上述包含柱狀半導體元件之記憶裝置的製造方法中,更具有下列步驟:在形成前述第二閘極絕緣層之後,於前述第二閘極絕緣層的外周部,形成其上表面位置在垂直方向上位於前述第二雜質區域之下端附近之第二導體層的步驟;以彼此分離之方式形成第一遮罩材料層、第四遮罩材料層及第五遮罩材料層的步驟,前述第一遮罩材料層係在前述第二導體層上且位於前述第一至第四半導體柱的頂部上,前述第四遮罩材料層係包圍前述第一至第四半導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第五遮罩材料層係在前述第三半導體柱和前述第四半導體柱之間相連著;及以前述第一遮罩材料層、前述第四遮罩材料層及前述第五遮罩材料層作為遮罩,將前述第二導體層進行蝕刻,而形成前述第三閘極導體層及前述第四閘極導體層的步驟。 In the above method of manufacturing a memory device including a columnar semiconductor element, the following steps are further included: after forming the second gate insulating layer, forming a second conductor layer whose upper surface is located near the lower end of the second impurity region in the vertical direction on the outer periphery of the second gate insulating layer; The layers surround the side surfaces of the first to fourth semiconductor pillars and are connected between the first semiconductor pillar and the second semiconductor pillar, the fifth mask material layer is connected between the third semiconductor pillar and the fourth semiconductor pillar; and using the first mask material layer, the fourth mask material layer and the fifth mask material layer as masks, etching the second conductor layer to form the third gate conductor layer and the fourth gate conductor layer.

上述包含柱狀半導體元件之記憶裝置的製造方法中,更具有下列步驟:對於頂部上形成有第一遮罩材料層的前述第一至第四半導體柱,在形成前述第一閘極絕緣層之後,於前述第一閘極絕緣層的外周部,形成其上表面位置在垂直方向上位於前述第一至第四半導體柱的中間位置附近之第三導體層的步驟;將較前述第三導體層還上方的前述第一閘極絕緣層去除,並在前述第三導體層之上形成第二絕緣層的步驟;在前述第二絕緣層上,形成在垂直方向上其上表面接近前述第二雜質區域之下端之第四導體層的步驟; 以彼此分離之方式形成第六遮罩材料層及第七遮罩材料層的步驟,前述第六遮罩材料層係形成為包圍前述第四導體層之上的前述第一與第二半導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第七遮罩材料層係形成包圍前述第四導體層之上的前述第三與至第四半導體柱的側面,且在前述第三半導體柱和前述第四半導體柱之間相連著;及以前述第一遮罩材料層、前述第六遮罩材料層及前述第七遮罩材料層作為遮罩,將前述第三導體層、前述第二絕緣層及前述第四導體層進行蝕刻,而形成前述第一閘極導體層、前述第二閘極導體層、前述第三閘極導體層及前述第四閘極導體層的步驟。 In the above method of manufacturing a memory device comprising a columnar semiconductor element, the following steps are further included: for the aforementioned first to fourth semiconductor columns with the first masking material layer formed on the top, after forming the aforementioned first gate insulating layer, on the outer peripheral portion of the aforementioned first gate insulating layer, a step of forming a third conductive layer whose upper surface is located in the vertical direction near the middle position of the aforementioned first to fourth semiconductor columns; removing the aforementioned first gate insulating layer above the aforementioned third conductive layer, and forming a second insulating layer on the aforementioned second insulating layer; layer, a step of forming a fourth conductor layer whose upper surface is close to the lower end of the aforementioned second impurity region in the vertical direction; The step of forming a sixth mask material layer and a seventh mask material layer in a separate manner, the sixth mask material layer is formed to surround the sides of the first and second semiconductor columns on the fourth conductor layer, and is connected between the first semiconductor column and the second semiconductor column, the seventh mask material layer is formed to surround the sides of the third and fourth semiconductor columns on the fourth conductor layer, and is connected between the third semiconductor column and the fourth semiconductor column; and the first mask material layer, the sixth mask material layer, and the seventh mask material layer as a mask, etching the third conductor layer, the second insulating layer and the fourth conductor layer to form the first gate conductor layer, the second gate conductor layer, the third gate conductor layer and the fourth gate conductor layer.

上述包含柱狀半導體元件之記憶裝置的製造方法中,與前述第一雜質區域相連的配線係源極線,與前述第二雜質區域相連的配線係位元線,與前述第一閘極導體層和前述第二閘極導體層相連之配線、及與前述第三閘極導體層和前述第四閘極導體層相連之配線的一方若為字元線,則另一方形成為第一驅動控制線;藉由對於前述源極線、前述位元線、前述第一驅動控制線及前述字元線施加的電壓,選擇性地進行前述資料抹除動作和前述資料保持動作。 In the above method of manufacturing a memory device including a columnar semiconductor element, the wiring connected to the first impurity region is a source line, the wiring connected to the second impurity region is a bit line, and if one of the wirings connected to the first gate conductor layer and the second gate conductor layer and the wiring connected to the third gate conductor layer and the fourth gate conductor layer is a word line, the other is a first drive control line; to selectively perform the aforementioned data erasing operation and the aforementioned data holding operation.

上述包含柱狀半導體元件之記憶裝置的製造方法中,前述第一閘極導體層、與前述第一至第四半導體柱之間的第一閘極電容,係形成為比前述第二閘極導體層、與前述第一至第四半導體柱之間的第二閘極電容更大。 In the above method of manufacturing a memory device including pillar-shaped semiconductor elements, the first gate capacitance between the first gate conductor layer and the first to fourth semiconductor pillars is formed to be larger than the second gate capacitance between the second gate conductor layer and the first to fourth semiconductor pillars.

上述包含柱狀半導體元件之記憶裝置的製造方法中,於俯視觀察時,在前述第三閘極導體層與前述第四閘極導體層之間形成第一空孔。 In the above method of manufacturing a memory device including a columnar semiconductor element, when viewed from above, a first hole is formed between the third gate conductor layer and the fourth gate conductor layer.

上述包含柱狀半導體元件之記憶裝置的製造方法中,於前述第一配線導體層與前述第二配線導體層之間形成第二空孔。 In the above method of manufacturing a memory device including columnar semiconductor elements, a second hole is formed between the first wiring conductor layer and the second wiring conductor layer.

上述包含柱狀半導體元件之記憶裝置的製造方法中,前述第二絕緣層係由與前述第一至第四半導體柱相連的前述第二閘極絕緣層所形成。 In the above method of manufacturing a memory device including a columnar semiconductor element, the second insulating layer is formed by the second gate insulating layer connected to the first to fourth semiconductor columns.

1,10:基板 1,10: Substrate

2,12a,12b,12c,12d:Si柱 2, 12a, 12b, 12c, 12d: Si column

3a,3b,11,11a,13,13a,13b,13c,13d:N+3a, 3b, 11, 11a, 13, 13a, 13b, 13c, 13d: N + layers

4a:第一閘極絕緣層 4a: The first gate insulating layer

4b:第二閘極絕緣層 4b: The second gate insulating layer

5a:第一閘極導體層 5a: The first gate conductor layer

5b:第二閘極導體層 5b: The second gate conductor layer

6:絕緣層 6: Insulation layer

7:通道區域 7: Channel area

7a:第一通道區域(第一通道Si層) 7a: First channel region (first channel Si layer)

7b:第二通道區域(第二通道Si層) 7b: Second channel region (second channel Si layer)

9:動態快閃記憶體單元 9: Dynamic flash memory unit

12:P層 12: P layer

14a,14b,14c,14d:遮罩材料層 14a, 14b, 14c, 14d: mask material layer

17,17a,17b,33,33a,33b:HfO217, 17a, 17b, 33, 33a, 33b: HfO 2 layers

18,18a,18b,18c,18d,26a,26b,34,34a,34b:TiN層 18, 18a, 18b, 18c, 18d, 26a, 26b, 34, 34a, 34b: TiN layer

20,20a,20b,23,29:SiO220, 20a, 20b, 23, 29: SiO 2 layers

21a,21b,27a,27b,36a,36b:SiN層 21a, 21b, 27a, 27b, 36a, 36b: SiN layer

30a,30b,30c,30d:接觸孔 30a, 30b, 30c, 30d: contact holes

31a:位元線BL1的導體層 31a: conductor layer of bit line BL1

31aa,31ab,31ac,31ba,31bb,31bc,31ca,31cb,31cc,34a,34b,34c:空孔 31aa, 31ab, 31ac, 31ba, 31bb, 31bc, 31ca, 31cb, 31cc, 34a, 34b, 34c: empty holes

31b:位元線BL2的導體層 31b: conductor layer of bit line BL2

100:SOI基板 100: SOI substrate

101:SiO2101: SiO 2 layers

102:浮體 102: floating body

103:源極N+103: Source N + layer

104:汲極N+104: drain N + layer

105:閘極導體層 105: gate conductor layer

106:電洞 106: electric hole

107:通道 107: channel

108:夾止點 108: pinch point

109:閘極氧化膜 109:Gate oxide film

110:記憶體單元 110: memory unit

110a:記憶體單元(MOS電晶體) 110a: memory unit (MOS transistor)

110b:記憶體單元 110b: memory unit

BL:位元線 BL: bit line

BL1:位元線 BL1: bit line

BL2:位元線 BL2: bit line

PL:金屬板線 PL: metal plate line

PL1:金屬板線 PL1: Metal plate line

PL2:金屬板線 PL2: Metal plate line

SL:源極線 SL: source line

WL:字元線 WL: character line

WL1:字元線 WL1: word line

WL2:字元線 WL2: word line

CFB:電容 C FB : capacitance

CWL:電容 C WL : Capacitance

CPL:電容 C PL : Capacitance

CSL:接合電容 C SL : junction capacitance

CBL:接合電容 C BL : junction capacitance

VWL:字元線電壓 V WL : word line voltage

VFB:浮體的電壓 V FB : the voltage of the floating body

L1,L2,L3:長度 L1, L2, L3: Length

圖1係第一實施型態之具有SGT之記憶裝置的構造圖。 FIG. 1 is a structural diagram of a memory device with SGT in the first embodiment.

圖2係用以說明第一實施型態之具有SGT之記憶裝置之抹除動作機制的圖。 FIG. 2 is a diagram for explaining the erase operation mechanism of the memory device with SGT in the first embodiment.

圖3係用以說明第一實施型態之具有SGT之記憶裝置之寫入動作機制的圖。 FIG. 3 is a diagram for explaining the writing operation mechanism of the memory device having the SGT in the first embodiment.

圖4A係用以說明第一實施型態之具有SGT之記憶裝置之讀取動作機制的圖。 FIG. 4A is a diagram for explaining the read operation mechanism of the memory device with SGT in the first embodiment.

圖4B係用以說明第一實施型態之具有SGT之記憶裝置之讀取動作機制的圖。 FIG. 4B is a diagram for explaining the read operation mechanism of the memory device with SGT in the first embodiment.

圖5A係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5A is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5B係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5B is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5C係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5C is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5D係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5D is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5E係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5E is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5F係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5F is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5G係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5G is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5H係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5H is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5I係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5I is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖5J係用以說明第一實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 5J is a diagram for explaining the manufacturing method of the memory device with SGT in the first embodiment.

圖6A係用以說明第二實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 6A is a diagram illustrating a method of manufacturing a memory device having an SGT according to the second embodiment.

圖6B係用以說明第二實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 6B is a diagram illustrating a method of manufacturing a memory device having an SGT in the second embodiment.

圖6C係用以說明第二實施型態之具有SGT之記憶裝置之製造方法的圖。 FIG. 6C is a diagram for explaining the manufacturing method of the memory device with SGT in the second embodiment.

圖7係用以說明習知例之不具有電容器之DRAM記憶體單元之動作上之問題點的圖。 FIG. 7 is a diagram for explaining problems in the operation of a conventional DRAM memory cell without a capacitor.

圖8係用以說明習知例之不具有電容器之DRAM記憶體單元之動作上之問題點的圖。 FIG. 8 is a diagram for explaining problems in the operation of a conventional DRAM memory cell without a capacitor.

圖9係顯示習知例之不具有電容器之DRAM記憶體單元之讀取動作的圖。 FIG. 9 is a diagram showing a reading operation of a conventional DRAM memory cell without a capacitor.

以下參照圖式來說明本發明之包含半導體元件之記憶裝置(以下稱為動態快閃記憶體)。 A memory device including a semiconductor element (hereinafter referred to as a dynamic flash memory) of the present invention will be described below with reference to the drawings.

(第一實施型態) (first implementation type)

使用圖1至圖5來說明本發明第一實施型態之動態快閃記憶體單元的構造及動作機制。使用圖1來說明動態快閃記憶體單元的構造。並且,使用圖2來說明資料抹除機制,使用圖3來說明資料寫入機制,使用圖4A及圖4B來說明資料寫入機制。使用圖5來說明動態快閃記憶體的製造方法。 The structure and operation mechanism of the dynamic flash memory unit of the first embodiment of the present invention will be described using FIG. 1 to FIG. 5 . The structure of a dynamic flash memory cell will be described using FIG. 1 . In addition, the data erasing mechanism is described using FIG. 2 , the data writing mechanism is described using FIG. 3 , and the data writing mechanism is described using FIGS. 4A and 4B . A method of manufacturing a dynamic flash memory will be described using FIG. 5 .

圖1係顯示本發明第一實施型態之動態快閃記憶體單元的構造。在形成於基板1上之具有P型或i型(本徵型)導電型之Si柱2(以下將矽半導體柱稱為「Si柱」)內的上下位置,形成有當一方成為源極時則另一方成為汲極的N+層3a、3b(以下將含有高濃度供體雜質的半導體區域稱為「N+層」)。成為此源極、汲極之N+層3a、3b間之Si柱2的部分即成為通道區域7。以包圍此通道區域7之方式形成有第一閘極絕緣層4a、第二閘極絕緣層4b。此第一閘極絕緣層4a、第二閘極絕緣層4b係分別連接或接近成為此源極、汲極的N+層3a、3b。以包圍此第一閘極絕緣層4a、第二閘極絕緣層4b之方式分別形成有第一閘極導體層5a、第二閘極導體層 5b。並且,第一閘極導體層5a、第二閘極導體層5b係藉由絕緣層6而分離。再者,N+層3a、3b間之Si柱2之部分的通道區域7係由被第一閘極絕緣層4a包圍的第一通道Si層7a以及被第二閘極絕緣層4b包圍的第二通道Si層7b所構成。藉此,形成由成為源極、汲極之N+層3a、3b、通道區域7、第一閘極絕緣層4a、第二閘極絕緣層4b、第一閘極導體層5a、第二閘極導體層5b所構成的動態快閃記憶體單元9。再者,成為源極的N+層3a係連接於源極線SL,成為汲極的N+層3b係連接於位元線BL,第一閘極導體層5a係連接於金屬板線(plate line)PL,第二閘極導體層5b係連接於字元線WL。連接有金屬板線PL之第一閘極導體層5a的閘極電容以具有大於連接有字元線WL之第二閘極導體層5b之閘極電容的構造為佳。 FIG. 1 shows the structure of the dynamic flash memory unit of the first embodiment of the present invention. In the upper and lower positions of the Si pillars 2 with p-type or i-type (intrinsic) conductivity formed on the substrate 1 (hereinafter, silicon semiconductor pillars are referred to as "Si pillars"), there are formed N + layers 3a and 3b (hereinafter, semiconductor regions containing high-concentration donor impurities are referred to as "N + layers") where one becomes a source and the other becomes a drain. The portion that becomes the Si column 2 between the N + layers 3 a and 3 b of the source and drain becomes the channel region 7 . A first gate insulating layer 4 a and a second gate insulating layer 4 b are formed to surround the channel region 7 . The first gate insulating layer 4a and the second gate insulating layer 4b are respectively connected to or close to the N + layers 3a and 3b which become the source and drain. A first gate conductor layer 5a and a second gate conductor layer 5b are formed to surround the first gate insulating layer 4a and the second gate insulating layer 4b, respectively. Moreover, the first gate conductor layer 5 a and the second gate conductor layer 5 b are separated by the insulating layer 6 . Moreover, the channel region 7 of the part of the Si column 2 between the N + layers 3a, 3b is composed of the first channel Si layer 7a surrounded by the first gate insulating layer 4a and the second channel Si layer 7b surrounded by the second gate insulating layer 4b. Thereby, a dynamic flash memory cell 9 composed of N + layers 3a and 3b serving as source and drain, a channel region 7, a first gate insulating layer 4a, a second gate insulating layer 4b, a first gate conductor layer 5a, and a second gate conductor layer 5b is formed. Moreover, the N + layer 3a that becomes the source is connected to the source line SL, the N + layer 3b that becomes the drain is connected to the bit line BL, the first gate conductor layer 5a is connected to the metal plate line (plate line) PL, and the second gate conductor layer 5b is connected to the word line WL. Preferably, the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.

在此,圖1中係第一閘極導體層5a的閘極長度大於第二閘極導體層5b的閘極長度,以使連接有金屬板線PL之第一閘極導體層5a的閘極電容大於連接有字元線WL之第二閘極導體層5b的閘極電容。然而,除此之外,第一閘極導體層5a的閘極長度亦可不大於第二閘極導體層5b的閘極長度,而是改變各個閘極絕緣層的膜厚,使第一閘極絕緣層4a之閘極絕緣層的膜厚小於第二閘極絕緣層4b之閘極絕緣層的膜厚。此外,亦可改變各個閘極絕緣層之材料的介電常數,使第一閘極絕緣層4a之閘極絕緣層的介電常數大於第二閘極絕緣層4b之閘極絕緣層的介電常數。此外,亦可任意組合閘極導體層5a、5b的長度、閘極絕緣層4a、4b的膜厚、介電常數,以使連接有金屬板線PL之第一閘極導體層5a的閘極電容大於連接有字元線WL之第二閘極導體層5b的閘極電容。 Here, in FIG. 1, the gate length of the first gate conductor layer 5a is greater than the gate length of the second gate conductor layer 5b, so that the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL is greater than the gate capacitance of the second gate conductor layer 5b connected to the word line WL. However, in addition, the gate length of the first gate conductor layer 5a may not be greater than the gate length of the second gate conductor layer 5b, but the film thickness of each gate insulating layer is changed so that the film thickness of the gate insulating layer of the first gate insulating layer 4a is smaller than the film thickness of the gate insulating layer of the second gate insulating layer 4b. In addition, the dielectric constant of the material of each gate insulating layer can also be changed, so that the dielectric constant of the gate insulating layer of the first gate insulating layer 4a is greater than that of the second gate insulating layer 4b. In addition, the lengths of the gate conductor layers 5a and 5b, the film thicknesses of the gate insulating layers 4a and 4b, and the dielectric constant can be combined arbitrarily so that the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL is greater than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.

參照圖2來說明抹除動作機制。N+層3a、3b間的通道區域7係從基板電性分離成為浮體。圖2(a)係顯示在抹除動作前,於先前周期經由撞擊游離所產生的電洞群11積蓄於通道區域7的狀態。並且,如圖2(b)所示,抹除動作時,使位元線BL的電壓為負電壓VERA。在此,VERA係例如-3V。結果,連接有源極線SL之成為源極的N+層3a與通道區域7的PN接合成為正偏壓而無關於通道區域7之初始電位的值。結果,於先前周期經由撞擊游離所產生之積蓄於通道區域7中的電洞群11被吸入至源極部的N+層3a,而通道區域7的電位VFB成為VFB=VERA+Vb。在此,Vb係PN接合的內建電壓,約0.7V。因此,VERA=-3V時,通道區域7的電位成為-2.3V。此值係成為抹除狀態之通道區域7的電位狀態。因此,若浮體之通道區域7的電位成為負的電壓,則動態快閃記憶體單元9之N通道MOS電晶體的臨限值電壓會因基板偏壓效應而變高。藉此,如圖2(c)所示,連接有字元線WL之第二閘極導體層5b的臨限值電壓變高。此通道區域7的抹除狀態係成為邏輯記憶資料”0”。此外,亦可在”1”的寫入中,使用GIDL(Gate Induced Drain Leakage,閘極引發汲極洩漏電流)電流(例如參照非專利文獻14)而產生電子、電洞對,且以所產生的電洞群充滿浮體FB內。 Referring to FIG. 2, the erasing action mechanism will be described. The channel region 7 between the N + layers 3a, 3b is electrically separated from the substrate to form a floating body. FIG. 2( a ) shows the state that the hole group 11 generated by impact ionization in the previous cycle accumulates in the channel region 7 before the erasing operation. And, as shown in FIG. 2( b ), during the erasing operation, the voltage of the bit line BL is set to the negative voltage V ERA . Here, V ERA is -3V, for example. As a result, the PN junction between the source N + layer 3 a connected to the source line SL and the channel region 7 is positively biased regardless of the value of the initial potential of the channel region 7 . As a result, the hole group 11 accumulated in the channel region 7 generated by impact ionization in the previous cycle is sucked into the N + layer 3 a of the source portion, and the potential V FB of the channel region 7 becomes V FB =V ERA +Vb. Here, Vb is the built-in voltage of the PN junction, which is about 0.7V. Therefore, when V ERA =-3V, the potential of the channel region 7 becomes -2.3V. This value becomes the potential state of the channel region 7 in the erased state. Therefore, if the potential of the channel region 7 of the floating body becomes a negative voltage, the threshold voltage of the N-channel MOS transistor of the dynamic flash memory unit 9 will become higher due to the substrate bias effect. Thereby, as shown in FIG. 2( c ), the threshold voltage of the second gate conductor layer 5 b connected to the word line WL becomes higher. The erased state of the channel area 7 becomes logical memory data "0". In addition, it is also possible to use GIDL (Gate Induced Drain Leakage, Gate Induced Drain Leakage) current (for example, refer to Non-Patent Document 14) to generate electron and hole pairs during the writing of "1", and fill the floating body FB with the generated hole groups.

圖3係顯示本發明第一實施型態之動態快閃記憶體單元的寫入動作。如圖3(a)所示,對於連接有源極線SL的N+層3a輸入例如0V,對於連接有位元線BL的N+層3b輸入例如3V,對於連接有金屬板線PL的第一閘極導體層5a輸入例如2V,對於連接有字元線WL的第二閘極導體層5b輸入例如5V。結果,如圖3(a)所示,在連接有金屬板線PL之第 一閘極導體層5a的內周係形成反轉層12a,具有第一閘極導體層5a的第一N通道MOS電晶體區域係在飽和區域動作。結果,在連接有金屬板線PL之第一閘極導體層5a之內周的反轉層12a中,存在有夾止點13。另一方面,具有連接有字元線WL之第二閘極導體層5b之第二N通道MOS電晶體區域係在線性區域動作。結果,連接有字元線WL之第二閘極導體層5b的內周不存在夾止點而於整面形成反轉層12b。形成於連接有此字元線WL之第二閘極導體層5b之下整面的反轉層12b係作為具有第二閘極導體層5b之第二N通道MOS電晶體區域的實質的汲極來動作。結果,電場係在具有串聯連接之第一閘極導體層5a之第一N通道MOS電晶體區域以及具有第二閘極導體層5b之第二N通道MOS電晶體區域之間之通道區域7的交界區域成為最大,而在此區域產生撞擊游離現象。由於此區域係從具有連接有字元線WL之第二閘極導體層5b之第二N通道MOS電晶體區域來觀看時之源極側的區域,故將此現象稱為源極側撞擊游離現象。藉由此源極側撞擊游離現象,電子從連接有源極線SL的N+層3a朝向連接有位元線的N+層3b流動。經加速的電子撞擊晶格Si原子而藉由其運動能量產生電子、電洞對。所產生之電子的一部分會流向第一閘極導體層5a與第二閘極導體層5b,但大部分會流向連接有位元線BL的N+層3b(未圖示)。 FIG. 3 shows the writing operation of the dynamic flash memory unit of the first embodiment of the present invention. As shown in FIG. 3(a), for example 0V is input to the N + layer 3a connected to the source line SL, for example 3V is input to the N + layer 3b connected to the bit line BL, for example 2V is input to the first gate conductor layer 5a connected to the metal plate line PL, and for example 5V is input to the second gate conductor layer 5b connected to the word line WL. As a result, as shown in FIG. 3(a), an inversion layer 12a is formed on the inner periphery of the first gate conductor layer 5a connected to the metal plate line PL, and the first N-channel MOS transistor region having the first gate conductor layer 5a operates in a saturation region. As a result, pinch points 13 exist in the inversion layer 12a on the inner periphery of the first gate conductor layer 5a connected to the metal plate line PL. On the other hand, the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL operates in the linear region. As a result, there is no pinch point on the inner periphery of the second gate conductor layer 5b connected to the word line WL, and the inversion layer 12b is formed on the entire surface. The inversion layer 12b formed entirely under the second gate conductor layer 5b connected to the word line WL operates as a substantial drain of the second N-channel MOS transistor region having the second gate conductor layer 5b. As a result, the electric field becomes maximum at the junction region of the channel region 7 between the first N-channel MOS transistor region having the first gate conductor layer 5a connected in series and the second N-channel MOS transistor region having the second gate conductor layer 5b, and impact ionization occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source side impact free phenomenon. By this source-side impact ionization phenomenon, electrons flow from the N + layer 3 a connected to the source line SL toward the N + layer 3 b connected to the bit line. The accelerated electrons hit lattice Si atoms to generate electron-hole pairs by their kinetic energy. Part of the generated electrons will flow to the first gate conductor layer 5a and the second gate conductor layer 5b, but most of them will flow to the N + layer 3b (not shown) connected to the bit line BL.

再者,圖3中,如圖3(b)所示,所產生的電洞群11係通道區域7的多數載子,將通道區域7充電為正偏壓。由於連接有源極線SL的N+層3a為0V,故通道區域7係充電至連接有源極線SL之N+層3a與通道區域7之間之PN接合之內建電壓Vb(約0.7V)。當通道區域7被充電為正偏壓時,第一N通道MOS電晶體區域與第二N通道MOS電晶體區域 的臨限值電壓即會因基板偏壓效應而變低。藉此,如圖3(c)所示,連接有字元線WL之第二通道區域7b之第二N通道MOS電晶體區域的臨限值電壓會變低。將此通道區域7的寫入狀態分配給邏輯記憶資料“1”。 Furthermore, in FIG. 3 , as shown in FIG. 3( b ), the generated hole group 11 is the majority carrier of the channel region 7 and charges the channel region 7 to a positive bias. Since the N + layer 3 a connected to the source line SL is 0 V, the channel region 7 is charged to the built-in voltage Vb (about 0.7 V) of the PN junction between the N + layer 3 a connected to the source line SL and the channel region 7 . When the channel region 7 is charged with positive bias voltage, the threshold voltages of the first N-channel MOS transistor region and the second N-channel MOS transistor region will become lower due to the substrate bias effect. Thus, as shown in FIG. 3( c ), the threshold voltage of the second N-channel MOS transistor region connected to the second channel region 7 b of the word line WL becomes lower. The write state of this channel area 7 is assigned to logical memory data "1".

在此,寫入動作時,亦能夠以第一雜質層與第一通道半導體層間的第二交界區域或是第二雜質層與第二通道半導體層間的第三交界區域,取代上述之具有第一閘極導體層5a之第一N通道MOS電晶體區域與具有第二閘極導體層5b之第二N通道MOS電晶體區域之間之通道區域7的交界區域,以撞擊游離現象或GIDL電流來產生電子、電洞對,且以所產生的電洞群11將通道區域7充電。 Here, during the writing operation, the second boundary region between the first impurity layer and the first channel semiconductor layer or the third boundary region between the second impurity layer and the second channel semiconductor layer can be used instead of the above-mentioned boundary region 7 between the first N-channel MOS transistor region with the first gate conductor layer 5a and the second N-channel MOS transistor region with the second gate conductor layer 5b, to generate electron and hole pairs by impacting ion phenomenon or GIDL current, and charge the channel region 7 with the generated hole group 11.

圖4A及圖4B係用以說明本發明第一實施型態之動態快閃記憶體單元之讀取動作的圖。如圖4A之(a)所示,通道區域7充電至內建電壓Vb(約0.7V)時,N通道MOS電晶體的臨限值電壓即會因基板偏壓效應而降低。將此狀態分配給邏輯記憶資料“1”。如圖4A之(b)所示,在進行寫入之前選擇的記憶體塊原為抹除狀態“0”時,通道區域7中,浮動電壓VFB成為VERA+Vb。藉由寫入動作隨機地記憶寫入狀態“1”。結果,對於字元線WL作成邏輯“0”與“1”的邏輯記憶資料。如圖4A之(c)所示,利用對於此字元線WL的二個臨限值電壓的高低差,能夠以感測放大器進行讀取。 4A and 4B are diagrams for explaining the reading operation of the dynamic flash memory unit of the first embodiment of the present invention. As shown in (a) of FIG. 4A , when the channel region 7 is charged to the built-in voltage Vb (about 0.7V), the threshold voltage of the N-channel MOS transistor will decrease due to the substrate bias effect. Assign this status to logical memory data "1". As shown in (b) of FIG. 4A , when the selected memory block is in the erase state “0” before writing, the floating voltage V FB in the channel region 7 becomes V ERA +Vb. The writing state "1" is randomly memorized by the writing operation. As a result, logical memory data of logic "0" and "1" are created for the word line WL. As shown in (c) of FIG. 4A , using the difference between the two threshold voltages for the word line WL, reading can be performed with a sense amplifier.

圖4B中,圖4B之(d)係說明本發明第一實施型態之動態快閃記憶體單元之讀取動作時,第一閘極導體層5a及第二閘極導體層5b二者之閘極電容之大小關係的構造圖。字元線WL所連接之第二閘極導體層5b的閘極電容以設計為小於金屬板線PL所連接之第一閘極導體層5a的閘極電容為佳。如圖4B之(d)所示,使金屬板線PL所連接之第一閘極導體 層5a之垂直方向的長度大於字元線WL所連接之第二閘極導體層5b之垂直方向的長度,而使字元線WL所連接之第二閘極導體層5b的閘極電容小於金屬板線PL所連接之第一閘極導體層5a的電容。圖4B之(e)係顯示圖4B之(d)之動態快閃記憶體單元之一單元的等效電路。再者。圖4B之(f)係顯示動態快閃記憶體單元的耦合電容關係。在此,CWL係第二閘極導體層5b的電容,CPL係第一閘極導體層5a的電容,CBL係成為汲極之N+層3b與第二通道區域7b之間之PN接合的接合電容,CSL係成為源極之N+層3a與第一通道區域7a之間之PN接合的接合電容。如圖4B之(g)所示,當施加於字元線WL的電壓變動時,其動作會成為雜訊而對通道區域7造成影響。此時之通道區域7的電位變動△VFB係成為△VFB=CWL/(CPL+CWL+CBL+CSL)×VReadWL。在此,VReadWL係字元線WL之讀取時的振盪電位。從(g)所示之式(1)可知,若相較於通道區域7之整體之電容CPL+CWL+CBL+CSL將CWL的貢獻率減小,則△VFB即變小。CBL+CSL係PN接合的接合電容,若要增大此接合電容,例如可將Si柱2的直徑增大。然而,此對於記憶體單元的微細化而言並不理想。對此,藉由使連接於金屬板線PL之第一閘極導體層5a之垂直方向的長度大於字元線WL所連接之第二閘極導體層5b之垂直方向的長度,可使△VFB更小,且不會降低俯視觀察時之記憶體單元的密集度。 In FIG. 4B, (d) of FIG. 4B is a structural diagram illustrating the relationship between the gate capacitances of the first gate conductor layer 5a and the second gate conductor layer 5b during the reading operation of the dynamic flash memory unit of the first embodiment of the present invention. The gate capacitance of the second gate conductor layer 5b connected to the word line WL is preferably designed to be smaller than the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL. As shown in (d) of FIG. 4B , the length in the vertical direction of the first gate conductor layer 5a connected to the metal plate line PL is greater than the length in the vertical direction of the second gate conductor layer 5b connected to the word line WL, and the gate capacitance of the second gate conductor layer 5b connected to the word line WL is smaller than the capacitance of the first gate conductor layer 5a connected to the metal plate line PL. (e) of FIG. 4B shows the equivalent circuit of one unit of the dynamic flash memory unit of (d) of FIG. 4B. Furthermore. (f) of FIG. 4B shows the coupling capacitance relationship of the dynamic flash memory unit. Here, C WL is the capacitance of the second gate conductor layer 5b, C PL is the capacitance of the first gate conductor layer 5a, C BL is the junction capacitance of the PN junction between the N + layer 3b of the drain and the second channel region 7b, and CSL is the junction capacitance of the PN junction between the N + layer 3a of the source and the first channel region 7a. As shown in (g) of FIG. 4B , when the voltage applied to the word line WL fluctuates, its operation becomes noise and affects the channel region 7 . The potential variation ΔV FB of the channel region 7 at this time becomes ΔV FB =C WL /(C PL +C WL +C BL +C SL )×V ReadWL . Here, V ReadWL is an oscillation potential at the time of reading the word line WL. From equation (1) shown in (g), it can be seen that if the contribution rate of C WL is reduced compared to the overall capacitance C PL +C WL +C BL +C SL of the channel region 7 , then ΔV FB becomes smaller. C BL +C SL is the junction capacitance of the PN junction. To increase the junction capacitance, for example, the diameter of the Si pillar 2 can be increased. However, this is not ideal for miniaturization of memory cells. In this regard, by making the length in the vertical direction of the first gate conductor layer 5a connected to the metal plate line PL longer than the length in the vertical direction of the second gate conductor layer 5b connected to the word line WL, ΔV FB can be made smaller without reducing the density of memory cells when viewed from above.

圖5A至圖5H係顯示本實施型態之動態快閃記憶體單元的製造方法。各圖中,(a)係俯視圖,(b)係沿著(a)之X-X’線的剖面圖,(c)係沿著(a)之Y-Y’線的剖面圖。 5A to 5H show the manufacturing method of the dynamic flash memory unit of this embodiment. In each figure, (a) is a plan view, (b) is a sectional view along the X-X' line of (a), and (c) is a sectional view along the Y-Y' line of (a).

如圖5A所示,在基板10(申請專利範圍之「基板」的一例)上,從下方起形成N+層11(申請專利範圍之「第一雜質區域」的一例)、由Si構成的P層12、及N+層13。並且,形成俯視觀察時為圓形的遮罩材料層14a、14b、14c、14d(申請專利範圍之「第一遮罩材料層」的一例)。在此,基板10可由SOI、單層或複數層構成的Si或其他半導體材料來形成,此外,亦可為由N層、或P層的單層、或複數層構成的阱(well)層。 As shown in FIG. 5A , on a substrate 10 (an example of a "substrate" in the scope of the patent application), an N + layer 11 (an example of the "first impurity region" in the scope of the patent application), a P layer 12 made of Si, and an N + layer 13 are formed from below. In addition, circular mask material layers 14a, 14b, 14c, and 14d (an example of the "first mask material layer" in the scope of the patent application) are formed. Here, the substrate 10 may be formed of SOI, single or plural layers of Si, or other semiconductor materials, and may also be a well layer composed of an N layer or a single or plural layers of a P layer.

接著,如圖5B所示,以遮罩材料層14a至14d作為遮罩,將N+層13、P層12、以及N+層11的上部進行蝕刻,而於N+層11a上形成Si柱12a(申請專利範圍之「第一半導體柱」的一例)、12b(申請專利範圍之「第二半導體柱」的一例)、12c(申請專利範圍之「第三半導體柱」的一例)、12d(未圖示,申請專利範圍之「第四半導體柱」的一例)、N+層13a、13b、13c、13d(未圖示)(分別為申請專利範圍之「第二雜質區域」的一例)。 Next, as shown in FIG. 5B, using the mask material layers 14a to 14d as masks, N+layer 13, P layer 12, and N+The upper part of layer 11 is etched, while the N+Formed on the layer 11a are Si columns 12a (an example of the "first semiconductor column" in the scope of the patent application), 12b (an example of the "second semiconductor column" in the scope of the patent application), 12c (an example of the "third semiconductor column" in the scope of the patent application), 12d (not shown, an example of the "fourth semiconductor column" in the scope of the patent application), N+Layers 13a, 13b, 13c, and 13d (not shown) (each an example of the "second impurity region" in the scope of the patent application).

接著,如圖5C所示,使用例如ALD(Atomic Layer Deposition,原子層堆積)法形成覆蓋整體的閘極絕緣層HfO2層17(申請專利範圍之「第一絕緣層」的一例)。再者,覆蓋整體地形成將會成為閘極導體層之TiN層(未圖示),並且,藉由CMP(Chemical Mechanical Polishing,化學機械研磨)法進行研磨至上表面位置成為遮罩材料層14a至14d的上表面。再者,藉由RIE(Reactive Ion Etching,反應離子蝕刻)法蝕刻TiN層至垂直方向的上表面位置成為位於Si柱12a至12d的中間位置附近而形成TiN層18(申請專利範圍之「第一導體層」的一例)。在此,若可作為閘極絕緣層而作用者,則HfO2層17亦可為單層或複數層構成的其他絕緣層。並且,若為具有閘極導體層的功能者,則TiN層18亦可使用單層或複 數層所構成的其他導體層。此外,TiN層18之垂直方向的上表面位置以蝕刻成為比Si柱12a至12d的中間位置更上方為佳。 Next, as shown in FIG. 5C , a gate insulating layer HfO 2 layer 17 (an example of the "first insulating layer" in the scope of the patent application) is formed covering the entirety using, for example, ALD (Atomic Layer Deposition) method. Furthermore, a TiN layer (not shown) that will become the gate conductor layer is formed covering the whole, and polished to the upper surface position by CMP (Chemical Mechanical Polishing) to become the upper surface of the mask material layers 14a to 14d. Furthermore, the TiN layer is etched by RIE (Reactive Ion Etching, Reactive Ion Etching) until the upper surface position in the vertical direction is located near the middle position of the Si pillars 12a to 12d to form the TiN layer 18 (an example of the "first conductor layer" in the scope of the patent application). Here, if it can function as a gate insulating layer, the HfO 2 layer 17 may be another insulating layer composed of a single layer or a plurality of layers. Furthermore, as long as it has the function of a gate conductor layer, the TiN layer 18 may use the other conductor layer which consists of a single layer or a plurality of layers. In addition, the position of the upper surface of the TiN layer 18 in the vertical direction is preferably etched higher than the middle position of the Si pillars 12a to 12d.

接著,如圖5D所示,形成上表面位置位於N+層13a至13d之下端附近的SiO2層20。再者,整體覆蓋氮化矽(SiN)層(未圖示),並且,藉由CMP法進行研磨至上表面位置成為遮罩材料層14a至14d的上表面位置。再者,藉由RIE法對SiN進行蝕刻,藉此,在N+層13a至13d及遮罩材料層14a至14d的側面,形成Si柱12a、12b間相連且Si柱12c、12d間相連,而Si柱12a、12c間分離且Si柱12b、12d間分離的SiN層21a(申請專利範圍之「第二遮罩材料層」的一例)、21b(申請專利範圍之「第三遮罩材料層」的一例)。俯視觀察下,Si柱12a至12d沿X-X’線方向及Y-Y’線方向充分地分離時,SiN層21a、21b係形成為以相等寬度包圍Si柱12a至12d周圍。此相等寬度的長度係如圖(a)所示之L3(申請專利範圍之「第三長度」的一例)。如圖(a)所示,若使包圍Si柱12a、12b之HfO2層17的外周線與X-X’線之交點間的長度L1(申請專利範圍之「第一長度」的一例)小於L3的二倍,則藉此可使SiN層21a在Si柱12a、12b間相連地形成,同樣地,可使SiN層21b在Si柱12c、12d間相連地形成。並且,如圖(a)所示,若使包圍Si柱12a、12c之HfO2層17的外周線與Y-Y’線之交點間的長度L2(申請專利範圍之「第二長度」的一例)大於L3的二倍,則藉此可使SiN層21a、21b在Si柱12a、12c間分離地形成,且在Si柱12b、12d間分離地形成。 Next, as shown in FIG. 5D, an SiO 2 layer 20 whose upper surface position is located near the lower end of the N + layers 13a to 13d is formed. Furthermore, a silicon nitride (SiN) layer (not shown) is entirely covered, and is polished by CMP until the upper surface positions become the upper surface positions of the mask material layers 14a to 14d. Furthermore, SiN is etched by the RIE method, whereby Si pillars 12a, 12b are connected and Si pillars 12c, 12d are connected, and Si pillars 12a, 12c are separated, and Si pillars 12b, 12d are separated on the side surfaces of N + layers 13a to 13d and mask material layers 14a to 14d. An example of the "third masking material layer" in the range). When Si pillars 12a to 12d are sufficiently separated along XX' and YY' directions in plan view, SiN layers 21a and 21b are formed to surround Si pillars 12a to 12d with equal width. The length of this equal width is L3 as shown in figure (a) (an example of the "third length" in the scope of the patent application). As shown in Figure (a), if the length L1 (an example of the "first length" of the scope of the patent application) between the intersection point of the outer peripheral line of the HfO layer 17 surrounding the Si pillars 12a, 12b and the XX' line is smaller than twice L3, then the SiN layer 21a can be formed continuously between the Si pillars 12a and 12b. Similarly, the SiN layer 21b can be formed continuously between the Si pillars 12c and 12d. Also, as shown in Figure (a), if the length L2 (an example of the "second length" of the scope of the patent application) between the intersection point of the outer peripheral line of the HfO layer 17 surrounding the Si pillars 12a, 12c and the YY' line is greater than twice L3, then the SiN layers 21a, 21b can be formed separately between the Si pillars 12a, 12c, and between the Si pillars 12b, 12d.

接著,如圖5E所示,以SiN層21a、21b、遮罩材料層14a至14d作為遮罩,對SiO2層20、TiN層18進行蝕刻,形成包圍Si柱12a、 12b的SiO2層20a、TiN層18a(申請專利範圍之「第一閘極導體層」的一例),且形成包圍Si柱12c、12d的SiO2層20b、TiN層18b(亦與TiN層18a同為申請專利範圍之「第一閘極導體層」的一例)。再者,將SiN層21a、21b及SiO2層20a、20b去除。 Next, as shown in FIG. 5E, the SiO layer 20 and the TiN layer 18 are etched using the SiN layers 21a, 21b and the mask material layers 14a to 14d as masks to form the SiO layer 20a and the TiN layer 18a surrounding the Si pillars 12a and 12b (an example of the "first gate conductor layer" in the scope of the patent application), and form the SiO layer 20b and the TiN layer 1 surrounding the Si pillars 12c and 12d. 8b (also an example of the "first gate conductor layer" in the scope of the patent application together with the TiN layer 18a). Furthermore, the SiN layers 21a, 21b and the SiO 2 layers 20a, 20b are removed.

接著,如圖5F所示,將SiO2層23(申請專利範圍之「第二絕緣層」的一例)形成為其上表面位置成為TiN層18a、18b的上表面。 Next, as shown in FIG. 5F , the SiO 2 layer 23 (an example of the "second insulating layer" in the scope of the patent application) is formed so that the upper surface position becomes the upper surface of the TiN layers 18a, 18b.

接著,如圖5G所示,對高於SiO2層23的HfO2層17進行蝕刻,而形成HfO2層17a(申請專利範圍之「第一閘極絕緣層」的一例)。再者,於整體形成HfO2層17b(申請專利範圍之「第二閘極絕緣層」的一例)。再者,藉由CVD法於整體覆蓋TiN層(未圖示)。再者,藉由CMP法及RIE法,對TiN層進行蝕刻至其上表面位置成為N+層13a、13d的下端附近。再者,藉由與圖5D中形成SiN層21a、21b之相同的方法,形成包圍N+層13a、13b及遮罩材料層14a、14b的側面且相連的SiN層27a(申請專利範圍之「第四遮罩材料層」的一例)。同樣地,形成包圍N+層13c、13d及遮罩材料層14c、14d之側面且相連的SiN層27b(申請專利範圍之「第五遮罩材料層」的一例)。再者,以SiN層27a、27b作為遮罩,對TiN層進行蝕刻,而形成TiN層26a(申請專利範圍之「第三閘極導體層」的一例)、26b(申請專利範圍之「第四閘極導體層」的一例)。 Next, as shown in FIG. 5G , the HfO 2 layer 17 higher than the SiO 2 layer 23 is etched to form an HfO 2 layer 17a (an example of the "first gate insulating layer" in the scope of the patent application). Furthermore, an HfO 2 layer 17b (an example of the "second gate insulating layer" in the scope of the patent application) is formed on the whole. Furthermore, the whole is covered with a TiN layer (not shown) by CVD. Furthermore, the TiN layer is etched by the CMP method and the RIE method until the position of the upper surface becomes near the lower end of the N + layers 13a and 13d. Furthermore, by the same method as that of forming SiN layers 21a, 21b in FIG. 5D, a SiN layer 27a (an example of the "fourth mask material layer" in the scope of the patent application) that surrounds and connects the sides of the N + layers 13a, 13b and the mask material layers 14a, 14b is formed. Similarly, a SiN layer 27b (an example of the "fifth mask material layer" in the scope of the patent application) is formed to surround and connect the side surfaces of the N + layers 13c and 13d and the mask material layers 14c and 14d. Furthermore, using the SiN layers 27a and 27b as masks, the TiN layer is etched to form TiN layers 26a (an example of the "third gate conductor layer" in the scope of the patent application) and 26b (an example of the "fourth gate conductor layer" in the scope of the patent application).

接著,如圖5H所示,在TiN層26a、26b與SiN層27a、27b的側面間及周邊,形成包含空孔31aa、31ab、31ac、31ba、31bb、31bc、31ca、31cb、31cc(申請專利範圍之「第一空孔」的一例)的SiO2層29。圖(d)係沿著圖(a)之X1-X1’線的剖面圖(圖5I中亦相同)。在此,空孔31aa、 31ab、31ac、31ba、31bb、31bc、31ca、31cb、31cc的上端位置係形成為低於圖(d)之虛線所示之TiN層26a、26b的上端位置。 Next, as shown in FIG. 5H, a SiO2 layer 29 including holes 31aa, 31ab, 31ac, 31ba, 31bb, 31bc, 31ca, 31cb, and 31cc (an example of the " first hole" in the scope of the patent application) is formed between and around the side surfaces of the TiN layers 26a, 26b and the SiN layers 27a, 27b. Figure (d) is a sectional view along the X1-X1' line of Figure (a) (the same is true in Figure 5I). Here, the upper end positions of the holes 31aa, 31ab, 31ac, 31ba, 31bb, 31bc, 31ca, 31cb, 31cc are formed lower than the upper end positions of the TiN layers 26a, 26b shown by the dotted lines in FIG.

接著,如圖5I所示,對遮罩材料層14a至14d進行蝕刻而形成接觸孔30a、30b、30c、30d。 Next, as shown in FIG. 5I, the mask material layers 14a to 14d are etched to form contact holes 30a, 30b, 30c, and 30d.

接著,如圖5J所示,形成經由接觸孔30a、30c而與N+層13a、13c連結的位元線BL1的導體層31a(申請專利範圍之「第一配線導體層」的一例),以及經由接觸孔30b、30d而與N+層13b、13d連結的位元線BL2的導體層31b(申請專利範圍之「第二配線導體層」的一例)。再者,在位元線BL1的導體層31a、位元線BL2的導體層31b間,形成包含空孔34a、34b、34c(申請專利範圍之「第二空孔」的一例)的SiO2層29。藉此,在基板10上形成動態快閃記憶體。TiN層26a、26b係成為字元線WL1、WL2的導體層,TiN層18a、8b係成為金屬板線PL1、PL2的導體層,N+層11a係成為源極線SL的導體層。 Next, as shown in FIG. 5J , the conductor layer 31a of the bit line BL1 connected to the N + layers 13a and 13c through the contact holes 30a and 30c (an example of the "first wiring conductor layer" in the scope of the patent application) and the conductor layer 31b of the bit line BL2 connected to the N + layers 13b and 13d through the contact holes 30b and 30d (an example of the "second wiring conductor layer" in the scope of the patent application) are formed. Furthermore, between the conductor layer 31a of the bit line BL1 and the conductor layer 31b of the bit line BL2, a SiO2 layer 29 including holes 34a, 34b, and 34c (an example of the "second hole" in the scope of the patent application) is formed. Thereby, a dynamic flash memory is formed on the substrate 10 . TiN layers 26a, 26b serve as conductor layers for word lines WL1, WL2, TiN layers 18a, 8b serve as conductor layers for metal plate lines PL1, PL2, and N + layer 11a serves as a conductor layer for source lines SL.

在此,圖1中,金屬板線PL所連接之第一閘極導體層5a之垂直方向的長度係大於字元線WL所連接之第二閘極導體層5b之垂直方向的長度以使CPL>CWL為佳。然而,只要附加金屬板線PL,字元線WL相對於通道區域7之電容耦合的耦合比(CWL/(CPL+CWL+CBL+CSL))就會變小。結果,浮體之通道區域7的電位變動△VFB變小。 Here, in FIG. 1, the vertical length of the first gate conductor layer 5a connected to the metal plate line PL is greater than the vertical length of the second gate conductor layer 5b connected to the word line WL so that C PL >C WL is preferable. However, as long as the metal plate line PL is added, the coupling ratio (C WL /(C PL +C WL +C BL +C SL )) of the word line WL to the capacitive coupling of the channel region 7 becomes smaller. As a result, the potential variation ΔV FB of the channel region 7 of the floating body becomes smaller.

此外,使用圖2顯示了抹除動作,使用圖3顯示了寫入動作,使用圖4顯示了讀取動作中對於源極線SL、金屬板線PL、字元線WL、位元線BL的施加電壓例。惟若可獲得抹除、寫入、讀取之各種基本動作,則亦可改變對於此等源極線SL、金屬板線PL、字元線WL、位元線BL的 施加電壓。此外,圖1中,垂直方向上被絕緣層6包圍之部分的通道區域7中,第一通道區域7a、第二通道區域7b的電位分布係相連地形成。藉此,通道區域7的第一通道區域7a及第二通道區域7b係在垂直方向上藉由被絕緣層6包圍的區域而連結。 2 shows an erase operation, FIG. 3 shows a write operation, and FIG. 4 shows examples of voltages applied to source line SL, plate line PL, word line WL, and bit line BL in a read operation. However, if the various basic operations of erasing, writing, and reading can be obtained, the parameters for these source lines SL, metal plate lines PL, word lines WL, and bit lines BL can also be changed. Apply voltage. In addition, in FIG. 1, in the channel region 7 of the portion surrounded by the insulating layer 6 in the vertical direction, the potential distributions of the first channel region 7a and the second channel region 7b are formed in a continuous manner. Thereby, the first channel region 7 a and the second channel region 7 b of the channel region 7 are connected in the vertical direction by the region surrounded by the insulating layer 6 .

此外,如圖5A所示,圖5J中的N+層11a係在形成Si柱12a至12d的步驟之前形成。相對於此,亦可在例如形成Si柱12a至12d之後等的步驟中形成。同樣地,圖5J中之N+層13a至13d係使用形成Si柱12a至12d之步驟之前所形成的N+層13而形成。相對於此,N+層13a至13d亦可在例如形成Si柱TiN層26a、26b之後等的步驟中形成。 In addition, as shown in FIG. 5A, the N + layer 11a in FIG. 5J is formed before the step of forming Si pillars 12a to 12d. On the other hand, it may also be formed in a step after forming the Si pillars 12a to 12d, for example. Likewise, N + layers 13a to 13d in FIG. 5J are formed using N + layer 13 formed before the step of forming Si pillars 12a to 12d. On the other hand, the N + layers 13a to 13d may also be formed, for example, in a step after forming the Si pillar TiN layers 26a, 26b.

此外,本實施型態中,俯視下,Si柱12a至12d係配置成正方格狀,但亦可配置成斜向格狀。配置成斜向格狀時,連結於Si柱12a、12b的Si柱(未圖示)係沿X-X’線方向排列成鋸齒狀。同樣地,連結於Si柱12c、12d的Si柱(未圖示)係沿X-X’線方向排列成鋸齒狀。此時,即使為鋸齒狀的配置,圖5D中的L1、L2、L3的關係亦可獲得維持。本發明的其他實施型態中此亦相同。 In addition, in this embodiment, the Si pillars 12 a to 12 d are arranged in a square lattice in a plan view, but they may also be arranged in an oblique lattice. When arranged in a diagonal lattice, the Si pillars (not shown) connected to the Si pillars 12a and 12b are arranged in a zigzag shape along the XX' line. Similarly, the Si pillars (not shown) connected to the Si pillars 12c and 12d are arranged in a zigzag shape along the XX' line. At this time, the relationship of L1 , L2 , and L3 in FIG. 5D can be maintained even in a zigzag configuration. The same applies to other embodiments of the present invention.

此外,圖5I中,空孔31aa、31ab、31ac、31ba、31bb、31bc、31ca、31cb、31cc係彼此獨立地形成。相對於此,亦可將Si柱12a、12c間及Si柱12b、12d間的距離增大,而將空孔31aa、31ab、31ac間連結地形成,將空孔31ba、31bb、31bc間連結地形成,將空孔31ca、31cb、31cc間連結地形成。 In addition, in FIG. 5I, the holes 31aa, 31ab, 31ac, 31ba, 31bb, 31bc, 31ca, 31cb, and 31cc are formed independently of each other. On the other hand, the distance between the Si pillars 12a, 12c and the distance between the Si pillars 12b, 12d may be increased, and the holes 31aa, 31ab, 31ac may be connected, the holes 31ba, 31bb, 31bc may be connected, and the holes 31ca, 31cb, 31cc may be connected.

此外,如圖5G所示,TiN層18a與TiN層26a之間的絕緣係藉由覆蓋於TiN層18a上的SiO2層23及閘極絕緣層的HfO2層17b來 達成。相對於此,TiN層18a與TiN層26a間的絕緣亦可形成為僅由HfO2層17b來達成。 In addition, as shown in FIG. 5G, the insulation between the TiN layer 18a and the TiN layer 26a is achieved by the SiO 2 layer 23 covering the TiN layer 18a and the HfO 2 layer 17b of the gate insulating layer. On the other hand, the insulation between the TiN layer 18a and the TiN layer 26a may be formed only by the HfO 2 layer 17b.

本實施型態係提供下列特徵。 This implementation type provides the following features.

(特徵一) (Feature 1)

本實施型態的動態快閃記憶體單元中,成為源極、汲極的N+層3a、3b、通道區域7、第一閘極絕緣層4a、第二閘極絕緣層4b、第一閘極導體層5a、第二閘極導體層5b皆形成為柱狀。此外,成為源極的N+層3a係連接於源極線SL,成為汲極的N+層3b係連接於位元線BL,第一閘極導體層5a係連接於金屬板線PL,第二閘極導體層5b係連接於字元線WL。本動態快閃記憶體單元係具有連接有金屬板線PL之第一閘極導體層5a的閘極電容大於連接有字元線WL之第二閘極導體層5b之閘極電容的構造。本動態快閃記憶體單元中,第一閘極導體層、第二閘極導體層係沿垂直方向層積。因此,即使為連接有金屬板線PL之第一閘極導體層5a的閘極電容大於連接有字元線WL之第二閘極導體層5b之閘極電容的構造,俯視觀察時,記憶體單元面積亦不會增大。藉此,即可同時實現動態快閃記憶體單元的高性能化及高密集化。 In the dynamic flash memory cell of this embodiment, the N + layers 3a and 3b serving as the source and drain, the channel region 7, the first gate insulating layer 4a, the second gate insulating layer 4b, the first gate conductor layer 5a, and the second gate conductor layer 5b are all formed in a columnar shape. In addition, the N + layer 3a that becomes the source is connected to the source line SL, the N + layer 3b that becomes the drain is connected to the bit line BL, the first gate conductor layer 5a is connected to the metal plate line PL, and the second gate conductor layer 5b is connected to the word line WL. The dynamic flash memory cell has a structure in which the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL is greater than the gate capacitance of the second gate conductor layer 5b connected to the word line WL. In the dynamic flash memory unit, the first gate conductor layer and the second gate conductor layer are stacked vertically. Therefore, even if the gate capacitance of the first gate conductor layer 5a connected to the metal plate line PL is greater than the gate capacitance of the second gate conductor layer 5b connected to the word line WL, the area of the memory cell does not increase when viewed from above. In this way, high performance and high density of the dynamic flash memory unit can be realized at the same time.

(特徵二) (Feature 2)

注目於本發明第一實施型態之動態快閃記憶體單元之金屬板線PL所連接之第一閘極導體層5a時,可知有下列(1)至(5)的五種作用。 When paying attention to the first gate conductor layer 5a connected to the metal plate line PL of the dynamic flash memory unit of the first embodiment of the present invention, it can be seen that there are five functions of the following (1) to (5).

(1)在動態快閃記憶體單元進行寫入、讀取動作之際,字元線WL的電壓會上下振盪。此時,金屬板線PL係負擔減低字元線WL與通道區域7之間之電容耦合比的作用。結果,可顯著地抑制字元線WL之電壓上下振盪 之際之通道區域7之電壓變化的影響。藉此,可將顯示邏輯“0”與“1”之字元線WL之SGT電晶體的臨限值電壓差增大。此係致使動態快閃記憶體單元之動作差分邊限的擴大。 (1) When a dynamic flash memory cell performs writing and reading operations, the voltage of the word line WL will oscillate up and down. At this time, the metal plate line PL is responsible for reducing the capacitive coupling ratio between the word line WL and the channel region 7 . As a result, the voltage oscillation of the word line WL can be significantly suppressed The influence of the voltage change of the channel region 7 during the occasion. Thereby, the threshold voltage difference of the SGT transistor of the word line WL displaying logic "0" and "1" can be increased. This results in an enlargement of the operating differential margin of the dynamic flash memory cell.

(2)在動態快閃記憶體單元進行抹除、寫入、讀取動作之際,連接有金屬板線PL之第一閘極導體層5a以及連接有字元線WL之第二閘極導體層5b的兩者係作為SGT電晶體的閘極而作用。電流從位元線BL流向源極線SL之際,可抑制SGT電晶體之短通道效應(Short Channel Effect)。如此,藉由連接有金屬板線PL的第一閘極導體層5a,可抑制短通道效應。藉此,可謀求資料保持特性的提升。 (2) When the dynamic flash memory cell performs erasing, writing, and reading operations, the first gate conductor layer 5a connected to the metal plate line PL and the second gate conductor layer 5b connected to the word line WL function as the gate of the SGT transistor. When the current flows from the bit line BL to the source line SL, the short channel effect (Short Channel Effect) of the SGT transistor can be suppressed. In this way, the short channel effect can be suppressed by the first gate conductor layer 5 a connected to the metal plate line PL. Thereby, improvement of the data retention characteristic can be aimed at.

(3)當動態快閃記憶體單元的寫入動作開始時,電洞群逐漸地積蓄至通道區域7,具有金屬板線PL之第一MOS電晶體以及具有字元線WL之第二MOS電晶體的臨限值電壓降低。此時,由於具有金屬板線PL之第一MOS電晶體之臨限值電壓降低,會助長寫入動作時的撞擊游離現象。藉此,金屬板線PL可於寫入時發生正回授作用,可謀求寫入動作的高速化。 (3) When the writing operation of the dynamic flash memory unit starts, the hole group gradually accumulates in the channel region 7, and the threshold voltage of the first MOS transistor with the metal plate line PL and the second MOS transistor with the word line WL decreases. At this time, since the threshold voltage of the first MOS transistor having the metal plate line PL is lowered, the shock dissociation phenomenon during the write operation will be promoted. Thereby, the metal plate line PL can generate a positive feedback action during writing, and speed-up of the writing operation can be achieved.

(4)已進行“1”的寫入的動態快閃記憶體單元中,具有金屬板線PL之第一MOS電晶體的臨限值電壓降低。結果,對於金屬板線PL施加正偏壓時,恆常地在連接於金屬板線PL之第一閘極導體層5a的內周形成反轉層。結果,滯留於在連接於金屬板線PL之第一閘極導體層5a之內周所形成之反轉層的電子層,即成為導體電波屏障層。藉此,可對於已進行“1”的寫入的動態快閃記憶體單元遮蔽來自其周邊的干擾雜訊。 (4) In the dynamic flash memory cell in which "1" has been written, the threshold voltage of the first MOS transistor having the metal plate line PL is lowered. As a result, when a positive bias is applied to the metal plate line PL, an inversion layer is always formed on the inner periphery of the first gate conductor layer 5a connected to the metal plate line PL. As a result, the electron layer staying in the inversion layer formed on the inner periphery of the first gate conductor layer 5a connected to the metal plate line PL becomes a conductor wave barrier layer. In this way, the disturbance noise from the surroundings of the dynamic flash memory cells that have been written with “1” can be shielded.

(5)在動態快閃記憶體單元的寫入動作時,因為撞擊游離現象而產生光子。所產生的光子係被第一閘極導體層5a及第二閘極導體層5b反覆反射, 且朝Si柱2的垂直方向行進。此時,金屬板線PL係對於光子具有光遮蔽效果,以使寫入時所產生的光子不會破壞水平方向上之鄰接記憶體單元的資料。 (5) During the writing operation of the dynamic flash memory cell, photons are generated due to the impact ionization phenomenon. The generated photons are repeatedly reflected by the first gate conductor layer 5a and the second gate conductor layer 5b, And move toward the vertical direction of the Si column 2 . At this time, the metal plate line PL has a light-shielding effect on photons, so that the photons generated during writing will not destroy the data of the adjacent memory cells in the horizontal direction.

(特徵三) (feature three)

如圖5D、圖5E所示,藉由使包圍Si柱12a、12b之HfO2層17之外周線與X-X’線之交點間的長度L1小於Y-Y’線之SiN層21a、21b之寬度L3的二倍,而且使包圍Si柱12a、12c之HfO2層17的外周線與Y-Y’線之交點間的長度L2大於L3的二倍,即可將SiN層21a在Si柱12a、12b間連結而且在Si柱12a、12c間分離地形成。同樣地,可將SiN層21b在Si柱12c、12d間連結而且在Si柱12a、12c間分離地形成。SiN層21a、21b係對於Si柱12a至12d自行對準地形成。因此,以SiN層21a、21b作為蝕刻遮罩形成的金屬板線PL而且為閘極導體層的TiN層18a、18b係對於Si柱12a至12d自行對準地形成。藉由此自行對準而形成TiN層18a、18b,可謀求動態快閃記憶體的高密集化。再者,形成TiN層18a、18b時,由於不需要微影步驟中的遮罩圖案,故可謀求使用之遮罩的低成本化。 As shown in Figure 5D and Figure 5E, by making the length L1 between the intersection of the outer perimeter of the HfO layer 17 surrounding the Si columns 12a, 12b and the XX' line less than twice the width L3 of the SiN layer 21a, 21b on the YY' line, and making the length L2 between the intersection of the outer perimeter of the HfO layer 17 surrounding the Si columns 12a, 12c and the YY' line greater than twice L3, Si The N layer 21a is connected between the Si pillars 12a and 12b and is formed separately between the Si pillars 12a and 12c. Similarly, the SiN layer 21b can be connected between the Si pillars 12c and 12d and can be formed separately between the Si pillars 12a and 12c. SiN layers 21a, 21b are formed in self-alignment with respect to Si pillars 12a to 12d. Therefore, the metal plate lines PL formed using the SiN layers 21a, 21b as etching masks and the TiN layers 18a, 18b which are gate conductor layers are formed in self-alignment with respect to the Si pillars 12a to 12d. By forming the TiN layers 18a and 18b by self-alignment in this way, high densification of the dynamic flash memory can be achieved. Furthermore, when forming the TiN layers 18a and 18b, since a mask pattern in the lithography step is unnecessary, the cost of the mask used can be reduced.

(特徵四) (feature four)

如圖5G所示,屬於字元線WL且為閘極導體層的TiN層26a係藉由與TiN層26b分離且對於Si柱12a、12b自行對準而於Si柱12a、12b間連結地形成。同樣地,TiN層26b係藉由與TiN層26a分離且對於Si柱12c、12d自行對準而於Si柱12c、12d間連結地形成。藉此,可謀求動態快閃記憶體的高密集化。再者,TiN層26a、26b的形成係與TiN層18a、18b的形成同樣地不需要微影步驟中的遮罩圖案,故可謀求所使用之遮罩 的低成本化。再者,俯視觀察時,屬於字元線WL且為閘極導體層的TiN層26a、26b係與屬於金屬板線PL且為閘極導體層的TiN層18a、18b重疊地形成。藉此,可謀求動態快閃記憶體的高密集化。 As shown in FIG. 5G , the TiN layer 26a belonging to the word line WL and being the gate conductor layer is formed to be connected between the Si pillars 12a, 12b by being separated from the TiN layer 26b and self-aligned with respect to the Si pillars 12a, 12b. Likewise, the TiN layer 26b is formed in connection between the Si pillars 12c, 12d by being separated from the TiN layer 26a and self-aligned with respect to the Si pillars 12c, 12d. Thereby, high densification of the dynamic flash memory can be achieved. Furthermore, the formation of the TiN layers 26a, 26b does not require a mask pattern in the lithography step similarly to the formation of the TiN layers 18a, 18b, so the mask pattern used can be optimized. low cost. Furthermore, TiN layers 26a, 26b which are gate conductor layers belonging to word line WL overlap TiN layers 18a, 18b which are gate conductor layers belonging to metal plate line PL in plan view. Thereby, high densification of the dynamic flash memory can be achieved.

使用圖6A至圖6C來顯示第二實施型態之動態快閃記憶體的製造方法。(a)係俯視圖,(b)係沿著(a)之X-X’線的剖面圖,(c)係沿著(a)之Y-Y’線的剖面圖。 The manufacturing method of the dynamic flash memory of the second embodiment is shown using FIG. 6A to FIG. 6C. (a) is a top view, (b) is a sectional view along the line X-X' of (a), and (c) is a sectional view along the line Y-Y' of (a).

進行圖5A至圖5C所示的步驟。接著,如圖6A所示,將垂直方向高於TiN層18之上表面的HfO2層17去除而形成HfO2層17a。再者,於整體形成HfO2層33。再者,於整體覆蓋TiN層(未圖示),並且,藉由CMP法進行研磨至其上表面成為遮罩材料層14a至14d的上表面。再者,藉由RIE法進行蝕刻至其上表面位置至N+層13a至13d的下端附近而形成TiN層34。 The steps shown in FIGS. 5A to 5C are performed. Next, as shown in FIG. 6A, the HfO 2 layer 17 that is higher than the upper surface of the TiN layer 18 in the vertical direction is removed to form an HfO 2 layer 17a. Furthermore, the HfO 2 layer 33 is formed on the whole. Furthermore, the whole is covered with a TiN layer (not shown), and the upper surface thereof is polished by CMP until it becomes the upper surface of the mask material layers 14a to 14d. Furthermore, the TiN layer 34 is formed by etching up to the position of the upper surface to the vicinity of the lower ends of the N + layers 13a to 13d by the RIE method.

接著,如圖6B所示,於整體覆蓋氮化矽(SiN層)層(未圖示),並且,藉由CMP法進行研磨至其上表面位置成為遮罩材料層14a至14d的上表面位置。再者,藉由RIE法對SiN層進行蝕刻,藉此在N+層13a至13d及遮罩材料層14a至14d的側面,形成在Si柱12a、12b間及Si柱12c、12d間連結而在Si柱12a、12c間及Si柱12b、12d間分離的SiN層36a、36b。 Next, as shown in FIG. 6B , the entire surface is covered with a silicon nitride (SiN layer) layer (not shown), and polished by CMP until the upper surface positions become the upper surface positions of the mask material layers 14a to 14d. Furthermore, by etching the SiN layer by the RIE method, SiN layers 36a, 36b connected between Si pillars 12a, 12b and Si pillars 12c, 12d and separated between Si pillars 12a, 12c and Si pillars 12b, 12d are formed on the side surfaces of N + layers 13a to 13d and mask material layers 14a to 14d.

接著,如圖6C所示,以SiN層36a、36b及遮罩材料層14a至14d作為遮罩,對TiN層34、HfO2層33、TiN層18進行蝕刻而形成TiN層18c、18d、34a、34b、HfO2層33a、33b。之後,進行與圖5H、圖 5I相同的步驟。藉此,與第一實施型態同樣地在基板10上形成動態快閃記憶體。 Next, as shown in FIG. 6C, using the SiN layers 36a, 36b and the mask material layers 14a to 14d as masks, the TiN layer 34, the HfO layer 33, and the TiN layer 18 are etched to form TiN layers 18c, 18d, 34a , 34b, and HfO layers 33a, 33b. Thereafter, the same steps as those in FIG. 5H and FIG. 5I are performed. Thereby, a dynamic flash memory is formed on the substrate 10 similarly to the first embodiment.

本實施型態係提供下列特徵。 This implementation type provides the following features.

圖5所示之動態快閃記憶體的製造方法係分別形成屬於金屬板線PL且為閘極導體層的TiN層18a、18b以及屬於字元線WL且為閘極導體層的TiN層26a、26b。相對於此,本實施型態中,如圖6C所示,係以SiN層36a、36b及遮罩材料層14a至14d作為遮罩,對於TiN層34、HfO2層33、TiN層18一併進行蝕刻,而形成屬於金屬板線PL且為閘極導體層的TiN層18c、18d以及屬於字元線WL且為閘極導體層的TiN層34a、34b。藉此,即易於進行動態快閃記憶體的製造。 The manufacturing method of the dynamic flash memory shown in FIG. 5 is to respectively form the TiN layers 18a, 18b belonging to the metal plate line PL and being the gate conductor layer and the TiN layers 26a, 26b belonging to the word line WL and being the gate conductor layer. In contrast, in this embodiment, as shown in FIG. 6C , the TiN layer 34 , the HfO layer 33 , and the TiN layer 18 are etched together using the SiN layers 36 a, 36 b and the mask material layers 14 a to 14 d as masks to form the TiN layers 18 c and 18 d belonging to the metal plate line PL and being the gate conductor layer and the TiN layers 34 a and 34 b belonging to the word line WL and being the gate conductor layer. Thereby, it is easy to manufacture the dynamic flash memory.

(其他實施型態) (other implementation types)

另外,本發明中係形成Si柱2、12a至12d,但亦可為除此之外的半導體材料形成的半導體柱。本發明的其他實施型態中此亦相同。 In addition, in the present invention, the Si columns 2, 12a to 12d are formed, but semiconductor columns formed of other semiconductor materials may also be used. The same applies to other embodiments of the present invention.

此外,第一實施型態中的N+層3a、3b、11、13亦可由包含供體雜質的Si或其他半導體材料層所形成。此外,N+層3a、3b、11、13亦可由不同的半導體材料層所形成。此外,此等形成方法可藉由磊晶結晶成長法或其他方法來形成N+層。本發明的其他實施型態中此亦相同。 In addition, the N + layers 3 a , 3 b , 11 , and 13 in the first embodiment can also be formed of Si or other semiconductor material layers containing donor impurities. In addition, the N + layers 3a, 3b, 11, 13 can also be formed of different semiconductor material layers. In addition, these forming methods can form the N + layer by epitaxial crystal growth method or other methods. The same applies to other embodiments of the present invention.

此外,圖5A所示之遮罩材料層14a至14d若為例如SiO2層、氧化鋁(Al2O3、亦稱AlO)層、SiN層等符合本發明之目的的材料,則亦可使用包含單層或複數層構成之有機材料或無機材料的其他材料。本發明的其他實施型態中此亦相同。 In addition, if the mask material layers 14a to 14d shown in FIG. 5A are materials that meet the purpose of the present invention such as SiO2 layer, aluminum oxide ( Al2O3 , also known as AlO) layer, SiN layer, etc., other materials including organic materials or inorganic materials composed of single or multiple layers can also be used. The same applies to other embodiments of the present invention.

此外,圖5A所示之遮罩材料層14a至14d的厚度及形狀係隨著CMP法進行的研磨、RIE法進行的蝕刻、及清洗而變化。此變化若於符合本發明之目的的程度內,則無限制。本發明的其他實施型態中此亦相同。 In addition, the thickness and shape of the mask material layers 14a to 14d shown in FIG. 5A are changed according to polishing by CMP method, etching and cleaning by RIE method. This change is not limited as long as it meets the purpose of the present invention. The same applies to other embodiments of the present invention.

此外,第一實施型態中使用了TiN層18a、18b作為金屬板線PL及連結於此金屬板線PL的閘極導體層5a。相對於此,亦可組合使用單層或複數層的導體材料層來取代TiN層18a、18b。同樣地,第一實施型態中使用了TiN層26a、26b作為字元線WL及連結於此字元線WL的閘極導體層5b。相對於此,亦可組合使用單層或複數層的導體材料層來取代TiN層18a、18b。本發明的其他實施型態中此亦相同。 In addition, in the first embodiment, the TiN layers 18a and 18b are used as the metal plate line PL and the gate conductor layer 5a connected to the metal plate line PL. On the other hand, instead of the TiN layers 18a and 18b, a single layer or a plurality of conductive material layers may be used in combination. Similarly, in the first embodiment, the TiN layers 26a and 26b are used as the word line WL and the gate conductor layer 5b connected to the word line WL. On the other hand, instead of the TiN layers 18a and 18b, a single layer or a plurality of conductive material layers may be used in combination. The same applies to other embodiments of the present invention.

此外,圖5D所示的SiN層21a、21b、SiO2層20a、20b以及圖5G所示的SiN層27a、27b,係用以形成TiN層18a、18b、26a、26b的蝕刻遮罩層。若為可獲得本實施型態中之蝕刻遮罩的功能者,則SiN層21a、21b、27a、27b及SiO2層20a、20b亦可使用單層或複數層的其他材料層。本發明的其他實施型態中此亦相同。 In addition, SiN layers 21a, 21b, SiO2 layers 20a, 20b shown in FIG. 5D and SiN layers 27a, 27b shown in FIG. 5G are used to form etching mask layers for TiN layers 18a, 18b, 26a, 26b. The SiN layers 21a, 21b, 27a, 27b and the SiO 2 layers 20a, 20b can also use single or multiple layers of other material layers if they can achieve the function of the etching mask in this embodiment. The same applies to other embodiments of the present invention.

此外,第二實施型態中係以包圍Si柱12a至12d之方式形成了成為閘極絕緣層的HfO2層17a、33來作為閘極絕緣層,但亦可分別使用由單層或複數層所構成的其他材料層。本發明的其他實施型態中此亦相同。 In addition, in the second embodiment, the HfO2 layers 17a, 33 used as gate insulating layers are formed to surround the Si pillars 12a to 12d as the gate insulating layers, but other material layers composed of a single layer or a plurality of layers can also be used. The same applies to other embodiments of the present invention.

此外,第一實施型態中,俯視觀察時,Si柱12a至12d的形狀係圓形。惟,Si柱12a至12d之俯視觀察時的形狀亦可為圓形、橢圓、朝一方向長條延伸之形狀等。再者,即使是與動態快閃記憶體單元區域分 離而形成的邏輯電路區域中,亦可對應於邏輯電路設計,而在邏輯電路區域上混合地形成俯視觀察時形狀不同的Si柱。本發明的其他實施型態中此亦相同。 In addition, in the first embodiment, the shape of the Si pillars 12a to 12d is circular when viewed from above. However, the shape of the Si pillars 12a to 12d in plan view may be circular, elliptical, or elongated in one direction. Furthermore, even with the area separate from the dynamic flash memory cell In the logic circuit region formed separately, Si pillars having different shapes when viewed from above may be mixedly formed on the logic circuit region according to the logic circuit design. The same applies to other embodiments of the present invention.

此外,圖1中,可將第一閘極導體層5a分割為二個以上而分別作為金屬板線的導體電極,以同步或非同步,以相同驅動電壓或不同驅動電壓來動作。同樣地,可將第二閘極導體層5b分割為二個以上而分別作為字元線的導體電極,以同步或非同步,以相同驅動電壓或不同驅動電壓來動作。即使如此,動態快閃記憶體亦會動作。此時,圖5D、圖5E中,藉由TiN層18的蝕刻,俯視下,將包圍SiN層21a、21b的TiN層18沿Y-Y’線方向分割為二個TiN層,將包圍SiN層21c、21d的TiN層18沿Y-Y’線方向分割為二個TiN層而形成。此時,俯視下,SiN層21a、21b與SiN層21c、21d之間亦可連結TiN層而形成。同樣地,圖5G中,亦可將TiN層26a、26b各者分割而形成。本發明的其他實施型態中此亦相同。 In addition, in FIG. 1 , the first gate conductor layer 5 a can be divided into two or more conductor electrodes as metal plate wires, which can be operated synchronously or asynchronously with the same driving voltage or different driving voltages. Similarly, the second gate conductor layer 5b can be divided into two or more conductor electrodes, which are used as the conductor electrodes of the word lines, respectively, and operate synchronously or asynchronously with the same driving voltage or different driving voltages. Even so, dynamic flash memory will work. At this time, in FIG. 5D and FIG. 5E, by etching the TiN layer 18, the TiN layer 18 surrounding the SiN layers 21a, 21b is divided into two TiN layers along the Y-Y' line direction in a plan view, and the TiN layer 18 surrounding the SiN layers 21c, 21d is divided into two TiN layers along the Y-Y' line direction. In this case, the SiN layers 21a, 21b and the SiN layers 21c, 21d may be formed by connecting TiN layers in plan view. Similarly, in FIG. 5G, each of TiN layer 26a, 26b may be divided and formed. The same applies to other embodiments of the present invention.

此外,第一實施型態中,於抹除動作時將源極線SL設為負偏壓,而去除了屬於浮體FB之通道區域7內的電洞群,但亦可將位元線BL設為負偏壓來取代將源極線SL設為負偏壓,或者,亦可將源極線SL及位元線BL皆設為負偏壓而進行抹除動作。本發明的其他實施型態中此亦相同。 In addition, in the first embodiment, the source line SL is negatively biased during the erasing operation, thereby removing the hole group in the channel region 7 belonging to the floating body FB. However, the bit line BL can also be set to a negative bias instead of the source line SL, or both the source line SL and the bit line BL can be set to a negative bias to perform the erasing operation. The same applies to other embodiments of the present invention.

此外,在使用圖2、圖3、圖4所說明的動作中,金屬板線PL的電壓VErasePL亦可無關乎各動作模式施加例如2V的固定電壓。此外,金屬板線PL的電壓VErasePL係可僅在抹除時施加例如0V。 In addition, in the operation described using FIG. 2 , FIG. 3 , and FIG. 4 , a fixed voltage of, for example, 2 V may be applied to the voltage V ErasePL of the metal plate line PL regardless of each operation mode. In addition, the voltage V ErasePL of the metal plate line PL can be applied, eg, 0 V, only during erasing.

本發明在不脫離本發明之廣義的精神與範圍下,亦可進行各種實施型態及變更。此外,上述實施型態係用以說明本發明之一實施例者,非用以限定本發明的範圍。上述實施例及變形例可任意地組合。再者,即使視需要將上述實施型態之構成要件的一部分除外者,亦包含於本發明之技術思想的範圍內。 Various implementation forms and changes can be made to the present invention without departing from the broad spirit and scope of the present invention. In addition, the above-mentioned implementation forms are used to illustrate an embodiment of the present invention, and are not intended to limit the scope of the present invention. The above-described embodiments and modifications can be combined arbitrarily. In addition, even if a part of the constituent requirements of the said embodiment is excluded as needed, it is also included in the scope of the technical idea of this invention.

[產業上的可利用性] [industrial availability]

依據本發明之使用SGT之記憶裝置的製造方法,可獲得使用高密度且高性能之SGT之記憶裝置的動態快閃記憶體。 According to the manufacturing method of the memory device using SGT of the present invention, the dynamic flash memory of the memory device using the high-density and high-performance SGT can be obtained.

10:基板 10: Substrate

11a,13a,13b,13c:N+11a, 13a, 13b, 13c: N + layers

12a,12b,12c:Si柱 12a, 12b, 12c: Si column

17a,17b,33:HfO217a, 17b, 33: HfO 2 layers

18a,18b,26a,26b:TiN層 18a, 18b, 26a, 26b: TiN layer

23,29:SiO223,29: SiO 2 layers

27a,27b:SiN層 27a, 27b: SiN layer

30a,30b,30c,30d:接觸孔 30a, 30b, 30c, 30d: contact holes

31a:位元線BL1的導體層 31a: conductor layer of bit line BL1

31b:位元線BL2的導體層 31b: conductor layer of bit line BL2

34a,34b,34c:空孔 34a, 34b, 34c: empty hole

BL1:位元線 BL1: bit line

BL2:位元線 BL2: bit line

PL1:金屬板線 PL1: Metal plate line

PL2:金屬板線 PL2: Metal plate line

SL:源極線 SL: source line

WL1:字元線 WL1: word line

WL2:字元線 WL2: word line

Claims (10)

一種包含柱狀半導體元件之記憶裝置的製造方法,該記憶裝置係進行:資料保持動作,係控制對於第一閘極導體層、第二閘極導體層、第三閘極導體層、第四閘極導體層、第一雜質區域及第二雜質區域施加的電壓,而將藉由撞擊游離現象或閘極引發汲極洩漏電流所形成的電洞群保持在第一半導體柱、第二半導體柱、第三半導體柱及第四半導體柱的任一者或各者的內部;及資料抹除動作,係控制對於前述第一閘極導體層、前述第二閘極導體層、前述第三閘極導體層、前述第四閘極導體層、前述第一雜質區域及前述第二雜質區域施加的電壓,而將前述電洞群從前述第一至第四半導體柱的任一者或各者的內部予以去除;前述製造方法係具有下列步驟:在基板上形成前述第一半導體柱和前述第二半導體柱、及前述第三半導體柱和前述第四半導體柱的步驟,前述第一半導體柱和第二半導體柱係朝垂直方向站立,而且俯視觀察時在第一方向上鄰接地配置,前述第三半導體柱和第四半導體柱係在平行於前述第一方向的第二方向上鄰接地配置;形成包圍著前述第一半導體柱至第四半導體柱的第一絕緣層的步驟;形成前述第一閘極導體層和前述第二閘極導體層的步驟,前述第一閘極導體層係包圍前述第一絕緣層,而且在垂直方向上,其上表面位置位於前述第一半導體柱至第四半導體柱的下方,而且在前述第一方向上於前述第一半導體柱和前述第二半導體柱之間相連著,前述第二閘極導體層係在前述第二方向上之前述第三半導體柱和前述第四半導體柱之間相連著; 將垂直方向上的前述第一閘極導體層、和比前述第二閘極導體層更上部的前述第一絕緣層進行蝕刻,而於前述第一半導體柱至第四半導體柱的下部形成第一閘極絕緣層的步驟;以在垂直方向上與前述第一閘極絕緣層相接而且包圍第一半導體柱至第四半導體柱之側面之方式形成第二閘極絕緣層的步驟;形成前述第三閘極導體層和前述第四閘極導體層的步驟,前述第三閘極導體層係包圍前述第二閘極絕緣層,而且在垂直方向上,其上表面位置位於前述第一半導體柱至第四半導體柱的頂部下方,而且在前述第一方向上於前述第一半導體柱和前述第二半導體柱之間相連著,而且在垂直方向上與前述第一閘極導體層分離,前述第四閘極導體層係在排列於前述第二方向之前述第三半導體柱和前述第四半導體柱之間相連著,且在垂直方向上與前述第二閘極導體層分離;在形成前述第一至第四半導體柱之前或之後,形成和前述第二半導體柱、前述第三半導體柱及前述第四半導體柱之底部相連之前述第一雜質區域的步驟;在形成前述第一至第四半導體柱之前或之後,在前述第一至第四半導體柱之頂部的各者形成前述第二雜質區域的步驟;及形成第一配線導體層和第二配線導體層的步驟,前述第一配線導體層係與前述第一半導體柱及前述第三半導體柱之頂部的前述第二雜質區域相連,前述第二配線導體層係與前述第二半導體柱及前述第四半導體柱之頂部的前述第二雜質區域相連。 A manufacturing method of a memory device including a columnar semiconductor element, the memory device is performed: a data holding operation is to control the voltage applied to the first gate conductor layer, the second gate conductor layer, the third gate conductor layer, the fourth gate conductor layer, the first impurity region and the second impurity region, and the hole group formed by the impact free phenomenon or the drain leakage current caused by the gate is kept in any or each of the first semiconductor pillar, the second semiconductor pillar, the third semiconductor pillar and the fourth semiconductor pillar; and the data erasing operation is controlled for the first gate. The electrode conductor layer, the aforementioned second gate conductor layer, the aforementioned third gate conductor layer, the aforementioned fourth gate conductor layer, the aforementioned first impurity region, and the aforementioned second impurity region apply a voltage to remove the hole group from any or each of the aforementioned first to fourth semiconductor columns; the aforementioned manufacturing method has the following steps: forming the aforementioned first semiconductor column and the aforementioned second semiconductor column, the aforementioned third semiconductor column and the aforementioned fourth semiconductor column on a substrate, wherein the aforementioned first semiconductor column and the second semiconductor column stand in the vertical direction, and are adjacently grounded in the first direction when viewed from above Configuration, the third semiconductor column and the fourth semiconductor column are adjacently arranged in the second direction parallel to the first direction; the step of forming the first insulating layer surrounding the first semiconductor column to the fourth semiconductor column; the step of forming the first gate conductor layer and the second gate conductor layer, the first gate conductor layer surrounds the first insulating layer, and in the vertical direction, its upper surface is located below the first semiconductor column to the fourth semiconductor column, and is connected between the first semiconductor column and the second semiconductor column in the first direction. The aforementioned third semiconductor column in the aforementioned second direction is connected to the aforementioned fourth semiconductor column; Etching the aforementioned first gate conductor layer in the vertical direction and the aforementioned first insulating layer above the aforementioned second gate conductor layer, and forming a first gate insulating layer at the bottom of the aforementioned first to fourth semiconductor pillars; a step of forming a second gate insulating layer in a vertical direction in contact with the aforementioned first gate insulating layer and surrounding the side surfaces of the first to fourth semiconductor pillars; forming the aforementioned third gate conductor layer and the aforementioned fourth gate conductor layer, wherein the aforementioned third gate conductor layer surrounds the aforementioned second gate insulating layer, And in the vertical direction, its upper surface position is located below the tops of the first to fourth semiconductor columns, and is connected between the first semiconductor column and the second semiconductor column in the first direction, and is separated from the first gate conductor layer in the vertical direction, and the fourth gate conductor layer is connected between the third semiconductor column and the fourth semiconductor column arranged in the second direction, and is separated from the second gate conductor layer in the vertical direction; The step of forming the first impurity region connected to the bottom of the fourth semiconductor pillar; the step of forming the second impurity region on each of the tops of the first to fourth semiconductor pillars before or after forming the first to fourth semiconductor pillars; and the step of forming a first wiring conductor layer and a second wiring conductor layer. 如請求項1所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,於俯視觀察時,包圍前述第一半導體柱及前述第二半導體柱之前述第一閘極絕緣層的二條外周線與連結前述第一半導體柱和前述第二 半導體柱之中心之第一線之交點之中相向之二點間的第一長度,係比包圍前述第一半導體柱及前述第三半導體柱之前述第二閘極絕緣層的二條外周線與連結前述第一半導體柱和前述第三半導體柱之中心之第二線之交點之中相向之二點間的第二長度更小;前述第二長度係比位於前述第二線上且包圍前述第一半導體柱之前述第一閘極導體層之厚度的第三長度的二倍更大;前述第一長度係比前述第三長度的二倍更小。 The manufacturing method of a memory device comprising a columnar semiconductor element as described in Claim 1, wherein, when viewed from above, the two outer peripheral lines of the first gate insulating layer surrounding the first semiconductor column and the second semiconductor column and the two peripheral lines connecting the first semiconductor column and the second The first length between two opposite points of the intersection of the first line at the center of the semiconductor pillar is smaller than the second length between the two opposite points of the intersection of the second line connecting the center of the first semiconductor pillar and the center of the third semiconductor pillar. times smaller. 如請求項2所述之包含柱狀半導體元件之記憶裝置的製造方法,係具有下列步驟:在形成前述第一閘極絕緣層之後,於前述第一閘極絕緣層的外周部,形成其上表面位置在垂直方向上成為前述第一閘極導體層及前述第二閘極導體層之上端之第一導體層的步驟;形成第一遮罩材料層、第二遮罩材料層及第三遮罩材料層的步驟,前述第一遮罩材料層係位於前述第一至第四半導體柱的頂部上,前述第二遮罩材料層係包圍前述第一至第四半導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第三遮罩材料層係在前述第三半導體柱和前述第四半導體柱之間相連著,而且與前述第二遮罩材料層分離;及以前述第一遮罩材料層、前述第二遮罩材料層及前述第三遮罩材料層作為遮罩,將前述第一導體層進行蝕刻,而形成前述第一閘極導體層及前述第二閘極導體層的步驟。 The method for manufacturing a memory device comprising a columnar semiconductor element as described in Claim 2 comprises the following steps: after forming the first gate insulating layer, forming a first conductor layer whose upper surface is positioned vertically on the upper end of the first gate conductor layer and the second gate conductor layer on the outer periphery of the first gate insulating layer; Surrounding the sides of the first to fourth semiconductor pillars, and connecting between the first semiconductor pillar and the second semiconductor pillar, the third mask material layer is connected between the third semiconductor pillar and the fourth semiconductor pillar, and separated from the second mask material layer; and using the first mask material layer, the second mask material layer and the third mask material layer as masks, etching the first conductor layer to form the first gate conductor layer and the second gate conductor layer. 如請求項2所述之包含柱狀半導體元件之記憶裝置的製造方法,係具有下列步驟: 在形成前述第二閘極絕緣層之後,於前述第二閘極絕緣層的外周部,形成其上表面位置在垂直方向上位於前述第二雜質區域之下端附近之第二導體層的步驟;以彼此分離之方式形成第一遮罩材料層、第四遮罩材料層及第五遮罩材料層的步驟,前述第一遮罩材料層係在前述第二導體層上且位於前述第一至第四半導體柱的頂部上,前述第四遮罩材料層係包圍前述第一至第四半導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第五遮罩材料層係在前述第三半導體柱和前述第四半導體柱之間相連著;及以前述第一遮罩材料層、前述第四遮罩材料層及前述第五遮罩材料層作為遮罩,將前述第二導體層進行蝕刻,而形成前述第三閘極導體層及前述第四閘極導體層的步驟。 The method for manufacturing a memory device comprising a columnar semiconductor element as described in Claim 2 comprises the following steps: After forming the second gate insulating layer, forming a second conductor layer whose upper surface is vertically located near the lower end of the second impurity region on the outer periphery of the second gate insulating layer; forming a first mask material layer, a fourth mask material layer, and a fifth mask material layer in a manner separated from each other, the first mask material layer is on the second conductor layer and is located on the top of the first to fourth semiconductor pillars, the fourth mask material layer surrounds the sides of the first to fourth semiconductor pillars, and is formed between the first semiconductor pillars and the first semiconductor pillars. The second semiconductor pillars are connected, the fifth mask material layer is connected between the third semiconductor pillar and the fourth semiconductor pillar; and using the first mask material layer, the fourth mask material layer and the fifth mask material layer as masks, etching the second conductor layer to form the third gate conductor layer and the fourth gate conductor layer. 如請求項2所述之包含柱狀半導體元件之記憶裝置的製造方法,係具有下列步驟:對於頂部上形成有第一遮罩材料層的前述第一至第四半導體柱,在形成前述第一閘極絕緣層之後,於前述第一閘極絕緣層的外周部,形成其上表面位置在垂直方向上位於前述第一至第四半導體柱的中間位置附近之第三導體層的步驟;將較前述第三導體層還上方的前述第一閘極絕緣層去除,並在前述第三導體層之上形成第二絕緣層的步驟;在前述第二絕緣層上,形成在垂直方向上其上表面接近前述第二雜質區域之下端之第四導體層的步驟;以彼此離開之方式形成第六遮罩材料層及第七遮罩材料層的步驟,前述第六遮罩材料層係形成為包圍前述第四導體層之上的前述第一與第二半 導體柱的側面,且在前述第一半導體柱和前述第二半導體柱之間相連著,前述第七遮罩材料層係形成為包圍前述第四導體層之上的前述第三與第四半導體柱的側面,且在前述第三半導體柱和前述第四半導體柱之間相連著;及以前述第一遮罩材料層、前述第六遮罩材料層及前述第七遮罩材料層作為遮罩,將前述第三導體層、前述第二絕緣層及前述第四導體層進行蝕刻,而形成前述第一閘極導體層、前述第二閘極導體層、前述第三閘極導體層及前述第四閘極導體層的步驟。 The method for manufacturing a memory device comprising a columnar semiconductor element as described in Claim 2 comprises the following steps: for the aforementioned first to fourth semiconductor columns with a first mask material layer formed on the top, after forming the first gate insulating layer, forming a third conductor layer whose upper surface is located near the middle of the first to fourth semiconductor columns in the vertical direction on the outer periphery of the aforementioned first gate insulating layer; removing the aforementioned first gate insulating layer above the third conductor layer, and forming a second insulating layer on the aforementioned third conductor layer; A step of forming a fourth conductor layer whose upper surface is close to the lower end of the second impurity region in the vertical direction on the second insulating layer; a step of forming a sixth mask material layer and a seventh mask material layer in a manner separated from each other, the sixth mask material layer is formed to surround the first and second semiconductor layers on the fourth conductor layer The side surface of the conductor column is connected between the first semiconductor column and the second semiconductor column, the seventh mask material layer is formed to surround the sides of the third and fourth semiconductor columns on the fourth conductor layer, and is connected between the third semiconductor column and the fourth semiconductor column; and using the first mask material layer, the sixth mask material layer and the seventh mask material layer as masks, the third conductor layer, the second insulating layer and the fourth conductor layer are etched to form the first gate conductor layer, the second gate conductor layer, the aforementioned first gate conductor layer, the aforementioned second gate conductor layer, Steps of the third gate conductor layer and the aforementioned fourth gate conductor layer. 如請求項1所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,與前述第一雜質區域相連的配線係源極線,與前述第二雜質區域相連的配線係位元線,與前述第一閘極導體層和前述第二閘極導體層相連之配線、及與前述第三閘極導體層和前述第四閘極導體層相連之配線的一方若為字元線,則另一方形成為第一驅動控制線;藉由對於前述源極線、前述位元線、前述第一驅動控制線及前述字元線施加的電壓,選擇性地進行前述資料抹除動作和前述記資料保持動作。 The method for manufacturing a memory device including a columnar semiconductor element as described in Claim 1, wherein the wiring connected to the first impurity region is a source line, the wiring connected to the second impurity region is a bit line, and if one of the wiring connecting the first gate conductor layer and the second gate conductor layer, and the wiring connecting the third gate conductor layer and the fourth gate conductor layer is a word line, the other is a first drive control line; The voltage applied to the word line selectively performs the data erasing operation and the recording data retention operation. 如請求項1所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,前述第一閘極導體層、與前述第一至第四半導體柱之間的第一閘極電容,係形成為比前述第二閘極導體層、與前述第一至第四半導體柱之間的第二閘極電容更大。 The method of manufacturing a memory device comprising a columnar semiconductor element as described in claim 1, wherein the first gate capacitance between the first gate conductor layer and the first to fourth semiconductor pillars is formed to be larger than the second gate capacitance between the second gate conductor layer and the first to fourth semiconductor pillars. 如請求項1所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,於俯視觀察時,在前述第三閘極導體層與前述第四閘極導體層之間形成第一空孔。 The method of manufacturing a memory device including a columnar semiconductor element as claimed in Claim 1, wherein, when viewed from above, a first hole is formed between the third gate conductor layer and the fourth gate conductor layer. 如請求項1所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,於前述第一配線導體層與前述第二配線導體層之間形成第二空孔。 The method of manufacturing a memory device including a columnar semiconductor element according to claim 1, wherein a second hole is formed between the first wiring conductor layer and the second wiring conductor layer. 如請求項5所述之包含柱狀半導體元件之記憶裝置的製造方法,其中,前述第二絕緣層係由與前述第一至第四半導體柱相連的前述第二閘極絕緣層所形成。 The method for manufacturing a memory device including a columnar semiconductor element as claimed in claim 5, wherein the second insulating layer is formed by the second gate insulating layer connected to the first to fourth semiconductor columns.
TW110148463A 2021-01-07 2021-12-23 A manufacturing method of memory device including semiconductor element TWI807553B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2021/000281 2021-01-07
PCT/JP2021/000281 WO2022149228A1 (en) 2021-01-07 2021-01-07 Method for manufacturing memory device using semiconductor element

Publications (2)

Publication Number Publication Date
TW202243133A TW202243133A (en) 2022-11-01
TWI807553B true TWI807553B (en) 2023-07-01

Family

ID=81291692

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148463A TWI807553B (en) 2021-01-07 2021-12-23 A manufacturing method of memory device including semiconductor element

Country Status (3)

Country Link
JP (1) JP7057033B1 (en)
TW (1) TWI807553B (en)
WO (1) WO2022149228A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117652215A (en) * 2022-03-04 2024-03-05 长江存储科技有限责任公司 Three-dimensional memory device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200703624A (en) * 2005-07-01 2007-01-16 Nanya Technology Corp Method of fabricating dynamic random access memory and array of the same
TW200937623A (en) * 2008-01-29 2009-09-01 Unisantis Electronics Jp Ltd Semiconductor storage device
US20180175047A1 (en) * 2014-09-05 2018-06-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898715B2 (en) * 2004-09-09 2007-03-28 株式会社東芝 Semiconductor device and manufacturing method thereof
JP4791986B2 (en) * 2007-03-01 2011-10-12 株式会社東芝 Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200703624A (en) * 2005-07-01 2007-01-16 Nanya Technology Corp Method of fabricating dynamic random access memory and array of the same
TW200937623A (en) * 2008-01-29 2009-09-01 Unisantis Electronics Jp Ltd Semiconductor storage device
US20180175047A1 (en) * 2014-09-05 2018-06-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device

Also Published As

Publication number Publication date
WO2022149228A1 (en) 2022-07-14
JP7057033B1 (en) 2022-04-19
TW202243133A (en) 2022-11-01
JPWO2022149228A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
TWI781028B (en) Manufacturing method of memory device including semiconductor element
TWI823289B (en) Semiconductor device wtih memory element
TWI795167B (en) Semiconductor element memory device
TW202247421A (en) Semiconductor device with memory element
TWI807553B (en) A manufacturing method of memory device including semiconductor element
TWI793974B (en) Memory device using pillar-shaped semiconductor element
TWI806510B (en) Semiconductor device with memory element
TWI808752B (en) Memory device using pillar-shaped semiconductor element
TWI806509B (en) Memory device using pillar-shaped semiconductor element
TW202303988A (en) Memory device using semiconductor element
JP7513307B2 (en) Manufacturing method of memory device using semiconductor element
TWI838745B (en) Memory device using semiconductor element
TWI810791B (en) Manufacturing method of memory device using pillar-shaped semiconductor element
WO2022208587A1 (en) Memory device using semiconductor element, and method for manufacturing same
TWI839062B (en) Semiconductor memory device
WO2022180738A1 (en) Memory device using semiconductor element
TWI813279B (en) Memory device using semiconductor element
US20230301057A1 (en) Memory device including pillar-shaped semiconductor element
TWI823513B (en) Method of producing semiconductor device including memory element
TWI823432B (en) Manufacturing method for memory device using semiconductor element
WO2022239192A1 (en) Memory device using semiconductor element
TWI810929B (en) Method for manufacturing memory device using semiconductor element