TWI807253B - Semiconductor reaction device and method - Google Patents
Semiconductor reaction device and method Download PDFInfo
- Publication number
- TWI807253B TWI807253B TW110103520A TW110103520A TWI807253B TW I807253 B TWI807253 B TW I807253B TW 110103520 A TW110103520 A TW 110103520A TW 110103520 A TW110103520 A TW 110103520A TW I807253 B TWI807253 B TW I807253B
- Authority
- TW
- Taiwan
- Prior art keywords
- vacuum chamber
- reaction space
- reaction
- unit
- substrate
- Prior art date
Links
Images
Abstract
Description
本發明關於一種反應裝置,特別關於一種可應用於進行化學氣相沉積(Chemical Vapor Deposition,CVD)製程的半導體反應裝置與反應方法。 The present invention relates to a reaction device, in particular to a semiconductor reaction device and a reaction method applicable to a chemical vapor deposition (Chemical Vapor Deposition, CVD) process.
在半導體產業中,積體電路或光電元件的應用日新月異,尺寸也日漸微型,而化學氣相沉積(CVD)是一種可以用來產生純度高、性能好的固態材料的化學技術。其中,半導體產業或光電產業使用此技術來沉積不同晶形的材料(單晶、多晶、非晶及磊晶),而所沉積的材料則涵蓋例如鑽石、類鑽碳(Diamond-like carbon,DLC)、矽、碳纖維、碳奈米纖維、奈米線、奈米碳管、二氧化矽(SiO2)、矽鍺、鎢、矽碳、氮化矽、氮氧化矽及各種不同的材料。典型的化學氣相沉積製程是將基板暴露在一種或多種不同的反應前驅物下,在基底表面發生化學反應(沉積)或/及化學分解(蝕刻)來產生待沉積的薄膜。 In the semiconductor industry, the application of integrated circuits or optoelectronic components is changing day by day and the size is becoming smaller and smaller. Chemical vapor deposition (CVD) is a chemical technique that can be used to produce solid materials with high purity and high performance. Among them, the semiconductor industry or the optoelectronic industry use this technology to deposit materials of different crystal forms (single crystal, polycrystalline, amorphous and epitaxial), and the deposited materials include diamond, diamond-like carbon (DLC), silicon, carbon fiber, carbon nanofiber, nanowire, carbon nanotube, silicon dioxide (SiO 2 ), silicon germanium, tungsten, silicon carbon, silicon nitride, silicon oxynitride and various materials. In a typical chemical vapor deposition process, the substrate is exposed to one or more different reactive precursors, and a chemical reaction (deposition) or/and chemical decomposition (etching) occurs on the surface of the substrate to produce a thin film to be deposited.
請參照圖1所示,其為習知一種半導體反應裝置的示意圖。在圖1的半導體反應裝置1中,基板W設置於真空腔體11的承載台12上,反應前驅物可利用進氣通道13並通過氣體分配器14進入真空腔體11內,而加熱器15設置在承載台12,以加熱基板W及真空腔體11的反應空間。在基板W上形成薄膜的製程中,加熱器15可加熱而使基板W與反應空間的溫度上升至反應所需溫度,當一或多種反應物由進氣通道13進入真空腔體11內的反應空間時,可與基板W進行化學反應或/及化學分解來產生待沉積的薄膜。
Please refer to FIG. 1 , which is a schematic diagram of a conventional semiconductor reaction device. In the
然而,在習知的半導體反應裝置1中,由於反應物通過氣體分配器14後的氣流方向為由上往下,而基板W在承載台12上的延伸方向為由左至右,故氣流的流動方向與基板W的表面幾乎垂直,而且加熱器15直接加熱基板W及真空腔
體11的反應空間也容易造成反應物的氣流流動方向的不穩定,進而使基板上形成的薄膜的均勻性不佳。
However, in the conventional
本發明的目的為提供一種半導體反應裝置與反應方法,相較於習知的製程來說,本發明可使基板上形成的薄膜的均勻性較好。 The object of the present invention is to provide a semiconductor reaction device and a reaction method. Compared with the conventional manufacturing process, the present invention can make the uniformity of the thin film formed on the substrate better.
為達上述目的,本發明提出一種半導體反應裝置,包括一真空腔體、一載台單元、一加熱單元、一氣體分配單元以及一進氣通道。真空腔體的內部具有一反應空間;載台單元設置於反應空間並承載一基板,其中基板沿一第一方向延伸而設置於載台單元的表面上;加熱單元設置於真空腔體的外圍;氣體分配單元設置真空腔體內;進氣通道透過氣體分配單元與真空腔體的反應空間連通;其中,一反應物經由進氣通道並通過氣體分配單元後,形成沿一第二方向進入反應空間的氣流,第一方向與第二方向彼此不垂直。 To achieve the above purpose, the present invention provides a semiconductor reaction device, which includes a vacuum chamber, a stage unit, a heating unit, a gas distribution unit and an air inlet channel. The interior of the vacuum chamber has a reaction space; the stage unit is arranged in the reaction space and carries a substrate, wherein the substrate extends along a first direction and is arranged on the surface of the stage unit; the heating unit is arranged on the periphery of the vacuum chamber; the gas distribution unit is arranged in the vacuum chamber; the air inlet channel communicates with the reaction space of the vacuum chamber through the gas distribution unit; wherein, a reactant passes through the air inlet channel and passes through the gas distribution unit to form an airflow entering the reaction space along a second direction, and the first direction and the second direction are not perpendicular to each other.
為達上述目的,本發明提出一種半導體反應裝置的反應方法,包括:透過一載台單元承載一基板,其中載台單元設置於一真空腔體內部的一反應空間,且基板沿一第一方向延伸而設置於載台單元的表面上;透過一加熱單元加熱真空腔體,其中加熱單元設置於真空腔體的外圍;以及使一反應物經由一進氣通道並通過一氣體分配單元後,形成沿一第二方向進入反應空間的氣流,其中第一方向與第二方向彼此不垂直,氣體分配單元設置真空腔體內,且進氣通道透過氣體分配單元與真空腔體的反應空間連通。 To achieve the above object, the present invention proposes a reaction method for a semiconductor reaction device, comprising: carrying a substrate through a stage unit, wherein the stage unit is arranged in a reaction space inside a vacuum chamber, and the substrate extends along a first direction and is arranged on the surface of the stage unit; heating the vacuum chamber through a heating unit, wherein the heating unit is arranged on the periphery of the vacuum chamber; It is arranged in the vacuum cavity, and the air inlet channel communicates with the reaction space of the vacuum cavity through the gas distribution unit.
在一實施例中,基板延伸的第一方向與氣流流動的第二方向間具有一夾角,該夾角大於0度、小於等於45度。 In one embodiment, there is an included angle between the first direction in which the substrate extends and the second direction in which the airflow flows, and the included angle is greater than 0 degrees and less than or equal to 45 degrees.
在一實施例中,該夾角大於等於15度、小於等於30度。 In one embodiment, the included angle is greater than or equal to 15 degrees and less than or equal to 30 degrees.
在一實施例中,係透過載台單元改變該夾角。 In one embodiment, the included angle is changed through the stage unit.
在一實施例中,係透過載台單元的轉動帶動基板旋轉。 In one embodiment, the rotation of the stage unit drives the substrate to rotate.
在一實施例中,加熱單元包括多個加熱器,該些加熱器設置於真空腔體遠離反應空間的多個側邊。 In one embodiment, the heating unit includes a plurality of heaters, and the heaters are disposed on a plurality of sides of the vacuum chamber away from the reaction space.
在一實施例中,該些加熱器使反應空間沿第二方向形成多個不同溫度的區域。 In one embodiment, the heaters make the reaction space form a plurality of regions with different temperatures along the second direction.
在一實施例中,該些加熱器使反應空間遠離氣體分配單元之區域的溫度高於鄰近氣體分配單元之區域的溫度。 In one embodiment, the heaters make the temperature of the region of the reaction space away from the gas distribution unit higher than the temperature of the region adjacent to the gas distribution unit.
在一實施例中,半導體反應裝置更包括一排氣通道,其與反應空間連通,其中,係透過排氣通道將反應空間的氣體排出。 In one embodiment, the semiconductor reaction device further includes an exhaust channel, which communicates with the reaction space, wherein the gas in the reaction space is exhausted through the exhaust channel.
在一實施例中,該反應方法更包括:透過載台單元改變該夾角。 In one embodiment, the reaction method further includes: changing the included angle through the stage unit.
在一實施例中,該反應方法更包括:使載台單元轉動以帶動基板旋轉。 In one embodiment, the reaction method further includes: rotating the stage unit to drive the substrate to rotate.
在一實施例中,該反應方法更包括:透過加熱單元的多個加熱器使反應空間沿第二方向形成多個不同溫度的區域,其中該些加熱器設置於真空腔體遠離反應空間的多個側邊。 In one embodiment, the reaction method further includes: forming a plurality of regions of different temperatures in the reaction space along the second direction through a plurality of heaters of the heating unit, wherein the heaters are disposed on a plurality of sides of the vacuum chamber away from the reaction space.
在一實施例中,該反應方法更包括:透過該些加熱器使反應空間遠離氣體分配單元之區域的溫度高於鄰近氣體分配單元之區域的溫度。 In one embodiment, the reaction method further includes: making the temperature of the area of the reaction space away from the gas distribution unit higher than the temperature of the area adjacent to the gas distribution unit through the heaters.
在一實施例中,該反應方法更包括:透過一排氣通道將反應空間的氣體排出,其中排氣通道與反應空間連通。 In one embodiment, the reaction method further includes: exhausting the gas in the reaction space through an exhaust channel, wherein the exhaust channel communicates with the reaction space.
承上所述,在本發明的半導體反應裝置與反應方法中,透過加熱單元設置於真空腔體的外圍,且載台單元上之基板的延伸方向(第一方向)與反應物進入反應空間之氣流流動方向(第二方向)彼此不垂直的結構設計,可使反應物的氣流方向不受干擾,藉此可改善習知技術中,基板上形成的薄膜均勻性不佳的問題。 Based on the above, in the semiconductor reaction device and reaction method of the present invention, the heating unit is arranged on the periphery of the vacuum chamber, and the extension direction of the substrate on the stage unit (the first direction) is not perpendicular to the gas flow direction (the second direction) of the reactants entering the reaction space. The structural design can prevent the gas flow direction of the reactants from being disturbed, thereby improving the problem of poor uniformity of the thin film formed on the substrate in the prior art.
1,2:半導體反應裝置 1,2: Semiconductor reaction device
11,21:真空腔體 11,21: Vacuum cavity
12:承載台 12: Carrying platform
13,25:進氣通道 13,25: Intake channel
14:氣體分配器 14: Gas distributor
15,231,232,233,234:加熱器 15, 231, 232, 233, 234: heater
211:底面 211: Bottom
22:載台單元 22: Stage unit
221:承載台 221: carrying platform
2211:表面 2211: surface
222:支撐件 222: support
23:加熱單元 23: Heating unit
24:氣體分配單元 24: Gas distribution unit
26:排氣通道 26: exhaust channel
A1,A2,A3:區域 A1,A2,A3: area
D1:第一方向 D1: the first direction
D2:第二方向 D2: Second direction
S:反應空間 S: reaction space
S01,S02,S03:步驟 S01, S02, S03: steps
W:基板 W: Substrate
圖1為習知一種半導體反應裝置的示意圖。 FIG. 1 is a schematic diagram of a conventional semiconductor reaction device.
圖2為本發明一實施例之一種半導體反應裝置的示意圖。 FIG. 2 is a schematic diagram of a semiconductor reaction device according to an embodiment of the present invention.
圖3為圖2的半導體反應裝置中,基板的延伸方向與進入反應空間之反應物的氣流流動方向的關係示意圖。 3 is a schematic diagram of the relationship between the extending direction of the substrate and the flow direction of the reactants entering the reaction space in the semiconductor reaction device of FIG. 2 .
圖4為圖2的半導體反應裝置的另一示意圖。 FIG. 4 is another schematic diagram of the semiconductor reaction device in FIG. 2 .
圖5為本發明一實施例之半導體反應裝置的反應方法的流程步驟示意圖。 FIG. 5 is a schematic diagram of the process steps of the reaction method of the semiconductor reaction device according to an embodiment of the present invention.
以下將參照相關圖式,說明依本發明較佳實施例之半導體反應裝置與反應方法,其中相同的元件將以相同的參照符號加以說明。 The semiconductor reaction device and reaction method according to the preferred embodiments of the present invention will be described below with reference to the relevant drawings, wherein the same elements will be described with the same reference symbols.
圖2為本發明一實施例之一種半導體反應裝置的示意圖,圖3為圖2的半導體反應裝置中,基板的延伸方向與進入反應空間之反應物的氣流流動方向的關係示意圖,而圖4為圖2的半導體反應裝置的另一示意圖。 2 is a schematic diagram of a semiconductor reaction device according to an embodiment of the present invention. FIG. 3 is a schematic diagram of the relationship between the extending direction of the substrate and the flow direction of the reactant entering the reaction space in the semiconductor reaction device of FIG. 2 , and FIG. 4 is another schematic diagram of the semiconductor reaction device of FIG. 2 .
請參照圖2與圖3所示,半導體反應裝置2可應用於進行化學氣相沉積(CVD)製程。半導體反應裝置2可包括一真空腔體21、一載台單元22、一加熱單元23、一氣體分配單元24以及一進氣通道25。另外,本實施例之半導體反應裝置2更可包括一排氣通道26。
Please refer to FIG. 2 and FIG. 3 , the
真空腔體21的內部具有一反應空間S。於此,反應空間S就是反應物(例如反應前驅物,Precursor)進入真空腔體21後,與基板W進行化學反應或/及化學分解來產生待沉積薄膜的處理空間。在一些實施例中,真空腔體21可由石英或金屬材料製成。在一些實施例中,真空腔體21可具有一基板出入通道(圖未繪示),基板W可由基板出入通道進/出真空腔體21。於此,可利用轉移機構將基板W由基板出入通道轉移至真空腔體21且置放在載台單元22上,或是由基板出入通道將基板W從載台單元22上轉移至真空腔體21之外。在一些實施例中,基板W可例如為一晶圓(Wafer),並為可透光或不可透光材料製成,例如藍寶石(Sapphire)基材、砷化鎵(GaAs)基材、或碳化矽(SiC)基材,並不限制。在一些實施例中,基板W上可具有膜層。
There is a reaction space S inside the
載台單元22設置於真空腔體21內並可承載基板W。於此,基板W沿一第一方向D1延伸而設置於載台單元22的表面2211上。在本實施例中,載台單元22具有一承載台221及與承載台221連接的一支撐件222。其中,承載台221的表面2211用以承載基板W,而支撐件222可由真空腔體21的底部伸入反應空間S內,且其一端連接承載台221。在本實施例中,相對於支撐件222或真空腔體21的底面
211來說,由於承載台221為傾斜設置,且其表面2211沿第一方向D1延伸,使得基板W也沿第一方向D1延伸而設置於載台單元22上。
The
加熱單元23設置於真空腔體21的外圍。其中,加熱單元23可加熱真空腔體21,使基板W與真空腔體21的反應空間S的溫度可以達到化學反應或/及化學分解的製程所需溫度。與習知設置於真空腔體21內的加熱器來說(如圖1),本實施例的加熱單元23設置於真空腔體21的外圍,因此可避免進入反應空間S的反應前驅物或其他氣體汙染加熱單元23。如圖2所示,本實施例的加熱單元23包括兩個加熱器231、232,加熱器231、232設置於真空腔體21遠離反應空間S的側邊。於此,加熱器231設置於真空腔體21的上側邊,而加熱器232設置於真空腔體21的下側邊。另外,如圖4所示,本實施例的加熱單元23更可包括一第三加熱器233及一第四加熱器234,第三加熱器233與第四加熱器234對應設置於真空腔體21遠離反應空間S的左、右兩側邊,藉此加熱真空腔體21的四個側邊,使基板W和反應空間S的升溫效率較快。
The
本實施例的半導體反應裝置2還可透過加熱單元23(加熱器231、232、233、234)使真空腔體21內的反應空間S沿第二方向D2形成多個不同溫度的區域(圖2)。在一些實施例中,加熱器231、232、233、234可分區段進行加熱溫度的控制,使反應空間S沿第一方向D1延伸的三個區域A1、A2、A3的反應溫度彼此不同。在一些實施例中,三個區域A1、A2、A3的溫度控制範圍例如可分別如下:區域A1為25~1000℃,區域A2為25~1000℃,區域A3為25~1000℃。在一些實施例中,加熱器231、232、233、234使反應空間S遠離氣體分配單元24之區域的溫度高於鄰近氣體分配單元24之區域的溫度(即區域A1溫度<區域A2溫度<區域A3溫度)。藉由加熱單元23對真空腔體21分區溫度控制的設計,可使基板W上形成的薄膜均勻性更好。
The
在一些實施例中,當加熱器231、232、233、234加熱時,可利用例如反射件將射往真空腔體21外側的熱能反射回真空腔體21,反射件例如但不限於為反射鏡、反射片或反射膜層,其可將射往真空腔體21外側的熱能再反射回真空腔體21,藉此提高加熱器231、232、233、234的加熱效率。在一些實施例中,為
了提高基板W及反應空間S的升溫速率,真空腔體21的材料也可使用輻射可穿透材料,讓熱輻射可通過以提高基板W及反應空間S輻射加熱的升溫速率。
In some embodiments, when the
氣體分配單元24設置真空腔體21內,且進氣通道25係透過氣體分配單元24與真空腔體21的反應空間S連通。具體來說,本實施例的進氣通道25位於真空腔體21的側壁(例如左側壁),使得反應物(如反應前驅物)可由進氣通道25進入反應空間S;並且,為了使進入的反應物可均勻分配在反應空間S,本實施例利用氣體分配單元24來進行反應物的分配,使進入真空腔體21的反應物可以均勻分配在反應空間S,進而使成膜過程可以更均勻。其中,當反應物經由進氣通道25並通過氣體分配單元24後,可形成沿一第二方向D2進入反應空間S的氣流,在此,第一方向D1與第二方向D2彼此不垂直。具體來說,如圖2所示,由於基板W(和承載台221)為傾斜設置,使基板W沿第一方向D1延伸,且通過氣體分配單元24進入反應空間S的反應物氣流方向大致為第二方向D2,因此,基板W延伸的第一方向D1與氣流流動的第二方向D2間具有一夾角θ(圖3),夾角θ係大於0度且小於90度。在一些實施例中,夾角θ可大於0度、但小於等於45度;較佳的夾角θ可大於等於15度、但小於等於30度。
The
在一些實施例中,可透過載台單元22改變前述的夾角θ,例如以自動或手動方式使承載台221之表面2211的傾斜角度變大(或變小),進而使基板W延伸的第一方向D1與氣流流動的第二方向D2間的夾角θ變大(或變小)。在一些實施例中,可利用例如馬達(和變速箱)帶動載台單元22的支撐件222轉動,以透過載台單元22的轉動帶動基板W旋轉,藉此使基板W上形成的薄膜特性(例如均勻度)更好。在一些實施例中,當載台單元22的帶動基板W在反應空間S旋轉時,前述的夾角θ可以改變或不改變,並不限制。此外,本實施例的載台單元22的承載台221之表面2211與第二方向D2間的夾度與前述的夾角θ相同,然並不以此為限,在一些實施例中,承載台221之表面2211與第二方向D2間的夾角也可與前述的夾角θ不同。
In some embodiments, the aforementioned angle θ can be changed through the
排氣通道26位於真空腔體21的一側壁,並與反應空間S連通。本實施例的進氣通道25與排氣通道26分別位於真空腔體21的相反側。在一些實施例中,可利用一排氣單元(圖未繪示,例如真空泵浦)並透過排氣通道26將反應空間S
的氣體排出。在一些製程中,加熱單元23可加熱真空腔體21而使基板W與反應空間S的溫度上升至反應所需溫度,而反應物可由進氣通道25通過氣體分配單元24進入反應空間S,使反應物可與基板W進行化學反應或/及化學分解,之後再透過排氣單元及排氣通道26將反應空間S多餘的反應物及/或副產物排出。在一些實施例中,在反應物進入反應空間S且進行化學反應或/及化學分解之後,反應空間S內可能還有多餘的反應物及/或副產物,可利用不反應物(例如惰性氣體,如氮氣或氬氣)由進氣通道25進入反應空間S,並藉由排氣通道26與排氣單元排出,除了可吹掃多餘的反應物及副產物外,更可控制進入之不反應物的流量來控制基板W及反應空間S的溫度,以提高基板W及反應空間S的降溫速率(例如流量大,降溫速率較快)。
The
承上,在本實施例的半導體反應裝置2中,透過加熱單元23設置於真空腔體21的外圍,且載台單元22上之基板W的延伸方向(第一方向D1)與反應物進入反應空間S之氣流流動方向(第二方向D2)彼此不垂直的結構設計,可使反應物的氣流方向不受干擾,藉此可改善習知技術中,基板W上形成的薄膜均勻性不佳的問題。
As mentioned above, in the
在薄膜沉積製程的一實施例中,基板W上沉積的薄膜例如可為氮化鎵(GaN)層,反應物例如可為含鎵化合物(例如三乙基鎵,Triethylgallium,(C2H5)3Ga))和氨氣(NH3);在薄膜蝕刻製程的一實施例中,例如以氯氣蝕刻基板W上的鍺膜層為例,反應物可例如為氯氣(Cl2);在薄膜蝕刻製程的另一實施例中,例如以氧化物(例如O2、H2O、或H2O2)蝕刻基板W上的鍺膜層為例,反應物可為氧化物。 In one embodiment of the thin film deposition process, the thin film deposited on the substrate W may be, for example, a gallium nitride (GaN) layer, and the reactant may be, for example, a gallium-containing compound (such as triethylgallium, Triethylgallium, (C 2 H 5 ) 3 Ga)) and ammonia (NH 3 ); In an embodiment, for example, taking an oxide (such as O 2 , H 2 O, or H 2 O 2 ) to etch the germanium film layer on the substrate W as an example, the reactant may be an oxide.
請參照圖5所示,其為本發明一實施例之半導體反應裝置的反應方法的流程步驟示意圖。 Please refer to FIG. 5 , which is a schematic flow chart of the reaction method of the semiconductor reaction device according to an embodiment of the present invention.
本發明還提出一種半導體反應裝置的反應方法,其與前述之半導體反應裝置2配合應用,半導體反應裝置2的具體技術內容已於上述中詳述,不再贅述。本發明的反應方法至少可包括以下步驟:透過載台單元承載基板,其中載台單元設置於真空腔體內部的反應空間,且基板沿第一方向延伸而設置於載台單元的表面上(步驟S01);透過加熱單元加熱真空腔體,其中加熱單元設置於真
空腔體的外圍(步驟S02);以及,使反應物經由進氣通道並通過氣體分配單元後,形成沿第二方向進入反應空間的氣流,其中第一方向與第二方向彼此不垂直,氣體分配單元設置真空腔體內,且進氣通道透過氣體分配單元與真空腔體的反應空間連通(步驟S03)。
The present invention also proposes a reaction method of a semiconductor reaction device, which is used in conjunction with the aforementioned
請參照圖2至圖4並配合圖5所示,以說明上述步驟。首先,如圖2所示,步驟S01為:透過載台單元22承載基板W,其中載台單元22設置於真空腔體21內部的反應空間S,且基板W沿第一方向D1延伸而設置於載台單元22的表面2211上。接著,進行步驟S02:透過加熱單元23加熱真空腔體21,其中加熱單元23設置於真空腔體21的外圍。之後,進行步驟S03:使反應物經由進氣通道25並通過氣體分配單元24後,形成沿第二方向D2進入反應空間S的氣流,其中第一方向D1與第二方向D2彼此不垂直,氣體分配單元24設置真空腔體21內,且進氣通道25透過氣體分配單元24與真空腔體21的反應空間S連通。上述的步驟S02、S03的順序可以相反。
Please refer to FIG. 2 to FIG. 4 together with FIG. 5 to illustrate the above steps. First, as shown in FIG. 2 , step S01 is: carrying the substrate W through the
在一些實施例中,如圖3所示,基板W延伸的第一方向D1與氣流流動的第二方向D2間具有夾角θ,夾角θ可大於0度、但小於等於45度;較佳的夾角θ可大於等於15度、但小於等於30度;如圖2所示,在一些實施例中,該反應方法更可包括:透過載台單元22改變夾角θ;在一些實施例中,該反應方法更可包括:使載台單元22轉動以帶動基板W旋轉;在一些實施例中,如圖2和圖4所示,該反應方法更可包括:透過加熱單元23的多個(四個)加熱器231、232、233、234使反應空間S沿第二方向D2形成多個(三個)不同溫度的區域(A1、A2、A3),其中該些加熱器231、232、233、234設置於真空腔體21遠離反應空間S的多個(四個)側邊;在一些實施例中,該反應方法更可包括:透過該些加熱器231、232、233、234使反應空間S遠離氣體分配單元24之區域的溫度高於鄰近氣體分配單元24之區域的溫度;在一些實施例中,該反應方法更可包括:透過排氣通道26將反應空間S的氣體排出,其中,排氣通道26與反應空間S連通。
In some embodiments, as shown in FIG. 3 , there is an included angle θ between the first direction D1 where the substrate W extends and the second direction D2 where the airflow flows. The included angle θ may be greater than 0 degrees but less than or equal to 45 degrees; a preferred included angle θ may be greater than or equal to 15 degrees but less than or equal to 30 degrees; as shown in FIG. 2 , in some embodiments, the reaction method may further include: changing the included angle θ through the
此外,半導體反應裝置的反應方法的其他技術內容已於上述中詳述,在此不再多作說明。 In addition, other technical contents of the reaction method of the semiconductor reaction device have been described in detail above, and will not be further described here.
綜上所述,在本發明的半導體反應裝置與反應方法中,透過加熱單元設置於真空腔體的外圍,且載台單元上之基板的延伸方向(第一方向)與反應物進入反應空間之氣流流動方向(第二方向)彼此不垂直的結構設計,可使反應物的氣流方向不受干擾,藉此可改善習知技術中,基板上形成的薄膜均勻性不佳的問題。 To sum up, in the semiconductor reaction device and reaction method of the present invention, the heating unit is arranged on the periphery of the vacuum chamber, and the extension direction of the substrate on the stage unit (the first direction) is not perpendicular to the gas flow direction (the second direction) of the reactant entering the reaction space. The structural design can prevent the gas flow direction of the reactant from being disturbed, thereby improving the problem of poor uniformity of the thin film formed on the substrate in the prior art.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above descriptions are illustrative only, not restrictive. Any equivalent modification or change made without departing from the spirit and scope of the present invention shall be included in the scope of the appended patent application.
2:半導體反應裝置 2: Semiconductor reaction device
21:真空腔體 21: Vacuum cavity
211:底面 211: Bottom
22:載台單元 22: Stage unit
221:承載台 221: carrying platform
2211:表面 2211: surface
222:支撐件 222: support
23:加熱單元 23: Heating unit
231,232:加熱器 231,232: Heater
24:氣體分配單元 24: Gas distribution unit
25:進氣通道 25: Intake channel
26:排氣通道 26: exhaust channel
A1,A2,A3:區域 A1,A2,A3: area
D1:第一方向 D1: the first direction
D2:第二方向 D2: Second direction
S:反應空間 S: reaction space
W:基板 W: Substrate
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103520A TWI807253B (en) | 2021-01-29 | 2021-01-29 | Semiconductor reaction device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103520A TWI807253B (en) | 2021-01-29 | 2021-01-29 | Semiconductor reaction device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202230467A TW202230467A (en) | 2022-08-01 |
TWI807253B true TWI807253B (en) | 2023-07-01 |
Family
ID=83782577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110103520A TWI807253B (en) | 2021-01-29 | 2021-01-29 | Semiconductor reaction device and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI807253B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060186354A1 (en) * | 2005-02-18 | 2006-08-24 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for thermal processing |
TW201740489A (en) * | 2016-04-22 | 2017-11-16 | 應用材料股份有限公司 | Dynamic wafer leveling/tilting/swiveling during a chemical vapor deposition process |
TW201945576A (en) * | 2018-04-06 | 2019-12-01 | 美商應用材料股份有限公司 | Zone-controlled rare-earth oxide ALD and CVD coatings |
-
2021
- 2021-01-29 TW TW110103520A patent/TWI807253B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060186354A1 (en) * | 2005-02-18 | 2006-08-24 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for thermal processing |
TW201740489A (en) * | 2016-04-22 | 2017-11-16 | 應用材料股份有限公司 | Dynamic wafer leveling/tilting/swiveling during a chemical vapor deposition process |
TW201945576A (en) * | 2018-04-06 | 2019-12-01 | 美商應用材料股份有限公司 | Zone-controlled rare-earth oxide ALD and CVD coatings |
Also Published As
Publication number | Publication date |
---|---|
TW202230467A (en) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI699853B (en) | Substrate supporting device, substrate processing apparatus and substrate processing method for film deposition | |
JP6116900B2 (en) | Reaction chamber of epitaxial reactor and reactor using said reaction chamber | |
US20080220150A1 (en) | Microbatch deposition chamber with radiant heating | |
TWI785094B (en) | Integrated epitaxy and preclean system | |
US10546761B2 (en) | Substrate processing apparatus | |
JP3207832B2 (en) | CVD reactor and method for producing epitaxially grown semiconductor wafers | |
KR100975717B1 (en) | Vapor phase growing apparatus and vapor phase growing method | |
US20200283898A1 (en) | High selectivity atomic layer deposition process | |
JP6060172B2 (en) | Substrate processing apparatus including a plurality of exhaust ports and method thereof | |
US20080219824A1 (en) | Multiple substrate transfer robot | |
US7060944B2 (en) | Heat treatment device and heat treatment method | |
WO2023071886A1 (en) | Preheating ring and substrate processing device | |
JP6262769B2 (en) | Substrate processing equipment | |
JP3796030B2 (en) | Thin film production equipment | |
TWI807253B (en) | Semiconductor reaction device and method | |
TWI685059B (en) | Semiconductor reaction device and method | |
CN114807902B (en) | Semiconductor reaction device and reaction method | |
TWI838823B (en) | Cleaning method for atmospheric pressure epitaxial reaction chamber and epitaxial silicon wafer | |
JP7234703B2 (en) | Method for manufacturing polycrystalline silicon carbide substrate and apparatus for manufacturing polycrystalline silicon carbide substrate | |
JP2004503108A (en) | Heat treatment of semiconductor substrate | |
WO2012011397A1 (en) | Substrate heating furnace | |
US12125698B2 (en) | Integrated epitaxy and preclean system | |
KR20230002087A (en) | Apparatus and methods for cooling reaction chambers in semiconductor processing systems | |
JP2999751B2 (en) | Apparatus and method for producing silica film | |
TW202437354A (en) | Integrated epitaxy and preclean system |