TWI805336B - Semiconductor structure and the method for forming the same - Google Patents

Semiconductor structure and the method for forming the same Download PDF

Info

Publication number
TWI805336B
TWI805336B TW111115616A TW111115616A TWI805336B TW I805336 B TWI805336 B TW I805336B TW 111115616 A TW111115616 A TW 111115616A TW 111115616 A TW111115616 A TW 111115616A TW I805336 B TWI805336 B TW I805336B
Authority
TW
Taiwan
Prior art keywords
substrate
bit line
semiconductor
forming
line structure
Prior art date
Application number
TW111115616A
Other languages
Chinese (zh)
Other versions
TW202343686A (en
Inventor
游捷鈞
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111115616A priority Critical patent/TWI805336B/en
Application granted granted Critical
Publication of TWI805336B publication Critical patent/TWI805336B/en
Publication of TW202343686A publication Critical patent/TW202343686A/en

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present disclosure provides a method for forming a semiconductor structure, including: providing a substrate; forming contact openings on the substrate, and sidewalls of the contact openings are disposed with a dielectric liner; and forming a bit line structure on the substrate, and the bit line structure spans the contact openings in a first direction, wherein the dielectric liner surrounds the bit line structure in the contact openings and extends into the bit line structure above a top surface of the substrate.

Description

半導體結構及其形成方法Semiconductor structures and methods of forming them

本發明是關於半導體結構及其形成方法,特別是關於具有介電襯層的半導體結構及其形成方法。The present invention relates to semiconductor structures and methods of forming the same, and more particularly to semiconductor structures with dielectric liners and methods of forming the same.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)廣泛地應用於消費性電子產品中。為了增加動態隨機存取記憶體內的元件密度以及改善其整體表現,目前其製造技術朝向元件尺寸的微縮化而努力。Dynamic Random Access Memory (DRAM) is widely used in consumer electronic products. In order to increase the device density in the DRAM and improve its overall performance, its manufacturing technology is currently striving towards the miniaturization of the device size.

然而,當元件尺寸縮小,許多挑戰隨之而生。舉例而言,在形成記憶體裝置的主動區時,由於主動區的材料在不同成分的表面上的沉積速率不同,沉積速率較快的部分將提早封口,並在所形成的主動區中產生接縫(seam)。上述接縫可能會在後續的熱製程中因再結晶而圓化並形成具有圓形剖面的空隙,導致後續形成的位元線結構電阻上升。However, as component sizes shrink, many challenges arise. For example, when forming the active area of a memory device, due to the different deposition rates of materials in the active area on surfaces with different components, the part with a faster deposition rate will be sealed earlier, and contact will occur in the formed active area. seam. The above seams may be rounded due to recrystallization in subsequent thermal processes and form voids with circular cross-sections, resulting in increased resistance of the subsequently formed bit line structure.

一種半導體結構的形成方法,包括:提供基板;在基板上形成多個接觸開口,且接觸開口的側壁上設置有介電襯層;以及在基板上形成位元線結構,且位元線結構在第一方向上橫跨接觸開口,其中介電襯層在接觸開口內圍繞位元線結構且在基板的頂表面上方延伸到位元線結構中。A method for forming a semiconductor structure, comprising: providing a substrate; forming a plurality of contact openings on the substrate, and a dielectric liner is provided on the sidewalls of the contact openings; and forming a bit line structure on the substrate, and the bit line structure is The first direction spans across the contact opening, wherein the dielectric liner surrounds the bit line structure within the contact opening and extends into the bit line structure over the top surface of the substrate.

一種半導體結構,包括:基板,具有多個接觸開口;介電襯層,設置於接觸開口的多個側壁上;以及位元線結構,設置於基板上且在第一方向上橫跨接觸開口,其中介電襯層在接觸開口內圍繞位元線結構且在基板的頂表面上方延伸到位元線結構中。A semiconductor structure comprising: a substrate having a plurality of contact openings; a dielectric liner disposed on a plurality of sidewalls of the contact openings; and a bit line structure disposed on the substrate and spanning the contact openings in a first direction, Wherein the dielectric liner surrounds the bit line structure within the contact opening and extends into the bit line structure above the top surface of the substrate.

第1A圖顯示半導體結構10的製造過程的中間階段的剖面圖。在一些實施例中,半導體結構10是動態隨機存取記憶體(DRAM)陣列的一部分。然而,應理解的是,技術領域中具有通常知識者也可以將本揭露的結構及其形成方法應用於其他類型的記憶體裝置。FIG. 1A shows a cross-sectional view of an intermediate stage in the fabrication process of semiconductor structure 10 . In some embodiments, semiconductor structure 10 is part of a dynamic random access memory (DRAM) array. However, it should be understood that those skilled in the art can also apply the disclosed structure and forming method to other types of memory devices.

首先,提供基板100。基板100可以是元素半導體基板,例如矽基板、或鍺基板;或化合物半導體基板,例如碳化矽基板、或砷化鎵基板。在一些實施例中,基板100可以是絕緣體上覆半導體(semiconductor-on-insulator,SOI)基板。First, a substrate 100 is provided. The substrate 100 may be an elemental semiconductor substrate, such as a silicon substrate or a germanium substrate; or a compound semiconductor substrate, such as a silicon carbide substrate or a gallium arsenide substrate. In some embodiments, the substrate 100 may be a semiconductor-on-insulator (SOI) substrate.

在一些實施例中,藉由在導電的基板100上形成隔離部件,可以形成包括導電部102及隔離部104的基板100。導電部102可以用於與後續形成的位元線結構(例如第10A圖中的位元線結構190)電性連接,且隔離部104可以與導電部102交替排列。儘管在第1A圖中是將導電部102繪示為並未在基板100的最頂表面露出,在其他範例中,導電部102也可以在基板100的最頂表面露出。In some embodiments, the substrate 100 including the conductive portion 102 and the isolation portion 104 can be formed by forming an isolation component on the conductive substrate 100 . The conductive parts 102 can be used to electrically connect with the subsequently formed bit line structure (eg, the bit line structure 190 in FIG. 10A ), and the isolation parts 104 can be arranged alternately with the conductive parts 102 . Although the conductive portion 102 is shown not exposed on the topmost surface of the substrate 100 in FIG. 1A , in other examples, the conductive portion 102 may also be exposed on the topmost surface of the substrate 100 .

在一些實施例中,導電部102包括導電材料,例如矽、鍺、碳化矽、砷化鎵、其他適合的材料、或前述之組合。在一些實施例中,隔離部104包括氮化物或氧化物,例如氧化矽、氮化矽、氮氧化矽、其他適合的材料、或前述之組合。在一些實施例中,隔離部104為基板100的淺溝槽隔離(shallow trench isolation,STI)結構。隔離部104的形成可以透過沉積製程(例如化學氣相沉積(chemical vapor deposition,CVD))、圖案化製程(例如微影製程及蝕刻製程)、平坦化製程(例如化學機械研磨(chemical mechanical polish,CMP)、或任何適合的製程。In some embodiments, the conductive portion 102 includes a conductive material, such as silicon, germanium, silicon carbide, gallium arsenide, other suitable materials, or combinations thereof. In some embodiments, the isolation portion 104 includes nitride or oxide, such as silicon oxide, silicon nitride, silicon oxynitride, other suitable materials, or a combination thereof. In some embodiments, the isolation portion 104 is a shallow trench isolation (shallow trench isolation, STI) structure of the substrate 100 . The isolation portion 104 can be formed through a deposition process (such as chemical vapor deposition (chemical vapor deposition, CVD)), a patterning process (such as a lithography process and an etching process), a planarization process (such as a chemical mechanical polish, CMP), or any suitable process.

接著,可以在基板100上形成蓋層110以保護基板100內的元件不受後續製程影響而損害。在一些實施例中,蓋層110包括氮化物層112及氧化物層114。氮化物層112例如包括氮化矽或氮氧化矽。氧化物層114例如包括由四乙氧基矽烷(tetraethylorthosilicate,TEOS)形成的氧化矽層。形成氮化物層112及氧化物層114的方法可為物理氣相沉積(physical vapor deposition,PVD)製程、化學氣相沉積製程、原子層沉積(atomic layer deposition,ALD)製程、或任何適合的沉積製程。在一實施例中,氧化物層114的形成方法為臨場蒸氣產生技術(In-Situ Steam Generation,ISSG)。Next, a cover layer 110 may be formed on the substrate 100 to protect the components in the substrate 100 from being damaged by subsequent processes. In some embodiments, the cap layer 110 includes a nitride layer 112 and an oxide layer 114 . The nitride layer 112 includes, for example, silicon nitride or silicon oxynitride. The oxide layer 114 includes, for example, a silicon oxide layer formed of tetraethoxysilane (tetraethylorthosilicate, TEOS). The method for forming the nitride layer 112 and the oxide layer 114 may be a physical vapor deposition (physical vapor deposition, PVD) process, a chemical vapor deposition process, an atomic layer deposition (atomic layer deposition, ALD) process, or any suitable deposition. Process. In one embodiment, the oxide layer 114 is formed by In-Situ Steam Generation (ISSG).

接著,可以在基板100上方形成半導體材料120。在一些實施例中,半導體材料120與基板100分隔。舉例而言,蓋層110可以分隔半導體材料120與基板100。在一些實施例中,半導體材料120包括例如多晶矽。Next, a semiconductor material 120 may be formed over the substrate 100 . In some embodiments, the semiconductor material 120 is separated from the substrate 100 . For example, the capping layer 110 can separate the semiconductor material 120 from the substrate 100 . In some embodiments, the semiconductor material 120 includes, for example, polysilicon.

接著,依序在半導體材料120上形成氧化物層122及遮罩層124。在一些實施例中,氧化物層122是用作後續回蝕導電材料(例如導電材料150)時的阻擋層。氧化物層122可以包括例如四乙氧基矽烷(TEOS),且遮罩層124可以包括任何適合的遮罩材料,例如光阻。遮罩層124的形成可以包括先在氧化物層122上形成遮罩材料,接著對遮罩材料進行圖案化製程以形成圖案化的遮罩層124。在一些實施例中,遮罩層124的圖案是根據後續所欲形成的開口(例如第1A、1B圖所示的第一開口130)的截面形狀來選擇,且遮罩層124的圖案大致上對應後續形成的接觸開口的形狀(參見第10B圖的接觸開口180)。Next, an oxide layer 122 and a mask layer 124 are sequentially formed on the semiconductor material 120 . In some embodiments, oxide layer 122 is used as a barrier layer for subsequent etching back of conductive material (eg, conductive material 150 ). The oxide layer 122 may include, for example, tetraethoxysilane (TEOS), and the mask layer 124 may include any suitable mask material, such as photoresist. The formation of the mask layer 124 may include firstly forming a mask material on the oxide layer 122 , and then performing a patterning process on the mask material to form the patterned mask layer 124 . In some embodiments, the pattern of the mask layer 124 is selected according to the cross-sectional shape of the opening to be formed later (such as the first opening 130 shown in Figures 1A and 1B), and the pattern of the mask layer 124 is substantially Corresponds to the shape of the subsequently formed contact opening (see contact opening 180 in FIG. 10B ).

繼續參照第1A圖,可以進行蝕刻製程以在基板100上形成穿過半導體材料120的多個第一開口130,且第一開口130的形狀及位置可以對準遮罩層124的圖案。上述蝕刻製程可以包括例如乾蝕刻或濕蝕刻製程。第一開口130可以延伸到一部分的基板100中,且基板100中的導電部102可以在第一開口130中露出。Continuing to refer to FIG. 1A , an etching process can be performed to form a plurality of first openings 130 through the semiconductor material 120 on the substrate 100 , and the shape and position of the first openings 130 can be aligned with the pattern of the mask layer 124 . The above etching process may include, for example, dry etching or wet etching. The first opening 130 may extend into a part of the substrate 100 , and the conductive portion 102 in the substrate 100 may be exposed in the first opening 130 .

第1B圖繪示出對應第1A圖之半導體結構10的俯視圖,其中第1A圖對應第1B圖中的剖面AA’。如第1B圖所示,第一開口130的位置可以在半導體結構10中形成一個陣列,且各個第一開口130定義出半導體結構10的主動區的位置。應注意的是,雖然在第1B圖中將各個第一開口130繪示為具有圓形的截面,本揭露並未特別限定第一開口130的截面形狀。舉例而言,各個第一開口130也可以具有矩形、多邊形、橢圓形、不規則的形狀、或其他適合的截面形狀。FIG. 1B shows a top view of the semiconductor structure 10 corresponding to FIG. 1A, wherein FIG. 1A corresponds to section AA' in FIG. 1B. As shown in FIG. 1B , the positions of the first openings 130 can form an array in the semiconductor structure 10 , and each first opening 130 defines the position of the active region of the semiconductor structure 10 . It should be noted that although each of the first openings 130 is shown as having a circular cross-section in FIG. 1B , the present disclosure does not specifically limit the cross-sectional shape of the first openings 130 . For example, each first opening 130 may also have a rectangle, a polygon, an ellipse, an irregular shape, or other suitable cross-sectional shapes.

如第2圖所示,在形成第一開口130之後,可以移除遮罩層124以露出氧化物層122的頂表面。用於移除遮罩層124的方法可以包括例如蝕刻製程或灰化(ashing)製程。在一實施例中,灰化製程可以用於移除包括有機成分的遮罩層124。As shown in FIG. 2 , after the first opening 130 is formed, the mask layer 124 may be removed to expose the top surface of the oxide layer 122 . A method for removing the mask layer 124 may include, for example, an etching process or an ashing process. In one embodiment, an ashing process may be used to remove the mask layer 124 including organic components.

參照第3圖,接著可以在第一開口130內順應性地沉積介電材料140,且介電材料140可以沿著氧化物層122的頂表面、第一開口130的側壁、以及第一開口130的底部延伸。在一些實施例中,第一開口130的側壁包括蓋層110、半導體材料120、及氧化物層122的側壁。介電材料140可以包括,例如氮化矽的氮化物,或是其他不容易在後續製程中被蝕刻掉的材料。舉例而言,介電材料140可以是與氧化物層122具有蝕刻選擇比的材料,以在後續蝕刻氧化物層122的製程中不容易被移除。介電材料140的形成方法可以包括物理氣相沉積、化學氣相沉積、原子層沉積、或其他適合的方法、或前述之組合。Referring to FIG. 3, a dielectric material 140 can then be conformally deposited in the first opening 130, and the dielectric material 140 can be along the top surface of the oxide layer 122, the sidewalls of the first opening 130, and the first opening 130. bottom extension. In some embodiments, the sidewalls of the first opening 130 include sidewalls of the capping layer 110 , the semiconductor material 120 , and the oxide layer 122 . The dielectric material 140 may include, for example, silicon nitride, or other materials that are not easily etched away in subsequent processes. For example, the dielectric material 140 may be a material having an etch selectivity to the oxide layer 122 so as not to be easily removed during subsequent etching processes of the oxide layer 122 . The forming method of the dielectric material 140 may include physical vapor deposition, chemical vapor deposition, atomic layer deposition, or other suitable methods, or combinations thereof.

參照第4圖,在沉積介電材料140之後,可以進行非等向性蝕刻製程以移除位於第一開口130的底部的介電材料140。如此一來,可以在第一開口130的側壁(包括半導體材料120的側壁)上形成介電間隔層142以露出基板100。藉由在第一開口130中露出基板100,特別是基板100的導電部102,後續形成的位元線結構可以在半導體結構10的主動區與基板100電性連接。在一些實施例中,位於氧化物層122上的部分的介電材料140也被非等向性蝕刻製程移除。在一些實施例中,上述非等向性蝕刻製程包括乾蝕刻製程,例如反應性離子蝕刻(reactive ion etching,RIE)製程。Referring to FIG. 4 , after depositing the dielectric material 140 , an anisotropic etching process may be performed to remove the dielectric material 140 at the bottom of the first opening 130 . In this way, a dielectric spacer 142 may be formed on the sidewalls of the first opening 130 (including the sidewalls of the semiconductor material 120 ) to expose the substrate 100 . By exposing the substrate 100 , especially the conductive portion 102 of the substrate 100 through the first opening 130 , the subsequently formed bit line structure can be electrically connected to the substrate 100 in the active region of the semiconductor structure 10 . In some embodiments, portions of the dielectric material 140 on the oxide layer 122 are also removed by the anisotropic etching process. In some embodiments, the aforementioned anisotropic etching process includes a dry etching process, such as a reactive ion etching (RIE) process.

參照第5圖,在形成介電間隔層142之後,可以在基板100上且第一開口130中形成導電材料150,且半導體材料120與導電材料150之間被介電間隔層142分隔。藉由在第一開口130的側壁上形成介電間隔層142,導電材料150可以在第一開口130中具有均勻的沉積速率。相較於本揭露的實施例,如果直接將導電材料150填充於沒有介電間隔層142的第一開口130中,可能會形成其中具有接縫的導電材料。Referring to FIG. 5 , after forming the dielectric spacer layer 142 , a conductive material 150 may be formed on the substrate 100 and in the first opening 130 , and the semiconductor material 120 and the conductive material 150 are separated by the dielectric spacer layer 142 . By forming the dielectric spacer 142 on the sidewalls of the first opening 130 , the conductive material 150 can have a uniform deposition rate in the first opening 130 . Compared with the embodiments of the present disclosure, if the conductive material 150 is directly filled in the first opening 130 without the dielectric spacer 142 , a conductive material with a seam therein may be formed.

舉例而言,在導電材料150包括摻雜多晶矽且基板100及半導體材料120包括多晶矽的實施例中,導電材料150在基板100及半導體材料120的側壁上具有比在蓋層110或氧化物層122上更快的沉積速率,沉積速率較快的部分將提早封口並在導電材料150內部形成接縫。上述接縫可能會在後續的熱製程中因再結晶而圓化並形成具有圓形剖面的空隙,導致後續形成的位元線結構電阻上升。For example, in an embodiment in which the conductive material 150 includes doped polysilicon and the substrate 100 and the semiconductor material 120 include polysilicon, the conductive material 150 has a higher thickness on the sidewalls of the substrate 100 and the semiconductor material 120 than on the capping layer 110 or the oxide layer 122. With a faster deposition rate, the portion with a faster deposition rate will seal earlier and form a seam inside the conductive material 150 . The above seams may be rounded due to recrystallization in subsequent thermal processes and form voids with circular cross-sections, resulting in increased resistance of the subsequently formed bit line structure.

在一些實施例中,導電材料150包括摻雜多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。導電材料150的形成包括將導電材料150填充於第一開口130中,且形成方法可以包括例如物理氣相沉積製程、化學氣相沉積製程、原子層沉積製程、電子束蒸鍍、電鍍、或任何適合的沉積製程。在一些實施例中,過量的導電材料150形成於第一開口130及氧化物層122上方。In some embodiments, the conductive material 150 includes doped polysilicon, metal, metal nitride, other suitable conductive materials, or a combination thereof. The formation of the conductive material 150 includes filling the conductive material 150 in the first opening 130, and the forming method may include, for example, a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, electron beam evaporation, electroplating, or any suitable deposition process. In some embodiments, excess conductive material 150 is formed over first opening 130 and oxide layer 122 .

參照第6圖,在形成導電材料150之後,可以利用適當的平坦化製程及回蝕(etch back)製程以移除位於氧化物層122的頂表面上方的過量的導電材料150。在一些實施例中,氧化物層122的側壁之間的部分的導電材料150也被移除,且介電間隔層142維持在氧化物層122的側壁上。在一些實施例中,導電材料150被回蝕到與半導體材料120的頂表面實質上等高。Referring to FIG. 6 , after forming the conductive material 150 , an appropriate planarization process and an etch back process may be used to remove excess conductive material 150 above the top surface of the oxide layer 122 . In some embodiments, portions of conductive material 150 between the sidewalls of oxide layer 122 are also removed, and dielectric spacer layer 142 remains on the sidewalls of oxide layer 122 . In some embodiments, the conductive material 150 is etched back to substantially the same level as the top surface of the semiconductor material 120 .

參照第7圖,將氧化物層122移除並留下從導電材料150及半導體材料120的頂表面突出的部分的介電間隔層142。上述移除製程可以包括例如乾蝕刻或濕蝕刻製程。在一些實施例中,上述移除是利用濕蝕刻製程來進行,且所使用的蝕刻劑包括氫氟酸(HF)、硝酸(HNO 3)、硫酸(H 2SO 4)、磷酸(H 3PO 4)、鹽酸(HCl)、氨(NH 3)、其他適合的蝕刻劑、或前述之組合。在一個實施例中,可以使用包括稀氫氟酸(dilute HF,DHF)的蝕刻液對包括TEOS的氧化物層122進行蝕刻以移除氧化物層122。 Referring to FIG. 7 , the oxide layer 122 is removed leaving portions of the dielectric spacer layer 142 protruding from the top surfaces of the conductive material 150 and the semiconductor material 120 . The above removal process may include, for example, a dry etching or a wet etching process. In some embodiments, the removal is performed using a wet etching process, and the used etchant includes hydrofluoric acid (HF), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), ammonia (NH 3 ), other suitable etchant, or a combination of the foregoing. In one embodiment, the oxide layer 122 including TEOS may be etched using an etchant including dilute hydrofluoric acid (dilute HF, DHF) to remove the oxide layer 122 .

參照第8A圖,移除高於導電材料150及半導體材料120的頂表面的突出的部分的介電間隔層142。移除製程後的介電間隔層142的頂表面與導電材料150及半導體材料120的頂表面實質上共平面。上述移除製程可以包括例如乾蝕刻或濕蝕刻製程。在一些實施例中,上述移除是利用濕蝕刻製程來進行,所使用的蝕刻劑包括氫氟酸(HF)、硝酸(HNO 3)、硫酸(H 2SO 4)、磷酸(H 3PO 4)、鹽酸(HCl)、氨(NH 3)、其他適合的蝕刻劑、或前述之組合。在一個實施例中,可以使用包括磷酸的蝕刻液對包括氮化矽的介電間隔層142進行蝕刻以移除從導電材料150及半導體材料120的頂表面突出的部分的介電間隔層142。 Referring to FIG. 8A , the dielectric spacer layer 142 is removed above the protruding portion of the top surface of the conductive material 150 and the semiconductor material 120 . The top surface of the dielectric spacer layer 142 after the removal process is substantially coplanar with the top surfaces of the conductive material 150 and the semiconductor material 120 . The above removal process may include, for example, a dry etching or a wet etching process. In some embodiments, the above removal is performed using a wet etching process, and the used etchant includes hydrofluoric acid (HF), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), ammonia (NH 3 ), other suitable etchant, or a combination of the foregoing. In one embodiment, the dielectric spacer 142 comprising silicon nitride may be etched using an etchant comprising phosphoric acid to remove portions of the dielectric spacer 142 protruding from the top surfaces of the conductive material 150 and the semiconductor material 120 .

第8B圖繪示出對應第8A圖之半導體結構10的俯視圖,其中第8A圖對應第8B圖中的剖面AA’。如第8B圖所示,介電間隔層142及導電材料150的位置可以在半導體結構10的與z方向垂直的俯視圖中形成一個陣列,且介電間隔層142定義出半導體結構10的主動區的位置。FIG. 8B shows a top view of the semiconductor structure 10 corresponding to FIG. 8A, wherein FIG. 8A corresponds to section AA' in FIG. 8B. As shown in FIG. 8B, the positions of the dielectric spacer layer 142 and the conductive material 150 can form an array in the top view of the semiconductor structure 10 perpendicular to the z direction, and the dielectric spacer layer 142 defines the active region of the semiconductor structure 10. Location.

接著參照第9圖,在半導體材料120、介電間隔層142、及導電材料150上依序形成黏著層160、氮化矽層162、及硬遮罩層170。在一些實施例中,硬遮罩層170包括氧化矽層172、碳層174、氮氧化矽層176、及多晶矽層178。黏著層160可以用於降低後續形成的位元線結構的電阻,氮化矽層162可以用作半導體結構10的周邊電路區(未顯示)的閘極接觸件的硬遮罩,且硬遮罩層170中的各個膜層可以在多個圖案化製程中被圖案化或用作蝕刻遮罩。Next, referring to FIG. 9 , an adhesive layer 160 , a silicon nitride layer 162 , and a hard mask layer 170 are sequentially formed on the semiconductor material 120 , the dielectric spacer layer 142 , and the conductive material 150 . In some embodiments, the hard mask layer 170 includes a silicon oxide layer 172 , a carbon layer 174 , a silicon oxynitride layer 176 , and a polysilicon layer 178 . The adhesion layer 160 can be used to reduce the resistance of the subsequently formed bit line structure, the silicon nitride layer 162 can be used as a hard mask for the gate contact of the peripheral circuit area (not shown) of the semiconductor structure 10, and the hard mask Individual layers in layer 170 may be patterned in multiple patterning processes or used as etch masks.

黏著層160的材料可以包括鈦、氮化鈦、其他適合的材料、或前述之組合。黏著層160的形成方法可以包括物理氣相沉積、化學氣相沉積、原子層沉積、電子束蒸鍍、電鍍、或其他適合的方法、或前述之組合。氮化矽層162的形成方法可以包括物理氣相沉積、化學氣相沉積、原子層沉積、或其他適合的方法 、或前述之組合。The material of the adhesive layer 160 may include titanium, titanium nitride, other suitable materials, or a combination thereof. The formation method of the adhesive layer 160 may include physical vapor deposition, chemical vapor deposition, atomic layer deposition, electron beam evaporation, electroplating, or other suitable methods, or a combination thereof. The formation method of the silicon nitride layer 162 may include physical vapor deposition, chemical vapor deposition, atomic layer deposition, or other suitable methods, or a combination thereof.

第10A、10B圖分別繪示出半導體結構10的剖面圖及俯視圖。應注意的是,第10A圖為對應第10B圖中的剖面AA’的剖面圖,且第10B圖為對應第10A圖中的剖面BB’的俯視圖。如第10A、10B圖所示,可以進行各種蝕刻製程以在基板100上形成露出基板100的接觸開口180以及位元線結構190,且位元線結構190在y方向橫跨多個接觸開口180。為了清楚起見,在第10B圖中是以虛線表示位元線結構190的位置。此外,介電間隔層142的並未相交位元線結構190且高於基板100的部分也在上述蝕刻製程中被移除,藉此形成設置於接觸開口180的側壁上的介電襯層144。在一些實施例中,介電襯層144在接觸開口180內圍繞位元線結構190,且介電襯層144的與位元線結構190相交的部分(參見第10B圖)在基板100的頂表面上方延伸到位元線結構190中(未顯示)。10A and 10B respectively illustrate a cross-sectional view and a top view of the semiconductor structure 10 . It should be noted that Fig. 10A is a sectional view corresponding to section AA' in Fig. 10B, and Fig. 10B is a top view corresponding to section BB' in Fig. 10A. As shown in Figures 10A and 10B, various etching processes can be performed to form a contact opening 180 exposing the substrate 100 and a bit line structure 190 on the substrate 100, and the bit line structure 190 spans a plurality of contact openings 180 in the y direction . For clarity, the location of the bit line structure 190 is shown in dashed lines in FIG. 10B. In addition, the portion of the dielectric spacer 142 that does not intersect the bit line structure 190 and is higher than the substrate 100 is also removed during the above etching process, thereby forming the dielectric liner 144 disposed on the sidewall of the contact opening 180 . . In some embodiments, dielectric liner 144 surrounds bit line structure 190 within contact opening 180 , and the portion of dielectric liner 144 that intersects bit line structure 190 (see FIG. 10B ) is on top of substrate 100 . Above the surface extends into a bit line structure 190 (not shown).

導電材料150及半導體材料120可以在上述蝕刻製程中被蝕刻以在基板100上形成位元線結構190,且導電材料150及半導體材料120分別被蝕刻以形成位元線結構190的接觸件192及半導體層194。如第10A圖所示,接觸件192可以設置於接觸開口180正上方,且半導體層194可以設置於基板100上方(包括接觸開口180以外的部分的基板100正上方)。參見第10B圖,半導體層194與接觸件192之間被部分的介電襯層144分隔,其中上述部分為介電襯層144與位元線結構190相交的部分,且位元線結構190在y方向上與介電襯層144實體接觸。The conductive material 150 and the semiconductor material 120 may be etched in the above etching process to form the bit line structure 190 on the substrate 100, and the conductive material 150 and the semiconductor material 120 are respectively etched to form the contacts 192 and 190 of the bit line structure 190. semiconductor layer 194 . As shown in FIG. 10A , the contact 192 may be disposed directly above the contact opening 180 , and the semiconductor layer 194 may be disposed above the substrate 100 (directly above the substrate 100 including the portion other than the contact opening 180 ). Referring to FIG. 10B, the semiconductor layer 194 and the contact 192 are separated by a part of the dielectric liner 144, wherein the above-mentioned part is the intersection of the dielectric liner 144 and the bit line structure 190, and the bit line structure 190 is in the In the y direction, it is in physical contact with the dielectric liner 144 .

在一些實施例中,位元線結構190更包括位於接觸件192及半導體層194上的黏著層160及氮化矽層162。接觸件192可以在接觸開口180的底表面與基板100連接,特別是與導電部102電性連接。在一些實施例中,位元線結構190更包括位於半導體層194下的蓋層110,且基板100與半導體層194之間彼此分隔。In some embodiments, the bit line structure 190 further includes an adhesive layer 160 and a silicon nitride layer 162 on the contacts 192 and the semiconductor layer 194 . The contact 192 may be connected to the substrate 100 at the bottom surface of the contact opening 180 , especially electrically connected to the conductive portion 102 . In some embodiments, the bit line structure 190 further includes a capping layer 110 under the semiconductor layer 194 , and the substrate 100 and the semiconductor layer 194 are separated from each other.

繼續參照第10A、10B圖。在一些實施例中,介電襯層144完全覆蓋接觸開口180的側壁。在一些實施例中,與位元線結構190相交的部分的介電襯層144與接觸件192的頂表面齊平。在一些實施例中,並未相交位元線結構190的部分的介電襯層144與基板100的頂表面齊平。在一些實施例中,位元線結構190與介電襯層144之間在x方向上具有位於接觸開口180中的間隔。Continue to refer to Figures 10A, 10B. In some embodiments, the dielectric liner 144 completely covers the sidewalls of the contact opening 180 . In some embodiments, the portion of the dielectric liner 144 that intersects the bit line structure 190 is flush with the top surface of the contact 192 . In some embodiments, the portion of the dielectric liner 144 that does not intersect the bit line structure 190 is flush with the top surface of the substrate 100 . In some embodiments, there is a space in the contact opening 180 between the bit line structure 190 and the dielectric liner 144 in the x-direction.

綜上所述,本揭露提供了一種半導體結構及其形成方法,其中在沉積用於記憶體裝置的主動區的導電材料之前,在半導體結構上形成介電間隔層。藉由形成介電間隔層以覆蓋主動區周圍的結構的表面,可以使導電材料在上述表面上以一致的速率成長,防止接縫等缺陷形成於主動區中。如此一來,可以避免在後續形成的位元線結構中產生空隙、降低位元線結構的電阻、且提高記憶體裝置的良率。In summary, the present disclosure provides a semiconductor structure and a method for forming the same, wherein a dielectric spacer layer is formed on the semiconductor structure before depositing the conductive material for the active region of the memory device. By forming a dielectric spacer layer to cover the surface of the structure surrounding the active area, the conductive material can grow at a consistent rate on the surface, preventing defects such as seams from forming in the active area. In this way, voids can be avoided in the subsequently formed bit line structure, the resistance of the bit line structure can be reduced, and the yield rate of the memory device can be improved.

以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The features of several embodiments are summarized above, so that those skilled in the art of the present invention can understand the viewpoints of the embodiments of the present invention more easily. Those skilled in the art of the present invention should understand that other processes and structures can be easily designed or modified based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments described herein. Those who have ordinary knowledge in the technical field of the present invention should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and can be made without departing from the spirit and scope of the present invention. Changes, substitutions and substitutions of all kinds.

10:半導體結構 100:基板 102:導電部 104:隔離部 110:蓋層 112:氮化物層 114,122:氧化物層 120:半導體材料 124:遮罩層 130:第一開口 140:介電材料 142:介電間隔物 144:介電襯層 150:導電材料 160:黏著層 162:氮化矽層 170:硬遮罩層 172:氧化矽層 174:碳層 176:氮氧化矽層 178:多晶矽層 180:接觸開口 190:位元線結構 192:接觸件 194:半導體層 AA’,BB’:剖面 x,y,z:方向 10:Semiconductor structure 100: Substrate 102: Conductive part 104: Isolation Department 110: cover layer 112: Nitride layer 114,122: oxide layer 120: Semiconductor materials 124: mask layer 130: first opening 140: Dielectric material 142: Dielectric spacer 144: Dielectric lining 150: conductive material 160: Adhesive layer 162: silicon nitride layer 170: hard mask layer 172: Silicon oxide layer 174: carbon layer 176: silicon oxynitride layer 178: polysilicon layer 180: contact opening 190: Bit line structure 192: contact piece 194: semiconductor layer AA',BB': profile x,y,z: direction

第1A、2~7、8A、9、10A圖是根據本揭露的一些實施例,繪示出在半導體結構的製造過程的不同階段的剖面圖。 第1B圖是根據本揭露的一些實施例,繪示出對應第1A圖之半導體結構的俯視圖。 第8B圖是根據本揭露的一些實施例,繪示出對應第8A圖之半導體結構的俯視圖。 第10B圖是根據本揭露的一些實施例,繪示出對應第10A圖之半導體結構的俯視圖。 1A, 2-7, 8A, 9, and 10A are cross-sectional views illustrating different stages of the fabrication process of a semiconductor structure according to some embodiments of the present disclosure. FIG. 1B is a top view of the semiconductor structure corresponding to FIG. 1A according to some embodiments of the present disclosure. FIG. 8B is a top view of the semiconductor structure corresponding to FIG. 8A according to some embodiments of the present disclosure. FIG. 10B is a top view of the semiconductor structure corresponding to FIG. 10A according to some embodiments of the present disclosure.

10:半導體結構 10:Semiconductor structure

100:基板 100: Substrate

102:導電部 102: Conductive part

104:隔離部 104: Isolation Department

110:蓋層 110: cover layer

112:氮化物層 112: Nitride layer

114:氧化物層 114: oxide layer

144:介電襯層 144: Dielectric lining

160:黏著層 160: Adhesive layer

162:氮化矽層 162: silicon nitride layer

180:接觸開口 180: contact opening

190:位元線結構 190: Bit line structure

192:接觸件 192: contact piece

194:半導體層 194: semiconductor layer

BB’:剖面 BB': profile

x,z:方向 x,z: direction

Claims (15)

一種半導體結構的形成方法,包括: 提供一基板; 在該基板上形成多個接觸開口,且該些接觸開口的側壁上設置有一介電襯層;以及 在該基板上形成一位元線結構,且該位元線結構在一第一方向上橫跨該些接觸開口, 其中該介電襯層在該些接觸開口內圍繞該位元線結構且在該基板的頂表面上方延伸到該位元線結構中。 A method of forming a semiconductor structure, comprising: providing a substrate; A plurality of contact openings are formed on the substrate, and a dielectric liner is disposed on sidewalls of the contact openings; and forming a bit line structure on the substrate, and the bit line structure straddles the contact openings in a first direction, Wherein the dielectric liner surrounds the bit line structure within the contact openings and extends into the bit line structure above the top surface of the substrate. 如請求項1之半導體結構的形成方法,更包括: 在該基板上方形成一半導體材料; 在該半導體材料的側壁上形成一介電間隔層;以及 在該基板上形成一導電材料,且該半導體材料與該導電材料之間被該介電間隔層分隔。 The method for forming a semiconductor structure such as claim 1 further includes: forming a semiconductor material over the substrate; forming a dielectric spacer on sidewalls of the semiconductor material; and A conductive material is formed on the substrate, and the semiconductor material and the conductive material are separated by the dielectric spacer layer. 如請求項2之半導體結構的形成方法,更包括蝕刻該導電材料及該半導體材料以分別形成該位元線結構的一接觸件及一半導體層。The method for forming a semiconductor structure according to claim 2 further includes etching the conductive material and the semiconductor material to respectively form a contact and a semiconductor layer of the bit line structure. 如請求項2之半導體結構的形成方法,更包括移除高於該導電材料及該半導體材料的頂表面的部分的該介電間隔層。The method for forming a semiconductor structure according to claim 2, further comprising removing the dielectric spacer layer above the conductive material and the top surface of the semiconductor material. 如請求項2之半導體結構的形成方法,更包括: 在該基板上形成穿過該半導體材料的多個第一開口;以及 在該些第一開口的側壁上形成該介電間隔層, 其中該導電材料填充於該些第一開口中。 The method for forming a semiconductor structure such as claim 2 further includes: forming a plurality of first openings through the semiconductor material on the substrate; and forming the dielectric spacer on sidewalls of the first openings, Wherein the conductive material is filled in the first openings. 如請求項5之半導體結構的形成方法,其中該介電間隔層的形成包括: 在該些第一開口內順應性地沉積一介電材料;以及 移除一部分的該介電材料以在該些第一開口的底部露出該基板。 The method for forming a semiconductor structure according to claim 5, wherein the forming of the dielectric spacer layer comprises: conformally depositing a dielectric material within the first openings; and A portion of the dielectric material is removed to expose the substrate at the bottom of the first openings. 如請求項5之半導體結構的形成方法,更包括: 移除並未相交該位元線結構且高於該基板的部分的該介電間隔層以形成該介電襯層。 The method for forming a semiconductor structure as claimed in item 5 further includes: A portion of the dielectric spacer that does not intersect the bit line structure and is higher than the substrate is removed to form the dielectric liner. 如請求項1之半導體結構的形成方法,更包括進行蝕刻製程以形成該些接觸開口,且該些接觸開口露出該基板。The method for forming a semiconductor structure according to claim 1 further includes performing an etching process to form the contact openings, and the contact openings expose the substrate. 一種半導體結構,包括: 一基板,具有多個接觸開口; 一介電襯層,設置於該些接觸開口的多個側壁上;以及 一位元線結構,設置於該基板上且在一第一方向上橫跨該些接觸開口, 其中該介電襯層在該些接觸開口內圍繞該位元線結構且在該基板的一頂表面上方延伸到該位元線結構中。 A semiconductor structure comprising: A substrate having a plurality of contact openings; a dielectric liner disposed on sidewalls of the contact openings; and a bit line structure disposed on the substrate and across the contact openings in a first direction, Wherein the dielectric liner surrounds the bit line structure within the contact openings and extends into the bit line structure above a top surface of the substrate. 如請求項9之半導體結構,其中該介電襯層完全覆蓋該些接觸開口的該些側壁。The semiconductor structure of claim 9, wherein the dielectric liner completely covers the sidewalls of the contact openings. 如請求項9之半導體結構,其中該位元線結構包括: 一接觸件,設置於該些接觸開口正上方;以及 一半導體層,設置於該基板上方,且與該接觸件之間被該介電襯層分隔。 The semiconductor structure according to claim 9, wherein the bit line structure comprises: A contact element is arranged directly above the contact openings; and A semiconductor layer is disposed above the substrate and separated from the contact by the dielectric liner. 如請求項11之半導體結構,其中與該位元線結構相交的部分的該介電襯層與該接觸件的頂表面齊平。The semiconductor structure of claim 11, wherein the portion of the dielectric liner intersecting the bit line structure is flush with the top surface of the contact. 如請求項9之半導體結構,其中並未相交該位元線結構的部分的該介電襯層與該基板的該頂表面齊平。The semiconductor structure of claim 9, wherein portions of the dielectric liner that do not intersect the bit line structure are flush with the top surface of the substrate. 如請求項9之半導體結構,其中該位元線結構在該第一方向上與該介電襯層實體接觸。The semiconductor structure of claim 9, wherein the bit line structure is in physical contact with the dielectric liner in the first direction. 如請求項9之半導體結構,其中該位元線結構與該介電襯層之間在一第二方向上具有間隔,且該第二方向與該第一方向垂直。The semiconductor structure according to claim 9, wherein there is a space between the bit line structure and the dielectric liner in a second direction, and the second direction is perpendicular to the first direction.
TW111115616A 2022-04-25 2022-04-25 Semiconductor structure and the method for forming the same TWI805336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111115616A TWI805336B (en) 2022-04-25 2022-04-25 Semiconductor structure and the method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111115616A TWI805336B (en) 2022-04-25 2022-04-25 Semiconductor structure and the method for forming the same

Publications (2)

Publication Number Publication Date
TWI805336B true TWI805336B (en) 2023-06-11
TW202343686A TW202343686A (en) 2023-11-01

Family

ID=87803011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111115616A TWI805336B (en) 2022-04-25 2022-04-25 Semiconductor structure and the method for forming the same

Country Status (1)

Country Link
TW (1) TWI805336B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018897B2 (en) * 2000-09-20 2006-03-28 Silicon Storage Technology, Inc. Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gate spacers
US7256112B2 (en) * 2005-01-20 2007-08-14 Chartered Semiconductor Manufacturing, Ltd Laser activation of implanted contact plug for memory bitline fabrication
TWI290751B (en) * 2002-06-30 2007-12-01 Promos Technologies Inc Semiconductor device, method for forming metal contact of memory device and method for forming metal contact of DRAM
US20120289019A1 (en) * 2011-05-11 2012-11-15 Samsung Electronics Co., Ltd. Methods of forming a pattern and methods of manufacturing a semiconductor device using the same
TWI757043B (en) * 2021-01-08 2022-03-01 華邦電子股份有限公司 Semiconductor memory structure and method for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018897B2 (en) * 2000-09-20 2006-03-28 Silicon Storage Technology, Inc. Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gate spacers
TWI290751B (en) * 2002-06-30 2007-12-01 Promos Technologies Inc Semiconductor device, method for forming metal contact of memory device and method for forming metal contact of DRAM
US7256112B2 (en) * 2005-01-20 2007-08-14 Chartered Semiconductor Manufacturing, Ltd Laser activation of implanted contact plug for memory bitline fabrication
US20120289019A1 (en) * 2011-05-11 2012-11-15 Samsung Electronics Co., Ltd. Methods of forming a pattern and methods of manufacturing a semiconductor device using the same
TWI757043B (en) * 2021-01-08 2022-03-01 華邦電子股份有限公司 Semiconductor memory structure and method for forming the same

Also Published As

Publication number Publication date
TW202343686A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US10141200B2 (en) Methods of manufacturing semiconductor devices
US10770464B2 (en) Semiconductor device including bit line structure of dynamic random access memory (DRAM) and method for fabricating the same
TW201727874A (en) Semiconductor memory device having enlarged cell contact area and method of fabricating the same
TWI440166B (en) Method for fabricating bottom electrode of capacitors of dram
CN114420642B (en) Method for forming semiconductor structure and semiconductor structure
TWI397974B (en) Split word line fabrication process
TWI572019B (en) Vertical channel structure
US6613690B1 (en) Approach for forming a buried stack capacitor structure featuring reduced polysilicon stringers
US6808975B2 (en) Method for forming a self-aligned contact hole in a semiconductor device
JPH11233614A (en) Semiconductor device and its manufacturing method
US20040110377A1 (en) Method of forming a contact in a semiconductor device
TWI805336B (en) Semiconductor structure and the method for forming the same
US20230389297A1 (en) Semiconductor structure and method for forming the same
TWI730718B (en) Method of manufacturing memory sturcture
CN117098389A (en) Semiconductor structure and forming method thereof
TWI618224B (en) Memory structure and manufacturing method there
US11462548B1 (en) Semicondcutor device and manufacturing method thereof
US11805640B2 (en) Manufacturing method of a semiconductor device using a protect layer along a top sidewall of a trench to widen the bottom of the trench
JP6092277B2 (en) Semiconductor device and manufacturing method thereof
TWI855295B (en) Method of manufacturing semiconductor device
TWI825469B (en) Manufacturing method of semiconductor device
TWI714423B (en) Semiconductor structure and method of manufacturing the same
US20240244823A1 (en) Semiconductor devices
KR100760829B1 (en) Dual trench isolation method and fabrication method of flash memory device using active area etching method
CN108807267B (en) Semiconductor device and method for manufacturing the same