TWI804424B - Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser - Google Patents

Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser Download PDF

Info

Publication number
TWI804424B
TWI804424B TW111131970A TW111131970A TWI804424B TW I804424 B TWI804424 B TW I804424B TW 111131970 A TW111131970 A TW 111131970A TW 111131970 A TW111131970 A TW 111131970A TW I804424 B TWI804424 B TW I804424B
Authority
TW
Taiwan
Prior art keywords
layer
thickness
bragg reflector
silicon
silicon dioxide
Prior art date
Application number
TW111131970A
Other languages
Chinese (zh)
Other versions
TW202410587A (en
Inventor
朱兆杰
Original Assignee
福田開發科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福田開發科技有限公司 filed Critical 福田開發科技有限公司
Priority to TW111131970A priority Critical patent/TWI804424B/en
Application granted granted Critical
Publication of TWI804424B publication Critical patent/TWI804424B/en
Publication of TW202410587A publication Critical patent/TW202410587A/en

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A method for manufacturing a distributed bragg reflector is provided. The distributed bragg reflector is applied in a vertical-cavity surface emitting laser for 1550 nm. The vertical-cavity surface emitting laser includes a top distributed bragg reflector, a bottom distributed bragg reflector, and a vertical resonant cavity (containing a p-type electrode and a n-type electrode) and a multiple quantum well light-emitting layer between the top distributed bragg reflector and the bottom distributed bragg reflector. The method for manufacturing the distributed bragg reflector includes: sputtering to form an optical multiple layer that contains silicon layers and silicon dioxide layers which are alternatively stacked. The silicon dioxide layers are formed through a nano-sputtering process and a plasma micro oxidized process. In order to strengthen basic physical optical requirements of the resonant laser, a reflectivity of the bottom distributed bragg reflector is necessary more than 99.9%, and a reflectivity of the bottom distributed bragg reflector is necessary ranging from 95% to 99%.

Description

1550奈米垂直面射型半導體雷射之布拉格反射鏡之製造方法Manufacturing method of Bragg reflector for 1550nm vertical surface-emitting semiconductor laser

本發明涉及一種布拉格反射鏡的製造方法,特別是涉及一種1550奈米的垂直共振腔面射型雷射中上布拉格反射鏡或下布拉格反射鏡的製造方法。 The invention relates to a method for manufacturing a Bragg reflector, in particular to a method for manufacturing an upper Bragg reflector or a lower Bragg reflector in a 1550nm vertical resonant cavity surface-emitting laser.

相較於傳統的邊射型雷射而言,垂直共振腔面射型雷射(Vertical-cavity surface emitting laser,VCSEL)具有(1)較低的消耗功率、(2)容易搭配光纖耦合以及(3)容易製作雷射陣列的優點,而成為目前受到矚目的發光元件之一。 Compared with traditional edge-emitting lasers, vertical-cavity surface emitting lasers (Vertical-cavity surface emitting lasers, VCSELs) have (1) lower power consumption, (2) easy to match with fiber coupling and ( 3) The advantage of being easy to fabricate a laser array has become one of the light-emitting elements currently attracting attention.

現有的垂直共振腔面射雷射裝置至少包括P-型電極、N-型電極、用以產生光子的多重量子阱活性層,以及分別位於活性層兩側的上布拉格反射鏡(Distributed bragg reflector,DBR)與下布拉格反射鏡。通過P-型電極以及N-型電極對多重量子阱活性層注入電流來激發光子,並利用上、下兩個布拉格反射鏡來形成垂直式的共振腔,可產生由元件表面(即垂直活性層方向)出射的雷射光束。 The existing vertical resonant cavity surface-emitting laser device at least includes a P-type electrode, an N-type electrode, a multiple quantum well active layer for generating photons, and upper Bragg reflectors (Distributed bragg reflector, respectively) located on both sides of the active layer. DBR) and the lower Bragg reflector. The P-type electrode and the N-type electrode inject current into the active layer of the multiple quantum well to excite photons, and use the upper and lower Bragg mirrors to form a vertical resonant cavity, which can be generated by the surface of the component (that is, the vertical active layer) direction) of the outgoing laser beam.

在現有技術中,布拉格反射鏡是通過有機金屬化學氣相沉積法(Metal-organic chemical vapor deposition,MOCVD),將具有不同折射係數 的半導體材料,交替堆疊於基材上形成半導體薄膜而形成。並且,通過材料的選用以及厚度的設計,可達到反射特定波長的光線的效果。 In the prior art, Bragg reflectors are made by Metal-organic chemical vapor deposition (MOCVD), and will have different refractive indices The semiconductor materials are alternately stacked on the substrate to form semiconductor thin films. Moreover, through the selection of materials and the design of thickness, the effect of reflecting light of a specific wavelength can be achieved.

在垂直共振腔面射型雷射中,為強化形成共振雷射之基本物理光學需求,布拉格反射鏡需具備極高的反射率。具體來說,上布拉格反射鏡需具備至少96%的反射率,下布拉格反射鏡需具備99.9%的反射率。為了達到高反射率的效果,現有技術中的半導體材料需設置約60層的半導體薄膜,因此,現有技術中的布拉格反射鏡具有結構複雜且製程繁複的缺點。 In the vertical resonant cavity surface-emitting laser, in order to strengthen the basic physical optics requirements for forming a resonant laser, the Bragg mirror needs to have extremely high reflectivity. Specifically, the upper Bragg mirror needs to have a reflectivity of at least 96%, and the lower Bragg mirror needs to have a reflectivity of 99.9%. In order to achieve the effect of high reflectivity, semiconductor materials in the prior art need to be provided with about 60 layers of semiconductor thin films. Therefore, the Bragg reflector in the prior art has the disadvantages of complex structure and complicated manufacturing process.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種布拉格反射鏡的製造方法。 The technical problem to be solved by the present invention is to provide a method for manufacturing a Bragg reflector aiming at the deficiencies of the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種布拉格反射鏡的製造方法,布拉格反射鏡是應用於1550奈米的垂直共振腔面射型雷射中並作為上布拉格反射鏡或下布拉格反射鏡,布拉格反射鏡的製造方法包括:於一基材上形成一光學多層膜,基材是一矽晶圓、一砷化鎵晶圓、一碳化矽晶圓或一玻璃基板。應用於1550奈米的垂直共腔面射型雷射中作為下布拉格反射鏡時,形成光學多層膜的步驟包括:於基材上形成一鉬層,於鉬層上形成一銀層,於銀層上形成交替堆疊的矽層與二氧化矽層,二氧化矽層是經奈米濺鍍與電漿微氧化程序所形成。 In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a Bragg reflector, which is used in a 1550-nanometer vertical cavity surface-emitting laser and acts as an upper Bragg reflector. Mirror or lower Bragg reflector, the manufacturing method of Bragg reflector includes: forming an optical multilayer film on a substrate, the substrate is a silicon wafer, a gallium arsenide wafer, a silicon carbide wafer or a glass substrate . When applied to a 1550nm vertical common-cavity surface-emitting laser as a lower Bragg reflector, the steps of forming an optical multilayer film include: forming a molybdenum layer on the substrate, forming a silver layer on the molybdenum layer, and forming a silver layer on the silver layer. Alternately stacked silicon layers and silicon dioxide layers are formed on the layer, and the silicon dioxide layer is formed by nano-sputtering and plasma micro-oxidation procedures.

本發明的其中一有益效果在於,本發明所提供的布拉格反射鏡的製造方法,其能通過“於銀層上形成交替堆疊的矽層與二氧化矽層”以及“二氧化矽層是經奈米濺鍍與電漿微氧化程序所形成”的技術方案,以提升下布拉格反射鏡具備99.9%的反射率,進而達到提升雷射裝置發光效率的效果。 One of the beneficial effects of the present invention is that the manufacturing method of the Bragg reflector provided by the present invention can be achieved by "forming alternately stacked silicon layers and silicon dioxide layers on the silver layer" and "the silicon dioxide layer is The technical solution formed by rice sputtering and plasma micro-oxidation process can improve the reflectivity of the lower Bragg reflector to 99.9%, thereby achieving the effect of improving the luminous efficiency of the laser device.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有 關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 For enabling a further understanding of the features and technical content of the present invention, please refer to the following The detailed description and drawings related to the present invention, however, the provided drawings are only for reference and illustration, and are not intended to limit the present invention.

Z1:雷射裝置 Z1: laser device

10:基材 10: Substrate

20:下布拉格反射鏡 20: Lower Bragg reflector

21:矽層 21: Silicon layer

22:二氧化矽層 22: Silicon dioxide layer

23:反射金屬層 23: reflective metal layer

24:熱擴散阻隔層 24: Thermal diffusion barrier layer

30:多重量子阱活性發光結構層 30:Multiple quantum well active light-emitting structure layer

31:第一導電型半導體層 31: first conductivity type semiconductor layer

33:第二導電型半導體層 33: Second conductivity type semiconductor layer

40:上布拉格反射鏡 40: Upper Bragg reflector

41:矽層 41: Silicon layer

42:二氧化矽層 42: Silicon dioxide layer

50:電極結構 50: Electrode structure

51:第一金屬電極 51: The first metal electrode

52:第二金屬電極 52: Second metal electrode

80:預抽腔室 80: Pre-pumping chamber

90:濺鍍腔室 90: Sputtering chamber

91:射頻觸發感應偶合電漿設備 91: Radio Frequency Triggered Inductively Coupled Plasma Equipment

92:靶材 92: target

93:射頻載台自偏壓裝置 93: RF stage self-bias device

L:雷射光束 L: laser beam

圖1為本發明垂直共振腔面射型雷射的側視圖。 Fig. 1 is a side view of the vertical resonant cavity surface-emitting laser of the present invention.

圖2為本發明形成光學多層膜時使用的真空預抽腔、濺鍍腔及微氧化腔的示意圖。 2 is a schematic diagram of the vacuum pre-evacuation chamber, the sputtering chamber and the micro-oxidation chamber used when forming an optical multilayer film in the present invention.

圖3為基材於濺鍍時與靶材的相對位置關係示意圖。 3 is a schematic diagram of the relative positional relationship between the substrate and the target during sputtering.

圖4A為感應偶合電漿裝置的示意圖。 Figure 4A is a schematic diagram of an inductively coupled plasmonic device.

圖4B為射頻載台自偏壓裝置的示意圖。 FIG. 4B is a schematic diagram of a self-biasing device for a radio frequency carrier.

圖5A為以本發明的奈米濺鍍與電漿微氧化程序製成的厚度為209.4奈米的二氧化矽層的表面原子力顯微鏡圖。 5A is an AFM image of the surface of a silicon dioxide layer with a thickness of 209.4 nm formed by the nano-sputtering and plasma micro-oxidation procedures of the present invention.

圖5B為現有技術中以活化濺鍍方式形成厚度為200奈米的二氧化矽層的表面原子力顯微鏡圖。 5B is an AFM image of the surface of a silicon dioxide layer with a thickness of 200 nm formed by activated sputtering in the prior art.

圖6A為本發明1550奈米的垂直共振腔面射型雷射中下布拉格反射鏡的側視圖。 FIG. 6A is a side view of the lower Bragg reflector in the 1550nm vertical cavity surface-emitting laser of the present invention.

圖6B為以本發明的奈米濺鍍與電漿微氧化程序製成的布拉格反射鏡的穿透式電子顯微鏡圖。 FIG. 6B is a transmission electron microscope image of a Bragg reflector fabricated by the nano-sputtering and plasma micro-oxidation procedures of the present invention.

圖7為本發明1550奈米的垂直共振腔面射型雷射中下布拉格反射鏡,於光波長為1450奈米至1650奈米範圍中的光譜反射率曲線。 FIG. 7 is a curve of spectral reflectance in the light wavelength range from 1450 nm to 1650 nm of the 1550 nm vertical resonant cavity surface-emitting laser middle-lower Bragg reflector of the present invention.

圖8為本發明1550奈米的垂直共振腔面射型雷射中上布拉格反射鏡的側視圖。 Fig. 8 is a side view of the upper Bragg reflector in the 1550nm vertical cavity surface-emitting laser of the present invention.

圖9為本發明1550奈米的垂直共振腔面射型雷射中具有擴散阻隔層的下布拉格反射鏡的側視圖。 9 is a side view of the lower Bragg reflector with a diffusion barrier layer in a 1550nm vertical resonator surface-emitting laser according to the present invention.

圖10為本發明1550奈米的垂直共振腔面射型雷射中具有擴散阻隔層的下布拉格反射鏡,於光波長為1450奈米至1650奈米的範圍中的光譜反射率曲線。 10 is the spectral reflectance curve of the lower Bragg reflector with a diffusion barrier layer in the 1550 nm vertical resonator surface-emitting laser of the present invention in the range of light wavelengths from 1450 nm to 1650 nm.

以下是通過特定的具體實施例來說明本發明所公開有關“布拉格反射鏡的製造方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 The following is a description of the implementation of the "method for manufacturing a Bragg mirror" disclosed in the present invention through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.

請參閱圖1所示,本發明提供一種雷射裝置Z1,其特別適用於作為紅外光波長的雷射裝置(波長為1550奈米),可在符合安全規範的前提下,發出足夠光強度的光束L。 Please refer to FIG. 1, the present invention provides a laser device Z1, which is especially suitable for use as a laser device with an infrared wavelength (wavelength is 1550 nm), and can emit sufficient light intensity under the premise of meeting safety regulations. Beam L.

在本發明實施例中,雷射裝置Z1為垂直共振腔面射雷射型裝置(vertical cavity surface emitting laser,VCSEL),使用兩個分佈式布拉格反射鏡(Distributed Bragg Reflector,DBR)作為反射鏡層,使得雷射裝置Z1產生的初始光束,可在兩個反射鏡層之間來回反射共振而增益放大,最終出射雷射光束L。 In the embodiment of the present invention, the laser device Z1 is a vertical cavity surface emitting laser device (vertical cavity surface emitting laser, VCSEL), using two distributed Bragg reflectors (Distributed Bragg Reflector, DBR) as mirror layers , so that the initial light beam generated by the laser device Z1 can reflect and resonate back and forth between the two mirror layers to amplify the gain, and finally emit the laser light beam L.

值得注意的是,本發明的反射鏡層是通過奈米濺鍍與電漿微氧化程序的方式,而非經過化學氣相沉積法形成,故本發明的反射鏡層可在膜 層數量少的情況下,達到下布拉格反射鏡具備99.9%的高反射率效果。如此一來,本發明的雷射裝置Z1可應用於車用雷達及光達雷達(light detection and ranging,LiDAR)中。 It is worth noting that the reflector layer of the present invention is formed by nano-sputtering and plasma micro-oxidation procedures rather than by chemical vapor deposition, so the reflector layer of the present invention can be formed on a film In the case of a small number of layers, the lower Bragg reflector has a high reflectivity effect of 99.9%. In this way, the laser device Z1 of the present invention can be applied to vehicle radar and LiDAR (light detection and ranging, LiDAR).

請參閱圖1所示,雷射裝置Z1包括下布拉格反射鏡20、多重量子阱活性發光結構層30、上布拉格反射鏡40。詳細而言,在本實施例中,雷射裝置Z1還包括一基材10。下布拉格反射鏡20、多重量子阱活性發光結構層30以及上布拉格反射鏡40都設置在基材10上,且多重量子阱活性發光結構層30位於下布拉格反射鏡20與上布拉格反射鏡40之間。 Please refer to FIG. 1 , the laser device Z1 includes a lower Bragg reflector 20 , a multiple quantum well active light-emitting structure layer 30 , and an upper Bragg reflector 40 . In detail, in this embodiment, the laser device Z1 further includes a substrate 10 . The lower Bragg reflector 20, the multiple quantum well active light-emitting structure layer 30 and the upper Bragg reflector 40 are all arranged on the substrate 10, and the multiple quantum well active light-emitting structure layer 30 is located between the lower Bragg reflector 20 and the upper Bragg reflector 40 between.

基材10可以是絕緣基材或是半導體基材。絕緣基材例如是玻璃基材,而半導體基材例如是矽、鍺、碳化矽或III-V族半導體。III-V族半導體例如是砷化鎵(Gallium Arsenide,GaAs)、磷化砷(Indium Phosphide,InP)、氮化鋁(Aluminum Nitride,AIN)、氮化銦(Indium Nitride,InN)或是氮化鎵(Gallium Nitride,GaN)。 The substrate 10 can be an insulating substrate or a semiconductor substrate. The insulating substrate is, for example, a glass substrate, and the semiconductor substrate is, for example, silicon, germanium, silicon carbide or III-V semiconductors. Group III-V semiconductors are, for example, gallium arsenide (Gallium Arsenide, GaAs), arsenic phosphide (Indium Phosphide, InP), aluminum nitride (Aluminum Nitride, AIN), indium nitride (Indium Nitride, InN) or nitride Gallium (Gallium Nitride, GaN).

下布拉格反射鏡20與上布拉格反射鏡40中各自包括交替堆疊的第一膜層(矽層21)與第二膜層(二氧化矽層22),第一膜層的折射率高於第二膜層的折射率。由於折射率的差異,當光線由第一膜層進入第二膜層時,一旦符合入射角大於臨界角的條件,便會發生全反射。第一膜層與第二膜層的材料會影響折射率,而第一膜層與第二膜層的折射率與厚度,會對不同波長的光線產生不同的反射效果。為了達到符合需求的反射效果(反射率達99.5%以上,甚至是99.9%以上),本發明對第一膜層與第二膜層的厚度要求非常嚴格,具體來說,第一膜層與第二膜層的允許厚度誤差值小於±1%。在使用不同材料時,所對應的厚度規格需求也會完全不同。 Each of the lower Bragg reflector 20 and the upper Bragg reflector 40 includes alternately stacked first film layers (silicon layer 21) and second film layers (silicon dioxide layer 22), and the refractive index of the first film layer is higher than that of the second film layer. The refractive index of the coating. Due to the difference in refractive index, when light enters the second film layer from the first film layer, total reflection will occur once the incident angle is greater than the critical angle. The materials of the first film layer and the second film layer will affect the refractive index, and the refractive index and thickness of the first film layer and the second film layer will produce different reflection effects on light of different wavelengths. In order to achieve a reflection effect that meets the requirements (the reflectivity is more than 99.5%, or even more than 99.9%), the present invention has very strict requirements on the thickness of the first film layer and the second film layer, specifically, the first film layer and the second film layer The allowable thickness error of the second film layer is less than ±1%. When using different materials, the corresponding thickness specification requirements will be completely different.

為了提升下布拉格反射鏡20的反射率(請參圖6A),下布拉格反射鏡20還可包括一反射金屬層23,通過反射金屬層23的設置,可降低第一 膜層21與第二膜層22的總層數。詳細來說,反射金屬層23可以是單層金屬層或是由多層金屬層構成。反射金屬層23的厚度可以是20奈米至100奈米,反射金屬層23的總厚度較佳為50奈米至100奈米。反射金屬層23的材料是選自於由下列所構成的群組:鋁、銀及鉬。然而,本發明不限於此。 In order to improve the reflectivity of the lower Bragg reflector 20 (please refer to FIG. 6A), the lower Bragg reflector 20 can also include a reflective metal layer 23. By setting the reflective metal layer 23, the first The total number of layers of the film layer 21 and the second film layer 22 . In detail, the reflective metal layer 23 can be a single metal layer or composed of multiple metal layers. The thickness of the reflective metal layer 23 may be 20 nm to 100 nm, and the total thickness of the reflective metal layer 23 is preferably 50 nm to 100 nm. The material of the reflective metal layer 23 is selected from the group consisting of aluminum, silver and molybdenum. However, the present invention is not limited thereto.

於一些實施例中,下布拉格反射鏡20(請參圖9)還可包括一熱擴散阻隔層24,熱擴散阻隔層24設置於第一膜層與第二膜層之上,尤其是矽層21之上。熱擴散阻隔層24可防止矽層21中的矽原子擴散至第一導電型半導體層31(n-型電極)中。於本實施例中,熱擴散阻隔層24的材料可以是五氧化二鈮、五氧化二鉭或二氧化鈦,熱擴散阻隔層24的厚度為10奈米至80奈米,較佳為30奈米至50奈米,更佳為40奈米。 In some embodiments, the lower Bragg reflector 20 (please refer to FIG. 9 ) may further include a thermal diffusion barrier layer 24, and the thermal diffusion barrier layer 24 is disposed on the first film layer and the second film layer, especially the silicon layer. 21 and above. The thermal diffusion barrier layer 24 can prevent silicon atoms in the silicon layer 21 from diffusing into the first conductive type semiconductor layer 31 (n-type electrode). In this embodiment, the material of the thermal diffusion barrier layer 24 can be niobium pentoxide, tantalum pentoxide or titanium dioxide, and the thickness of the thermal diffusion barrier layer 24 is from 10 nanometers to 80 nanometers, preferably from 30 nanometers to 80 nanometers. 50 nm, more preferably 40 nm.

多重量子阱活性發光結構層是用以產生雷射光束L,且雷射光束L可在兩個反射鏡層之間來回反射共振而增益放大。垂直共振腔結構包括一第一導電型半導體層31(N型砷化鎵)、一多重量子阱活性發光結構層30、一第二導電型半導體層33(P型砷化鎵),多重量子阱活性發光結構層30位於第一導電型半導體層31以及第二導電型半導體層33之間,電流侷限層位於多重量子阱活性發光結構層30以及第二導電型半導體層33之間。 The multiple quantum well active light emitting structure layer is used to generate the laser beam L, and the laser beam L can reflect and resonate back and forth between the two reflector layers to amplify the gain. The vertical resonant cavity structure includes a first conductivity type semiconductor layer 31 (N-type gallium arsenide), a multiple quantum well active light-emitting structure layer 30, a second conductivity type semiconductor layer 33 (P-type gallium arsenide), multiple quantum wells The well active light emitting structure layer 30 is located between the first conductive type semiconductor layer 31 and the second conductive type semiconductor layer 33 , and the current confinement layer is located between the multiple quantum well active light emitting structure layer 30 and the second conductive type semiconductor layer 33 .

第一導電型半導體層31與第二導電型半導體層33具有相反的導電型。當第一導電型半導體層31是P型半導體時,第二導電型半導體層33是N型半導體。當第一導電型半導體層31是N型半導體時,第二導電型半導體層33是P型半導體。詳細來說,第一導電型半導體層31與第二導電型半導體層33的材料可以是砷化鎵,但本發明不限於此。 The first conductivity type semiconductor layer 31 and the second conductivity type semiconductor layer 33 have opposite conductivity types. When the first conductive type semiconductor layer 31 is a P-type semiconductor, the second conductive type semiconductor layer 33 is an N-type semiconductor. When the first conductive type semiconductor layer 31 is an N-type semiconductor, the second conductive type semiconductor layer 33 is a P-type semiconductor. In detail, the material of the first conductive type semiconductor layer 31 and the second conductive type semiconductor layer 33 may be gallium arsenide, but the present invention is not limited thereto.

於一些實施例中,在形成下布拉格反射鏡20之後,可先對下布拉格反射鏡20進行改質處理,再設置第一導電型半導體層31,使得下布拉格反射鏡20與第一導電型半導體層31之間形成有一晶格匹配層。 In some embodiments, after the lower Bragg reflector 20 is formed, the lower Bragg reflector 20 can be modified first, and then the first conductivity type semiconductor layer 31 is provided, so that the lower Bragg reflector 20 and the first conductivity type semiconductor A lattice matching layer is formed between layers 31 .

電極結構包括一第一導電型半導體層n-型電極31與第二電極層p-型電極33,通過第一導電型半導體層31與第二電極層33的設置,可使雷射裝置Z1與外部電路電性連接。第一金屬電極51設置於第一導電型半導體層31(n-型電極)上,並與第一導電型半導體層31電性連接。第二金屬電極52設置於第二導電型半導體層33(p-型電極)上,並與第二導電型半導體層33電性連接。第二金屬電極52設置於第二導電型半導體層33上,並環繞於上布拉格反射鏡40。 The electrode structure includes a first conductivity type semiconductor layer n-type electrode 31 and a second electrode layer p-type electrode 33, through the setting of the first conductivity type semiconductor layer 31 and the second electrode layer 33, the laser device Z1 and The external circuit is electrically connected. The first metal electrode 51 is disposed on the first conductive type semiconductor layer 31 (n-type electrode), and is electrically connected to the first conductive type semiconductor layer 31 . The second metal electrode 52 is disposed on the second conductive type semiconductor layer 33 (p-type electrode), and is electrically connected with the second conductive type semiconductor layer 33 . The second metal electrode 52 is disposed on the second conductive type semiconductor layer 33 and surrounds the upper Bragg reflector 40 .

本發明提供一種布拉格反射鏡的設計以及製造方法,通過濺鍍的方式形成布拉格反射鏡,並應用於垂直共振腔面射型雷射中。在垂直共振腔面射型雷射中,上布拉格反射鏡的反射率可高達98%,下布拉格反射鏡的反射率可高達99.9%。 The invention provides a design and manufacturing method of a Bragg reflector. The Bragg reflector is formed by sputtering and applied to a vertical resonant cavity surface-emitting laser. In the vertical cavity surface-emitting laser, the reflectivity of the upper Bragg mirror can be as high as 98%, and the reflectivity of the lower Bragg mirror can be as high as 99.9%.

本發明提供的方法,適合於矽晶圓、碳化矽晶圓、砷化鎵晶圓或玻璃基板上形成光學多層膜,並應用於垂直共振腔面射型雷射中,作為布拉格反射鏡。 The method provided by the invention is suitable for forming optical multilayer films on silicon wafers, silicon carbide wafers, gallium arsenide wafers or glass substrates, and is applied to vertical resonant cavity surface-emitting lasers as Bragg reflectors.

[鋁層、鉬層及銀層的形成] [Formation of aluminum layer, molybdenum layer and silver layer]

請參閱圖2、3所示,反射金屬層23的形成方法包括:(1)將基材10置於射頻載台自偏壓裝置(wafer holder)93上,並將基材10傳送至預抽腔室(load lock chamber)80,抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將基材10傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,承載著基材10的晶圓移動至濺鍍陰極(靶材92)前方,以直流濺鍍(direct current sputtering,DC)或射頻濺鍍(radiofrequency sputtering,RF)的方式,於基材10上濺鍍沉積鉬層、銀層或鋁層(反射金屬層23)。製程參數包括:晶圓保持器的移動速率為50毫米/分鐘至3000毫米/分鐘,射頻濺鍍的輸入功率為0.5千瓦至3.0千瓦。鉬層、銀層及鋁層的厚度可 根據布拉格反射鏡的結構設計進行調整。 2 and 3, the method for forming the reflective metal layer 23 includes: (1) placing the substrate 10 on a self-bias device (wafer holder) 93 on a radio frequency stage, and sending the substrate 10 to the pre-extraction The chamber (load lock chamber) 80 is evacuated so that the pressure in the pre-evacuation chamber 80 is lower than 1×10 −3 Torr. (2) The substrate 10 is transferred into the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) Under an argon atmosphere of 3×10 −3 Torr, the wafer carrying the substrate 10 is moved to the front of the sputtering cathode (target 92 ), and is sputtered by direct current sputtering (DC) or RF sputtering. In a radiofrequency sputtering (RF) manner, a molybdenum layer, silver layer or aluminum layer (reflective metal layer 23 ) is deposited on the substrate 10 by sputtering. The process parameters include: wafer holder moving rate from 50 mm/min to 3000 mm/min, and RF sputtering input power from 0.5 kW to 3.0 kW. The thicknesses of the molybdenum layer, the silver layer and the aluminum layer can be adjusted according to the structural design of the Bragg reflector.

[矽層及二氧化矽層的形成] [Formation of silicon layer and silicon dioxide layer]

請參閱圖3所示,圖3為將基材傳送至靶材前方以形成矽層或二氧化矽層的示意圖。在電漿濺鍍系統中,濺鍍電漿是經由頻率為13.56MHz的直流濺鍍電源產生器或射頻濺鍍電源產生器所產生,使用的靶材92為純度為99.9999%的本徵單晶矽(Intrinsic crystal silicon)靶材。在濺鍍過程中,承載著基材10的射頻載台自偏壓裝置93移動至靶材92前方,在3×10-3托的氬氣氣氛下進行濺鍍,以於基材10表面上沉積特定厚度的矽層。製程參數包括:射頻載台自偏壓裝置93的移動速率為50毫米/分鐘至3000毫米/分鐘,射頻濺鍍的輸入功率為0.5千瓦至3.0千瓦。矽層及二氧化矽層的厚度,可根據布拉格反射鏡的設計進行調整。 Please refer to FIG. 3 , which is a schematic diagram of transferring the substrate to the front of the target to form a silicon layer or a silicon dioxide layer. In the plasma sputtering system, the sputtering plasma is generated by a DC sputtering power generator or an RF sputtering power generator with a frequency of 13.56MHz, and the target material 92 used is an intrinsic single crystal with a purity of 99.9999%. Silicon (Intrinsic crystal silicon) target. During the sputtering process, the radio frequency stage carrying the substrate 10 moves from the bias device 93 to the front of the target 92 , and performs sputtering under an argon atmosphere of 3×10 A silicon layer of a specified thickness is deposited. The process parameters include: the moving speed of the RF stage from the bias device 93 is 50 mm/min to 3000 mm/min, and the input power of the RF sputtering is 0.5 kW to 3.0 kW. The thickness of the silicon layer and the silicon dioxide layer can be adjusted according to the design of the Bragg reflector.

在本發明中,使用射頻觸發電感偶合電漿(RF triggered inductively couple plasma)設備(如圖4A所示)或射頻載台自偏壓設備(RF substrate bias device)(如圖4B所示)產生電漿,以使矽薄膜氧化形成二氧化矽薄膜。 In the present invention, a radio frequency triggered inductively coupled plasma (RF triggered inductively couple plasma) device (as shown in Figure 4A) or a radio frequency carrier self-bias device (RF substrate bias device) (as shown in Figure 4B) is used to generate electric current slurry to oxidize the silicon film to form a silicon dioxide film.

[矽層的形成] [Formation of silicon layer]

請參閱圖2、3所示,矽層的形成方法包括:(1)將基材10置於晶圓固定器載台上,傳送至預抽腔室80中,並抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將基材10由預抽腔室80傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,承載著基材10的射頻載台自偏壓裝置93移動至濺鍍陰極(靶材92)前方,以直流濺鍍或射頻濺鍍的方式,於基材10上濺鍍沉積厚度為100奈米至300奈米的矽層。製程參數包括:晶圓保持器的移動速率為50毫米/分鐘至3000毫米/分鐘,射頻濺鍍的輸入功率為1.0千瓦至2.0千瓦。 Please refer to Fig. 2, shown in 3, the forming method of silicon layer comprises: (1) base material 10 is placed on the wafer holder stage, is transported in the pre-pumping chamber 80, and vacuumizes pre-pumping chamber The pressure in 80 is lower than 1×10 -3 Torr. (2) The substrate 10 is transferred from the pre-extraction chamber 80 to the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) Under an argon atmosphere of 3×10 -3 Torr, the radio frequency stage carrying the substrate 10 moves from the bias device 93 to the front of the sputtering cathode (target 92 ), and performs DC sputtering or radio frequency sputtering A silicon layer with a thickness of 100 nm to 300 nm is deposited on the substrate 10 by sputtering. Process parameters include: wafer holder movement rate from 50 mm/min to 3000 mm/min, RF sputtering input power from 1.0 kW to 2.0 kW.

[二氧化矽層的形成] [Formation of silicon dioxide layer]

在本發明中,二氧化矽層是經奈米濺鍍與電漿微氧化程序形成。請參閱圖2、3所示,(1)將基材10置於射頻載台自偏壓裝置93上,傳送至預抽腔室80中,並抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將基材10由預抽腔室80傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,承載著基材10的晶圓保持器移動至濺鍍陰極(靶材92)前方,以直流濺鍍或射頻濺鍍的方式,於基材10上沉積厚度為2奈米的矽薄膜。製程參數包括:晶圓保持器的移動速率為50毫米/分鐘至3000毫米/分鐘,射頻濺鍍的輸入功率為0.5千瓦至2.0千瓦。 In the present invention, the silicon dioxide layer is formed by nano-sputtering and plasma micro-oxidation. Please refer to Fig. 2, shown in 3, (1) base material 10 is placed on the radio frequency carrier self-biasing device 93, is sent in the pre-pumping chamber 80, and vacuumizes and makes the pressure in the pre-pumping chamber 80 low at 1×10 -3 torr. (2) The substrate 10 is transferred from the pre-extraction chamber 80 to the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) Under an argon atmosphere of 3×10 -3 Torr, the wafer holder carrying the substrate 10 is moved to the front of the sputtering cathode (target 92 ), and is sputtered by DC sputtering or RF sputtering. A silicon thin film with a thickness of 2 nm is deposited on the substrate 10 . Process parameters include: wafer holder movement rate from 50 mm/min to 3000 mm/min, RF sputtering input power from 0.5 kW to 2.0 kW.

於第一操作條件中,在濺鍍厚度為2奈米的矽薄膜之後,將基材10移動至射頻觸發感應偶合電漿設備91,射頻觸發感應偶合電漿設備91內的基礎壓力維持在8×10-6托。射頻觸發感應偶合電漿設備的輸入功率為300瓦至1000瓦,並以13.56MHz的頻率通過射頻線圈產生電漿。電漿氣體是包含氬氣與氧氣的混合氣體,工作壓力控制為0.001托至0.1托。為了將矽薄膜氧化為二氧化矽薄膜,基材10於射頻觸發感應偶合電漿設備中的處理時間為2分鐘至5分鐘。 In the first operating condition, after sputtering a silicon thin film with a thickness of 2 nm, the substrate 10 was moved to the RF-TICP device 91, and the base pressure in the RF-TICP device 91 was maintained at 8 ×10 -6 torr. The input power of RF-triggered inductively coupled plasma equipment is 300W to 1000W, and the plasma is generated by RF coil at a frequency of 13.56MHz. The plasma gas is a mixed gas containing argon and oxygen, and the working pressure is controlled at 0.001 Torr to 0.1 Torr. In order to oxidize the silicon film into a silicon dioxide film, the processing time of the substrate 10 in the radio frequency triggered inductively coupled plasma device is 2 minutes to 5 minutes.

於第二操作條件中,在濺鍍有厚度為2奈米的矽薄膜之後,將基材10移動至射頻載台自偏壓裝置93,頻載台自偏壓裝置93內的基礎壓力維持在8×10-6托。射頻電漿輸入功率為500瓦至1500瓦,並以13.56MHz的頻率通過射頻電源產生電漿。電漿氣體是包含氬氣與氧氣的混合氣體,工作壓力控制為0.005托至0.1托。為了將矽薄膜氧化為二氧化矽薄膜,基材10於射頻載台自偏壓裝置93中的處理時間為2分鐘至5分鐘。 In the second operating condition, after sputtering a silicon thin film with a thickness of 2 nanometers, the substrate 10 is moved to the RF stage self-bias device 93, and the base pressure in the frequency stage self-bias device 93 is maintained at 8 x 10 -6 torr. The input power of the radio frequency plasma is 500 watts to 1500 watts, and the plasma is generated by the radio frequency power supply at a frequency of 13.56 MHz. The plasma gas is a mixed gas containing argon and oxygen, and the working pressure is controlled at 0.005 Torr to 0.1 Torr. In order to oxidize the silicon film into a silicon dioxide film, the processing time of the substrate 10 in the RF stage self-biasing device 93 is 2 minutes to 5 minutes.

無論是第一操作條件或第二操作條件,經電漿微氧化程序後,厚度為2奈米的矽薄膜,可被氧化成厚度約為4奈米的二氧化矽薄膜。經由重 複上述步驟,可堆疊多層二氧化矽薄膜,以形成特定厚度的二氧化矽層。舉例來說,若要形成厚度為100奈米的二氧化矽層,可依據上述第一操作條件或第二操作條件,重複上述先形成厚度為2奈米的矽薄膜,再氧化形成4奈米的二氧化矽薄膜的步驟25次。若二氧化矽層的預期厚度非4奈米的整數倍,例如:102奈米(需重複上述步驟25.5次),則可根據線性關係調整輸入功率,在其中一特定步驟中,先形成厚度為1奈米的矽薄膜,再氧化形成厚度為2奈米的二氧化矽薄膜,以使得二氧化矽層具有特定的預期厚度。通常會將特定步驟當作整個程序的最後一步驟。 Regardless of the first operating condition or the second operating condition, after the plasma micro-oxidation process, a silicon film with a thickness of 2 nm can be oxidized into a silicon dioxide film with a thickness of about 4 nm. via heavy By repeating the above steps, multiple layers of silicon dioxide films can be stacked to form a silicon dioxide layer with a specific thickness. For example, if a silicon dioxide layer with a thickness of 100 nanometers is to be formed, the above-mentioned first operating condition or second operating condition can be used to repeat the above-mentioned formation of a silicon film with a thickness of 2 nanometers, and then oxidation to form a 4-nanometer silicon dioxide layer. Step 25 of the SiO2 thin film. If the expected thickness of the silicon dioxide layer is not an integral multiple of 4 nanometers, for example: 102 nanometers (the above steps need to be repeated 25.5 times), the input power can be adjusted according to the linear relationship. In one of the specific steps, a layer with a thickness of A 1 nm silicon film is oxidized to form a 2 nm thick silicon dioxide film, so that the silicon dioxide layer has a specific expected thickness. Often a specific step is considered the last step in the overall procedure.

如前述內容,形成厚度為100奈米的二氧化矽層,相當於重複上述步驟25次。形成厚度為102奈米二氧化矽層,相當於重複上述步驟25次,再進行一次特定步驟。 As mentioned above, forming a silicon dioxide layer with a thickness of 100 nm is equivalent to repeating the above steps 25 times. Forming a silicon dioxide layer with a thickness of 102 nm is equivalent to repeating the above steps 25 times, and then performing a specific step.

在本發明中,通過奈米濺鍍微氧化程序,可精細控制每一層二氧化矽薄膜的厚度,以及二氧化矽薄膜在c軸上的表面粗糙度。在一示範實施例中,厚度為200奈米的二氧化矽層的厚度變異性以及c軸上的表面粗糙度皆小於2奈米,甚至可小於1.5奈米(如圖5A所示)。相較之下,若以傳統反應濺鍍(reactive sputtering)的方式,在氬氣與氧氣的混合氣氛下,以單一步驟濺鍍形成厚度為200奈米的二氧化矽層,則二氧化矽層在c軸上的表面粗糙度會高達15奈米至20奈米(如圖5B所示)。 In the present invention, the thickness of each silicon dioxide film and the surface roughness of the silicon dioxide film on the c-axis can be finely controlled through the micro-oxidation procedure of nanometer sputtering. In an exemplary embodiment, the thickness variability of the silicon dioxide layer with a thickness of 200 nm and the surface roughness on the c-axis are both less than 2 nm, even less than 1.5 nm (as shown in FIG. 5A ). In contrast, if a silicon dioxide layer with a thickness of 200 nm is formed by sputtering in a single step under a mixed atmosphere of argon and oxygen in the traditional reactive sputtering method, the silicon dioxide layer The surface roughness on the c-axis can be as high as 15 nm to 20 nm (as shown in FIG. 5B ).

請參表1所示,為了證實本發明的製造方法,可精確控制二氧化矽層的厚度,根據上述步驟(第二操作條件),形成樣品1與樣品2的二氧化矽層。具體來說,先濺鍍沉積2奈米的非晶態矽薄膜,再以600瓦的氧電漿氧化形成二氧化矽薄膜,經重複堆疊之後,可獲得樣品1與樣品2的二氧化矽層。表1中列出二氧化矽層的厚度,以及使用表面原子力顯微鏡(Atomic force microscope,AFM)測量出二氧化矽層表面的粗糙度。 Please refer to Table 1. In order to prove that the manufacturing method of the present invention can precisely control the thickness of the silicon dioxide layer, the silicon dioxide layers of sample 1 and sample 2 were formed according to the above steps (second operating conditions). Specifically, a 2-nanometer amorphous silicon film was first deposited by sputtering, and then oxidized with a 600-watt oxygen plasma to form a silicon dioxide film. After repeated stacking, the silicon dioxide layers of samples 1 and 2 were obtained. . The thickness of the silicon dioxide layer is listed in Table 1, and the surface roughness of the silicon dioxide layer is measured using a surface atomic force microscope (AFM).

Figure 111131970-A0305-02-0014-1
Figure 111131970-A0305-02-0014-1

由表1的結果可得知,二氧化矽層表面的算術平均粗糙度(Ra)小於0.2奈米(較佳為小於0.12奈米),二氧化矽層表面的均方根粗糙度(Rq)小於0.2奈米(較佳為小於0.15奈米),二氧化矽層表面的平均峰谷深度(Z)小於1.5奈米(較佳為小於1.3奈米)。 As can be seen from the results in Table 1, the arithmetic mean roughness (Ra) of the silicon dioxide layer surface is less than 0.2 nanometers (preferably less than 0.12 nanometers), and the root mean square roughness (Rq) of the silicon dioxide layer surface less than 0.2 nm (preferably less than 0.15 nm), and the average peak-to-valley depth (Z) of the surface of the silicon dioxide layer is less than 1.5 nm (preferably less than 1.3 nm).

[1550奈米的垂直共振腔面射型雷射中下布拉格反射鏡的形成] [Formation of lower Bragg mirror in 1550nm vertical cavity surface-emitting laser]

請參圖2所示,(1)將基材置於晶圓固定器載台上,傳送至預抽腔室80中,並抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將基材由預抽腔室80傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,以直流濺鍍或射頻濺鍍的方式,於基材上濺鍍沉積厚度為80奈米的鋁層。 Please refer to FIG. 2, (1) place the substrate on the wafer holder stage, transfer it to the pre-pumping chamber 80, and evacuate the pressure in the pre-pumping chamber 80 to be lower than 1×10 − 3 pallets. (2) The substrate is transferred from the pre-extraction chamber 80 to the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) Sputtering and depositing an aluminum layer with a thickness of 80 nm on the substrate by DC sputtering or radio frequency sputtering under an argon atmosphere of 3×10 −3 Torr.

請參圖6A所示,本發明的下布拉格反射鏡20可具有如圖6A所示的結構設計。依據形成於鋁層(反射金屬層23)上的順序而言,第一組矽層21與二氧化矽層22的厚度分別為173.3奈米與270奈米,第二組矽層21與二氧化矽層22的厚度分別為98.2奈米與270.4奈米,第三組矽層21與二氧化矽層22的厚度分別為295.2奈米與269.8奈米,第四組矽層21與二氧化矽層22的厚度分別為98.4奈米與269.9奈米,最後,於最上層的二氧化矽層22上再形成厚度為98.4奈米的矽層。本發明中各層體的表面平滑,具有良好的品質。請參閱圖6B所示,圖6B為下布拉格反射鏡的穿透式(cross sectional)電子顯微鏡圖。圖6B中的深色層體對應於矽層21,淺色層體對應於二氧化矽層22,花紋層體對應 於鋁層(反射金屬層23)。 Referring to FIG. 6A , the lower Bragg reflector 20 of the present invention may have a structural design as shown in FIG. 6A . According to the sequence formed on the aluminum layer (reflective metal layer 23), the thicknesses of the first silicon layer 21 and silicon dioxide layer 22 are 173.3 nm and 270 nm respectively, and the second group of silicon layer 21 and silicon dioxide The thicknesses of the silicon layer 22 are 98.2 nm and 270.4 nm respectively, the thicknesses of the third group of silicon layer 21 and silicon dioxide layer 22 are respectively 295.2 nm and 269.8 nm, the fourth group of silicon layer 21 and silicon dioxide layer The thicknesses of 22 are respectively 98.4 nm and 269.9 nm. Finally, a silicon layer with a thickness of 98.4 nm is formed on the uppermost silicon dioxide layer 22 . The surface of each layer body in the present invention is smooth and has good quality. Please refer to FIG. 6B , which is a cross sectional electron microscope image of the lower Bragg reflector. The dark-colored layer in Figure 6B corresponds to the silicon layer 21, the light-colored layer corresponds to the silicon dioxide layer 22, and the patterned layer corresponds to on the aluminum layer (reflective metal layer 23).

請參閱圖7所示,圖7為使用反射率量測儀(廠牌Hitachi,型號U4100)測量下布拉格反射鏡的光譜反射率曲線。根據上述結構設計,本發明的下布拉格反射鏡20,在波長為1450奈米至1650奈米的範圍中的光線的平均反射率為100.06%,可應用於1550奈米的垂直共振腔面射型雷射。 Please refer to FIG. 7 . FIG. 7 is a spectral reflectance curve of the lower Bragg reflector measured by a reflectance measuring instrument (Hitachi, model U4100). According to the above-mentioned structural design, the lower Bragg reflector 20 of the present invention has an average reflectance of 100.06% of light in the wavelength range from 1450 nm to 1650 nm, and can be applied to a vertical resonant cavity surface-emitting type with a wavelength of 1550 nm. laser.

前述布拉格反射鏡的總厚度約為2000奈米。通過奈米濺鍍與電漿微氧化程序,本發明可精密控制二氧化矽層在c-軸的表面粗糙度。布拉格反射鏡在原子力顯微鏡下的算術平均粗糙度(Ra)為0.25奈米,均方根粗糙度(Rq)為0.32奈米,平均峰谷深度(Z)為3.10奈米。 The total thickness of the aforementioned Bragg mirrors is about 2000 nm. Through nano-sputtering and plasma micro-oxidation procedures, the present invention can precisely control the surface roughness of the silicon dioxide layer on the c-axis. The arithmetic average roughness (Ra) of the Bragg reflector under the atomic force microscope is 0.25 nm, the root mean square roughness (Rq) is 0.32 nm, and the average peak-to-valley depth (Z) is 3.10 nm.

本發明提供一種布拉格反射鏡的製造方法,其可應用於1550奈米垂直共振腔面射型雷射中的下布拉格反射鏡20或上布拉格反射鏡40。下布拉格反射鏡20中的光學多層膜是經由奈米濺鍍與電漿微氧化程序所製成,下布拉格反射鏡20的反射率可高達99.9%至100%。在本發明中,適用的基材10為矽晶圓、砷化鎵晶圓、碳化矽晶圓或玻璃基板。請參圖6A所示,形成下布拉格反射鏡20的製造方法包括:於基材10上形成反射金屬層23(鋁層),於反射金屬層23上形成非晶態矽層21,通過奈米濺鍍與電漿微氧化程序形成二氧化矽層22,並重複上述步驟,形成交替堆疊的非晶態矽層21(高折射率)與二氧化矽層22(低折射率),以達到預期的反射率。 The present invention provides a method for manufacturing a Bragg reflector, which can be applied to the lower Bragg reflector 20 or the upper Bragg reflector 40 in a 1550nm vertical resonant cavity surface-emitting laser. The optical multilayer film in the lower Bragg reflector 20 is made by nano-sputtering and plasma micro-oxidation, and the reflectivity of the lower Bragg reflector 20 can be as high as 99.9% to 100%. In the present invention, the applicable substrate 10 is a silicon wafer, a gallium arsenide wafer, a silicon carbide wafer or a glass substrate. Please refer to FIG. 6A , the manufacturing method for forming the lower Bragg reflector 20 includes: forming a reflective metal layer 23 (aluminum layer) on the substrate 10, forming an amorphous silicon layer 21 on the reflective metal layer 23, and The silicon dioxide layer 22 is formed by sputtering and plasma micro-oxidation, and the above steps are repeated to form alternately stacked amorphous silicon layers 21 (high refractive index) and silicon dioxide layers 22 (low refractive index) to achieve the desired reflectivity.

[1550奈米垂直共腔面射型雷射中,上布拉格反射鏡的形成] [Formation of upper Bragg mirror in 1550nm vertical common cavity surface-emitting laser]

本發明的布拉格反射鏡可應用於1550奈米垂直共振腔面射型雷射中的下布拉格反射鏡20或上布拉格反射鏡40。上布拉格反射鏡40中的光學多層膜,是通過奈米濺鍍與電漿微氧化程序所形成。上布拉格反射鏡40的反射率可高達98.0%至99.0%。請參閱圖8所示,本發明的上布拉格反射鏡40適合形成於第二導電型半導體層(P型砷化鎵)33上。上布拉格反射鏡40的製造方 法包括(參閱圖8):於第二導電型半導體層(P型砷化鎵)33上形成矽層41,以及通過奈米濺鍍與電漿微氧化程序形成二氧化矽層42,並重複上述步驟,形成交替堆疊的非晶態矽層41(高折射率)與二氧化矽層42(低折射率),以達到預期的反射率。 The Bragg reflector of the present invention can be applied to the lower Bragg reflector 20 or the upper Bragg reflector 40 in a 1550nm vertical resonant cavity surface-emitting laser. The optical multilayer film in the upper Bragg reflector 40 is formed by nano-sputtering and plasma micro-oxidation. The reflectivity of the upper Bragg reflector 40 can be as high as 98.0% to 99.0%. Referring to FIG. 8 , the upper Bragg reflector 40 of the present invention is suitable to be formed on the second conductive type semiconductor layer (P-type GaAs) 33 . Manufacture of the upper Bragg reflector 40 The method includes (see FIG. 8 ): forming a silicon layer 41 on the second conductive type semiconductor layer (P-type gallium arsenide) 33, and forming a silicon dioxide layer 42 through nano-sputtering and plasma micro-oxidation procedures, and repeating In the above steps, alternately stacked amorphous silicon layers 41 (high refractive index) and silicon dioxide layers 42 (low refractive index) are formed to achieve desired reflectivity.

請參閱圖2、4B所示,上布拉格反射鏡的製造方法包括:(1)將P型砷化鎵層置於一射頻載台自偏壓裝置93上,傳送至預抽腔室80中,並抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將P型砷化鎵層傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,根據第一操作條件或第二操作條件,以奈米濺鍍與電漿微氧化程序濺鍍形成二氧化矽層。第一操作條件與第二操作條件的具體操作條件如前所述,於此不再贅述。 Please refer to FIGS. 2 and 4B. The method for manufacturing the upper Bragg reflector includes: (1) placing the P-type gallium arsenide layer on a self-biasing device 93 of a radio frequency carrier, and transferring it to the pre-pumping chamber 80, And evacuate to make the pressure in the pre-pumping chamber 80 lower than 1×10 −3 Torr. (2) The P-type GaAs layer is delivered to the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) In an argon atmosphere of 3×10 -3 Torr, according to the first operating condition or the second operating condition, the silicon dioxide layer is formed by sputtering with nano-sputtering and plasma micro-oxidation procedures. The specific operating conditions of the first operating condition and the second operating condition are as described above, and will not be repeated here.

請參閱圖8所示,本發明的上布拉格反射鏡40可具有如圖8所示的結構設計。依據形成於第二導電型半導體層33(P型砷化鎵層)上的順序而言,第一組二氧化矽層42與矽層41的厚度分別為543.9奈米與100.3奈米,第二組二氧化矽層42與矽層41的厚度分別為271.7奈米與100.3奈米,第三組二氧化矽層42與矽層41的厚度分別為272.2奈米與100.1奈米,最後,於最上層的矽層41上形成厚度為272奈米的二氧化矽層42。 Please refer to FIG. 8 , the upper Bragg reflector 40 of the present invention may have a structural design as shown in FIG. 8 . According to the sequence formed on the second conductivity type semiconductor layer 33 (P-type gallium arsenide layer), the thicknesses of the first group of silicon dioxide layer 42 and silicon layer 41 are 543.9 nm and 100.3 nm respectively, and the thicknesses of the second group The thicknesses of the silicon dioxide layer 42 and the silicon layer 41 in the first group are 271.7 nanometers and 100.3 nanometers respectively, the thicknesses of the silicon dioxide layer 42 and the silicon layer 41 in the third group are 272.2 nanometers and 100.1 nanometers respectively, and finally, at the last A silicon dioxide layer 42 with a thickness of 272 nm is formed on the upper silicon layer 41 .

根據上述結構設計,本發明的上布拉格反射鏡40,在波長為1450奈米至1650奈米的範圍中的光線的平均反射率為98.8%,而可應用於1550奈米的垂直共腔面射型雷射。 According to the above-mentioned structural design, the upper Bragg reflector 40 of the present invention has an average reflectance of 98.8% in the wavelength range of 1450 nm to 1650 nm, and can be applied to the vertical common cavity surface emission of 1550 nm. type laser.

[於1550奈米垂直共腔面射型雷射中的下布拉格反射鏡上,形成耐火金屬氧化物薄層(例如:五氧化二鈮),以作為熱擴散阻隔層] [A thin layer of refractory metal oxide (e.g. niobium pentoxide) is formed on the lower Bragg mirror in a 1550nm vertical common cavity surface-emitting laser as a thermal diffusion barrier]

本發明的布拉格反射鏡可應用於1550奈米垂直共振腔面射型雷射中的下布拉格反射鏡20或上布拉格反射鏡40。下布拉格反射鏡20中的光學 多層膜,是以奈米濺鍍與電漿微氧化程序所形成。下布拉格反射鏡20的光學反射率可高達99.9%至100%。接著,以有機金屬化學氣相沉積法(metal organic chemical vapor deposition,MOCVD)於下布拉格反射鏡20上依序形成N型砷化鎵層(第一導電型半導體層31)、多重量子井(Multiple Quantum Well,MQW)(多重量子阱活性發光結構層30)與P型砷化鎵層(第二導電型半導體層33)。另一方面,傳統有機金屬化學氣相沉積法的製程溫度高達800℃,在高溫下,下布拉格反射鏡20中的矽原子,有可能擴散至N型砷化鎵層(第一導電型半導體層31)中。為了避免矽原子的擴散,可於下布拉格反射鏡20中最上層的矽層21上,設置耐火的金屬氧化物薄層(例如:五氧化二鈮層),以作為熱擴散阻隔層24,如圖9所示。熱擴散阻隔層24的厚度設計,需符合光干涉原理,並維持下布拉格反射鏡20具有高反射率(99.9%至100%)的特性。 The Bragg reflector of the present invention can be applied to the lower Bragg reflector 20 or the upper Bragg reflector 40 in a 1550nm vertical resonant cavity surface-emitting laser. Optics in the lower Bragg mirror 20 The multilayer film is formed by nano-sputtering and plasma micro-oxidation. The optical reflectivity of the lower Bragg reflector 20 can be as high as 99.9% to 100%. Next, an N-type gallium arsenide layer (first conductive type semiconductor layer 31 ), multiple quantum wells (Multiple Quantum Well, MQW) (multiple quantum well active light-emitting structure layer 30) and P-type gallium arsenide layer (second conductivity type semiconductor layer 33). On the other hand, the process temperature of the traditional metalorganic chemical vapor deposition method is as high as 800°C. At high temperature, the silicon atoms in the lower Bragg mirror 20 may diffuse into the N-type gallium arsenide layer (the first conductive type semiconductor layer 31). In order to avoid the diffusion of silicon atoms, a refractory metal oxide thin layer (for example: niobium pentoxide layer) can be set on the uppermost silicon layer 21 in the lower Bragg reflector 20 as a thermal diffusion barrier layer 24, such as Figure 9 shows. The thickness design of the thermal diffusion barrier layer 24 must conform to the principle of light interference and maintain the high reflectivity (99.9% to 100%) of the lower Bragg reflector 20 .

請參閱圖2所示,下布拉格反射鏡的製造方法包括:(1)將基材置於射頻載台自偏壓裝置93上,傳送至預抽腔室80中,並抽真空使預抽腔室80內的壓力低於1×10-3托。(2)將基材10由預抽腔室80傳送至濺鍍腔室90中,濺鍍腔室90中的壓力維持在5×10-6托。(3)在3×10-3托的氬氣氣氛下,以直流濺鍍或射頻濺鍍的方式,於基材上濺鍍沉積厚度為60奈米的鉬層,接著,於鉬層上濺鍍沉積厚度為20奈米的銀層。並且,依據前述步驟,於銀層(反射金屬層23)上形成交替堆疊的矽層21與二氧化矽層22。 Please refer to shown in Fig. 2, the manufacturing method of lower Bragg reflector comprises: (1) base material is placed on the radio frequency stage self-biasing device 93, is sent in the pre-pumping chamber 80, and vacuumizes pre-pumping chamber The pressure in chamber 80 is less than 1 x 10 -3 Torr. (2) The substrate 10 is transferred from the pre-extraction chamber 80 to the sputtering chamber 90, and the pressure in the sputtering chamber 90 is maintained at 5×10 −6 Torr. (3) Under an argon atmosphere of 3× 10-3 Torr, sputter-deposit a molybdenum layer with a thickness of 60 nm on the substrate by means of DC sputtering or radio-frequency sputtering, and then sputter on the molybdenum layer Plating deposits a silver layer with a thickness of 20 nm. And, according to the aforementioned steps, alternately stacked silicon layers 21 and silicon dioxide layers 22 are formed on the silver layer (the reflective metal layer 23 ).

請參閱圖9所示,本發明的下布拉格反射鏡20可具有如圖9所示的結構設計。依據形成於銀層(反射金屬層23)上的順序而言,第一組矽層21與二氧化矽層22的厚度分別為173.3奈米與270奈米,第二組矽層21與二氧化矽層22的厚度分別為98.4奈米與269.9奈米,第三組矽層21與二氧化矽層22的厚度分別為295.2奈米與269.9奈米,第四組矽層21與二氧化矽層22的厚度分別為98.5奈米與269.3奈米,最後,於最上層的二氧化矽層22上依序形成厚度為 89.4奈米的矽層21以及厚度為20奈米的五氧化二鈮層。 Please refer to FIG. 9 , the lower Bragg reflector 20 of the present invention may have a structural design as shown in FIG. 9 . According to the order formed on the silver layer (reflective metal layer 23), the thicknesses of the first group of silicon layer 21 and silicon dioxide layer 22 are 173.3 nm and 270 nm respectively, and the thicknesses of the second group of silicon layer 21 and silicon dioxide The thicknesses of the silicon layer 22 are 98.4 nm and 269.9 nm respectively, the thicknesses of the third group of silicon layer 21 and silicon dioxide layer 22 are respectively 295.2 nm and 269.9 nm, and the thicknesses of the fourth group of silicon layer 21 and silicon dioxide layer 22 have a thickness of 98.5 nanometers and 269.3 nanometers respectively. Finally, on the uppermost silicon dioxide layer 22, a thickness of 89.4 nm silicon layer 21 and 20 nm thick niobium pentoxide layer.

請參閱圖10所示,根據上述結構設計,本發明的下布拉格反射鏡20,在波長為1450奈米至1650奈米的範圍的光線中的平均反射率為100.06%,可應用於1550奈米的垂直共腔面射型雷射。 Please refer to shown in Fig. 10, according to the above-mentioned structural design, the lower Bragg reflector 20 of the present invention has an average reflectance of 100.06% in the light in the wavelength range of 1450 nm to 1650 nm, and can be applied to 1550 nm vertical common-cavity surface-emitting laser.

前述下布拉格反射鏡20的總厚度約為2000奈米。本發明通過奈米濺鍍與電漿微氧化程序,本發明可精密控制二氧化矽層在c-軸的表面粗糙度。具有熱擴散阻隔層24的下布拉格反射鏡20在原子力顯微鏡下的算術平均粗糙度(Ra)為0.18奈米,均方根粗糙度(Rq)為0.23奈米,平均峰谷深度(Z)為2.00奈米。 The total thickness of the aforementioned lower Bragg reflector 20 is about 2000 nm. The present invention can precisely control the surface roughness of the silicon dioxide layer on the c-axis through nano-sputtering and plasma micro-oxidation procedures. The arithmetic mean roughness (Ra) of the lower Bragg reflector 20 with the thermal diffusion barrier layer 24 under the atomic force microscope is 0.18 nanometers, the root mean square roughness (Rq) is 0.23 nanometers, and the average peak-to-valley depth (Z) is 2.00 nm.

[實施例的有益效果] [Advantageous Effects of Embodiment]

本發明的其中一有益效果在於,本發明所提供的布拉格反射鏡的製造方法,其能通過“於銀層上形成重複交替堆疊的矽層與二氧化矽層”以及“二氧化矽層是經奈米濺鍍與電漿微氧化程序所形成”的技術方案,以提升布拉格反射鏡的反射率,進而達到提升雷射裝置發光效率的效果。 One of the beneficial effects of the present invention is that the manufacturing method of the Bragg reflector provided by the present invention can be achieved by "forming a silicon layer and a silicon dioxide layer that are alternately stacked repeatedly on the silver layer" and "the silicon dioxide layer is Nano-sputtering and plasma micro-oxidation procedures” to improve the reflectivity of the Bragg mirror, thereby achieving the effect of improving the luminous efficiency of the laser device.

進一步來說,本發明通過濺鍍以及奈米濺鍍與電漿微氧化程序來形成二氧化矽層或矽層,可精確控制二氧化矽層或矽層的厚度,並使二氧化矽層或矽層的表面具有高平坦度的特性。如此一來,可提升布拉格反射鏡的反射率高達99.9%。 Further, the present invention forms a silicon dioxide layer or silicon layer through sputtering, nano-sputtering and plasma micro-oxidation procedures, which can precisely control the thickness of the silicon dioxide layer or silicon layer, and make the silicon dioxide layer or The surface of the silicon layer has the characteristic of high flatness. In this way, the reflectivity of the Bragg mirror can be increased up to 99.9%.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

10:基材 10: Substrate

20:下布拉格反射鏡 20: Lower Bragg reflector

21:矽層 21: Silicon layer

22:二氧化矽層 22: Silicon dioxide layer

23:反射金屬層 23: reflective metal layer

Claims (8)

一種布拉格反射鏡的製造方法,所述布拉格反射鏡是應用於1550奈米的垂直共振腔面射型雷射中並作為上布拉格反射鏡或下布拉格反射鏡,所述布拉格反射鏡的製造方法包括:於一基材上形成一光學多層膜,所述基材是一矽晶圓、一砷化鎵晶圓、一碳化矽晶圓或一玻璃基板;其中,應用於1550奈米的垂直共振腔面射型雷射中作為所述下布拉格反射鏡時,形成所述光學多層膜的步驟包括:於所述基材上形成一反射金屬層,於所述反射金屬層上形成交替堆疊的矽層與二氧化矽層,所述二氧化矽層是經一奈米濺鍍與電漿微氧化程序所形成;及其中,應用於1550奈米的所述垂直共振腔面射型雷射中作為所述下布拉格反射鏡時,所述光學多層膜上形成有一熱擴散阻隔層,所述擴散阻隔層是經一階段濺鍍微氧化程序所形成,所述下布拉格反射鏡的反射率為99.9%至100%。 A method for manufacturing a Bragg reflector, the Bragg reflector is applied to a 1550-nanometer vertical resonant cavity surface-emitting laser and used as an upper Bragg reflector or a lower Bragg reflector, and the method for manufacturing the Bragg reflector includes : forming an optical multilayer film on a substrate, the substrate being a silicon wafer, a gallium arsenide wafer, a silicon carbide wafer or a glass substrate; wherein, it is applied to a vertical resonant cavity of 1550 nm When the surface-emitting laser is used as the lower Bragg reflector, the step of forming the optical multilayer film includes: forming a reflective metal layer on the substrate, and forming alternately stacked silicon layers on the reflective metal layer and a silicon dioxide layer, the silicon dioxide layer is formed by a nano-sputtering and plasma micro-oxidation process; When the lower Bragg reflector is described, a thermal diffusion barrier layer is formed on the optical multilayer film, and the diffusion barrier layer is formed through a one-stage sputtering micro-oxidation process, and the reflectivity of the lower Bragg reflector is 99.9% to 100%. 如請求項1所述的製造方法,其中,應用於1550奈米的所述垂直共振腔面射型雷射中作為所述下布拉格反射鏡時,依據形成於所述基材上的順序而言,所述光學多層膜包括:厚度為60奈米的一鉬層、厚度為20奈米的一銀層、厚度為173.3奈米的所述矽層、厚度為270奈米的所述二氧化矽層、厚度為98.2奈米的所述矽層、厚度為270.4奈米的所述二氧化矽層、厚度為295.2奈米的所述矽層、厚度為269.8奈米的所述二氧化矽層、厚度為98.4奈米的所述矽層、厚度為269.9奈米的所述二氧化矽層以及厚度為98.4奈米的所述矽層,所述光學多層膜中各層的允許厚度誤差值小於±1%。 The manufacturing method as described in Claim 1, wherein, when applied to the vertical resonant cavity surface-emitting laser of 1550 nm as the lower Bragg reflector, according to the order formed on the substrate , the optical multilayer film comprises: a molybdenum layer with a thickness of 60 nm, a silver layer with a thickness of 20 nm, a silicon layer with a thickness of 173.3 nm, and a silicon dioxide layer with a thickness of 270 nm. layer, said silicon layer with a thickness of 98.2 nm, said silicon dioxide layer with a thickness of 270.4 nm, said silicon layer with a thickness of 295.2 nm, said silicon dioxide layer with a thickness of 269.8 nm, The silicon layer with a thickness of 98.4 nm, the silicon dioxide layer with a thickness of 269.9 nm, and the silicon layer with a thickness of 98.4 nm, the allowable thickness error of each layer in the optical multilayer film is less than ±1 %. 如請求項1所述的製造方法,其中,應用於1550奈米的所述垂直共振腔面射型雷射中作為所述上布拉格反射鏡時,所述布 拉格反射鏡的反射率為96%至99%。 The manufacturing method according to claim 1, wherein, when applied to the vertical resonant cavity surface-emitting laser of 1550 nm as the upper Bragg reflector, the cloth The reflectivity of the lager mirror is 96% to 99%. 如請求項1所述的製造方法,其中,應用於1550奈米的所述垂直共振腔面射型雷射中作為所述上布拉格反射鏡時,所述基材是砷化鎵晶圓,依據形成於所述基材上的順序而言,所述光學多層膜包括:厚度為543.9奈米的所述二氧化矽層、厚度為100.3奈米的所述矽層、厚度為271.7奈米的所述二氧化矽層、厚度為100.3奈米的所述矽層、厚度為272.2奈米的所述二氧化矽層、厚度為100.1奈米的所述矽層以及厚度為272奈米的所述二氧化矽層,所述光學多層膜中各層的允許厚度誤差值小於±1%。 The manufacturing method as described in Claim 1, wherein, when applied to the 1550nm vertical cavity surface-emitting laser as the upper Bragg reflector, the substrate is a gallium arsenide wafer, according to In terms of the order formed on the substrate, the optical multilayer film includes: the silicon dioxide layer with a thickness of 543.9 nm, the silicon layer with a thickness of 100.3 nm, and the silicon dioxide layer with a thickness of 271.7 nm. The silicon dioxide layer, the silicon layer with a thickness of 100.3 nm, the silicon dioxide layer with a thickness of 272.2 nm, the silicon layer with a thickness of 100.1 nm, and the two layers with a thickness of 272 nm For the silicon oxide layer, the allowable thickness error of each layer in the optical multilayer film is less than ±1%. 如請求項1所述的製造方法,其中,應用於1550奈米的所述垂直共振腔面射型雷射中作為所述下布拉格反射鏡時,依據形成於所述基材上的順序而言,所述光學多層膜包括:厚度為60奈米的一鉬層、厚度為20奈米的一銀層、厚度為173.3奈米的所述矽層、厚度為270奈米的所述二氧化矽層、厚度為98.4奈米的所述矽層、厚度為269.9奈米的所述二氧化矽層、厚度為295.2奈米的所述矽層、厚度為269.9奈米的所述二氧化矽層、厚度為98.5奈米的所述矽層、厚度為269.3奈米的所述二氧化矽層、厚度為89.4奈米的所述矽層以及厚度為20奈米的一五氧化二鈮層,所述光學多層膜中各層的允許厚度誤差值小於±1%。 The manufacturing method as described in Claim 1, wherein, when applied to the vertical resonant cavity surface-emitting laser of 1550 nm as the lower Bragg reflector, according to the order formed on the substrate , the optical multilayer film comprises: a molybdenum layer with a thickness of 60 nm, a silver layer with a thickness of 20 nm, a silicon layer with a thickness of 173.3 nm, and a silicon dioxide layer with a thickness of 270 nm. layer, said silicon layer with a thickness of 98.4 nm, said silicon dioxide layer with a thickness of 269.9 nm, said silicon layer with a thickness of 295.2 nm, said silicon dioxide layer with a thickness of 269.9 nm, The silicon layer with a thickness of 98.5 nm, the silicon dioxide layer with a thickness of 269.3 nm, the silicon layer with a thickness of 89.4 nm, and the niobium pentoxide layer with a thickness of 20 nm, the The allowable thickness error of each layer in the optical multilayer film is less than ±1%. 如請求項1所述的製造方法,其中,所述反射金屬層是由單層金屬層或多層金屬層所構成,所述反射金屬層的材料是選自於由下列所構成的群組:鋁、銀及鉬。 The manufacturing method according to claim 1, wherein the reflective metal layer is composed of a single-layer metal layer or a multi-layer metal layer, and the material of the reflective metal layer is selected from the group consisting of: aluminum , silver and molybdenum. 如請求項1所述的製造方法,其中,所述反射金屬層包括一鋁層,所述鋁層的厚度為70奈米至90奈米。 The manufacturing method according to claim 1, wherein the reflective metal layer includes an aluminum layer, and the thickness of the aluminum layer is 70 nm to 90 nm. 如請求項1所述的製造方法,其中,所述反射金屬層包括一鉬 層與一銀層,所述鉬層的厚度為50奈米至70奈米,所述銀層的厚度為10奈米至30奈米。 The manufacturing method according to claim 1, wherein the reflective metal layer comprises a molybdenum layer and a silver layer, the molybdenum layer has a thickness of 50 nm to 70 nm, and the silver layer has a thickness of 10 nm to 30 nm.
TW111131970A 2022-08-25 2022-08-25 Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser TWI804424B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111131970A TWI804424B (en) 2022-08-25 2022-08-25 Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111131970A TWI804424B (en) 2022-08-25 2022-08-25 Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser

Publications (2)

Publication Number Publication Date
TWI804424B true TWI804424B (en) 2023-06-01
TW202410587A TW202410587A (en) 2024-03-01

Family

ID=87803428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111131970A TWI804424B (en) 2022-08-25 2022-08-25 Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser

Country Status (1)

Country Link
TW (1) TWI804424B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200414642A (en) * 2003-01-23 2004-08-01 Univ Nat Chunghsing A vertical-cavity surface emitting laser (VCSEL) and a method for producing the same
US20050243886A1 (en) * 2004-04-30 2005-11-03 Honeywell International Inc. Carrier bonded 1550 nm VCSEL with InP substrate removal
TW201404944A (en) * 2012-07-23 2014-02-01 zu-yin Xiao Manufacturing method for metal oxidizing layer
CN106654860A (en) * 2016-11-09 2017-05-10 北京邮电大学 1.55-micron wavelength vertical-cavity surface-emitting laser emitting laser material structure and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200414642A (en) * 2003-01-23 2004-08-01 Univ Nat Chunghsing A vertical-cavity surface emitting laser (VCSEL) and a method for producing the same
US20050243886A1 (en) * 2004-04-30 2005-11-03 Honeywell International Inc. Carrier bonded 1550 nm VCSEL with InP substrate removal
TW201404944A (en) * 2012-07-23 2014-02-01 zu-yin Xiao Manufacturing method for metal oxidizing layer
CN106654860A (en) * 2016-11-09 2017-05-10 北京邮电大学 1.55-micron wavelength vertical-cavity surface-emitting laser emitting laser material structure and preparation method thereof

Also Published As

Publication number Publication date
TW202410587A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
EP0549167B1 (en) Optical devices with electron-beam evaporated multilayer mirror
KR101388570B1 (en) Antireflection film, method for heating metal film, and heating apparatus
US7555025B2 (en) Semiconductor laser device
EP1326290A2 (en) Method of fabricating semiconductor structures
JPH11284271A (en) Semiconductor laser and method for manufacturing the same
CN110221369B (en) Bragg reflector based on BN (Al) film and preparation method
US11978827B2 (en) Optical device and manufacturing method thereof
TW200929758A (en) Electric excitation surface emitting lasers with transparent electrodes and crack-free AlN/GaN reflector, and the fabrication method thereof
WO2009147853A1 (en) Semiconductor light-emitting element
TWI823150B (en) A semiconductor structure and an application thereof
TWI804424B (en) Design and manufacturing of 1550 nm distributed bragg reflector multiple optical layers for vertical cavity surface emitting laser
US20030035453A1 (en) Method of coating optical device facets with dielectric layer and device made therefrom
KR101272833B1 (en) Optical device having the silicon distributed bragg reflector structure and method for fabricating the same
Zhi et al. Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN
JP2000332355A5 (en)
TWI354419B (en) Semiconductor laser device
US20240146028A1 (en) Method for manufacturing a distributed bragg reflector for 1550 nm vertical-cavity surface-emitting laser
JPH08181384A (en) Surface emitting laser and its forming method
JP2002204027A (en) Surface emitting type semiconductor laser and manufacturing method therefor
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2000036633A (en) Semiconductor laser
JP2003332674A (en) Semiconductor laser element
TWI839113B (en) Surface-emitting laser device with conductive thin film and manufacturing method thereof
JPH0677582A (en) Surface emitting laser on silicon substrate
JP2000164978A (en) Semiconductor laser element