TWI803739B - Heat pipe structure - Google Patents

Heat pipe structure Download PDF

Info

Publication number
TWI803739B
TWI803739B TW109108385A TW109108385A TWI803739B TW I803739 B TWI803739 B TW I803739B TW 109108385 A TW109108385 A TW 109108385A TW 109108385 A TW109108385 A TW 109108385A TW I803739 B TWI803739 B TW I803739B
Authority
TW
Taiwan
Prior art keywords
sleeve
wall
heat
heat pipe
rotating shaft
Prior art date
Application number
TW109108385A
Other languages
Chinese (zh)
Other versions
TW202134583A (en
Inventor
鄭懿倫
楊智凱
江孟龍
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW109108385A priority Critical patent/TWI803739B/en
Publication of TW202134583A publication Critical patent/TW202134583A/en
Application granted granted Critical
Publication of TWI803739B publication Critical patent/TWI803739B/en

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat pipe structure includes a sleeve tube and a shaft. The sleeve tube includes an inner tube and an outer tube. The inner tube and the outer tube form a chamber. The chamber is used for containing a thermally conductive fluid. The thermal conductive fluid is used to absorb the heat generated by a heat source. The shaft connected to the heat source is inserted into the sleeve tube from the outlet end of the sleeve tube to form a shaft structure.

Description

熱管結構heat pipe structure

本發明有關於一種熱管結構。The invention relates to a heat pipe structure.

在傳統的熱管中,具有單層的中空圓直管,經折彎及打扁後,可以藉由錫焊或點膠方式,來搭接熱源或其他的導熱裝置。其他的導熱裝置舉例而言,是散熱片或是銅管。In a traditional heat pipe, there is a single-layer hollow circular straight pipe, which can be soldered or glued to overlap heat sources or other heat conducting devices after being bent and flattened. Other heat conducting devices are, for example, heat sinks or copper tubes.

然而,在傳統熱管與熱源的搭接處,並無法移動及轉動。若需要使用熱管作為散熱模組,則當設置到需要轉動或是滑動的結構時,傳統熱管需要經過額外的轉接結構。然而,這樣的轉接結構將會產生額外的熱阻,進而降低熱傳導的性能,影響到熱管的散熱。However, the traditional heat pipe cannot move or rotate at the overlapping joint of the heat source. If it is necessary to use a heat pipe as a heat dissipation module, when it is installed in a structure that needs to rotate or slide, the traditional heat pipe needs to pass through an additional transfer structure. However, such a transfer structure will generate additional thermal resistance, thereby reducing the performance of heat conduction and affecting the heat dissipation of the heat pipe.

有鑑於此,本發明之一目的在於提出一種解決上述問題的熱管結構。In view of this, an object of the present invention is to provide a heat pipe structure to solve the above problems.

本發明的一態樣揭露一種用以散熱熱源的熱管結構。熱管結構包括套筒與轉軸。套筒包括內管與外管。內管與外管形成腔室。腔室用以容置導熱流體。導熱流體是用以吸收熱源產生的熱。連接熱源的轉軸從套筒的出口端插入套筒內,以形成轉軸結構。An aspect of the present invention discloses a heat pipe structure for dissipating a heat source. The heat pipe structure includes a sleeve and a rotating shaft. The sleeve includes an inner tube and an outer tube. The inner tube and the outer tube form a chamber. The chamber is used for accommodating heat transfer fluid. The heat transfer fluid is used to absorb the heat generated by the heat source. The rotating shaft connected with the heat source is inserted into the sleeve from the outlet end of the sleeve to form a rotating shaft structure.

在一些實施方式中,腔室設置為密封的,以隔離導熱流體與熱源。In some embodiments, the chamber is configured to be sealed to isolate the heat transfer fluid from the heat source.

在本發明的一或多個實施方式中,套筒的內管包括內壁與外壁。內壁位於腔室內以接觸導熱流體。外壁位於腔室外以接觸熱源。In one or more embodiments of the present invention, the inner tube of the sleeve includes an inner wall and an outer wall. An inner wall is positioned within the chamber to contact the heat transfer fluid. The outer wall is positioned outside the chamber to contact the heat source.

在一些實施方式中,外壁上具有外溝槽結構。外溝槽結構從外壁上凹陷。外溝槽結構沿套筒延伸的軸向方向延伸。In some embodiments, the outer wall has an outer groove structure. The outer groove structure is recessed from the outer wall. The outer groove structure extends along the axial direction in which the sleeve extends.

在一些實施方式中,外溝槽結構自套筒的出口端往套筒的內部延伸。In some embodiments, the outer groove structure extends from the outlet end of the sleeve toward the interior of the sleeve.

在一些實施方式中,外溝槽結構在外壁的垂直剖面上的形狀為半圓形。In some embodiments, the shape of the outer groove structure on the vertical section of the outer wall is a semicircle.

在一些實施方式中,熱管結構進一步包括熱介面材料。熱介面材料填充於外壁的外溝槽結構內。In some embodiments, the heat pipe structure further includes a thermal interface material. The thermal interface material is filled in the outer groove structure of the outer wall.

在一些實施方式中,在內壁上具有內溝槽結構。內溝槽結構沿套筒的軸向方向延伸。內溝槽與外溝槽彼此錯位。In some embodiments, there is an inner groove structure on the inner wall. The inner groove structure extends along the axial direction of the sleeve. The inner groove and the outer groove are misaligned with each other.

在一些實施方式中,套筒進一步包括複數個外溝槽結構與複數個內凸起結構。這些外溝槽結構的每一個外溝槽結構從外壁凹陷且沿套筒延伸的軸向方向延伸。這些內凸起結構的每一個內凸起結構從內壁凸出且沿套筒的軸向方向延伸。內壁上的每一個內凸起結構在套筒的徑向方向上對應到一個外壁上的其中一個外溝槽結構。In some embodiments, the sleeve further includes a plurality of outer groove structures and a plurality of inner protrusion structures. Each of these outer groove structures is recessed from the outer wall and extends in an axial direction in which the sleeve extends. Each of the inner raised structures protrudes from the inner wall and extends in the axial direction of the sleeve. Each inner protrusion structure on the inner wall corresponds to one of the outer groove structures on an outer wall in the radial direction of the sleeve.

在一些實施方式中,熱管結構進一步包括複數個熱介面材料。這些熱介面材料分別填充於外壁的多個外溝槽結構內。In some embodiments, the heat pipe structure further includes a plurality of thermal interface materials. These thermal interface materials are respectively filled in a plurality of outer groove structures of the outer wall.

綜上所述,熱管結構的套筒能夠與熱源形成轉軸結構,藉以在熱管結構與熱源的搭接處實現轉動。套筒的內管上可以具有溝槽設計,增加套筒內部導熱流體與套筒的接觸面積,進而提升散熱效果。To sum up, the sleeve of the heat pipe structure can form a rotating shaft structure with the heat source, so as to realize rotation at the overlapping joint between the heat pipe structure and the heat source. The inner tube of the sleeve may have a groove design to increase the contact area between the heat transfer fluid inside the sleeve and the sleeve, thereby improving the heat dissipation effect.

以上所述僅係用以闡述本發明所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本發明之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above description is only used to illustrate the problem to be solved by the present invention, the technical means for solving the problem, and the effects thereof, etc. The specific details of the present invention will be described in detail in the following implementation methods and related drawings.

下文列舉實施例配合所附圖式進行詳細說明,但所提供之實施例並非用以限制本發明所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的範圍。另外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。The following examples are listed in detail in conjunction with the accompanying drawings, but the provided examples are not intended to limit the scope of the present invention, and the description of the structure and operation is not intended to limit the order of its execution. Any recombination of components Structures, resulting devices with equivalent functions are all within the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn to original scale. To facilitate understanding, the same elements or similar elements will be described with the same symbols in the following description.

另外,在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本發明之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本發明之描述上額外的引導。In addition, the words (terms) used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each word used in this field, in the disclosed content and in the special content . Certain terms used to describe the present invention are discussed below or elsewhere in this specification to provide those skilled in the art with additional guidance in describing the present invention.

關於本文中所使用之『第一』、『第二』、…等,並非特別指稱次序或順位的意思,亦非用以限定本發明,其僅僅是為了區別以相同技術用語描述的元件或操作而已。The terms "first", "second", etc. used herein do not refer to a particular sequence or sequence, nor are they used to limit the present invention, but are only used to distinguish elements or operations described with the same technical terms. That's all.

其次,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指包含但不限於。Secondly, the words "comprising", "including", "having", "containing" and so on used in this article are all open terms, meaning including but not limited to.

再者,於本文中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或多個。將進一步理解的是,本文中所使用之『包含』、『包括』、『具有』及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其所述或額外的其一個或多個其它特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。Furthermore, in this article, unless the article is specifically limited in the context, "a" and "the" can generally refer to a single or a plurality. It will be further understood that the terms "comprising", "comprising", "having" and similar terms used herein indicate the features, regions, integers, steps, operations, elements and/or components described therein, but do not exclude One or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof described or additional thereto.

請參照第1圖。第1圖根據本發明之一實施方式繪示連接熱源200的轉軸180插入一熱管結構100之一透視圖。如第1圖所示,連接熱源200的轉軸180自熱管結構100的套筒110的一出口端插入。舉例而言,連接熱源200的轉軸180可以是另一散熱結構的一端,例如是散熱片或是導熱銅管的一端。如此,熱管結構100便能夠與轉軸180形成轉軸結構,轉軸180便能夠沿圓周方向D1 轉動。圓周方向D1 是指沿熱管結構100之套筒110的中心軸轉動的方向。如此一來,連接熱源200的轉軸180在與熱管結構100的連接處具有可以旋轉的自由度,能夠與電子裝置其他的轉軸裝置複合。Please refer to Figure 1. FIG. 1 shows a perspective view of a rotating shaft 180 connected to a heat source 200 inserted into a heat pipe structure 100 according to an embodiment of the present invention. As shown in FIG. 1 , the rotating shaft 180 connected to the heat source 200 is inserted from an outlet end of the sleeve 110 of the heat pipe structure 100 . For example, the rotating shaft 180 connected to the heat source 200 may be an end of another heat dissipation structure, such as a heat sink or an end of a heat-conducting copper pipe. In this way, the heat pipe structure 100 and the rotating shaft 180 can form a rotating shaft structure, and the rotating shaft 180 can rotate along the circumferential direction D1 . The circumferential direction D 1 refers to the direction of rotation along the central axis of the sleeve 110 of the heat pipe structure 100 . In this way, the rotating shaft 180 connected to the heat source 200 has a degree of freedom to rotate at the connection with the heat pipe structure 100 , and can be combined with other rotating shaft devices of the electronic device.

舉例而言,在電腦主機中,可以通過一導熱銅管來傳導主機板所發出的熱能,是以導熱銅管延伸出去的一端可以視為是連接熱源200的轉軸180。而通過連接熱源200的轉軸180從熱管結構100之套筒110的出口端插入,連接熱源200的轉軸180便能夠與熱管結構100共同形成具有旋轉自由度的轉軸結構。 For example, in a computer mainframe, heat energy emitted by the motherboard can be conducted through a heat-conducting copper pipe, and the extended end of the heat-conducting copper pipe can be regarded as the rotating shaft 180 connected to the heat source 200 . By inserting the shaft 180 connected to the heat source 200 from the outlet end of the sleeve 110 of the heat pipe structure 100 , the shaft 180 connected to the heat source 200 can form a shaft structure with rotational freedom together with the heat pipe structure 100 .

請同時參照第1圖與第2圖。第2圖以另一角度繪示第1圖的轉軸180插入熱管結構100。如第2圖所示,連接熱源200的轉軸180插入熱管結構100的套筒110,如此一來,轉軸180便能夠沿圓周方向D1旋轉。 Please refer to Figure 1 and Figure 2 at the same time. FIG. 2 illustrates the insertion of the rotating shaft 180 of FIG. 1 into the heat pipe structure 100 from another angle. As shown in FIG. 2 , the rotating shaft 180 connected to the heat source 200 is inserted into the sleeve 110 of the heat pipe structure 100 , so that the rotating shaft 180 can rotate along the circumferential direction D1 .

為進一步說明熱管結構100的套筒110的內部結構,請參照第3圖。接續第2圖,第3圖根據本發明之一實施方式繪示一熱管結構100的一剖面圖。為了簡單說明的目的,熱源200與轉軸180未繪示於圖上。 For further description of the internal structure of the sleeve 110 of the heat pipe structure 100, please refer to FIG. 3 . Continuing from FIG. 2 , FIG. 3 shows a cross-sectional view of a heat pipe structure 100 according to an embodiment of the present invention. For the purpose of simple illustration, the heat source 200 and the rotating shaft 180 are not shown in the figure.

在第3圖中,熱管結構100的套筒110實質上是中空的,對應到套筒110包括內管120與外管113,而內管120與外管113共同定義以形成腔室116。腔室116是密封的,並用以容置用來傳導熱能的導熱流體(圖未示)。 In FIG. 3 , the sleeve 110 of the heat pipe structure 100 is substantially hollow, corresponding to the sleeve 110 including an inner tube 120 and an outer tube 113 , and the inner tube 120 and the outer tube 113 are jointly defined to form a chamber 116 . The chamber 116 is sealed and accommodates a heat transfer fluid (not shown) for transferring heat.

同時參照第2圖與第3圖。在本實施方式中,導熱流體(圖未示)容置於腔室116內,而連接熱源200的轉軸從套筒110的出口端插入。當熱源200產生熱,則熱源200所產生的熱經由轉軸180通過套筒110的內管120傳導給腔室116內部的導熱流體。在一些實施方式中,轉軸180與套筒110的材料是導熱性良好的材料,例如是金屬。而在一些實施方式中,所使用容置於腔室116內的導熱流體可以是沸點較低的液體,以在接收到熱源200所產生的熱後,發生相變,以進一步將熱給吸收。而在本實施 方式中,通過將腔室116密封,導熱流體實質上與連接熱源200的轉軸180隔離,因此可以重覆使用相同的導熱流體。 Refer to Figure 2 and Figure 3 at the same time. In this embodiment, a heat transfer fluid (not shown) is accommodated in the chamber 116 , and a rotating shaft connected to the heat source 200 is inserted through the outlet end of the sleeve 110 . When the heat source 200 generates heat, the heat generated by the heat source 200 is transferred to the heat transfer fluid inside the chamber 116 via the shaft 180 through the inner tube 120 of the sleeve 110 . In some embodiments, the material of the rotating shaft 180 and the sleeve 110 is a material with good thermal conductivity, such as metal. In some embodiments, the heat transfer fluid contained in the chamber 116 may be a liquid with a lower boiling point, so that after receiving the heat generated by the heat source 200 , a phase change occurs to further absorb heat. while in this implementation In this manner, by sealing the chamber 116, the heat transfer fluid is substantially isolated from the shaft 180 connected to the heat source 200, so that the same heat transfer fluid can be reused.

在腔室116內部可以設置有輔助導熱流體流動的毛細結構。毛細結構例如可以設置於腔室116裡的內壁130上。為了簡單說明的目的,毛細結構未繪示於圖上。 A capillary structure may be provided inside the chamber 116 to assist the flow of the heat transfer fluid. The capillary structure can be disposed on the inner wall 130 of the chamber 116 , for example. For the purpose of simple illustration, the capillary structure is not shown in the figure.

如此一來,當連接熱源200的轉軸180插入套筒110,能夠形成具有轉動自由度的轉軸結構,並且通過套筒110的腔室內的導熱流體(圖未示),而將熱源200產生的熱傳導出去。 In this way, when the rotating shaft 180 connected to the heat source 200 is inserted into the sleeve 110, a rotating shaft structure with a degree of freedom of rotation can be formed, and the heat generated by the heat source 200 is conducted through the heat transfer fluid (not shown) in the chamber of the sleeve 110 go out.

為進一步強化導熱流體吸收熱以後發生相變,進而達到散熱冷卻的效果,在本揭露的另一實施方式中,進一步提供具有多個溝槽結構設置的內管120,以增加導熱流體與內管120內部的面積。具體請參照第4圖與第5圖。 In order to further enhance the phase change of the heat-conducting fluid after absorbing heat, thereby achieving the effect of heat dissipation and cooling, in another embodiment of the present disclosure, an inner tube 120 with a plurality of groove structures is further provided to increase the heat-conducting fluid and the inner tube. 120 internal area. Please refer to Figure 4 and Figure 5 for details.

第4圖根據本發明之另一實施方式繪示一熱管結構100的套筒110。為了簡單說明的目的,熱源200與轉軸180未繪示於圖上。第5圖繪示第4圖的套筒110的一剖面圖。 FIG. 4 shows a sleeve 110 of a heat pipe structure 100 according to another embodiment of the present invention. For the purpose of simple illustration, the heat source 200 and the rotating shaft 180 are not shown in the figure. FIG. 5 shows a cross-sectional view of the sleeve 110 of FIG. 4 .

在第4圖與第5圖中,熱管結構100的套筒110的內管120進一步包括外壁140。外壁140設置位於腔室116之外,以接觸連接熱源200的轉軸180。 In FIGS. 4 and 5 , the inner tube 120 of the sleeve 110 of the heat pipe structure 100 further includes an outer wall 140 . The outer wall 140 is disposed outside the chamber 116 to contact the rotating shaft 180 connected to the heat source 200 .

如圖所示,在外壁140上具有外溝槽結構143。在本實施方式中,在外壁140上具有多個外溝槽結構143,但本揭露並不以此限制該外溝槽結構143的數量。As shown, the outer wall 140 has an outer groove structure 143 . In this embodiment, there are a plurality of outer groove structures 143 on the outer wall 140 , but the disclosure does not limit the number of the outer groove structures 143 accordingly.

外溝槽結構143從外壁140上凹陷,並且如第5圖所示,這些外溝槽結構143實質上沿著套筒110延伸的軸向方向D2 來延伸。The outer groove structures 143 are recessed from the outer wall 140 and, as shown in FIG. 5 , these outer groove structures 143 extend substantially along the axial direction D 2 in which the sleeve 110 extends.

在本實施方式中,外溝槽結構143實質上從套筒110的出口端往套筒110的內部延伸。而在一些實施方式中,位於外壁140上的外溝槽結構143可以設置於套筒110的內部而沿軸向方向D2 延伸,並且並不一定延伸到套筒110的出口端,僅需確保外溝槽結構143能夠與連接熱源200的轉軸180做接觸。In this embodiment, the outer groove structure 143 substantially extends from the outlet end of the sleeve 110 to the inside of the sleeve 110 . However, in some embodiments, the outer groove structure 143 on the outer wall 140 can be disposed inside the sleeve 110 and extend along the axial direction D2 , and does not necessarily extend to the outlet end of the sleeve 110, it only needs to ensure that The outer groove structure 143 can be in contact with the rotating shaft 180 connected to the heat source 200 .

在第5圖中,套筒110的本體實質是中空的,因此如前所述能夠用於容置導熱流體。而通過在外壁140上設置外溝槽結構143,能夠在連接熱源200的轉軸180插入套筒110後,進一步增加轉軸180與套筒110的接觸面積。In Figure 5, the body of the sleeve 110 is hollow in nature and can therefore be used to contain a heat transfer fluid as previously described. By disposing the outer groove structure 143 on the outer wall 140 , after the rotating shaft 180 connected to the heat source 200 is inserted into the sleeve 110 , the contact area between the rotating shaft 180 and the sleeve 110 can be further increased.

進一步的,能夠通過在腔室116內設置額外的溝槽/凸起結構,以進一步增加腔室116內部導熱流體與內管120的接觸面積,增加腔室116內導熱流體的導熱效率。Further, it is possible to further increase the contact area between the heat transfer fluid inside the chamber 116 and the inner tube 120 by providing additional grooves/protrusion structures in the chamber 116 , thereby increasing the heat conduction efficiency of the heat transfer fluid in the chamber 116 .

請參照第6圖。弟6圖繪示第4圖的套筒110的另一剖面圖。在第6圖中,在本實施方式中,外溝槽結構143在外壁140的垂直剖面上的形狀是半圓形,但本揭露並不以此限制外溝槽結構143的形狀。Please refer to Figure 6. FIG. 6 shows another cross-sectional view of the sleeve 110 of FIG. 4 . In FIG. 6 , in this embodiment, the shape of the outer trench structure 143 on the vertical section of the outer wall 140 is a semicircle, but the present disclosure does not limit the shape of the outer trench structure 143 accordingly.

如第6圖所示,在本實施方式中,套筒110的內管120實質上包括內壁130與外壁140。內壁130設置位於腔室116內,以接觸導熱流體(未繪示)。外壁140如前所述能夠增加與轉軸180接觸,而外壁140上的外溝槽結構143能夠增加與轉軸180的接觸面積。As shown in FIG. 6 , in this embodiment, the inner tube 120 of the sleeve 110 substantially includes an inner wall 130 and an outer wall 140 . The inner wall 130 is disposed in the chamber 116 to contact the heat transfer fluid (not shown). As mentioned above, the outer wall 140 can increase the contact area with the rotating shaft 180 , and the outer groove structure 143 on the outer wall 140 can increase the contact area with the rotating shaft 180 .

在第6圖中,內壁130上具有多個內溝槽結構134,並且這些內溝槽結構134實質上沿套筒110的軸向方向D2 延伸。雖然如第6圖所示,在本實施方式中,套筒110的內壁130上具有多個內凸起結構133,在本揭露並不以此限制內溝槽結構134的數量。這些制內溝槽結構134能夠進一步增加腔室116內部導熱流體(圖未示)與內管120的接觸面積,從而提升散熱的效果。In FIG. 6 , the inner wall 130 has a plurality of inner groove structures 134 , and these inner groove structures 134 substantially extend along the axial direction D 2 of the sleeve 110 . Although as shown in FIG. 6 , in this embodiment, the inner wall 130 of the sleeve 110 has a plurality of inner protrusion structures 133 , the present disclosure does not limit the number of inner groove structures 134 accordingly. These internal groove structures 134 can further increase the contact area between the heat transfer fluid (not shown) inside the chamber 116 and the inner tube 120 , thereby improving the effect of heat dissipation.

進一步地,在本實施方式中,內壁130上的內溝槽結構134,實質上是由多個自內壁130上凸出的內凸起結構133來定義的。這些內凸起結構133從套筒110內管120的內壁130上凸出,而位於腔室116之內。而這些內溝槽結構134是位於兩相鄰的內凸起結構133之間。Further, in this embodiment, the inner groove structure 134 on the inner wall 130 is substantially defined by a plurality of inner protrusion structures 133 protruding from the inner wall 130 . These inner protruding structures 133 protrude from the inner wall 130 of the inner tube 120 of the sleeve 110 and are located in the cavity 116 . The inner groove structures 134 are located between two adjacent inner protrusion structures 133 .

具體而言,如第6圖所示,內壁130上的每一個內凸起結構133在套筒110的徑向方向上能夠對應到一個外壁140的一個外溝槽結構143。這對應到,由兩相鄰的內凸起結構133定義出之內溝槽結構134在徑向方向上與外溝槽結構143是錯位的。Specifically, as shown in FIG. 6 , each inner protrusion structure 133 on the inner wall 130 can correspond to an outer groove structure 143 of an outer wall 140 in the radial direction of the sleeve 110 . This corresponds to that the inner groove structure 134 defined by two adjacent inner protrusion structures 133 is offset from the outer groove structure 143 in the radial direction.

在第6圖中,內壁130的內溝槽結構134可以認為是設置於二個外壁140上的外溝槽結構143之間,這使得導熱流體能夠流入內溝槽結構134,以當連接熱源200的轉軸180插入套筒110時,能夠進一步接近轉軸180。In Fig. 6, the inner groove structure 134 of the inner wall 130 can be regarded as being arranged between the outer groove structures 143 on the two outer walls 140, which enables the heat transfer fluid to flow into the inner groove structure 134, so as to connect the heat source When the rotating shaft 180 of 200 is inserted into the sleeve 110, the rotating shaft 180 can be further approached.

在本實施方式中,內壁130上的每一個內凸起結構133在套筒110的徑向方向上能夠對應到一個外壁140的一個外溝槽結構143,說明內管120的內凸起結構133與外溝槽結構143能夠在同一道製程產生。In this embodiment, each inner protrusion structure 133 on the inner wall 130 can correspond to an outer groove structure 143 of an outer wall 140 in the radial direction of the sleeve 110 , which illustrates the inner protrusion structure of the inner tube 120 133 and the outer trench structure 143 can be produced in the same process.

具體而言,在一些實施方式中,在形成內管120之後,能夠通過擠壓的方式,在內管120的外壁140上擠壓出多個凹陷的外溝槽結構143。與此同時,在內管120的內壁130上,將會一併擠壓出從內壁130凸出的內凸起結構133。如此一來,便對應到由兩相鄰的內凸起結構133定義出之內溝槽結構134在徑向方向上與外溝槽結構143是錯位的,並且內溝槽結構134是位的二個相鄰的外溝槽結構143之間。如此一來,熱管結構100之套筒110之內壁130的內溝槽結構134可以向容置於腔室116內的導熱流體提供毛細力,增加導熱流體與內管120的接觸面積,從而進一步提升散熱效果。Specifically, in some embodiments, after the inner tube 120 is formed, a plurality of depressed outer groove structures 143 can be extruded on the outer wall 140 of the inner tube 120 by extrusion. At the same time, on the inner wall 130 of the inner tube 120 , the inner protrusion structure 133 protruding from the inner wall 130 will be extruded together. In this way, it corresponds to the fact that the inner groove structure 134 defined by two adjacent inner protrusion structures 133 is misaligned with the outer groove structure 143 in the radial direction, and the inner groove structure 134 is two in position. Between adjacent outer trench structures 143. In this way, the inner groove structure 134 of the inner wall 130 of the sleeve 110 of the heat pipe structure 100 can provide capillary force to the heat transfer fluid accommodated in the chamber 116, increasing the contact area between the heat transfer fluid and the inner pipe 120, thereby further Improve cooling effect.

通過同一道製程產生在徑向方向上相對應的內凸起結構133與外溝槽結構143,能夠進一步降低製造成本。在一些實施方式中,內凸起結構133與外溝槽結構143也可以以不同一道製程分別產生。The corresponding inner protrusion structure 133 and outer groove structure 143 in the radial direction are produced by the same process, which can further reduce the manufacturing cost. In some embodiments, the inner protrusion structure 133 and the outer groove structure 143 can also be produced in different processes.

第7圖根據本發明之另一實施方式繪示一熱管結構的套筒110的一剖面圖。與第6圖的熱管結構100的筒的差異,在於第7圖的套筒110上進一步填充熱介面材料(thermal interface material, 簡稱TIM)150。這些熱介面材料150能夠用以降低轉軸180與套筒110由於接觸不完全所產生的接觸熱阻,而能夠進一步提升散熱的效果。FIG. 7 shows a cross-sectional view of a sleeve 110 of a heat pipe structure according to another embodiment of the present invention. The difference from the tube of the heat pipe structure 100 in FIG. 6 is that the sleeve 110 in FIG. 7 is further filled with a thermal interface material (TIM) 150 . These thermal interface materials 150 can be used to reduce the thermal contact resistance caused by incomplete contact between the rotating shaft 180 and the sleeve 110 , so as to further improve the effect of heat dissipation.

綜上所述,本發明提供一種具有套筒的熱管結構,套筒能夠與連接熱源的轉軸形成轉軸結構,從而增加旋轉自由度,而能夠於電子裝置內的轉軸結構做整合。套筒本體具有中空的腔室,而能夠容置導熱流體,而套筒的內管上可以具有沿軸向方向延伸的內溝槽結構與外溝槽結構,增加導熱流體與內管的接觸面積,從而提升散熱效率。而套筒的內管上的內溝槽結構與外溝槽結構能夠以同一道擠壓製程來形成,製作成本低廉。To sum up, the present invention provides a heat pipe structure with a sleeve. The sleeve can form a rotating shaft structure with a rotating shaft connected to a heat source, thereby increasing the degree of freedom of rotation, and can be integrated with the rotating shaft structure in an electronic device. The sleeve body has a hollow chamber that can accommodate heat transfer fluid, and the inner tube of the sleeve can have an inner groove structure and an outer groove structure extending in the axial direction to increase the contact area between the heat transfer fluid and the inner tube , so as to improve the cooling efficiency. The inner groove structure and the outer groove structure on the inner tube of the sleeve can be formed by the same extrusion process, and the manufacturing cost is low.

雖然本發明已以實施例揭露如上,然其並不用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined by the scope of the appended patent application.

100:熱管結構 110:套筒 113:外管 116:腔室 120:內管 130:內壁 133:內凸起結構 134:內溝槽結構 140:外壁 143:外溝槽結構 150:熱介面材料 180:轉軸 200:熱源 D1 :圓周方向 D2 :軸向方向100: heat pipe structure 110: sleeve 113: outer tube 116: chamber 120: inner tube 130: inner wall 133: inner raised structure 134: inner groove structure 140: outer wall 143: outer groove structure 150: thermal interface material 180: rotating shaft 200: heat source D 1 : circumferential direction D 2 : axial direction

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖根據本發明之一實施方式繪示連接一熱源的一轉軸插入一熱管結構之一透視圖; 第2圖以另一角度繪示第1圖的轉軸插入熱管結構; 第3圖根據本發明之一實施方式繪示一熱管結構的一剖面圖; 第4圖根據本發明之另一實施方式繪示一熱管結構的套筒; 第5圖繪示第4圖的套筒的一剖面圖; 弟6圖繪示第4圖的套筒的另一剖面圖;以及 第7圖根據本發明之另一實施方式繪示一熱管結構的套筒的一剖面圖。In order to make the above and other objects, features, advantages and embodiments of the present invention more clearly understood, the accompanying drawings are described as follows: FIG. 1 shows a perspective view of a heat pipe structure in which a rotating shaft connected to a heat source is inserted into a heat pipe according to an embodiment of the present invention; Figure 2 shows the structure of the rotating shaft inserted into the heat pipe in Figure 1 from another angle; FIG. 3 shows a cross-sectional view of a heat pipe structure according to an embodiment of the present invention; Fig. 4 shows a sleeve of a heat pipe structure according to another embodiment of the present invention; Fig. 5 shows a cross-sectional view of the sleeve of Fig. 4; Figure 6 shows another cross-sectional view of the sleeve of Figure 4; and FIG. 7 shows a cross-sectional view of a sleeve of a heat pipe structure according to another embodiment of the present invention.

110:套筒110: sleeve

113:外管113: outer tube

116:腔室116: chamber

120:內管120: inner tube

130:內壁130: inner wall

140:外壁140: outer wall

D1 :圓周方向D 1 : Circumferential direction

Claims (8)

一種熱管結構,用以散熱一熱源,其中該熱管結構包括:一套筒,其中該套筒包括一內管與一外管,該內管與該外管形成一腔室,該腔室用以容置一導熱流體,該導熱流體用以吸收該熱源產生的熱;以及一轉軸,連接該熱源,其中該轉軸從該套筒的一出口端插入該套筒內,以形成一轉軸結構,其中該套筒的該內管包括一內壁與一外壁,該內壁位於該腔室內以接觸該導熱流體,該外壁位於該腔室外以接觸該轉軸,其中該外壁上具有一外溝槽結構,該外溝槽結構從該外壁上凹陷,該外溝槽結構沿該套筒延伸的一軸向方向延伸。 A heat pipe structure for dissipating a heat source, wherein the heat pipe structure includes: a sleeve, wherein the sleeve includes an inner tube and an outer tube, the inner tube and the outer tube form a cavity, and the cavity is used for accommodating a heat transfer fluid, the heat transfer fluid is used to absorb the heat generated by the heat source; and a rotating shaft connected to the heat source, wherein the rotating shaft is inserted into the sleeve from an outlet end of the sleeve to form a rotating shaft structure, wherein The inner tube of the sleeve includes an inner wall and an outer wall, the inner wall is located inside the chamber to contact the heat transfer fluid, the outer wall is located outside the chamber to contact the rotating shaft, wherein the outer wall has an outer groove structure, The outer groove structure is recessed from the outer wall, and the outer groove structure extends along an axial direction in which the sleeve extends. 如請求項1所述之熱管結構,其中該腔室設置為密封的,以隔離該導熱流體與該轉軸。 The heat pipe structure as claimed in claim 1, wherein the chamber is sealed to isolate the heat transfer fluid from the rotating shaft. 如請求項1所述之熱管結構,其中該外溝槽結構自該套筒的該出口端往該套筒的內部延伸。 The heat pipe structure as claimed in claim 1, wherein the outer groove structure extends from the outlet end of the sleeve to the inside of the sleeve. 如請求項1所述之熱管結構,其中該外溝槽結構在該外壁的一垂直剖面上的形狀為一半圓形。 The heat pipe structure according to claim 1, wherein the shape of the outer groove structure on a vertical section of the outer wall is a semicircle. 如請求項1所述之熱管結構,進一步包括: 一熱介面材料,填充於該外壁的該外溝槽結構內。 The heat pipe structure as described in Claim 1, further comprising: A thermal interface material is filled in the outer groove structure of the outer wall. 如請求項1所述之熱管結構,其中該內壁上具有一內溝槽結構,該內溝槽結構沿該套筒的該軸向方向延伸,該內溝槽與該外溝槽彼此錯位。 The heat pipe structure according to claim 1, wherein the inner wall has an inner groove structure, the inner groove structure extends along the axial direction of the sleeve, and the inner groove and the outer groove are offset from each other. 如請求項1所述之熱管結構,其中該套筒進一步包括:複數個該外溝槽結構,其中每一個該外溝槽結構從該外壁凹陷且沿該套筒延伸的該軸向方向延伸;以及複數個內凸起結構,其中每一個該內凸起結構從該內壁凸出且沿該套筒的該軸向方向延伸,該內壁上的每一個該內凸起結構在該套筒的一徑向方向上對應到一個該外壁上的其中一個該外溝槽結構。 The heat pipe structure according to claim 1, wherein the sleeve further comprises: a plurality of the outer groove structures, wherein each of the outer groove structures is recessed from the outer wall and extends along the axial direction in which the sleeve extends; and a plurality of inner raised structures, wherein each of the inner raised structures protrudes from the inner wall and extends along the axial direction of the sleeve, each of the inner raised structures on the inner wall is on the sleeve A radial direction corresponds to one of the outer groove structures on the outer wall. 如請求項7所述之熱管結構,進一步包括:複數個熱介面材料,分別填充於該外壁的該些外溝槽結構內。 The heat pipe structure according to claim 7 further comprises: a plurality of thermal interface materials respectively filled in the outer groove structures of the outer wall.
TW109108385A 2020-03-13 2020-03-13 Heat pipe structure TWI803739B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109108385A TWI803739B (en) 2020-03-13 2020-03-13 Heat pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109108385A TWI803739B (en) 2020-03-13 2020-03-13 Heat pipe structure

Publications (2)

Publication Number Publication Date
TW202134583A TW202134583A (en) 2021-09-16
TWI803739B true TWI803739B (en) 2023-06-01

Family

ID=78777497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108385A TWI803739B (en) 2020-03-13 2020-03-13 Heat pipe structure

Country Status (1)

Country Link
TW (1) TWI803739B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345642A (en) * 1980-12-24 1982-08-24 Thermacore, Inc. Articulated heat pipes
JPH04151495A (en) * 1990-10-15 1992-05-25 Toshiba Corp Connecting structure for heating pipe
JP2000179543A (en) * 1998-12-17 2000-06-27 Matsushita Electric Ind Co Ltd Dynamic pressure bearing device and spindle motor using this dynamic pressure bearing device
CN1328568C (en) * 2004-04-03 2007-07-25 鸿富锦精密工业(深圳)有限公司 Heat tube and its preparing method
CN201306961Y (en) * 2008-11-10 2009-09-09 苏州大学 Cascaded heat pipe
TW201102210A (en) * 2009-07-13 2011-01-16 Jin-Zhan Xie Rotation shaft with heat dissipation function
TW201518915A (en) * 2013-11-07 2015-05-16 Acer Inc Heat dissipating assembly and electronic device using the same
CN208795044U (en) * 2018-04-18 2019-04-26 周骏 A kind of heat conducting pipe
TW201930811A (en) * 2017-12-28 2019-08-01 日商古河電氣工業股份有限公司 Heat pipe
CN110099553A (en) * 2019-05-29 2019-08-06 英业达科技有限公司 Heat pipe, heat pipe heat and its assembling method
TW202008108A (en) * 2018-08-08 2020-02-16 英業達股份有限公司 Heat pipe assembly and portable electronic device thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345642A (en) * 1980-12-24 1982-08-24 Thermacore, Inc. Articulated heat pipes
JPH04151495A (en) * 1990-10-15 1992-05-25 Toshiba Corp Connecting structure for heating pipe
JP2000179543A (en) * 1998-12-17 2000-06-27 Matsushita Electric Ind Co Ltd Dynamic pressure bearing device and spindle motor using this dynamic pressure bearing device
CN1328568C (en) * 2004-04-03 2007-07-25 鸿富锦精密工业(深圳)有限公司 Heat tube and its preparing method
CN201306961Y (en) * 2008-11-10 2009-09-09 苏州大学 Cascaded heat pipe
TW201102210A (en) * 2009-07-13 2011-01-16 Jin-Zhan Xie Rotation shaft with heat dissipation function
TW201518915A (en) * 2013-11-07 2015-05-16 Acer Inc Heat dissipating assembly and electronic device using the same
TW201930811A (en) * 2017-12-28 2019-08-01 日商古河電氣工業股份有限公司 Heat pipe
CN208795044U (en) * 2018-04-18 2019-04-26 周骏 A kind of heat conducting pipe
TW202008108A (en) * 2018-08-08 2020-02-16 英業達股份有限公司 Heat pipe assembly and portable electronic device thereof
CN110099553A (en) * 2019-05-29 2019-08-06 英业达科技有限公司 Heat pipe, heat pipe heat and its assembling method

Also Published As

Publication number Publication date
TW202134583A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7870889B2 (en) Heat dissipation device with a heat pipe
US6439298B1 (en) Cylindrical heat radiator
US9170058B2 (en) Heat pipe heat dissipation structure
TWI828996B (en) Heat dissipation device
KR101070842B1 (en) Heat-dissipating device and electronic apparatus having the same
US20030000689A1 (en) Heat dissipater
TWI229583B (en) Liquid-cooled heat sink device
US20100212865A1 (en) Heat dissipating device using heat pipe
US20130213612A1 (en) Heat pipe heat dissipation structure
US20100163213A1 (en) Active heat sink for use with electronic device
TWI803739B (en) Heat pipe structure
TW201643352A (en) Phase-change heat dissipation device and lamp
TW201643351A (en) Phase-change heat dissipation device and lamp
TWM261983U (en) Tubular radiator
TWI830483B (en) Heat dissipation device
CN113357951A (en) Heat pipe structure
TWI687642B (en) Cycling heat dissipation module
TWI548852B (en) Heat transfer device made of conductive plastic and manufacturing method thereof
TWI332145B (en) Heat dissipation device
US20210018273A1 (en) Heat dissipation unit
CN219591423U (en) Micro-group groove heat radiator
US20070236884A1 (en) Heat sink and method for manufacturing the same
TWI567884B (en) Heat dissipation device
TWI590749B (en) Thermal module
TWI566080B (en) Heat dissipation module