JP2000179543A - Dynamic pressure bearing device and spindle motor using this dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device and spindle motor using this dynamic pressure bearing device

Info

Publication number
JP2000179543A
JP2000179543A JP10358948A JP35894898A JP2000179543A JP 2000179543 A JP2000179543 A JP 2000179543A JP 10358948 A JP10358948 A JP 10358948A JP 35894898 A JP35894898 A JP 35894898A JP 2000179543 A JP2000179543 A JP 2000179543A
Authority
JP
Japan
Prior art keywords
lubricating fluid
fluid outflow
member side
groove
outflow preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10358948A
Other languages
Japanese (ja)
Other versions
JP4075170B2 (en
Inventor
Hiroyoshi Toyoshima
弘祥 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP35894898A priority Critical patent/JP4075170B2/en
Publication of JP2000179543A publication Critical patent/JP2000179543A/en
Application granted granted Critical
Publication of JP4075170B2 publication Critical patent/JP4075170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To take sufficient countermeasures against a lubricating fluid leak by providing a lubricating fluid outflow preventing groove in a rotary/fixed member side in the end part of an end part side cylinder part in a radial dynamic pressure bearing, and forming the preventing groove of fixed member side in a fixed position and the preventing groove of rotary member side helically in an axial direction. SOLUTION: Lubricating fluid outflow preventing grooves 4, 5 are accumulation spaces for holing a lubricating fluid 3. The lubricating fluid 3 leaking out downward from a radial dynamic pressure bearing part is impeded from flowing out by surface tension of the lubricating fluid first in a position increasing a clearance between a rotary member 2 and a fixed member 1, that is, in a position of the lubricating fluid outflow preventing groove 5. When the lubricating fluid is placed in a condition near full in the lubricating fluid outflow preventing groove 5 by damaging a seal in a position thereof, action of centrifugal force and surface tension is operated in the lubricating fluid by tapered first end edge and another end edge of the one more lubricating fluid outflow preventing groove 4, and an outflow of the lubricating fluid is impeded by generating a seal effect of centrifugal force and surface tension.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク装
置、光ディスク装置、光磁気ディスク装置、多面鏡駆動
装置などのOA装置駆動用動圧軸受装置の潤滑流体漏れ
防止対策を盛り込んだ動圧軸受装置を使用したスピンド
ルモータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing device incorporating a measure for preventing lubricating fluid leakage in a dynamic pressure bearing device for driving an OA device such as a magnetic disk device, an optical disk device, a magneto-optical disk device, and a polygon mirror drive device. And a spindle motor using the same.

【0002】[0002]

【従来の技術】最近では、インターネットやイントラネ
ット、ビデオ・オン・デマンドといったデジタルデータ
を主体としたメディアが登場している。こうしたメディ
アはPCで扱うのに適しているが、大容量かつ高速なス
トレージが必要不可欠となる。このようなストレージに
対する要求としてHDD(磁気ディスク装置)の大容量
化は大変重要な達成項目とされている。マルチメディア
を意識した大容量の情報を記録再生する装置してはDV
D−ROM装置、DVD−RAM装置などの大容量化へ
の開発が重要になってきている。
2. Description of the Related Art Recently, media based on digital data such as the Internet, intranets, and video-on-demand have appeared. Although such media is suitable for handling on a PC, a large-capacity and high-speed storage is indispensable. As a demand for such storage, increasing the capacity of an HDD (magnetic disk device) is a very important achievement item. A device that records and reproduces a large amount of information with multimedia in mind is DV
Development of large capacity D-ROM devices, DVD-RAM devices, and the like has become important.

【0003】HDDの容量を増やす方法としては、ディ
スクの大型化、ディスク枚数の増加、面記録密度の向上
があげられる。しかし、ディスクの大型化と枚数の増加
については、コンパクト化、省電力化、低価格化に反し
ており、ワークステーションやサーバといった特定の分
野を除いて有効な解決策ではない。そのため、面記録密
度を向上させる方法が採られている。MR(Magnet Re
sistive)またはGMR(Giant MR)に代用されるヘッ
ド技術である。記録密度が上がると磁界の変化が少なく
なり電流が微弱になりデータが読み出せなくなる。MR
ヘッドは磁界の変化が電気抵抗値の変化として現れるM
R効果を利用したMR素子によって再生を行うヘッド
で、従来の薄膜ヘッドよりも感度が高い。GMRヘッド
は、巨大磁気抵抗効果を示すGMR素子を用いたもの
で、再生出力のデータはMRヘッドよりもさらに数倍感
度が高い。これら磁気ヘッドを使用し、最近は1000
0tpi(Track per inch)から20000tpiの
HDDが開発されつつある。例えば、20000tpi
はトラック間距離が1.27μmであり、そのような装
置のスピンドルモータのラジアル振れ1.27μm程度
以下が必要となるうえに非繰り返し振れとしては0.1
3μm程度以下のものが要求される。このような非繰り
返し振れに対して、ボール軸受の限界に達し、さらなる
高記録密度の場合には流体軸受のスピンドルモータが必
要になる。
[0003] Methods of increasing the capacity of the HDD include increasing the size of the disk, increasing the number of disks, and improving the areal recording density. However, the increase in the size and number of disks is contrary to compactness, power saving, and cost reduction, and is not an effective solution except for specific fields such as workstations and servers. Therefore, a method of improving the areal recording density has been adopted. MR (Magnet Re
This is a head technology that can be substituted for sistive) or GMR (Giant MR). As the recording density increases, the change in the magnetic field decreases, the current becomes weak, and data cannot be read. MR
In the head, a change in the magnetic field appears as a change in the electric resistance value.
This is a head that performs reproduction using an MR element utilizing the R effect, and has higher sensitivity than a conventional thin film head. The GMR head uses a GMR element exhibiting a giant magnetoresistance effect, and the data of the reproduction output is several times higher in sensitivity than the MR head. Using these magnetic heads, recently 1000
HDDs from 0 tpi (Track per inch) to 20,000 tpi are being developed. For example, 20000 tpi
Indicates that the distance between the tracks is 1.27 μm, the radial run-out of the spindle motor of such an apparatus is not more than about 1.27 μm, and the non-repetitive run-out is 0.1
Those having a size of about 3 μm or less are required. For such non-repetitive runout, the limit of the ball bearing is reached, and in the case of higher recording density, a spindle motor of a fluid bearing is required.

【0004】光ディスクのDVD−RAM装置ではディ
スクのトラックピッチは0.74μmであり、HDD装
置にくらべて小さなトラックピッチになっている。光ピ
ックのサーボ技術の進化により、HDDに使用されるス
ピンドルモータのような回転精度は必要としないが、D
VD−RAM装置やOAW(Optically Assisted Win
chester)技術による光磁気ディスク装置やNFR(Nea
r Field Recording)技術による光磁気ディスク装置
などの場合には流体軸受装置を使用したスピンドルモー
タが必要となる。
In a DVD-RAM device of an optical disk, the track pitch of the disk is 0.74 μm, which is smaller than that of an HDD device. Due to the evolution of the optical pick servo technology, the rotation accuracy required for the spindle motor used for HDD is not required.
VD-RAM device and OAW (Optically Assisted Win
Magneto-optical disk drive and NFR (Nea
(R Field Recording) technology requires a spindle motor using a hydrodynamic bearing device.

【0005】すなわち、高容量化が進むとディスクなど
を駆動するスピンドルモータは回転精度が要求され、そ
うしたスピンドルモータには動圧流体軸受を使用する動
きが急速に広がってきている。特にOAW技術による光
磁気ディスク装置やNFR技術による光磁気ディスク装
置などの場合には動圧流体軸受装置は必要不可欠なもの
となりつつある。
[0005] That is, as the capacity increases, the spindle motor for driving a disk or the like is required to have high rotational accuracy, and the movement of using a hydrodynamic bearing for such a spindle motor is rapidly spreading. Particularly in the case of a magneto-optical disk device based on the OAW technology or a magneto-optical disk device based on the NFR technology, the hydrodynamic bearing device is becoming indispensable.

【0006】スピンドルモータに動圧流体軸受を利用す
る理由として、以下のことがあげられる。 (1)不規則なシャフトの振れを抑えられる。ボール軸
受では、鋼球すべてを均一な形状に加工することができ
ず、そのため回転中に突発的なシャフト振れが生じる。
シャフト振れを減らすと、磁気ディスク装置では磁気ヘ
ッドの位置決め誤差を小さくでき、DVD装置ではビー
ム・スポットの位置決め誤差を減らすことができ、記録
密度の向上に対応しやすい。 (2)耐衝撃性が向上する。流体の膜が緩衝の役割を果
たすためである。 (3)軸受で発生する騒音が減る。 (4)金属疲労で軸受が壊れるまでの疲れ寿命が長い。
The reasons for using a hydrodynamic bearing for a spindle motor are as follows. (1) Irregular shaft runout can be suppressed. In a ball bearing, not all steel balls can be machined into a uniform shape, which causes sudden shaft runout during rotation.
When the shaft deflection is reduced, the positioning error of the magnetic head can be reduced in the magnetic disk device, and the positioning error of the beam spot can be reduced in the DVD device, and it is easy to cope with the improvement of the recording density. (2) Impact resistance is improved. This is because the fluid film plays a role of buffer. (3) Noise generated in the bearing is reduced. (4) Long fatigue life until the bearing is broken by metal fatigue.

【0007】回転駆動される記録媒体面上に磁気ヘッド
等をミクロンあるいはサブミクロンオーダーで浮上させ
て読み書きを行うためのスピンドルモータの場合は、衝
撃などの信頼性を向上するためにロータのスラスト方向
変位を小さく抑えなくてはならないうえに、1000G
程度の大きな衝撃に対してモータ部材が変形することが
ないように部材の締結強度を向上する必要がある。
In the case of a spindle motor for reading and writing by floating a magnetic head or the like on the rotatingly driven recording medium surface in the order of microns or submicrons, the thrust direction of the rotor is improved in order to improve reliability such as impact. Displacement must be kept small and 1000G
It is necessary to improve the fastening strength of the members so that the motor members are not deformed by a large impact.

【0008】特に流体軸受を使用する場合、潤滑流体が
飛散などで不足し、動圧特性が劣化する問題があり、飛
散対策を十分にする必要がある。
In particular, when a fluid bearing is used, there is a problem that the lubricating fluid is insufficient due to scattering or the like, and the dynamic pressure characteristics are deteriorated.

【0009】また、流体軸受の潤滑流体が飛散して記録
媒体などを汚損することがないように、潤滑流体の保
持、飛散対策が必要である。そのために、特開平6−3
11695号公報、特開平7−46810号公報に記載
のように軸受装置の潤滑流体流出防止溝を設けて行う方
法が一般的に用いられている。
[0009] In order to prevent the lubricating fluid of the hydrodynamic bearing from scattering and contaminating the recording medium and the like, it is necessary to take measures for retaining and scattering the lubricating fluid. Therefore, Japanese Patent Application Laid-Open No. Hei 6-3
As described in JP-A-11695 and JP-A-7-46810, a method of providing a lubricating fluid outflow prevention groove of a bearing device is generally used.

【0010】また特開平8−163821号公報、特開
平8−163820号公報に記載のように流体軸受装置
に循環通路を設けてオイルの部分的な不足対策をしてい
る。
As described in JP-A-8-163821 and JP-A-8-163820, a circulation passage is provided in a fluid bearing device to take measures against a partial shortage of oil.

【0011】[0011]

【発明が解決しようとする課題】流体軸受は耐衝撃性は
向上するが、ノートパソコンや携帯端末などに磁気ディ
スク装置、CD−ROM装置を搭載する場合、動圧流体
軸受スピンドルモータに対する耐衝撃要求も1000G
となりつつある。動圧軸受は軸受が回転したら動圧によ
って浮上し非接触状態になるという特性から、軸受部は
浮上量程度の移動は許容される構造である。そのため
に、衝撃が作用した場合、回転部材が移動する。移動規
制するものがない場合は回転部材は軸受から外れてしま
うので、ロータが抜けないように抜け止め部材をモータ
に設けている。しかし軸受部でスラスト方向に大きな移
動のある動きをすると潤滑流体の漏れ出るという現象が
あり、この対策をする必要がある。
The impact resistance of a fluid bearing is improved. However, when a magnetic disk device or a CD-ROM device is mounted on a notebook personal computer, a portable terminal, or the like, the impact resistance of a hydrodynamic bearing spindle motor is required. Also 1000G
It is becoming. The dynamic pressure bearing is characterized in that when the bearing rotates, it floats up due to dynamic pressure and becomes in a non-contact state, so that the bearing portion is allowed to move about the floating amount. Therefore, when an impact is applied, the rotating member moves. If there is nothing to restrict the movement, the rotating member comes off the bearing. Therefore, the motor is provided with a retaining member to prevent the rotor from coming off. However, there is a phenomenon in which the lubricating fluid leaks out when the bearing portion makes a large movement in the thrust direction, and it is necessary to take measures against this.

【0012】また、流体軸受の潤滑流体が飛散して記録
媒体などを汚損することがないように、潤滑流体の保
持、飛散対策をこうじなくてはならないので、この対策
が大きな課題となっている。この対策として、特開平6
−311695号公報、特開平7−46810号公報に
記載のように軸受装置の潤滑流体流出防止溝を設けて行
う方法では対策が不十分であり、シール構造の工夫と軸
受スルーブの外周部にラビリンス構成を設けることが必
要である。
Also, measures must be taken to retain and scatter the lubricating fluid so that the lubricating fluid of the fluid bearing does not scatter and contaminate the recording medium or the like. . As a countermeasure against this, Japanese Patent Application Laid-Open
The measures described in JP-A-3111695 and JP-A-7-46810 in which a groove for preventing lubricating fluid outflow of a bearing device is provided are insufficient, and measures for the sealing are devised and a labyrinth is provided on the outer peripheral portion of the bearing through-hole. It is necessary to provide a configuration.

【0013】また特開平8−163821号公報、特開
平1−63820号公報に記載のように流体軸受装置に
循環通路を設けてオイルの部分的な不足対策をしている
が、軸受の構造が複雑になるうえに、軸受が大きくなり
大型のスピンドルモータにしか採用できないなど、流体
軸受装置を使用した小型のスピンドルモータに好適な構
成が必要となった。
As described in JP-A-8-163821 and JP-A-1-63820, a circulating passage is provided in a hydrodynamic bearing device to take measures against a partial shortage of oil. A structure suitable for a small spindle motor using a hydrodynamic bearing device is required, for example, the bearing becomes large and the bearing becomes large and can be adopted only for a large spindle motor.

【0014】しかしながら上記のような従来の軸受装置
等では、単に軸受部の隙間に潤滑流体流出防止溝に設け
たものや、潤滑流体を循環させるものなど潤滑流体漏れ
対策としての特別なシール機構を設けたもの等が提案さ
れている。
However, in the conventional bearing device and the like as described above, a special seal mechanism as a measure against lubricating fluid leakage, such as one provided in a lubricating fluid outflow preventing groove simply in a gap between bearing portions or one circulating lubricating fluid, is provided. Provisions and the like have been proposed.

【0015】これら従来の技術例では、例えば動圧軸受
においては、潤滑流体の量が少ない場合、循環経路に潤
滑流体が保持され、潤滑機能部には充分な潤滑流体が供
給されないという問題を生じ、一方、潤滑流体の量が多
すぎた場合には潤滑流体漏れが生じてしまうという問題
が生じており、潤滑流体漏れ対策の充分な軸受シール装
置とはなっていない。
In these prior art examples, for example, in the case of a dynamic pressure bearing, when the amount of the lubricating fluid is small, there is a problem that the lubricating fluid is held in the circulation path and a sufficient lubricating fluid is not supplied to the lubricating function part. On the other hand, if the amount of the lubricating fluid is too large, there is a problem that the lubricating fluid leaks, and the bearing seal device is not sufficient to prevent the lubricating fluid from leaking.

【0016】[0016]

【課題を解決するための手段】本発明は、上記従来技術
の軸受のシール装置に対し、 (1)注入された潤滑流体の量が多少変化したり移動し
たりしても、それを吸収できる空間を動圧軸受が有して
おり、しかも、その空間内の潤滑流体が安定的に保持さ
れる構造であること。 (2)外力を受けても、潤滑流体が、軸受の外部へ飛散
しないように、外力に耐えられる軸受構造であること。 (3)動圧軸受部の開放端出口側の潤滑流体面が安定な
濡れ状態で、漏れにくくなっている。
SUMMARY OF THE INVENTION The present invention provides the following advantages over the prior art bearing sealing device: (1) Even if the amount of lubricating fluid injected changes or moves slightly, it can be absorbed. A structure in which the dynamic pressure bearing has a space and the lubricating fluid in the space is stably held. (2) The bearing structure must be able to withstand external force so that the lubricating fluid does not scatter outside the bearing even when subjected to external force. (3) The lubricating fluid surface on the outlet end side of the open end of the dynamic pressure bearing portion is in a stable wet state and hardly leaks.

【0017】上記の条件を考慮して、課題を解決するた
めに本発明は、動圧軸受装置の潤滑流体の保持の機構と
して、 (1)ラジアル動圧軸受の端部側円筒部の端部に回転部
材側と固定部材側に潤滑流体流出防止溝があり、固定部
材側の潤滑流体流出防止溝は一定位置に形成され、回転
部材側の潤滑流体流出防止溝は軸方向に螺旋状に形成す
る。 (2)ラジアル動圧軸受の端部側円筒部の端部に回転部
材側と固定部材側に潤滑流体流出防止溝は部分的に対向
する関係位置で形成する。 (3)回転部材側と固定部材側の潤滑流体流出防止溝が
ともにラジアル動圧軸受の端部側円筒部の開放端部に向
かうにしたがって隙間が減少する形状の溝であって、そ
の溝の傾斜角度を規定範囲にする。 (4)回転部材側の潤滑流体流出防止溝はラジアル動圧
軸受の端部側円筒部に開放端部に向かうにしたがって隙
間が減少する形状の溝面があるように形成し、固定部材
側の潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が増加する形
状の溝面があるように形成し、それら溝の傾斜角度を規
定範囲にする。 (5)回転部材側の潤滑流体流出防止溝はラジアル動圧
軸受の端部側円筒部に開放端部に向かうにしたがって隙
間が増加する形状の溝面があるように形成し、固定部材
側の潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が減少する形
状の溝面があるように形成し、それら溝の傾斜角度を規
定範囲にする。 (6)偏心率5%以上のラジアル動圧軸受の場合で、ラ
ジアル動圧軸受の端部側円筒部の端部に回転部材側と固
定部材側に潤滑流体流出防止溝を形成する。 (7)螺旋状の回転部材側の潤滑流体流出防止溝は数サ
イクルになるようにする。 (8)上記手段の動圧軸受をスピンドルモータの軸受に
使用する。
In view of the above conditions, in order to solve the problem, the present invention provides a mechanism for holding a lubricating fluid of a dynamic pressure bearing device. (1) An end portion of an end side cylindrical portion of a radial dynamic pressure bearing There is a lubricating fluid outflow preventing groove on the rotating member side and the fixed member side, the lubricating fluid outflow preventing groove on the fixed member side is formed at a fixed position, and the lubricating fluid outflow preventing groove on the rotating member side is formed spirally in the axial direction. I do. (2) A lubricating fluid outflow prevention groove is formed at the end of the cylindrical portion at the end of the radial dynamic pressure bearing on the rotating member side and the fixed member side at a partially opposed position. (3) Both the lubricating fluid outflow prevention grooves on the rotating member side and the fixed member side are grooves having a shape in which the gap decreases as approaching the open end of the end side cylindrical portion of the radial dynamic pressure bearing. Set the tilt angle within the specified range. (4) The lubricating fluid outflow preventing groove on the rotating member side is formed so that the end side cylindrical portion of the radial dynamic pressure bearing has a groove surface having a shape in which the gap decreases toward the open end, and the groove on the fixed member side. The lubricating fluid outflow preventing groove is formed so that the end side cylindrical portion of the radial dynamic pressure bearing has a groove surface having a shape in which a gap increases toward the open end, and the inclination angle of the groove is set within a specified range. (5) The lubricating fluid outflow preventing groove on the rotating member side is formed so that the end side cylindrical portion of the radial dynamic pressure bearing has a groove surface in which a gap increases toward the open end, and the groove on the fixed member side. The lubricating fluid outflow prevention groove is formed so that the end side cylindrical portion of the radial dynamic pressure bearing has a groove surface having a shape in which the gap decreases toward the open end, and the inclination angles of the grooves are set within a specified range. (6) In the case of a radial dynamic pressure bearing having an eccentricity of 5% or more, a lubricating fluid outflow preventing groove is formed on the rotating member side and the fixed member side at the end of the end side cylindrical portion of the radial dynamic pressure bearing. (7) The lubricating fluid outflow prevention groove on the side of the spiral rotating member is set to have several cycles. (8) The dynamic pressure bearing of the above means is used for a bearing of a spindle motor.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、固定部
材に対して回転体を回転自在に支承するためのラジアル
動圧流体軸受及びスラスト動圧流体軸受からなる動圧軸
受部が設けられた動圧軸受装置において、その動圧軸受
には潤滑流体を充填させ、固定部材に対して回転部材を
非接触で回転させるその動圧軸受の軸方向の両端側が開
放端とし、ラジアル動圧軸受の端部側円筒部の端部に潤
滑流体流出防止溝を固定部材側と回転体側の両方に設
け、固定部材側の潤滑流体流出防止溝の位置は一定と
し、回転部材側の滑流体流出防止溝の位置は軸方向距離
に周期的に変化し、固定部材側の潤滑流体流出防止溝と
回転部材側の滑流体流出防止溝は部分的に対向するよう
に構成された潤滑流体流出防止溝を有することを特徴と
する動圧軸受装置としたものであり、ラジアル動圧軸受
の開放端部側円筒部の端部に潤滑流体流出防止溝が回転
部材側と固定部材側に設けられることによって、固定部
材側の潤滑流体流出防止溝では表面張力による潤滑流体
の保持が行われ、回転部材側の潤滑流体流出防止溝では
遠心力と表面張力による潤滑流体の保持が行われること
によって、ラジアル動圧軸受の潤滑流体の回転部材から
の流出は防止される。また、2つの潤滑流体流出防止溝
のうち固定部材側の潤滑流体流出防止溝の位置は一定位
置にあるが、回転部材側の潤滑流体流出防止溝は位置は
上下に周期的に変化があるために、2つの溝の相対位置
が回転に伴って変化することで、動圧発生部に自己補充
することができる。さらには衝撃が作用した場合でも、
その自己補充機能により、漏れ始めた潤滑流体が潤滑流
体流出防止溝にもどり、さらには動圧発生部に戻るよう
に潤滑流体流出防止溝の保持能力が強化され、信頼性が
高い軸受装置ができるという作用を有する。
According to the first aspect of the present invention, there is provided a dynamic pressure bearing portion comprising a radial dynamic pressure fluid bearing and a thrust dynamic pressure fluid bearing for rotatably supporting a rotating body with respect to a fixed member. In the hydrodynamic bearing device, the hydrodynamic bearing is filled with a lubricating fluid, and both ends in the axial direction of the hydrodynamic bearing for rotating the rotating member in a non-contact manner with respect to the fixed member are open ends. A lubricating fluid outflow preventing groove is provided on both the fixed member side and the rotating body side at the end of the cylindrical portion on the end side of the bearing. The position of the lubricating fluid outflow preventing groove on the fixed member side is fixed, and the lubricating fluid outflow groove on the rotating member side is fixed. The position of the preventing groove periodically changes along the axial distance, and the lubricating fluid outflow preventing groove on the fixed member side and the lubricating fluid outflow preventing groove on the rotating member side are configured to partially face each other. A hydrodynamic bearing device characterized by having The lubricating fluid outflow preventing groove is provided on the rotating member side and the fixed member side at the end of the open end side cylindrical portion of the radial dynamic pressure bearing, so that the surface tension of the lubricating fluid outflow preventing groove on the fixed member side is increased. The lubricating fluid is held by the lubricating fluid, and the lubricating fluid outflow prevention groove on the rotating member side holds the lubricating fluid by centrifugal force and surface tension, thereby preventing the lubricating fluid of the radial dynamic bearing from flowing out of the rotating member. Is done. Further, the position of the lubricating fluid outflow preventing groove on the fixed member side of the two lubricating fluid outflow preventing grooves is at a fixed position, but the position of the lubricating fluid outflow preventing groove on the rotating member side periodically changes vertically. In addition, when the relative position of the two grooves changes with the rotation, the dynamic pressure generating portion can be replenished by itself. Even if a shock is applied,
Due to the self-replenishment function, the holding capacity of the lubricating fluid outflow preventing groove is enhanced so that the lubricating fluid that has begun to leak returns to the lubricating fluid outflow preventing groove, and further returns to the dynamic pressure generating portion, thereby providing a highly reliable bearing device. It has the action of:

【0019】請求項2に記載の発明は、回転部材側と固
定部材側との両方に設けられた潤滑流体流出防止溝はラ
ジアル動圧軸受の端部側円筒部に開放端部に向かうにし
たがって隙間が減少する溝面が形成されたことを特徴と
する請求項1記載の動圧軸受装置としたものであり、固
定部材側の潤滑流体流出防止溝では表面張力による潤滑
流体の保持が行われ、回転部材側の潤滑流体流出防止溝
では遠心力と表面張力による潤滑流体の保持が行われる
ことで効果的なシールが可能となるという作用を有する
うえに、固定部材側と回転部材側に設けられ潤滑流体流
出防止溝の端縁はお互いに段違いにくいちがっていて、
動圧発生部に自己補充することができる。
According to a second aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed on the end side cylindrical portion of the radial dynamic pressure bearing toward the open end. 2. The hydrodynamic bearing device according to claim 1, wherein a groove surface for reducing the gap is formed, wherein the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side. In addition, the lubricating fluid outflow prevention groove on the rotating member side has an effect that the lubricating fluid is held by centrifugal force and surface tension, so that an effective seal can be performed. In addition, the groove is provided on the fixed member side and the rotating member side. The edges of the lubricating fluid outflow prevention grooves are different from each other,
The dynamic pressure generating section can be self-replenished.

【0020】請求項3に記載の発明は、回転部材側と固
定部材側との両方に設けられた潤滑流体流出防止溝はラ
ジアル動圧軸受の端部側円筒部に開放端部に向かうにし
たがって隙間が減少する溝面が存在し、それぞれの前記
溝面が軸方向からの傾斜角度α、βで形成され、その傾
斜角度α、βは(数4)の関係にあることを特徴とする
請求項2記載の動圧軸受装置
According to a third aspect of the present invention, the lubricating fluid outflow preventing grooves provided on both the rotating member side and the fixed member side are formed on the end side cylindrical portion of the radial dynamic pressure bearing toward the open end. There is a groove surface with a reduced gap, and each of the groove surfaces is formed at an inclination angle α, β from the axial direction, and the inclination angles α, β have a relationship of (Equation 4). Item 2. The dynamic bearing device according to Item 2.

【0021】[0021]

【数4】 (Equation 4)

【0022】としたものであり、固定部材側の潤滑流体
流出防止溝では表面張力による潤滑流体の保持が行わ
れ、回転部材側の潤滑流体流出防止溝では遠心力と表面
張力による潤滑流体の保持が行われ、潤滑流体流出防止
溝の傾斜角度を所定範囲にすることで効果的なシールが
可能となるという作用を有する。
In the lubricating fluid outflow preventing groove on the fixed member side, the lubricating fluid is retained by surface tension, and in the rotating member side lubricating fluid outflow preventing groove, the lubricating fluid is retained by centrifugal force and surface tension. Is performed, and by setting the inclination angle of the lubricating fluid outflow prevention groove within a predetermined range, an effective seal can be achieved.

【0023】請求項4に記載の発明は、回転部材側に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に開放端部に向かうにしたがって隙間が増加す
る溝面が存在するように形成され、固定部材側に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が減少する溝
面が存在するように形成されたことを特徴とする請求項
1記載の動圧軸受装置としたものであり、固定部材側と
回転部材側に設けられ潤滑流体流出防止溝の端縁はお互
いに段違いにくいちがっていて、動圧発生部に自己補充
することができるうえに、固定部材側の潤滑流体流出防
止溝では表面張力による潤滑流体の保持が行われ、回転
部材側の潤滑流体流出防止溝では表面張力による潤滑流
体の保持が行われることで効果的なシールが可能となる
という作用を有する。
According to a fourth aspect of the present invention, the lubricating fluid outflow preventing groove provided on the rotating member side has a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap increases toward the open end. The lubricating fluid outflow prevention groove formed on the fixed member side is formed so as to have a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing in which the gap decreases toward the open end. The lubricating fluid bearing device according to claim 1, wherein the lubricating fluid outflow preventing grooves provided on the fixed member side and the rotating member side are less likely to be stepped from each other. In addition to being able to replenish the pressure generating part by itself, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the lubricating fluid by the surface tension is held in the lubricating fluid outflow preventing groove on the rotating member side. Holding is done It has an effect of effective seal is possible by.

【0024】請求項5に記載の発明は、回転部材側に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に開放端部に向かうにしたがって隙間が増加す
る溝面が存在するように形成され、固定部材側に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が減少する溝
面が存在するように形成され、それぞれの潤滑流体流出
防止溝の前記溝面が軸方向からの傾斜角度γ、δであ
り、その傾斜角度γ、δは(数5)の関係にあることを
特徴とする請求項4記載の動圧軸受装置。
According to a fifth aspect of the present invention, the lubricating fluid outflow prevention groove provided on the rotating member side has a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap increases toward the open end. The lubricating fluid outflow prevention groove formed on the fixed member side is formed so as to have a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing in which the gap decreases toward the open end. The groove surface of each of the lubricating fluid outflow prevention grooves has an inclination angle γ, δ from the axial direction, and the inclination angles γ, δ have a relationship of (Equation 5). Dynamic bearing device.

【0025】[0025]

【数5】 (Equation 5)

【0026】としたものであり、固定部材側の潤滑流体
流出防止溝では表面張力による潤滑流体の保持が行わ
れ、回転部材側の潤滑流体流出防止溝では表面張力によ
る潤滑流体の保持が行われ、潤滑流体流出防止溝の傾斜
角度を所定範囲にすることで効果的なシールが可能とな
るという作用を有する。
In the lubricating fluid outflow preventing groove on the fixed member side, the lubricating fluid is held by the surface tension, and in the rotating member side lubricating fluid outflow preventing groove, the lubricating fluid is held by the surface tension. By setting the inclination angle of the lubricating fluid outflow prevention groove within a predetermined range, an effective seal can be achieved.

【0027】請求項6に記載の発明は、回転部材側に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に開放端部に向かうにしたがって隙間が減少す
る溝面が存在するように形成され、固定部材側に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が増加する溝
面が存在するように形成されたことを特徴とする請求項
1記載の動圧軸受装置としたものであり、固定部材側の
潤滑流体流出防止溝では表面張力による潤滑流体の保持
が行われ、回転部材側の潤滑流体流出防止溝では遠心力
と表面張力による潤滑流体の保持が行われることで効果
的なシールが可能となるという作用を有するうえに、固
定部材側と回転部材側に設けられ潤滑流体流出防止溝の
端縁はお互いに段違いにくいちがっていて、動圧発生部
に自己補充することができる。
According to a sixth aspect of the present invention, the lubricating fluid outflow preventing groove provided on the rotating member side has a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap decreases toward the open end. The lubricating fluid outflow prevention groove formed on the fixed member side is formed so as to have a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap increases toward the open end. 2. A lubricating fluid bearing device according to claim 1, wherein the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the lubricating fluid outflow on the rotating member side is performed. The prevention groove has a function of enabling effective sealing by holding the lubricating fluid by centrifugal force and surface tension, and has an end of the lubricating fluid outflow prevention groove provided on the fixed member side and the rotating member side. The edges are stepped to each other Have staggered There may be self-replenishing in dynamic pressure generator.

【0028】請求項7に記載の発明は、回転部材側に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に開放端部に向かうにしたがって隙間が減少す
る溝面が存在するように形成され、固定部材側に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が増加する溝
面が存在するように形成され、それぞれの潤滑流体流出
防止溝の前記溝面が軸方向からの傾斜角度γ、δであ
り、その傾斜角度γ、δは(数6)の関係にあることを
特徴とする請求項6記載の動圧軸受装置。
According to a seventh aspect of the present invention, the lubricating fluid outflow preventing groove provided on the rotating member side has a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap decreases toward the open end. The lubricating fluid outflow prevention groove formed on the fixed member side is formed so as to have a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap increases toward the open end. The groove surface of each lubricating fluid outflow prevention groove has an inclination angle γ, δ from the axial direction, and the inclination angles γ, δ have a relationship of (Equation 6). Dynamic bearing device.

【0029】[0029]

【数6】 (Equation 6)

【0030】としたものであり、固定部材側の潤滑流体
流出防止溝では表面張力による潤滑流体の保持が行わ
れ、回転部材側の潤滑流体流出防止溝では遠心力と表面
張力による潤滑流体の保持が行われ、潤滑流体流出防止
溝の傾斜角度を所定範囲にすることで効果的なシールが
可能となるという作用を有する。
In the lubricating fluid outflow preventing groove on the fixed member side, the lubricating fluid is held by surface tension, and in the rotating member side lubricating fluid outflow preventing groove, the lubricating fluid is held by centrifugal force and surface tension. Is performed, and by setting the inclination angle of the lubricating fluid outflow prevention groove within a predetermined range, an effective seal can be achieved.

【0031】請求項8に記載の発明は、回転部材側と固
定部材側との両方に設けられた潤滑流体流出防止溝はラ
ジアル動圧軸受の端部側円筒部に形成され、固定部材側
の潤滑流体流出防止溝は一定の高さの位置に形成されて
いて、回転部材側の潤滑流体流出防止溝の下部端部の最
下点位置の方が固定部材側の潤滑流体流出防止溝の下部
端部の位置より上部(開放端の逆)側に位置し、回転部
材側の潤滑流体流出防止溝の下部端部の最上点位置の方
が固定部材側の潤滑流体流出防止溝の上部端部の位置よ
り上部(開放端の逆)側に位置し、回転部材側の潤滑流
体流出防止溝の上部端部の最下点位置の方は固定部材側
の潤滑流体流出防止溝の上部端部の位置より上部(開放
端の逆)側に位置し、回転部材側の潤滑流体流出防止溝
の上部端部の最上点位置の方は固定部材側の潤滑流体流
出防止溝の上部端部の位置より上部(開放端の逆)側に
位置していることを特徴とする請求項1から7記載の動
圧軸受装置としたものであり、回転部材側と固定部材側
に設けられ潤滑流体流出防止溝の端縁はお互いに段違い
にくいちがっていて、固定部材側の潤滑流体流出防止溝
の一定位置あり、回転部材側の潤滑流体流出防止溝が軸
方向に周期的に変化するように形成されているので、各
所にシール効果が発生し、隙間での潤滑流体の遠心力と
表面張力の作用で流出が阻止されるうえに、潤滑流体流
出防止溝の位置をくいちがいさせていることで動圧発生
部に潤滑流体が戻るように潤滑流体流出防止溝の保持能
力が強化され、信頼性が高い軸受装置ができるという作
用を有する。
According to an eighth aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing, and The lubricating fluid outflow preventing groove is formed at a fixed height, and the lowermost point of the lower end of the lubricating fluid outflow preventing groove on the rotating member is located below the lubricating fluid outflow preventing groove on the fixed member. The upper end of the lubricating fluid outflow preventing groove on the fixed member is located at the uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side. The uppermost end of the lubricating fluid outflow preventing groove on the rotating member side is located at the upper end of the lubricating fluid outflow preventing groove on the fixed member side. Located above (opposite to the open end) the upper end of the upper end of the lubricating fluid outflow prevention groove on the rotating member side. 8. The hydrodynamic bearing device according to claim 1, wherein the position is located on the upper side (opposite of the open end) of the lubricating fluid outflow preventing groove on the fixed member side. The edges of the lubricating fluid outflow prevention grooves provided on the rotating member side and the fixed member side are different from each other, and are unlikely to be stepped. Since the lubricating fluid outflow preventing groove is formed so as to change periodically in the axial direction, a sealing effect is generated in various places, and the outflow is prevented by the action of the centrifugal force and surface tension of the lubricating fluid in the gap. In addition, since the position of the lubricating fluid outflow prevention groove is different, the holding capacity of the lubricating fluid outflow prevention groove is strengthened so that the lubricating fluid returns to the dynamic pressure generating part, and an effect that a highly reliable bearing device can be produced. Have.

【0032】請求項9に記載の発明は、回転部材側と固
定部材側との両方に設けられた潤滑流体流出防止溝はラ
ジアル動圧軸受の端部側円筒部に形成され、固定部材側
の潤滑流体流出防止溝は一定の高さの位置に形成されて
いて、回転部材側の潤滑流体流出防止溝の下部端部の最
下点位置の方が固定部材側の潤滑流体流出防止溝の下部
端部の位置より上部(開放端の逆)側に位置し、回転部
材側の潤滑流体流出防止溝の下部端部の最上点位置の方
が固定部材側の潤滑流体流出防止溝の上部端部の位置よ
り下部(開放端)側に位置し、回転部材側の潤滑流体流
出防止溝の上部端部の最下点位置の方は固定部材側の潤
滑流体流出防止溝の上部端部の位置より上部(開放端の
逆)側に位置し、回転部材側の潤滑流体流出防止溝の上
部端部の最上点位置の方は固定部材側の潤滑流体流出防
止溝の上部端部の位置より上部(開放端の逆)側に位置
していることを特徴とする請求項1から7記載の動圧軸
受装置としたものであり、回転部材側と固定部材側に設
けられ潤滑流体流出防止溝の端縁はお互いに段違いにく
いちがっていて、固定部材側の潤滑流体流出防止溝の一
定位置にあり、回転部材側の潤滑流体流出防止溝が軸方
向に周期的に変化するように形成されているので、各所
にシール効果が発生し、隙間での潤滑流体の遠心力と表
面張力の作用で流出が阻止されるうえに、潤滑流体流出
防止溝の位置をくいちがいさせていることで動圧発生部
に潤滑流体が戻るように潤滑流体流出防止溝の保持能力
が強化され、信頼性が高い軸受装置ができるという作用
を有する。
According to the ninth aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing. The lubricating fluid outflow preventing groove is formed at a fixed height, and the lowermost point of the lower end of the lubricating fluid outflow preventing groove on the rotating member is located below the lubricating fluid outflow preventing groove on the fixed member. The upper end of the lubricating fluid outflow preventing groove on the fixed member is located at the uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side. The lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the position of the upper end portion of the lubricating fluid outflow preventing groove on the fixed member side. The uppermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member, which is located on the upper side (opposite of the open end) 8. The hydrodynamic bearing device according to claim 1, wherein the upper end is located on the upper side (opposite to the open end) of the upper end of the lubricating fluid outflow prevention groove on the fixed member side. The edge of the lubricating fluid outflow prevention groove provided on the rotating member side and the fixed member side is unlikely to be stepped from each other, and is located at a certain position of the lubricating fluid outflow prevention groove on the fixing member side, Since the lubricating fluid outflow preventing groove is formed so as to change periodically in the axial direction, a sealing effect is generated in various places, and the outflow is prevented by the action of the centrifugal force and surface tension of the lubricating fluid in the gap. In addition, since the position of the lubricating fluid outflow prevention groove is different, the holding capacity of the lubricating fluid outflow prevention groove is strengthened so that the lubricating fluid returns to the dynamic pressure generating part, and an effect that a highly reliable bearing device can be produced. Have.

【0033】請求項10に記載の発明は、回転部材側と
の固定部材側と両方に設けられた潤滑流体流出防止溝は
ラジアル動圧軸受の端部側円筒部に形成され、固定部材
側の潤滑流体流出防止溝は一定の高さの位置に形成され
ていて、回転部材側の潤滑流体流出防止溝の下部端部の
最下点位置の方が固定部材側の潤滑流体流出防止溝の下
部端部の位置より下部(開放端)側に位置し、回転部材
側の潤滑流体流出防止溝の下部端部の最上点位置の方が
固定部材側の潤滑流体流出防止溝の上部端部の位置より
下部(開放端)側に位置しかつ固定部材側の潤滑流体流
出防止溝の下部端部の位置より上部(開放端の逆)側に
位置し、回転部材側の潤滑流体流出防止溝の上部端部の
最下点位置の方は固定部材側の潤滑流体流出防止溝の上
部端部の位置より下部(開放端)側に位置しかつ固定部
材側の潤滑流体流出防止溝の下部端部の位置より上部
(開放端の逆)側に位置し、回転部材側の潤滑流体流出
防止溝の上部端部の最上点位置の方は固定部材側の潤滑
流体流出防止溝の上部端部の位置より上部(開放端の
逆)側に位置していることを特徴とする請求項1から7
記載の動圧軸受装置としたものであり、回転部材側と固
定部材側に設けられ潤滑流体流出防止溝の端縁はお互い
に段違いにくいちがっていて、固定部材側の潤滑流体流
出防止溝の一定位置にあり、回転部材側の潤滑流体流出
防止溝が軸方向に周期的に変化するように形成されてい
るので、各所にシール効果が発生し、隙間での潤滑流体
の遠心力と表面張力の作用で流出が阻止されるうえに、
潤滑流体流出防止溝の位置をくいちがいさせていること
で動圧発生部に潤滑流体が戻るように潤滑流体流出防止
溝の保持能力が強化され、信頼性が高い軸受装置ができ
るという作用を有する。
According to a tenth aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing. The lubricating fluid outflow preventing groove is formed at a fixed height, and the lowermost point of the lower end of the lubricating fluid outflow preventing groove on the rotating member is located below the lubricating fluid outflow preventing groove on the fixed member. The uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is located at the upper end position of the lubricating fluid outflow preventing groove on the fixed member side. It is located on the lower (open end) side and above the lower end of the lubricating fluid outflow preventing groove on the fixed member side (opposite to the open end), and on the rotating member side on the lubricating fluid outflow preventing groove. The lowermost point of the end is closer to the upper end of the lubricating fluid outflow prevention groove on the fixed member side. The upper end of the lubricating fluid outflow preventing groove on the rotating member side, which is located on the upper portion (open end) side and the upper side (opposite of the open end) of the lower end of the lubricating fluid outflow preventing groove on the fixed member side. The uppermost position of the portion is located on the upper side (opposite to the open end) side of the upper end of the lubricating fluid outflow preventing groove on the fixed member side.
The lubricating fluid outflow prevention groove provided on the rotating member side and the fixed member side is different from the edge of the lubricating fluid outflow prevention groove, and the lubricating fluid outflow prevention groove on the fixed member side is fixed. Position, and the lubricating fluid outflow prevention groove on the rotating member side is formed so as to periodically change in the axial direction, so that a sealing effect occurs at various places, and the centrifugal force and surface tension of the lubricating fluid in the gap are reduced. In addition to blocking the outflow by the action,
Since the positions of the lubricating fluid outflow preventing grooves are different from each other, the holding capacity of the lubricating fluid outflow preventing grooves is enhanced so that the lubricating fluid returns to the dynamic pressure generating portion, and an effect that a highly reliable bearing device can be obtained.

【0034】請求項11に記載の発明は、回転部材側と
固定部材側との両方に設けられた潤滑流体流出防止溝は
ラジアル動圧軸受の端部側円筒部に形成され、固定部材
側の潤滑流体流出防止溝は一定の高さの位置に形成され
ていて、回転部材側の潤滑流体流出防止溝の下部端部の
最下点位置の方が固定部材側の潤滑流体流出防止溝の下
部端部の位置より下部(開放端)側に位置し、回転部材
側の潤滑流体流出防止溝の下部端部の最上点位置の方が
固定部材側の潤滑流体流出防止溝の下部端部の位置より
下部(開放端)側に位置し、回転部材側の潤滑流体流出
防止溝の上部端部の最下点位置の方は固定部材側の潤滑
流体流出防止溝の上部端部の位置より下部(開放端)側
に位置しかつ固定部材側の潤滑流体流出防止溝の下部端
部の位置より上部(開放端の逆)側に位置し、回転部材
側の潤滑流体流出防止溝の上部端部の最上点位置の方は
固定部材側の潤滑流体流出防止溝の上部端部の位置より
下部(開放端)側に位置していることを特徴とする請求
項1から7記載の動圧軸受装置としたものであり、回転
部材側と固定部材側に設けられ潤滑流体流出防止溝の端
縁はお互いに段違いにくいちがっていて、固定部材側の
潤滑流体流出防止溝の一定位置にあり、回転部材側の潤
滑流体流出防止溝が軸方向に周期的に変化するように形
成されているので、各所にシール効果が発生し、隙間で
の潤滑流体の遠心力と表面張力の作用で流出が阻止され
るうえに、潤滑流体流出防止溝の位置をくいちがいさせ
ていることで動圧発生部に潤滑流体が戻るように潤滑流
体流出防止溝の保持能力が強化され、信頼性が高い軸受
装置ができるという作用を有する。
According to an eleventh aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing, and The lubricating fluid outflow preventing groove is formed at a fixed height, and the lowermost point of the lower end of the lubricating fluid outflow preventing groove on the rotating member is located below the lubricating fluid outflow preventing groove on the fixed member. It is located on the lower side (open end) side of the end position, and the uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is the position of the lower end of the lubricating fluid outflow preventing groove on the fixed member side. The lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is located lower (open end) side than the upper end position of the lubricating fluid outflow preventing groove on the fixed member side ( (Open end) side and above the lower end of the lubricating fluid outflow prevention groove on the fixed member side The uppermost position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the upper end position of the lubricating fluid outflow preventing groove on the fixed member side (open end). The hydrodynamic bearing device according to any one of claims 1 to 7, wherein the lubricating fluid outflow prevention grooves provided on the rotating member side and the fixed member side are opposite to each other. The lubricating fluid outflow prevention groove on the fixed member is located at a fixed position, and the lubricating fluid outflow prevention groove on the rotating member is formed so that it changes periodically in the axial direction. The effect is generated, the lubricating fluid is prevented from flowing out by the action of the centrifugal force and surface tension of the lubricating fluid in the gap, and the lubricating fluid returns to the dynamic pressure generating part by displacing the position of the lubricating fluid outflow preventing groove The retention capacity of the lubricating fluid outflow prevention groove is enhanced It has the effect that reliability can be higher bearing device.

【0035】請求項12に記載の発明は、回転部材側と
固定部材側との両方に設けられた潤滑流体流出防止溝は
ラジアル動圧軸受の端部側円筒部に形成され、固定部材
側の潤滑流体流出防止溝は一定の高さの位置に形成され
ていて、回転部材側の潤滑流体流出防止溝の下部端部の
最下点位置の方が固定部材側の潤滑流体流出防止溝の下
部端部の位置より下部(開放端)側に位置し、回転部材
側の潤滑流体流出防止溝の下部端部の最上点位置の方が
固定部材側の潤滑流体流出防止溝の下部端部の位置より
下部(開放端)側に位置し、回転部材側の潤滑流体流出
防止溝の上部端部の最下点位置の方は固定部材側の潤滑
流体流出防止溝の下部端部の位置より下部(開放端)側
に位置し、回転部材側の潤滑流体流出防止溝の上部端部
の最上点位置の方は固定部材側の潤滑流体流出防止溝の
上部端部の位置より下部(開放端)側に位置しかつ固定
部材側の潤滑流体流出防止溝の下部端部の位置より上部
(開放端の逆)側に位置していることを特徴とする請求
項1から7記載の動圧軸受装置としたものであり、回転
部材側と固定部材側に設けられ潤滑流体流出防止溝の端
縁はお互いに段違いにくいちがっていて、固定部材側の
潤滑流体流出防止溝の一定位置にあり、回転部材側の潤
滑流体流出防止溝が軸方向に周期的に変化するように形
成されているので、各所にシール効果が発生し、隙間で
の潤滑流体の遠心力と表面張力の作用で流出が阻止され
るうえに、潤滑流体流出防止溝の位置をくいちがいさせ
ていることで動圧発生部に潤滑流体が戻るように潤滑流
体流出防止溝の保持能力が強化され、信頼性が高い軸受
装置ができるという作用を有する。
According to a twelfth aspect of the present invention, the lubricating fluid outflow prevention grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing. The lubricating fluid outflow preventing groove is formed at a fixed height, and the lowermost point of the lower end of the lubricating fluid outflow preventing groove on the rotating member is located below the lubricating fluid outflow preventing groove on the fixed member. It is located on the lower side (open end) side of the end position, and the uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is the position of the lower end of the lubricating fluid outflow preventing groove on the fixed member side. The lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is located lower (open end) side than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( (Open end) side, the uppermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member side The lower (open end) side of the upper end of the lubricating fluid outflow preventing groove on the fixed member side and the upper (opposite to the open end) side of the lower end of the lubricating fluid outflow preventing groove on the fixing member side 8. The hydrodynamic bearing device according to claim 1, wherein the lubricating fluid outflow preventing grooves provided on the rotating member side and the fixed member side are hardly stepped with each other. In contrast, the lubricating fluid outflow preventing groove on the fixed member side is located at a fixed position, and the lubricating fluid outflow preventing groove on the rotating member side is formed so as to periodically change in the axial direction. The lubricating fluid is prevented from flowing out by the action of the centrifugal force and surface tension of the lubricating fluid in the gap, and the lubricating fluid returns to the dynamic pressure generating part by displacing the position of the lubricating fluid outflow preventing groove. The holding capacity of the lubricating fluid outflow prevention groove has been enhanced. It has the effect that reliability can be higher bearing device.

【0036】請求項13に記載の発明は、回転部材側と
固定部材側との両方に設けられた潤滑流体流出防止溝は
ラジアル動圧軸受の端部側円筒部に形成され、固定部材
側の潤滑流体流出防止溝は一定の高さの位置に形成され
ていて、回転部材側の潤滑流体流出防止溝は周方向に展
開すると軸方向に螺旋状になっていて、その螺旋状の潤
滑流体流出防止溝の軸方向距離を変位とした時1展開で
nサイクルしている(nは1以上の正の整数)ことを特
徴とする請求項1から12記載の動圧軸受装置としたも
のであり、潤滑流体流出防止溝の位置を数回以上くいち
がいさせていることで動圧発生部に潤滑流体が戻るよう
に機会が増加し、動圧軸受としての保持能力が強化さ
れ、信頼性が高い軸受装置ができるという作用を有す
る。
According to a thirteenth aspect of the present invention, the lubricating fluid outflow preventing grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing. The lubricating fluid outflow preventing groove is formed at a fixed height, and the lubricating fluid outflow preventing groove on the rotating member side is spirally formed in the axial direction when developed in the circumferential direction, and the spiral lubricating fluid outflow groove is formed. 13. The hydrodynamic bearing device according to claim 1, wherein when the axial distance of the prevention groove is set as a displacement, n cycles are performed in one development (n is a positive integer of 1 or more). The position of the lubricating fluid outflow prevention groove is displaced more than once, increasing the chances of lubricating fluid returning to the dynamic pressure generating part, enhancing the holding capacity as a dynamic pressure bearing, and providing a highly reliable bearing. It has the effect that the device can be made.

【0037】請求項14に記載の発明は、回転部材側と
固定部材側との両方に設けられた潤滑流体流出防止溝は
ラジアル動圧軸受の端部側円筒部に形成され、かつ回転
部材と固定部材との隙間が一定では2つの潤滑流体流出
防止溝は一定の高さの位置に形成されていて、ラジアル
動圧軸受の偏心率が5%以上で使用されることを特徴と
する動圧軸受装置としたものであり、2つの対向する潤
滑流体流出防止溝の一方が螺旋状の溝でない場合でも、
偏心率が5%以上になると、螺旋状の潤滑流体流出防止
溝として効果を発揮し、潤滑流体の漏れを効果的に防止
するという作用を有する。
According to a fourteenth aspect of the present invention, the lubricating fluid outflow preventing grooves provided on both the rotating member side and the fixed member side are formed in the end side cylindrical portion of the radial dynamic pressure bearing. When the clearance with the fixed member is constant, the two lubricating fluid outflow prevention grooves are formed at a fixed height, and the radial dynamic pressure bearing is used with an eccentricity of 5% or more. Even if one of the two opposed lubricating fluid outflow prevention grooves is not a spiral groove,
When the eccentricity is 5% or more, the eccentricity exerts an effect as a spiral lubricating fluid outflow prevention groove, and has an effect of effectively preventing leakage of the lubricating fluid.

【0038】請求項15に記載の発明は、ハウジング
と、該ハウジングに直接または間接的に固定されたステ
ータコアと、該ハウジングに固定されたシャフトと、該
シャフトに固定された抜け止め板と、固定のシャフトに
対して軸受を介して相対的に回転自在である軸受スリー
ブと、該スリーブの外周部に直接または間接的に固定さ
れたロータとを備え、該シャフトと該スリーブとからな
りいずれか一方にヘリングボーン溝を形成して、隙間に
潤滑流体を介したラジアル動圧軸受とスラスト押さえ板
とスリーブで抜け止め板を挟み込み、該抜け止め板とス
ラスト押さえ板のいずれか一方に動圧溝を形成し、抜け
止め板とスリーブのいずれか一方にも動圧溝を形成し
て、隙間に潤滑流体を介したスラスト動圧流体軸受であ
り、ラジアル動圧軸受の端部側円筒部の端部に潤滑流体
流出防止溝がシャフト側と軸受スリーブ側の両方にあっ
て、シャフト側の潤滑流体流出防止溝の位置は一定であ
って、スリーブ側の潤滑流体流出防止溝の位置は軸方向
距離に周期的に変化していて、シャフト側の潤滑流体流
出防止溝とスリーブ側の潤滑流体流出防止溝は軸受の1
回転で一部分が部分的に対向するように構成された潤滑
流体流出防止溝を有することを特徴とする動圧軸受装置
を使用したスピンドルモータとしたものである。ラジア
ル動圧軸受の開放端部側円筒部の端部に潤滑流体流出防
止溝が回転部材側と固定部材側に設けられることによっ
て、固定部材側の潤滑流体流出防止溝では表面張力によ
る潤滑流体の保持が行われ、回転部材側の潤滑流体流出
防止溝では遠心力と表面張力による潤滑流体の保持が行
われることによって、ラジアル動圧軸受の潤滑流体のス
リーブからの流出は防止される。さらに、スリーブ側と
シャフト側に設けられ潤滑流体流出防止溝の端縁はお互
いに段違いにくいちがっていて、スリーブ側の潤滑流体
流出防止溝の方が下方である場合では、何段にもわたっ
てシール効果を発揮し、スリーブ側の潤滑流体流出防止
溝の方が上方である場合では、何段にもわたってシール
効果を発揮することができるうえに、シャフト側の潤滑
流体流出防止溝の位置は一定位置にあるが、スリーブ側
の潤滑流体流出防止溝は位置は上下に周期的に変化があ
るために、2つの溝の相対位置が回転に伴って変化する
ことで、動圧発生部に自己補充することができる。さら
には衝撃が作用した場合でも、その自己補充機能によ
り、漏れ始めた潤滑流体が潤滑流体流出防止溝にもど
り、さらには動圧発生部に戻るように潤滑流体流出防止
溝の保持能力が強化され、信頼性が高い軸受装置ができ
るという作用を有する。
According to a fifteenth aspect of the present invention, a housing, a stator core fixed directly or indirectly to the housing, a shaft fixed to the housing, a retaining plate fixed to the shaft, A bearing sleeve that is rotatable relative to the shaft via a bearing, and a rotor that is fixed directly or indirectly to an outer peripheral portion of the sleeve, and the shaft comprises the shaft and the sleeve. A herringbone groove is formed, and a retaining plate is sandwiched between a radial dynamic pressure bearing, a thrust retaining plate, and a sleeve via a lubricating fluid in a gap, and a dynamic pressure groove is provided in one of the retaining plate and the thrust retaining plate. It is a thrust hydrodynamic fluid bearing with a lubricating fluid in the gap by forming a hydrodynamic groove in either the retaining plate or the sleeve. The lubricating fluid outflow preventing groove is provided on both the shaft side and the bearing sleeve side at the end of the end side cylindrical portion, and the position of the lubricating fluid outflow preventing groove on the shaft side is constant, and the lubricating fluid outflow preventing groove on the sleeve side is provided. The position of the groove is periodically changed along the axial distance, and the groove for preventing lubricating fluid outflow on the shaft side and the groove for preventing lubricating fluid outflow on the sleeve side are connected to one of the bearings.
According to another aspect of the present invention, there is provided a spindle motor using a hydrodynamic bearing device, which has a lubricating fluid outflow prevention groove configured to be partially opposed by rotation. Lubricating fluid outflow prevention grooves are provided on the rotating member side and the fixed member side at the end of the cylindrical portion at the open end side of the radial dynamic pressure bearing. The lubricating fluid is retained by the centrifugal force and the surface tension in the lubricating fluid outflow preventing groove on the rotating member side, thereby preventing the lubricating fluid of the radial dynamic pressure bearing from flowing out of the sleeve. Furthermore, the edges of the lubricating fluid outflow preventing grooves provided on the sleeve side and the shaft side are unlikely to be stepped from each other, and when the lubricating fluid outflow preventing grooves on the sleeve side are lower, they extend over many steps. When the sealing effect is exhibited and the lubricating fluid outflow prevention groove on the sleeve side is higher, the sealing effect can be exerted over several stages and the position of the lubricating fluid outflow prevention groove on the shaft side Is at a fixed position, but the position of the lubricating fluid outflow prevention groove on the sleeve side changes periodically up and down, so that the relative position of the two grooves changes with rotation, Can be self-replenishing. Furthermore, even when an impact is applied, the self-replenishing function returns the lubricating fluid that has begun to return to the lubricating fluid outflow prevention groove, and further enhances the holding capacity of the lubricating fluid outflow prevention groove so as to return to the dynamic pressure generating portion. This has the effect of providing a highly reliable bearing device.

【0039】請求項16に記載の発明は、請求項1から
14記載の動圧軸受装置を使用したスピンドルモータと
したもので、シャフト側の潤滑流体流出防止溝の位置は
一定位置にあるが、スリーブ側の潤滑流体流出防止溝は
位置は上下に周期的に変化があるために、2つの溝の相
対位置が回転に伴って変化することで、動圧発生部に自
己補充することができるという作用を有する。
According to a sixteenth aspect of the present invention, there is provided a spindle motor using the hydrodynamic bearing device according to the first to fourteenth aspects, wherein the position of the lubricating fluid outflow preventing groove on the shaft side is fixed. Since the position of the lubricating fluid outflow prevention groove on the sleeve side periodically changes vertically, the relative position of the two grooves changes with rotation, so that the dynamic pressure generating portion can be self-replenished. Has an action.

【0040】[0040]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0041】(実施例1)図1には本発明の一実施例と
しての動圧軸受装置を示す。図1において、1は固定部
材、2は回転部材、3は潤滑流体、4は潤滑流体流出防
止溝、5は潤滑流体流出防止溝、6はスラスト板、7は
開放端開口隙間部、8は流体保持溝である。
(Embodiment 1) FIG. 1 shows a hydrodynamic bearing device as an embodiment of the present invention. In FIG. 1, 1 is a fixed member, 2 is a rotating member, 3 is a lubricating fluid, 4 is a lubricating fluid outflow preventing groove, 5 is a lubricating fluid outflow preventing groove, 6 is a thrust plate, 7 is an open end opening gap, and 8 is This is a fluid holding groove.

【0042】実施例1の軸受を説明するまえに、従来の
軸受を少しここでもふれる。軸受内に潤滑流体を保持す
るメカニズムにおいて、図19のような一般的な流体動
圧のラジアル軸受を考えると、図19の動圧流体軸受で
は、2箇所に開放端100、101がある構造を考えた
場合、まず潤滑流体は2箇所の開放端100、101で
の毛管吸引圧力のバランスで保持され、開放端部の潤滑
流体の表面位置は表面に作用する2つの圧力で釣り合っ
ている状態である。すなわち、2カ所の開放端の毛管吸
引圧力をP1、P2とすると、概略近似的にはP1=P
2で平衡状態となっている。
Before describing the bearing of the first embodiment, the conventional bearing will be described a little here. Considering a general fluid dynamic pressure radial bearing as shown in FIG. 19 in the mechanism for holding the lubricating fluid in the bearing, the hydrodynamic bearing of FIG. 19 has a structure in which two open ends 100 and 101 are provided. Considering this, first, the lubricating fluid is held at a balance of the capillary suction pressure at the two open ends 100 and 101, and the surface position of the lubricating fluid at the open end is balanced by the two pressures acting on the surface. is there. That is, assuming that the capillary suction pressures at the two open ends are P1 and P2, roughly, P1 = P
2 is in equilibrium.

【0043】片方の開放端に何らかの圧力が加わると、
圧力バランスがとれる位置まで潤滑流体は移動する。す
なわち、たとえば、外部圧力P3とすると、P1=P2
+P3で平衡が保たれる状態に変化する。
When some pressure is applied to one open end,
The lubricating fluid moves to a position where the pressure is balanced. That is, for example, assuming that the external pressure is P3, P1 = P2
The state changes to a state where the equilibrium is maintained at + P3.

【0044】このように開放端が軸受の両端にある構造
では、圧力バランスによって軸受内の潤滑流体の位置が
決まるため、外力が加わったときには必ず潤滑流体の移
動を伴う。この移動に伴って、従来の軸受では潤滑流体
の漏れが発生する。
In such a structure in which the open ends are at both ends of the bearing, the position of the lubricating fluid in the bearing is determined by the pressure balance, so that when an external force is applied, the lubricating fluid always moves. Along with this movement, leakage of the lubricating fluid occurs in the conventional bearing.

【0045】本発明では、これに対して、潤滑流体3が
移動しても漏れないためには、図1に示すように潤滑流
体流出防止溝4、5を設けている。その潤滑流体流出防
止溝4、5は潤滑流体3を保持のための溜まり空間であ
る。
In the present invention, in order to prevent the leakage even when the lubricating fluid 3 moves, the lubricating fluid outflow preventing grooves 4 and 5 are provided as shown in FIG. The lubricating fluid outflow prevention grooves 4 and 5 are storage spaces for holding the lubricating fluid 3.

【0046】毛管現象による潤滑流体の保持圧力は隙間
の間隔に反比例するので、潤滑流体流出防止溝4、5に
通常回転時でも潤滑流体3を多く保持していたら、動圧
発生部に潤滑流体3を自己供給するように、潤滑流体流
出防止溝4、5の一方を螺旋状の溝にしている。
Since the holding pressure of the lubricating fluid due to the capillary action is inversely proportional to the gap distance, if the lubricating fluid outflow prevention grooves 4 and 5 hold a large amount of the lubricating fluid 3 even during normal rotation, the lubricating fluid is generated in the dynamic pressure generating portion. One of the lubricating fluid outflow prevention grooves 4 and 5 is formed as a spiral groove so that 3 can be supplied by itself.

【0047】この螺旋状の溝は、図2のように、モータ
の動圧軸受の2つの潤滑流体流出防止溝の展開図で表す
と、固定部材側の潤滑流体流出防止溝5は実線で示すよ
うな平行な位置になるように展開され、回転部材側の潤
滑流体流出防止溝4の破線で示すようなうねりのある位
置形状になるように展開される。すなわち、回転部材側
の潤滑流体流出防止溝4の破線は請求項に記載されてい
るように軸方向距離に周期的に変化している。図2には
展開の回転角度位置も記載してあり、回転部材側の潤滑
流体流出防止溝4の軸方向距離に周期は1周で1サイク
ルしている。
When this spiral groove is represented by a development view of two lubricating fluid outflow preventing grooves of the dynamic pressure bearing of the motor as shown in FIG. 2, the lubricating fluid outflow preventing groove 5 on the fixed member side is shown by a solid line. The lubricating fluid outflow preventing groove 4 on the rotating member side is developed so as to have a wavy position as shown by a broken line. That is, the broken line of the lubricating fluid outflow prevention groove 4 on the rotating member side periodically changes in the axial direction distance as described in the claims. FIG. 2 also shows the rotational angle position of the development, and the cycle is one cycle per revolution in the axial distance of the lubricating fluid outflow prevention groove 4 on the rotating member side.

【0048】それらのメカニズムを以下に説明する。回
転部材2側の潤滑流体流出防止溝4に対向する位置近く
には固定部材1側の表面にも下方に向かうにしたがって
隙間が減少する潤滑流体流出防止溝5が構成されてい
る。図3はこの部分の拡大図であって、図2での回転角
度の0度近傍での状態を示す。回転部材2側の潤滑流体
流出防止溝4と固定部材1側の潤滑流体流出防止溝5の
位置関係は、若干固定部材1側の潤滑流体流出防止溝5
の方が上方に位置する。
The mechanism will be described below. Near the position facing the lubricating fluid outflow preventing groove 4 on the rotating member 2 side, a lubricating fluid outflow preventing groove 5 whose gap decreases toward the lower side is also formed on the surface on the fixed member 1 side. FIG. 3 is an enlarged view of this portion, and shows a state near the rotation angle of 0 degrees in FIG. The positional relationship between the lubricating fluid outflow preventing groove 4 on the rotating member 2 and the lubricating fluid outflow preventing groove 5 on the fixing member 1 is slightly different from that of the lubricating fluid outflow preventing groove 5 on the fixing member 1.
Is located above.

【0049】ラジアル動圧軸受部から下へ漏れ出た潤滑
流体3は最初に回転部材2と固定部材1の隙間が大きく
なる位置すなわち、潤滑流体流出防止溝5のところで潤
滑流体の表面張力によって流出が阻止される。この状態
を第1段のシールとする。シール状態を表現するため
に、図3ではその潤滑流体の第1段シール状態を示して
いる。
The lubricating fluid 3 which has leaked downward from the radial dynamic pressure bearing portion flows out at the position where the gap between the rotating member 2 and the fixed member 1 becomes large, that is, at the lubricating fluid outflow preventing groove 5 due to the surface tension of the lubricating fluid. Is blocked. This state is referred to as a first-stage seal. In order to express the sealing state, FIG. 3 shows a first-stage sealing state of the lubricating fluid.

【0050】その潤滑流体流出防止溝5のところのシー
ルが損なわれて、その潤滑流体流出防止溝5に潤滑流体
が充満に近い状態になると、もう一方の潤滑流体流出防
止溝4の最初の端縁ともう一方の端縁でのテーパによっ
て、遠心力と表面張力の作用が潤滑流体に作用し、遠心
力と表面張力シール効果を発生させて潤滑流体の流出は
阻止される。この状態を第2段のシールとする。その遠
心力と表面張力シール効果だけで不十分なまでに潤滑流
体が2つの潤滑流体流出防止溝に充満に近い状態になる
と、潤滑流体流出防止溝4の回転部材2の開放端側に端
縁と固定部材1とのくさび状の隙間での潤滑流体の遠心
力と表面張力の作用で流出が阻止される。この状態を第
3段のシールとする。潤滑流体流出防止溝の位置をくい
ちがいさせていることで、何段にもわたってシール効果
をもたせることができる。
When the seal at the lubricating fluid outflow preventing groove 5 is damaged and the lubricating fluid outflow preventing groove 5 is almost full of the lubricating fluid, the first end of the other lubricating fluid outflow preventing groove 4 is opened. Due to the taper at the edge and the other edge, the action of centrifugal force and surface tension acts on the lubricating fluid, creating a centrifugal force and surface tension sealing effect and preventing the outflow of the lubricating fluid. This state is referred to as a second-stage seal. When the lubricating fluid is almost full in the two lubricating fluid outflow preventing grooves until the centrifugal force and the surface tension sealing effect alone are insufficient, the lubricating fluid outflow preventing groove 4 has an edge on the open end side of the rotating member 2. The outflow is prevented by the action of the centrifugal force and the surface tension of the lubricating fluid in the wedge-shaped gap between the lubricating fluid and the fixing member 1. This state is referred to as a third-stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0051】図4は2つの潤滑流体流出防止溝の構成の
拡大図であって、図2での回転角度の180度近傍での
状態を示す。回転部材2側の潤滑流体流出防止溝4と固
定部材1側の潤滑流体流出防止溝5の位置関係は、若干
固定部材1側の潤滑流体流出防止溝5の方が下方に位置
する。
FIG. 4 is an enlarged view of the configuration of the two lubricating fluid outflow preventing grooves, and shows a state at a rotation angle of about 180 degrees in FIG. As for the positional relationship between the lubricating fluid outflow preventing groove 4 on the rotating member 2 side and the lubricating fluid outflow preventing groove 5 on the fixing member 1 side, the lubricating fluid outflow preventing groove 5 on the fixing member 1 side is located slightly lower.

【0052】図4でのシール効果について説明する。ラ
ジアル動圧軸受部から下へ漏れ出た潤滑流体は最初に回
転部材2と固定部材1との隙間が大きくなる位置すなわ
ち、回転部材側の潤滑流体流出防止溝4のところで表面
張力によって流出が阻止される。この状態を第1段のシ
ールとする。そのところでの表面張力での保持効果はわ
ずかであり、さらに、その漏れた潤滑流体は回転遠心力
で潤滑流体流出防止溝4の上端縁側の半径位置の大きな
ところに付着する。つぎに潤滑流体流出防止溝4の最初
の端縁ともう一方の固定部材1側の潤滑流体流出防止溝
5の端縁でのテーパによって、遠心力と表面張力の作用
が潤滑流体に作用し、遠心力と表面張力シール効果を発
生させて潤滑流体の流出は阻止される。この状態を第2
段のシールとする。その回転部材2側の潤滑流体流出防
止溝4で第2段のシールが不十分な状態になると、もう
一方の固定部材1側の潤滑流体流出防止溝5の下部端縁
の傾斜面と回転部材2の内表面とのくさび状の隙間で潤
滑流体の表面張力の作用で流出が阻止される。この状態
を第3段のシールとする。潤滑流体流出防止溝の位置を
くいちがいさせていることで、何段にもわたってシール
効果をもたせることができる。
The sealing effect in FIG. 4 will be described. The lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion is prevented from flowing out by the surface tension at the position where the gap between the rotating member 2 and the fixed member 1 becomes large, that is, at the lubricating fluid outflow preventing groove 4 on the rotating member side. Is done. This state is referred to as a first-stage seal. The effect of retaining the surface tension at that point is slight, and the leaked lubricating fluid adheres to the lubricating fluid outflow preventing groove 4 at a large radial position on the upper edge side by rotational centrifugal force. Next, the action of the centrifugal force and the surface tension acts on the lubricating fluid due to the taper at the first edge of the lubricating fluid outflow preventing groove 4 and the edge of the lubricating fluid outflow preventing groove 5 on the other fixing member 1 side. The outflow of the lubricating fluid is prevented by generating a centrifugal force and a surface tension sealing effect. This state is the second
It is a step seal. When the lubricating fluid outflow preventing groove 4 on the rotating member 2 side is insufficiently sealed in the second stage, the inclined surface of the lower edge of the lubricating fluid outflow preventing groove 5 on the other stationary member 1 side and the rotating member Outflow is prevented by the action of the surface tension of the lubricating fluid in the wedge-shaped gap between the inner surface of the lubricating fluid and the inner surface of the lubricating fluid. This state is referred to as a third-stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0053】図3と図4のようなシール効果は図2に示
すように展開位置の随所で起こり、回転位置において、
シールして保持していた潤滑流体に、その位置でのシー
ル効果が変化するように、螺旋状に潤滑流体流出防止溝
の位置を構成することで潤滑流体は自己的に動圧軸受部
に戻ってしまう。
The sealing effect as shown in FIGS. 3 and 4 occurs everywhere in the deployed position as shown in FIG.
The lubricating fluid returns to the hydrodynamic bearing part automatically by forming the position of the lubricating fluid outflow prevention groove in a spiral so that the sealing effect at that position changes in the lubricating fluid that has been sealed and held. Would.

【0054】この自己補充機構が、螺旋状に潤滑流体流
出防止溝にして、潤滑流体流出防止溝の位置をくいちが
いさせて、このくいちがい位置関係を変化させているこ
とで可能となっている。
This self-replenishment mechanism is made possible by changing the position of the lubricating fluid outflow preventing groove in a spiral shape and by changing the position of the lubricating fluid outflow preventing groove.

【0055】つぎに、潤滑流体が外部に漏れるのは、回
転に伴って境界面を潤滑流体がはい上がる現象があるた
めと、遠心力で飛散してしまう現象に別れ、その現象が
複雑に作用しているために、動圧流体軸受のシール対策
を複雑にしている。このはい上がり現象は拡散ぬれとも
呼ばれている現象で、これを防止することが一つには重
要である。その対策を含めて、その現象を説明する。
Next, the leakage of the lubricating fluid to the outside is divided into a phenomenon in which the lubricating fluid rises on the boundary surface with rotation and a phenomenon in which the lubricating fluid is scattered by centrifugal force. This complicates sealing measures for the hydrodynamic bearing. This rising phenomenon is also called diffusion wetting, and it is important to prevent it at least in part. The phenomena will be explained including the countermeasures.

【0056】気、液、固相の組み合わせでの界面の形で
考えると気/液、気/固、液/液、液/固、固/固の5
種類が考えられるが、2相間に界面が存在するには界面
形成の自由エネルギーが正でなくてはならない。毛管現
象は上記界面のうち可動性のある界面に関係した現象で
あり、その界面は平衡状態に達したときにはある形と面
積をもつ。気/液および気/固の界面を特に表面とい
い、軸受のシールは気/液の表面の問題であり、表面張
力と表面自由エネルギーが関係する。
Considering the interface in the form of a combination of gas, liquid and solid phase, there are five types of gas / liquid, gas / solid, liquid / liquid, liquid / solid and solid / solid.
Although the type may be considered, the free energy for forming the interface must be positive for an interface to exist between the two phases. Capillary phenomenon is a phenomenon related to a movable interface among the above interfaces, and the interface has a certain shape and area when reaching an equilibrium state. The gas / liquid and gas / solid interfaces are particularly referred to as surfaces, and the sealing of the bearing is a problem of the gas / liquid surface, where surface tension and surface free energy are related.

【0057】まず、簡単に表面自由エネルギーについて
説明する。図5は表面自由エネルギーを説明するための
図である。
First, the surface free energy will be briefly described. FIG. 5 is a diagram for explaining surface free energy.

【0058】図5において、液体で満たされた槽で抵抗
のない可動性バーBCを矢印の方に動かすと、液体AB
CDの表面積が増加する。バーをdxだけ移動してB’
C’の位置に移すためには液体内の凝集力に抗して仕事
をしなければならない。この操作を可逆的に拡散させる
と、液体表面にその仕事によるエネルギーが貯えられ
る、表面を収縮させると、そのエネルギーは再び使用さ
れる。新しい面積BB’C’Cを作る時、仕事Wがなさ
れるとすると、比表面エネルギーはW/(f・dx)で
表される。係数をγとすると、ゆえに
In FIG. 5, when the movable bar BC having no resistance is moved in the direction of the arrow in the tank filled with liquid, the liquid AB is moved.
The surface area of the CD increases. Move the bar by dx and B '
In order to move to the position C ′, work must be performed against the cohesive force in the liquid. When this operation is reversibly diffused, the energy of the work is stored on the liquid surface, and when the surface is shrunk, the energy is used again. Assuming that work W is performed when a new area BB′C′C is formed, the specific surface energy is expressed by W / (f · dx). If the coefficient is γ, then

【0059】[0059]

【数7】 (Equation 7)

【0060】fdxは表面積の増加分であるので、それ
をdAとすると
Since fdx is an increase in surface area, if it is dA,

【0061】[0061]

【数8】 (Equation 8)

【0062】dGは自由エネルギーの増加である。した
がって係数γはdG/dAとなり、単位面積あたりの表
面自由エネルギーになる。すなわち、このγは表面張力
に等しい。
DG is the increase in free energy. Therefore, the coefficient γ is dG / dA, which is the surface free energy per unit area. That is, this γ is equal to the surface tension.

【0063】動圧軸受の両端が開放端で構成された軸受
では、シール部で自由表面エネルギーまたは表面張力が
関与している。
In a bearing in which both ends of a dynamic pressure bearing are open ends, free surface energy or surface tension is involved in the seal portion.

【0064】毛管現象の基本式は(数9)のようにな
る。
The basic equation of the capillary phenomenon is as shown in (Equation 9).

【0065】[0065]

【数9】 (Equation 9)

【0066】この毛管現象の基本式はYoung-Laplaceの
式ともいう。図6のような説明図から導くとすると、2
つの曲率半径をR1とR2とした場合、図のように曲面
の面積を十分に小さくとれば、R1とR2は一定とみな
せる。いま曲面を微小距離だけ外側に移動させたとする
と、それに伴う面積の増加ΔAは(数10)で近似でき
る。
The basic equation of the capillary phenomenon is also called the Young-Laplace equation. Deriving from the explanatory diagram of FIG.
If the two radii of curvature are R1 and R2, and if the area of the curved surface is made sufficiently small as shown in the figure, R1 and R2 can be regarded as constant. Assuming now that the curved surface is moved outward by a small distance, the increase ΔA of the area associated therewith can be approximated by (Equation 10).

【0067】[0067]

【数10】 (Equation 10)

【0068】であり、面積増加ΔAと加えられた仕事W
との関係は
The area increase ΔA and the added work W
Relationship with

【0069】[0069]

【数11】 [Equation 11]

【0070】が成り立つ。また一方内部の圧力がΔPだ
け低くなって釣り合わないといけない。ゆえに、この面
の移動に伴う気体の仕事W’=−ΔP・xydzが力学
的に平衡であるので、W+W’=0の関係から、毛管現
象の基本式が導き出せる。
Is satisfied. On the other hand, the internal pressure must be reduced by ΔP to be balanced. Therefore, since the work W ′ = − ΔP · xydz of the gas accompanying the movement of this surface is in mechanical equilibrium, the basic equation of the capillary phenomenon can be derived from the relation of W + W ′ = 0.

【0071】動圧軸受の場合固定部材と回転部材かのど
ちらかに、または両方に潤滑流体の溜まり溝を設けてい
るが、本願発明者の実験などの結果、溝の傾斜角度につ
いて、以下に説明するような実験結果が得られた。
In the case of a dynamic pressure bearing, a lubricating fluid reservoir groove is provided on one or both of the fixed member and the rotating member. As a result of experiments conducted by the present inventors, the inclination angle of the groove is as follows. Experimental results as described were obtained.

【0072】図7は固定部材9、回転部材10の境界部
近くの回転部材側に潤滑流体の保持および流出防止溝1
1が形成されているとした模式図である。その流出防止
溝の傾斜面が固定部材の面とのなす角度εである。角度
εの補角を角度κとする。また図7において、流出防止
溝部で保持されている潤滑流体を液面高さをhとする。
FIG. 7 shows a groove 1 for holding and flowing out the lubricating fluid on the rotating member near the boundary between the fixed member 9 and the rotating member 10.
FIG. 3 is a schematic view in which 1 is formed. The angle ε between the inclined surface of the outflow prevention groove and the surface of the fixing member is defined. Let the complementary angle of the angle ε be the angle κ. In FIG. 7, the liquid level of the lubricating fluid held in the outflow prevention groove is defined as h.

【0073】図7からFrom FIG.

【0074】[0074]

【数12】 (Equation 12)

【0075】さらに、Further,

【0076】[0076]

【数13】 (Equation 13)

【0077】液の面積が三角形をしているので、圧力Δ
Pは(数14)で表される。
Since the area of the liquid is triangular, the pressure Δ
P is represented by (Equation 14).

【0078】[0078]

【数14】 [Equation 14]

【0079】これらの関係を毛管現象の式に適用する
と、
Applying these relationships to the equation of capillary action,

【0080】[0080]

【数15】 (Equation 15)

【0081】ゆえに、使用の潤滑流体が既知の場合であ
るので、(数16)の右辺は一定である。そのために、
(数16)はhとκの関数となる。
Therefore, since the lubricating fluid to be used is known, the right side of (Equation 16) is constant. for that reason,
(Equation 16) is a function of h and κ.

【0082】[0082]

【数16】 (Equation 16)

【0083】したがって、κとεの関係からTherefore, from the relationship between κ and ε,

【0084】[0084]

【数17】 [Equation 17]

【0085】ただし、Cは定数である。潤滑流体の液面
高さhと角度εの関係は図8のように、図8から、ε<
10度の範囲はhの大きいことがわかる。図8ではC=
1で計算してある。
Here, C is a constant. The relationship between the liquid surface height h of the lubricating fluid and the angle ε is shown in FIG.
It can be seen that h is large in the range of 10 degrees. In FIG. 8, C =
It is calculated by 1.

【0086】さらに、角度εに対する液面高さhの変化
率(dh/dε)を求めると
Further, a change rate (dh / dε) of the liquid level height h with respect to the angle ε is obtained.

【0087】[0087]

【数18】 (Equation 18)

【0088】(数18)となり、その液面高さの変化率
と角度εの関係を図示すると、図9のようになる。図で
はC=1で計算してある。図9から液面高さの変化率の
割合は角度εが約60度近くが最小であって、その両側
になるにつれては変化率の割合が大きくなる。図8の関
係で60度以上の大きな角度ではhの高さが低くなり、
保持能力が低下するようなことになるので、角度εは6
0度以下の範囲である必要がある。εが10度以下では
図8ではhは大きく、図9では高さの変化率の割合が大
きいので、衝撃などの圧力変動によって液面の高さが変
化が大きいのであまり好ましい潤滑流体保持溝の傾斜角
度ではない。したがって、好適な角度εとしては(数1
9)の関係となる。
(Equation 18) The relationship between the rate of change of the liquid level and the angle ε is shown in FIG. In the figure, C = 1 is calculated. From FIG. 9, the rate of change of the liquid level is minimum when the angle ε is close to about 60 degrees, and the rate of change increases as the angle ε approaches both sides. At a large angle of 60 degrees or more in relation to FIG. 8, the height of h decreases,
The angle ε is 6 because the holding capacity is reduced.
It must be within the range of 0 degrees or less. When ε is 10 degrees or less, h is large in FIG. 8 and the rate of change of the height is large in FIG. 9. Not the angle of inclination. Therefore, the preferred angle ε is (Equation 1)
9).

【0089】[0089]

【数19】 [Equation 19]

【0090】このことを踏まえて、図3、図4に示す角
度αβの角度は(数20)のようになっていることが好
適である。
Based on this, it is preferable that the angle αβ shown in FIGS. 3 and 4 be as shown in (Equation 20).

【0091】[0091]

【数20】 (Equation 20)

【0092】二つの潤滑流体流出防止溝は同時に対向し
ていることが多くあるので、角度α、βの最大値は60
度の半分の角度とした。また二つの潤滑流体流出防止溝
は個別に先端部の角度で溝が構成されることが多いの
で、角度α、βの最小角度は(数19)の最小値とし
た。
Since the two lubricating fluid outflow prevention grooves often face at the same time, the maximum value of the angles α and β is 60
The angle was set at half the degree. In addition, since the two lubricating fluid outflow prevention grooves are often individually formed at the angles of the tips, the minimum angles of the angles α and β are set to the minimum values of (Equation 19).

【0093】(実施例2)実施例2における流体動圧軸
受は図10に示す。実施例1と類推なことは同じ部品符
号を使用し、説明も省略する。ラジアル軸受の開放端部
の拡大説明図を図11、図12に示す。
(Embodiment 2) FIG. 10 shows a fluid dynamic pressure bearing according to Embodiment 2. The parts analogous to those in the first embodiment use the same part numbers, and description thereof is omitted. FIGS. 11 and 12 are enlarged explanatory views of the open end of the radial bearing.

【0094】実施例2は実施例1の図1との相違は、回
転部材側に設けられた潤滑流体流出防止溝はラジアル動
圧軸受の端部側円筒部に開放端部に向かうにしたがって
隙間が増加するような溝面が存在するように形成され、
固定部材側に設けられた潤滑流体流出防止溝はラジアル
動圧軸受の端部側円筒部に開放端部に向かうにしたがっ
て隙間が減少するような溝面が存在するように形成され
ていることである。
The second embodiment is different from the first embodiment in FIG. 1 in that the lubricating fluid outflow preventing groove provided on the rotating member side has a gap in the cylindrical portion on the end side of the radial dynamic pressure bearing toward the open end. Is formed so that there is a groove surface that increases
The lubricating fluid outflow prevention groove provided on the fixed member side is formed so that the end side cylindrical portion of the radial dynamic pressure bearing has a groove surface such that the gap decreases toward the open end. is there.

【0095】その実施例2について説明する。図10に
おいて、1は固定部材、2は回転部材、3は潤滑流体、
6はスラスト板、7は開放端開口隙間部、8は流体保持
溝、11は潤滑流体流出防止溝、12は潤滑流体流出防
止溝である。
The second embodiment will be described. In FIG. 10, 1 is a fixed member, 2 is a rotating member, 3 is a lubricating fluid,
Reference numeral 6 denotes a thrust plate, 7 denotes an open end opening gap, 8 denotes a fluid holding groove, 11 denotes a lubricating fluid outflow preventing groove, and 12 denotes a lubricating fluid outflow preventing groove.

【0096】回転部材側の潤滑流体流出防止溝11は展
開する軸方向に螺旋状になっている。流出防止溝11の
軸方向距離を変位とした時1展開でnサイクルしている
(nは正の整数)。
The lubricating fluid outflow preventing groove 11 on the rotating member side is spirally formed in the developing axial direction. When the axial distance of the outflow prevention groove 11 is set as a displacement, n cycles are performed in one development (n is a positive integer).

【0097】それらのメカニズムを以下に説明する。ま
た回転部材2側の潤滑流体流出防止溝11に対向する位
置近くには固定部材1側の表面にも下方に向かうにした
がって隙間が減少する潤滑流体流出防止溝12が構成さ
れている。図11はこの部分の拡大図であって、回転部
材2側の潤滑流体流出防止溝11と固定部材1側の潤滑
流体流出防止溝12の位置関係は、若干固定部材1側の
潤滑流体流出防止溝12の方が上方に位置する。
The mechanism will be described below. Further, a lubricating fluid outflow preventing groove 12 is formed near the position facing the lubricating fluid outflow preventing groove 11 on the rotating member 2 side, and the gap decreases as it goes downward on the surface on the fixing member 1 side. FIG. 11 is an enlarged view of this portion. The positional relationship between the lubricating fluid outflow preventing groove 11 on the rotating member 2 side and the lubricating fluid outflow preventing groove 12 on the fixing member 1 is slightly different from that of the lubricating fluid outflow preventing on the fixing member 1 side. The groove 12 is located above.

【0098】ラジアル動圧軸受部から下へ漏れ出た潤滑
流体は最初に回転部材2と固定部材1の第2の傾斜面1
6からなる隙間が大きくなる位置すなわち、潤滑流体流
出防止溝12の第2の傾斜面16のところで潤滑流体の
表面張力によって流出が阻止される。これを第1段のシ
ールとする。
The lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion is first supplied to the rotating member 2 and the second inclined surface 1 of the fixed member 1.
The outflow is blocked by the surface tension of the lubricating fluid at a position where the gap formed by the lubricating fluid 6 becomes large, that is, at the second inclined surface 16 of the lubricating fluid outflow preventing groove 12. This is a first-stage seal.

【0099】その潤滑流体流出防止溝12のところの第
1段のシールが損なわれて、その潤滑流体流出防止溝1
2の第1の傾斜面15にも潤滑流体が満ち、潤滑流体流
出防止溝12の潤滑流体が充満に近い状態になると、も
う一方の潤滑流体流出防止溝11の第1の傾斜面13、
その第1の傾斜面13では下方に向かうにしたがって隙
間(図11の角度γで構成される隙間)が大きくなる箇
所、隙間減少する第2の傾斜面14がある。潤滑流体流
出防止溝11の第1の傾斜面13と潤滑流体流出防止溝
12の空間によって、表面張力の作用が潤滑流体に作用
し、表面張力シール効果を発生させて潤滑流体の流出は
阻止される。これを第2段のシールとする。さらに、そ
の表面張力シール効果だけで不十分なまでに潤滑流体が
2つの潤滑流体流出防止溝に充満に近い状態になると、
潤滑流体流出防止溝11の回転部材2の開放端側の第2
の傾斜面14と固定部材1とのくさび状の隙間での潤滑
流体の遠心力と表面張力の作用で流出が阻止される。第
3段のシールとする。潤滑流体流出防止溝の位置をくい
ちがいさせていることで、何段にもわたってシール効果
をもたせることができる。
The first-stage seal at the lubricating-fluid outflow preventing groove 12 is damaged, and the lubricating-fluid outflow preventing groove 1 is damaged.
When the lubricating fluid fills the first inclined surface 15 of the second lubricating fluid and the lubricating fluid in the lubricating fluid outflow preventing groove 12 is almost full, the first inclined surface 13 of the other lubricating fluid outflow preventing groove 11,
The first inclined surface 13 includes a portion where the gap (gap formed by the angle γ in FIG. 11) increases as going downward, and a second inclined surface 14 where the gap decreases. Due to the space between the first inclined surface 13 of the lubricating fluid outflow preventing groove 11 and the space of the lubricating fluid outflow preventing groove 12, the action of the surface tension acts on the lubricating fluid, and a surface tension sealing effect is generated to prevent the outflow of the lubricating fluid. You. This is the second-stage seal. Further, when the lubricating fluid becomes almost full in the two lubricating fluid outflow preventing grooves to the extent that the surface tension sealing effect alone is not sufficient,
The second end of the lubricating fluid outflow prevention groove 11 on the open end side of the rotating member 2
The outflow is prevented by the action of the centrifugal force and the surface tension of the lubricating fluid in the wedge-shaped gap between the inclined surface 14 and the fixing member 1. This is the third stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0100】図12は2つの潤滑流体流出防止溝の構成
の拡大図であって、回転部材2側の潤滑流体流出防止溝
11と固定部材1側の潤滑流体流出防止溝12の位置関
係は、若干固定部材1側の潤滑流体流出防止溝12の方
が下方に位置する。
FIG. 12 is an enlarged view of the structure of the two lubricating fluid outflow preventing grooves. The positional relationship between the lubricating fluid outflow preventing groove 11 on the rotating member 2 side and the lubricating fluid outflow preventing groove 12 on the fixed member 1 side is as follows. The lubricating fluid outflow prevention groove 12 on the fixing member 1 side is located slightly below.

【0101】図12でのシール効果について説明する。
ラジアル動圧軸受部から下へ漏れ出た潤滑流体は最初に
回転部材2と固定部材1との隙間が大きくなる位置すな
わち、回転部材側の潤滑流体流出防止溝11の第1の傾
斜面13と固定部材との隙間のところで表面張力によっ
て流出が阻止される。これを第1段のシールとする。そ
のところでの表面張力での保持効果は遠心力によってわ
ずかな効果になって現れる。さらに、その漏れた潤滑流
体は回転遠心力で潤滑流体流出防止溝11の第1の傾斜
面13の半径位置の大きなところに付着すように移動す
る作用する。第1のシールが十分でない程度に潤滑流体
が漏れると、潤滑流体流出防止溝11の第1の傾斜面1
3ともう一方の固定部材1側の潤滑流体流出防止溝12
の第2の傾斜面16とで潤滑流体は保持される。それを
第2段のシールとする。さらに、潤滑流体流出防止溝1
1の第1の傾斜面13ともう一方の固定部材1側の潤滑
流体流出防止溝12の第1の傾斜面15によって、遠心
力と表面張力の作用が潤滑流体に作用し、表面張力シー
ル効果を発生させて潤滑流体の流出は阻止される。これ
を第3段のシールとする。さらに滑流体流出防止溝11
の第2の傾斜面14ともう一方の固定部材1側の潤滑流
体流出防止溝12の第1の傾斜面15によって、遠心力
と表面張力の作用が潤滑流体はシールされる。これを第
4段のシールとする。その回転部材2側の潤滑流体流出
防止溝11で第4段のシールが不十分な状態になると、
もう一方の固定部材1側の潤滑流体流出防止溝12の第
1の傾斜面15と回転部材2の内表面とのくさび状の隙
間で潤滑流体の表面張力の作用で流出が阻止される。こ
れを第5段のシールとする。潤滑流体流出防止溝の位置
をくいちがいさせていることで、何段にもわたってシー
ル効果をもたせることができる。
The sealing effect in FIG. 12 will be described.
The lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion is initially at a position where the gap between the rotating member 2 and the fixed member 1 is large, that is, the first inclined surface 13 of the lubricating fluid outflow prevention groove 11 on the rotating member side. The outflow is prevented by the surface tension at the gap with the fixing member. This is a first-stage seal. The effect of retaining the surface tension at that point appears as a slight effect due to the centrifugal force. Further, the leaked lubricating fluid acts so as to adhere to a large radial position of the first inclined surface 13 of the lubricating fluid outflow prevention groove 11 by the rotational centrifugal force. If the lubricating fluid leaks to an extent that the first seal is not sufficient, the first inclined surface 1
3 and the lubricating fluid outflow prevention groove 12 on the other fixing member 1 side
And the second inclined surface 16 holds the lubricating fluid. This is the second stage seal. Further, the lubricating fluid outflow prevention groove 1
Due to the first first inclined surface 13 and the first inclined surface 15 of the lubricating fluid outflow prevention groove 12 on the other fixed member 1 side, the action of centrifugal force and surface tension acts on the lubricating fluid, and the surface tension sealing effect And the outflow of the lubricating fluid is prevented. This is the third-stage seal. Furthermore, the slippery fluid outflow prevention groove 11
Due to the second inclined surface 14 and the first inclined surface 15 of the lubricating fluid outflow preventing groove 12 on the other fixed member 1 side, the action of the centrifugal force and the surface tension is sealed with the lubricating fluid. This is the fourth stage seal. When the lubricating fluid outflow prevention groove 11 on the rotating member 2 side is insufficiently sealed at the fourth stage,
The wedge-shaped gap between the first inclined surface 15 of the lubricating fluid outflow preventing groove 12 on the other fixed member 1 side and the inner surface of the rotating member 2 prevents the outflow by the action of the surface tension of the lubricating fluid. This is the fifth stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0102】このくいちがいの状態で回転することでシ
ールが各部で異なるために、漏れ出た潤滑流体は回転に
伴って、動圧発生部に戻るため、潤滑流体流出防止溝1
1、12の一方を螺旋状の溝にすることで、漏れ出た潤
滑流体は動圧発生部に潤滑流体3を自己供給するような
働きをする。
Since the seal is different in each part due to the rotation in this state, the leaked lubricating fluid returns to the dynamic pressure generating part with the rotation.
By making one of the grooves 1 and 12 a spiral groove, the leaked lubricating fluid acts to supply the lubricating fluid 3 to the dynamic pressure generating unit by itself.

【0103】また、潤滑流体流出防止溝11、12はそ
れぞれに傾斜面が2つ存在する。第1の傾斜面と第2の
傾斜面は第1の傾斜面の方が傾斜面の長さが長く、その
傾斜面の長い方を潤滑流体流出防止溝の傾斜面としてい
る。
Each of the lubricating fluid outflow preventing grooves 11 and 12 has two inclined surfaces. The first inclined surface and the second inclined surface are such that the first inclined surface has a longer inclined surface, and the longer inclined surface is the inclined surface of the lubricating fluid outflow prevention groove.

【0104】その潤滑流体流出防止溝の傾斜面の傾斜角
度を回転部材側は角度γとし、固定部材側は角度δとす
る。
The angle of inclination of the inclined surface of the groove for preventing lubricating fluid outflow is set to an angle γ on the rotating member side, and set to an angle δ on the fixed member side.

【0105】傾斜角度γ、δについては、実施例1と同
様な理由で、ある範囲にあることがシール効果があるの
で、その範囲に設計することが好適である。その条件は
(数21)で表される。
The inclination angles γ and δ are within a certain range for the same reason as in the first embodiment, which has a sealing effect. Therefore, it is preferable to design them within the range. The condition is represented by (Equation 21).

【0106】[0106]

【数21】 (Equation 21)

【0107】二つの潤滑流体流出防止溝は同時に対向し
ているが、傾斜角度は軸に対して軸対象でないので、角
度γ、δの最大値は60度であるほうが良いように考え
られるが、実施例2の場合では60度では少し空間が大
きすぎるような実験結果になり、少し小さな角度55度
までが好適になる結果となった。また二つの潤滑流体流
出防止溝は個別に先端部の角度で溝が構成されることが
多いので、角度γ、δの最小角度は(数19)の最小値
とした。
Although the two lubricating fluid outflow prevention grooves face each other at the same time, since the inclination angle is not axially symmetric with respect to the axis, it is considered that the maximum value of the angles γ and δ should be 60 degrees. In the case of Example 2, the experimental result was such that the space was slightly too large at 60 degrees, and the result was that a small angle up to 55 degrees was suitable. In addition, since the two lubricating fluid outflow prevention grooves are often individually formed at the angles of the tips, the minimum angles of the angles γ and δ were set to the minimum values of (Equation 19).

【0108】(実施例3)実施例3における流体動圧軸
受は図13に示す。実施例1、2と類推なことは同じ部
品符号使用し、説明も省略する。ラジアル軸受の開放端
部の拡大説明図を図14、図15に示す。
Embodiment 3 FIG. 13 shows a fluid dynamic pressure bearing according to Embodiment 3. The analogous parts to the first and second embodiments use the same part numbers, and the description is omitted. FIGS. 14 and 15 are enlarged explanatory views of the open end of the radial bearing.

【0109】実施例3は実施例1の図1との相違は、回
転部材側に設けられた潤滑流体流出防止溝はラジアル動
圧軸受の端部側円筒部に開放端部に向かうにしたがって
隙間が減少するような溝面が存在するように形成され、
固定部材側に設けられた潤滑流体流出防止溝はラジアル
動圧軸受の端部側円筒部に開放端部に向かうにしたがっ
て隙間が増加するような溝面が存在するように形成され
ていることである。
The third embodiment is different from the first embodiment in FIG. 1 in that the lubricating fluid outflow preventing groove provided on the rotating member side has a gap in the cylindrical portion on the end side of the radial dynamic pressure bearing toward the open end. Is formed so that there is a groove surface that reduces
The lubricating fluid outflow prevention groove provided on the fixed member side is formed such that a groove surface is formed in the end side cylindrical portion of the radial dynamic pressure bearing so that a gap increases toward the open end. is there.

【0110】その実施例3について説明する。図10に
おいて、1は固定部材、2は回転部材、3は潤滑流体、
6はスラスト板、7は開放端開口隙間部、8は流体保持
溝、17は潤滑流体流出防止溝、18は潤滑流体流出防
止溝である。
Embodiment 3 will be described. In FIG. 10, 1 is a fixed member, 2 is a rotating member, 3 is a lubricating fluid,
Reference numeral 6 denotes a thrust plate, 7 denotes an open end opening gap, 8 denotes a fluid holding groove, 17 denotes a lubricating fluid outflow preventing groove, and 18 denotes a lubricating fluid outflow preventing groove.

【0111】回転部材側の潤滑流体流出防止溝17は展
開する軸方向に螺旋状になっている。流出防止溝17の
軸方向距離を変位とした時1展開でnサイクルしている
(nは正の整数)。
The lubricating fluid outflow preventing groove 17 on the rotating member side is spirally formed in the developing axial direction. When the axial distance of the outflow prevention groove 17 is set as a displacement, n cycles are performed in one development (n is a positive integer).

【0112】それらのメカニズムを以下に説明する。ま
た回転部材2側の潤滑流体流出防止溝17に対向する位
置近くには固定部材1側の表面にも下方に向かうにした
がって隙間が増加する潤滑流体流出防止溝18が構成さ
れている。図15はこの部分の拡大図であって、回転部
材2側の潤滑流体流出防止溝17と固定部材1側の潤滑
流体流出防止溝18の位置関係は、若干固定部材1側の
潤滑流体流出防止溝17の方が上方に位置する。
The mechanism will be described below. In addition, a lubricating fluid outflow preventing groove 18 is formed near the position facing the lubricating fluid outflow preventing groove 17 on the rotating member 2 side, and the clearance increases as it goes downward on the surface on the fixed member 1 side. FIG. 15 is an enlarged view of this portion, and the positional relationship between the lubricating fluid outflow preventing groove 17 on the rotating member 2 side and the lubricating fluid outflow preventing groove 18 on the fixing member 1 side is slightly different. The groove 17 is located above.

【0113】ラジアル動圧軸受部から下へ漏れ出た潤滑
流体は最初に回転部材2と固定部材1の第1の傾斜面2
1からなる隙間が大きくなる位置すなわち、潤滑流体流
出防止溝18の第1の傾斜面21のところで潤滑流体の
表面張力によって流出が阻止される。これを第1段のシ
ールとする。
The lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion is first supplied to the rotating member 2 and the first inclined surface 2 of the fixed member 1.
1, that is, at the first inclined surface 21 of the lubricating fluid outflow preventing groove 18, the outflow is prevented by the surface tension of the lubricating fluid. This is a first-stage seal.

【0114】その潤滑流体流出防止溝18のところの第
1段のシール効果が損なわれて、その潤滑流体流出防止
溝18の第2の傾斜面20にも潤滑流体が満ち、潤滑流
体流出防止溝18の潤滑流体が充満に近い状態になる
と、もう一方の潤滑流体流出防止溝17の第2の傾斜面
20、その第2の傾斜面20では下方に向かうにしたが
って隙間(図14の角度γで構成される隙間)が小さく
なる箇所、隙間減少する第1の傾斜面19がある。潤滑
流体流出防止溝17の第2の傾斜面20と潤滑流体流出
防止溝20の空間によって、表面張力の作用が潤滑流体
に作用し、表面張力シール効果を発生させて潤滑流体の
流出は阻止される。これを第2段のシールとする。さら
に、その表面張力シール効果だけで不十分なまでに潤滑
流体が2つの潤滑流体流出防止溝に充満に近い状態にな
ると、潤滑流体流出防止溝17の回転部材2の開放端側
の第1の傾斜面19と固定部材1の潤滑流体流出防止溝
18の第1の傾斜面とのなす空間に潤滑流体は保持され
る。これを第3段のシールとする。第3段のシールでも
不十分に潤滑流体が漏れ出すと、潤滑流体流出防止溝1
7の第1の傾斜面19と潤滑流体流出防止溝18の第2
の傾斜面22とでなすくさび状隙間で潤滑流体は保持さ
れる。これを第4段のシールとする。さらに、潤滑流体
流出防止溝17の第1の傾斜面19と固定部材1とのく
さび状の隙間での潤滑流体の遠心力と表面張力の作用で
流出が阻止される。これを第5段のシールとする。潤滑
流体流出防止溝の位置をくいちがいさせていることで、
何段にもわたってシール効果をもたせることができる。
The first-stage sealing effect at the lubricating-fluid outflow preventing groove 18 is impaired, and the lubricating-fluid outflow preventing groove 18 is filled with the lubricating fluid also on the second inclined surface 20 of the lubricating-fluid outflow preventing groove 18. When the lubricating fluid 18 is almost full, the second inclined surface 20 of the other lubricating fluid outflow preventing groove 17 has a gap (as indicated by the angle γ in FIG. There is a portion where the configured gap is small, and a first inclined surface 19 where the gap is reduced. Due to the space between the second inclined surface 20 of the lubricating fluid outflow preventing groove 17 and the space of the lubricating fluid outflow preventing groove 20, the action of the surface tension acts on the lubricating fluid, and a surface tension sealing effect is generated to prevent the outflow of the lubricating fluid. You. This is the second-stage seal. Further, when the lubricating fluid is almost full in the two lubricating fluid outflow preventing grooves until the surface tension sealing effect alone is not sufficient, the first lubricating fluid outflow preventing groove 17 on the open end side of the rotating member 2 in the first direction. The lubricating fluid is held in a space defined by the inclined surface 19 and the first inclined surface of the lubricating fluid outflow prevention groove 18 of the fixed member 1. This is the third-stage seal. If the lubricating fluid leaks insufficiently even with the third stage seal, the lubricating fluid outflow prevention groove 1
7, the first inclined surface 19 and the second
The lubricating fluid is held in a wedge-shaped gap between the lubricating fluid and the inclined surface 22. This is the fourth stage seal. Furthermore, the outflow is prevented by the action of the centrifugal force and the surface tension of the lubricating fluid in the wedge-shaped gap between the first inclined surface 19 of the lubricating fluid outflow preventing groove 17 and the fixing member 1. This is the fifth stage seal. By matching the position of the lubricating fluid outflow prevention groove,
A sealing effect can be provided over many stages.

【0115】図15は2つの潤滑流体流出防止溝の構成
の拡大図であって、回転部材2側の潤滑流体流出防止溝
17と固定部材1側の潤滑流体流出防止溝18の位置関
係は、若干固定部材1側の潤滑流体流出防止溝18の方
が下方に位置する。
FIG. 15 is an enlarged view of the structure of the two lubricating fluid outflow preventing grooves. The positional relationship between the lubricating fluid outflow preventing groove 17 on the rotating member 2 and the lubricating fluid outflow preventing groove 18 on the fixed member 1 is as follows. The lubricating fluid outflow prevention groove 18 on the fixed member 1 side is located slightly below.

【0116】図15でのシール効果について説明する。
ラジアル動圧軸受部から下へ漏れ出た潤滑流体は最初に
回転部材2と固定部材1との隙間が大きくなる位置すな
わち、回転部材側の潤滑流体流出防止溝17の第2の傾
斜面20と固定部材との隙間のところで表面張力によっ
て流出が阻止される。これを第1段のシールとする。そ
のところでの表面張力での保持効果は遠心力によってわ
ずかな効果になって現れる。さらに、その漏れた潤滑流
体は回転遠心力で潤滑流体流出防止溝17の第2の傾斜
面20の半径位置の大きなところに付着するように移動
するような作用をする。第1段のシールが十分でない程
度に潤滑流体が漏れると、潤滑流体流出防止溝17の第
2の傾斜面13から第1の傾斜面19のほうへ漏れてく
るし、固定部材側でも潤滑流体流出防止溝18に漏れて
くる。そのために、潤滑流体流出防止溝17の第1の傾
斜面19と固定部材1側の潤滑流体流出防止溝18の第
1の傾斜面21とでなす空間で潤滑流体は保持される。
それを第2段のシールとする。さらに、潤滑流体流出防
止溝17の第1の傾斜面19ともう一方の固定部材1側
の潤滑流体流出防止溝18の第2の傾斜面22によっ
て、遠心力と表面張力の作用が潤滑流体に作用し、表面
張力シール効果を発生させて潤滑流体の流出は阻止され
る。これを第3段のシールとする。さらに滑流体流出防
止溝19の第2の傾斜面14ともう一方の回転部材2側
の内表面とでなすくさび状の隙間で潤滑流体の表面張力
の作用で流出が阻止される。これを第4段のシールとす
る。潤滑流体流出防止溝の位置をくいちがいさせている
ことで、何段にもわたってシール効果をもたせることが
できる。
The sealing effect in FIG. 15 will be described.
The lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion is initially located at a position where the gap between the rotating member 2 and the fixed member 1 is large, that is, the second inclined surface 20 of the lubricating fluid outflow prevention groove 17 on the rotating member side. The outflow is prevented by the surface tension at the gap with the fixing member. This is a first-stage seal. The effect of retaining the surface tension at that point appears as a slight effect due to the centrifugal force. Further, the leaked lubricating fluid acts so as to adhere to a large radial position of the second inclined surface 20 of the lubricating fluid outflow prevention groove 17 by the rotational centrifugal force. If the lubricating fluid leaks to such an extent that the first stage seal is not sufficient, the lubricating fluid leaks from the second inclined surface 13 of the lubricating fluid outflow preventing groove 17 toward the first inclined surface 19, and the lubricating fluid flows out even on the fixed member side. It leaks into the prevention groove 18. Therefore, the lubricating fluid is held in a space defined by the first inclined surface 19 of the lubricating fluid outflow preventing groove 17 and the first inclined surface 21 of the lubricating fluid outflow preventing groove 18 on the fixing member 1 side.
This is the second stage seal. Further, the action of centrifugal force and surface tension is applied to the lubricating fluid by the first inclined surface 19 of the lubricating fluid outflow preventing groove 17 and the second inclined surface 22 of the lubricating fluid outflow preventing groove 18 on the other fixed member 1 side. It acts to create a surface tension sealing effect and prevents the outflow of lubricating fluid. This is the third-stage seal. Further, outflow is prevented by the action of the surface tension of the lubricating fluid in a wedge-shaped gap formed between the second inclined surface 14 of the slippery fluid outflow preventing groove 19 and the inner surface on the other rotating member 2 side. This is the fourth stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0117】このくいちがいの状態で回転することでシ
ールが各部で異なるために、漏れ出た潤滑流体は回転に
伴って、動圧発生部に戻るため、潤滑流体流出防止溝1
7、18の一方を螺旋状の溝にすることで、漏れ出た潤
滑流体は動圧発生部に潤滑流体3を自己供給するような
働きをする。
Since the seal is different in each part due to the rotation in this state, the leaked lubricating fluid returns to the dynamic pressure generating part with the rotation.
By forming one of the grooves 7 and 18 into a spiral groove, the leaked lubricating fluid acts to supply the lubricating fluid 3 to the dynamic pressure generating unit by itself.

【0118】また、潤滑流体流出防止溝17、18はそ
れぞれに傾斜面が2つ存在する。第1の傾斜面と第2の
傾斜面は第1の傾斜面の方が傾斜面の長さが長く、その
傾斜面の長い方を潤滑流体流出防止溝の傾斜面として扱
っている。
Further, each of the lubricating fluid outflow prevention grooves 17 and 18 has two inclined surfaces. As for the first inclined surface and the second inclined surface, the first inclined surface has a longer inclined surface, and the longer inclined surface is treated as the inclined surface of the lubricating fluid outflow prevention groove.

【0119】その潤滑流体流出防止溝の傾斜面の角度を
回転部材側は角度γとし、固定部材側は角度δとする。
The angle of the inclined surface of the lubricating fluid outflow prevention groove is set to an angle γ on the rotating member side, and set to an angle δ on the fixed member side.

【0120】傾斜角度γ、δについては、実施例1と同
様な理由で、ある範囲にあることがシール効果があるの
で、その範囲に設計することが好適である。その条件は
(数22)で表される。
The inclination angles γ and δ are within a certain range for the same reason as in the first embodiment, and therefore, it is preferable to design the inclination angles γ and δ within the range. The condition is represented by (Equation 22).

【0121】[0121]

【数22】 (Equation 22)

【0122】二つの潤滑流体流出防止溝は同時に対向し
ているが、傾斜角度は軸に対して軸対象でないので、角
度γ、δの最大値は60度であるほうが良いように考え
られるが、経験から実施例3の場合では60度より小さ
な値とした。また二つの潤滑流体流出防止溝は個別に先
端部の角度で溝が構成されることが多いので、角度γ、
δの最小角度は(数19)の最小値とした。
Although the two lubricating fluid outflow preventing grooves are simultaneously opposed to each other, since the inclination angle is not axially symmetric with respect to the axis, it is considered that the maximum value of the angles γ and δ should be 60 degrees. From experience, the value was smaller than 60 degrees in the case of Example 3. Also, since the two lubricating fluid outflow prevention grooves are often individually configured at the angle of the tip, the angles γ,
The minimum angle of δ was the minimum value of (Equation 19).

【0123】(実施例4)上記の実施例では、回転部材
側の潤滑流体流出防止溝は螺旋状の溝としている。この
螺旋状の溝ともう一方の潤滑流体流出防止溝との関係に
ついては、詳細な説明図が図2である。
(Embodiment 4) In the above embodiment, the lubricating fluid outflow prevention groove on the rotating member side is a spiral groove. FIG. 2 is a detailed explanatory view showing the relationship between the spiral groove and the other lubricating fluid outflow preventing groove.

【0124】実際、この本願発明による螺旋状溝には、
数パターンの溝の位置関係がある。いくつかの実施例を
実施例4として説明する。図16に固定部材側の潤滑流
体流出防止溝と回転部材側の潤滑流体流出防止溝との位
置関係を表す展開図である。
In fact, in the spiral groove according to the present invention,
There are several patterns of groove positions. Several embodiments will be described as a fourth embodiment. FIG. 16 is a developed view showing a positional relationship between the lubricating fluid outflow preventing groove on the fixed member side and the lubricating fluid outflow preventing groove on the rotating member side.

【0125】この螺旋状の溝は、図16のように、モー
タの動圧軸受の2つの潤滑流体流出防止溝の展開図で表
すと、固定部材側の潤滑流体流出防止溝24は実線で示
すような平行な位置になるように展開され、回転部材側
の潤滑流体流出防止溝23の破線で示すようなうねりの
ある位置形状になるように展開される。すなわち、回転
部材側の潤滑流体流出防止溝23の破線は請求項に記載
されているように軸方向距離に周期的に変化している。
図16にも展開の回転角度位置も記載してあり、回転部
材側の潤滑流体流出防止溝23の軸方向距離に周期は1
展開で、図16(a)では2サイクル、図16(b)で
は2サイクル、図16(c)では1サイクル、図16
(d)では2サイクル、図16(e)では2サイクルし
ている。
When this spiral groove is represented by a development view of two lubricating fluid outflow preventing grooves of the dynamic pressure bearing of the motor as shown in FIG. 16, the lubricating fluid outflow preventing groove 24 on the fixed member side is shown by a solid line. The lubricating fluid outflow prevention groove 23 on the rotating member side is developed so as to have a wavy position as shown by a broken line. That is, the broken line of the lubricating fluid outflow prevention groove 23 on the rotating member side periodically changes in the axial direction distance as described in the claims.
FIG. 16 also shows the rotational angle position of the development, and the period is 1 in the axial distance of the lubricating fluid outflow prevention groove 23 on the rotating member side.
16A, two cycles in FIG. 16A, two cycles in FIG. 16B, one cycle in FIG.
FIG. 16D shows two cycles, and FIG. 16E shows two cycles.

【0126】図16(a)の場合は、固定部材側の潤滑
流体流出防止溝24に対して位置関係では、回転部材側
の潤滑流体流出防止溝23の下部端部の最下点位置25
の方が固定部材側の潤滑流体流出防止溝24の下部端部
の位置より上部(開放端の逆)側に位置し、回転部材側
の潤滑流体流出防止溝23の下部端部の最上点位置26
の方が固定部材側の潤滑流体流出防止溝24の上部端部
の位置より上部(開放端の逆)側に位置し、回転部材側
の潤滑流体流出防止溝23の上部端部の最下点位置27
の方は固定部材側の潤滑流体流出防止溝24の上部端部
の位置より上部(開放端の逆)側に位置し、回転部材側
の潤滑流体流出防止溝23の上部端部の最上点位置28
の方は固定部材側の潤滑流体流出防止溝24の上部端部
の位置より上部(開放端の逆)側に位置している。
In the case of FIG. 16A, the lowermost point position 25 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side is relative to the lubricating fluid outflow preventing groove 24 on the fixed member side.
Is located on the upper side (opposite to the open end) of the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is the uppermost position of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side. 26
Is located on the upper side (opposite to the open end) of the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is the lowest point of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Position 27
Is located on the upper side (opposite to the open end) of the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the highest point of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. 28
Is located on the upper side (opposite to the open end) of the lubricating fluid outflow prevention groove 24 on the fixed member side.

【0127】図16(b)の場合は、固定部材側の潤滑
流体流出防止溝24に対して位置関係では、回転部材側
の潤滑流体流出防止溝23の下部端部の最下点位置25
の方が固定部材側の潤滑流体流出防止溝24の下部端部
の位置より上部(開放端の逆)側に位置し、回転部材側
の潤滑流体流出防止溝23の下部端部の最上点位置26
の方が固定部材側の潤滑流体流出防止溝24の上部端部
の位置より下部(開放端)側に位置し、回転部材側の潤
滑流体流出防止溝23の上部端部の最下点位置27の方
は固定部材側の潤滑流体流出防止溝24の上部端部の位
置より上部(開放端の逆)側に位置し、回転部材側の潤
滑流体流出防止溝23の上部端部の最上点位置28の方
は固定部材側の潤滑流体流出防止溝24の上部端部の位
置より上部(開放端の逆)側に位置している。
In the case of FIG. 16B, the lowermost point position 25 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side is relative to the lubricating fluid outflow preventing groove 24 on the fixed member side.
Is located on the upper side (opposite to the open end) of the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is the uppermost position of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side. 26
Is located lower (open end) than the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and the lowest point position 27 of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located on the upper side (opposite to the open end) of the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the highest point of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Reference numeral 28 is located on the upper side (opposite to the open end) side of the upper end of the lubricating fluid outflow prevention groove 24 on the fixed member side.

【0128】図16(c)の場合は、固定部材側の潤滑
流体流出防止溝24に対して位置関係では、回転部材側
の潤滑流体流出防止溝23の下部端部の最下点位置25
の方が固定部材側の潤滑流体流出防止溝24の下部端部
の位置より下部(開放端)側に位置し、回転部材側の潤
滑流体流出防止溝23の下部端部の最上点位置26の方
が固定部材側の潤滑流体流出防止溝24の上部端部の位
置より下部(開放端)側に位置しかつ固定部材側の潤滑
流体流出防止溝24の下部端部の位置より上部(開放端
の逆)側に位置し、回転部材側の潤滑流体流出防止溝2
3の上部端部の最下点位置27の方は固定部材側の潤滑
流体流出防止溝24の上部端部の位置より下部(開放
端)側に位置しかつ固定部材側の潤滑流体流出防止溝2
4の下部端部の位置より上部(開放端の逆)側に位置
し、回転部材側の潤滑流体流出防止溝23の上部端部の
最上点位置28の方は固定部材側の潤滑流体流出防止溝
24の上部端部の位置より上部(開放端の逆)側に位置
している。
In the case of FIG. 16C, the lowermost point position 25 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side is relative to the lubricating fluid outflow preventing groove 24 on the fixed member side.
Is located lower (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the highest point position 26 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located lower (open end) than the upper end of the lubricating fluid outflow preventing groove 24 on the fixing member side and is higher (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixing member side. Of the lubricating fluid outflow prevention groove 2 on the rotating member side.
The lowermost point position 27 of the upper end portion 3 is located lower (open end) than the upper end portion of the lubricating fluid outflow preventing groove 24 on the fixed member side, and the lubricating fluid outflow preventing groove on the fixed member side. 2
4, the uppermost point 28 of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side is located on the upper side (opposite of the open end) of the lubricating fluid outflow preventing groove 23 on the fixed member side. The groove 24 is located on the upper side (opposite of the open end) side of the upper end.

【0129】図16(d)の場合は、固定部材側の潤滑
流体流出防止溝24に対して位置関係では、回転部材側
の潤滑流体流出防止溝23の下部端部の最下点位置25
の方が固定部材側の潤滑流体流出防止溝24の下部端部
の位置より下部(開放端)側に位置し、回転部材側の潤
滑流体流出防止溝23の下部端部の最上点位置26の方
が固定部材側の潤滑流体流出防止溝24の下部端部の位
置より下部(開放端)側に位置し、回転部材側の潤滑流
体流出防止溝23の上部端部の最下点位置27の方は固
定部材側の潤滑流体流出防止溝24の上部端部の位置よ
り下部(開放端)側に位置しかつ固定部材側の潤滑流体
流出防止溝24の下部端部の位置より上部(開放端の
逆)側に位置し、回転部材側の潤滑流体流出防止溝23
の上部端部の最上点位置28の方は固定部材側の潤滑流
体流出防止溝24の上部端部の位置より下部(開放端)
側に位置している。
In the case of FIG. 16D, the lowermost point position 25 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side is relative to the lubricating fluid outflow preventing groove 24 on the fixed member side.
Is located lower (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the highest point position 26 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located lower (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the lowest point position 27 of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. The upper side is located lower (open end) than the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side and the upper side (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixing member side. Of the lubricating fluid outflow prevention groove 23 on the rotating member side.
The uppermost position 28 of the upper end of the groove is lower than the position of the upper end of the lubricating fluid outflow prevention groove 24 on the fixed member side (open end).
Located on the side.

【0130】図16(e)の場合は、固定部材側の潤滑
流体流出防止溝24に対して位置関係では、回転部材側
の潤滑流体流出防止溝23の下部端部の最下点位置25
の方が固定部材側の潤滑流体流出防止溝24の下部端部
の位置より下部(開放端)側に位置し、回転部材側の潤
滑流体流出防止溝23の下部端部の最上点位置26の方
が固定部材側の潤滑流体流出防止溝24の下部端部の位
置より下部(開放端)側に位置し、回転部材側の潤滑流
体流出防止溝23の上部端部の最下点位置27の方は固
定部材側の潤滑流体流出防止溝24の下部端部の位置よ
り下部(開放端)側に位置し、回転部材側の潤滑流体流
出防止溝23の上部端部の最上点位置28の方は固定部
材側の潤滑流体流出防止溝24の上部端部の位置より下
部(開放端)側に位置しかつ固定部材側の潤滑流体流出
防止溝24の下部端部の位置より上部(開放端の逆)側
に位置している。
In the case of FIG. 16E, the lowermost point position 25 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side is relative to the lubricating fluid outflow preventing groove 24 on the fixed member side.
Is located lower (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the highest point position 26 of the lower end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located lower (open end) than the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is located at the lowest point position 27 of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located lower (open end) than the position of the lower end of the lubricating fluid outflow preventing groove 24 on the fixed member side, and is closer to the uppermost point position 28 of the upper end of the lubricating fluid outflow preventing groove 23 on the rotating member side. Is located lower (open end) than the upper end of the lubricating fluid outflow preventing groove 24 on the fixed member side and is higher than the lower end (open end) of the lubricating fluid outflow preventing groove 24 on the fixing member side. On the opposite side.

【0131】毛管現象による潤滑流体の保持圧力は隙間
の間隔に反比例するので、潤滑流体流出防止溝23、2
4に通常回転時でも潤滑流体を保持していると、回転に
伴ってシール効果部が移動したり、シール可能な保持空
間が同一の位置においては変化する。この変化は潤滑流
体流出防止溝23、24の位置が回転位置によってくい
ちがいをしているためであるが、そのくいちがいは潤滑
流体流出防止溝を螺旋状の溝にしていることによって得
られる。またシール可能な保持空間が同一の位置におい
ては変化し、シール効果が回転に伴って変化するので、
回転位置によって漏れ出た潤滑流体に流れが発生し、そ
の流れの働きで、動圧発生部に潤滑流体を自己供給する
ように作用する。潤滑流体流出防止溝の一方を螺旋状の
溝にしていることで漏れ出た潤滑流体や初期余剰の保持
されていた潤滑流体を動圧発生部に自己供給することが
できる。
Since the holding pressure of the lubricating fluid due to the capillary action is inversely proportional to the gap, the lubricating fluid outflow preventing grooves 23, 2
If the lubricating fluid is held even during normal rotation, the seal effect portion moves with the rotation, or the sealable holding space changes at the same position. This change is due to the fact that the positions of the lubricating fluid outflow preventing grooves 23 and 24 are different depending on the rotational position, and the difference is obtained by making the lubricating fluid outflow preventing grooves spiral. Also, since the sealable holding space changes at the same position, and the sealing effect changes with rotation,
A flow is generated in the lubricating fluid that has leaked due to the rotation position, and the flow works to supply the lubricating fluid to the dynamic pressure generating unit by itself. Since one of the lubricating fluid outflow preventing grooves is formed as a spiral groove, the leaked lubricating fluid or the initial surplus retained lubricating fluid can be supplied to the dynamic pressure generating unit by itself.

【0132】潤滑流体の漏れ出る原因は、濡れ性に大き
く関係することが知られている。固体を液体に接触させ
ると濡れの現象が現れる。この濡れ現象の基本的な系と
して平滑な表面をもつ固体と純物質の液体とその蒸気の
系があるが、一般的に濡れはつぎのように大別される。
It is known that the cause of leakage of the lubricating fluid is greatly related to wettability. When a solid comes into contact with a liquid, a phenomenon of wetting appears. As a basic system of this wetting phenomenon, there is a system of a solid having a smooth surface, a liquid of a pure substance and a vapor thereof, and generally, wetting is roughly classified as follows.

【0133】(1)付着ぬれ(adhesional wetting) (2)拡散ぬれ(spreading wetting) (3)浸漬ぬれ(immersional wetting) 軸受の潤滑流体の液面は液体と固体の系であり、液体と
固体の系のぬれは濡れによって系の自由エネルギーが減
少する場合に起こる。濡れによる自由エネルギーの変化
Wを濡れの形にしたがって、それぞれの単位面積のぬれ
について、付着仕事Wa、拡散仕事Ws、浸漬仕事Wi
とすると、液体、固体の表面張力をγL、γS、界面張
力γLSとすると、(数23)のようになる。
(1) Adhesive wetting (2) Spreading wetting (3) Immersion wetting The level of the lubricating fluid in the bearing is a liquid / solid system, Wetting of the system occurs when the free energy of the system decreases due to wetting. The change W of the free energy due to the wetting is determined according to the shape of the wetting.
Then, assuming that the surface tensions of the liquid and the solid are γL, γS, and the interfacial tension γLS, Equation (23) is obtained.

【0134】[0134]

【数23】 (Equation 23)

【0135】(数23)のWが負のときに各ぬれがおこ
る。濡れ現象に関して、重要な量として接触角θがあ
る。図17に示すθがその接触角であって、液固接点か
ら固体表面の垂直面内に引いた切り線がなす角である。
その接触角θと張力の間にはYoung-Dupreの式があり、
固体表面と液体が平衡を保つ条件式でもある。その式は
(数24)となる。
Each wetting occurs when W in (Equation 23) is negative. With respect to the wetting phenomenon, an important quantity is the contact angle θ. In FIG. 17, θ is the contact angle, which is the angle formed by the cut line drawn from the liquid-solid contact in the vertical plane of the solid surface.
There is a Young-Dupre equation between the contact angle θ and the tension,
It is also a conditional expression that keeps the solid surface and the liquid in equilibrium. The equation is (Equation 24).

【0136】[0136]

【数24】 (Equation 24)

【0137】(数24)の平衡は(数24)の3つの張
力のバランスで決まる。(数23)に含まれる(γLS
−γS)または(γS−γLS)の値が(数24)のポ
イントである。
The equilibrium of (Equation 24) is determined by the balance of the three tensions of (Equation 24). (ΓLS) included in (Equation 23)
−γS) or (γS−γLS) is the point of (Equation 24).

【0138】(数24)を(数23)に代入するとBy substituting (Equation 24) into (Equation 23),

【0139】[0139]

【数25】 (Equation 25)

【0140】(数25)から、付着ぬれは常にWa<0
であるので、必ず起こる。拡散ぬれはcosθ≧1のとき
に起こる、すなわち、cosθ=1つまりθ=0のときの
みに起こる。浸漬ぬれはcosθ>0のときに起こる、す
なわち、θ<90度のときに起こる。
From (Equation 25), the adhesion wetting is always Wa <0.
So it always happens. Diffusion wetting occurs when cos θ ≧ 1, ie, only when cos θ = 1, ie, θ = 0. Immersion wetting occurs when cos θ> 0, ie, when θ <90 degrees.

【0141】シャフト面を潤滑流体がはい上がるという
問題を考えてみるとき、それは拡散ぬれの状態になった
こととなる。
Considering the problem that the lubricating fluid goes up on the shaft surface, it means that it is in a diffusion wet state.

【0142】外力を加えた場合などや、余剰の潤滑流体
の注油量などが多い場合などは、油道ができやすく、こ
の油道によって潤滑流体が漏れ出すことがあり、それは
拡散ぬれの状態になっていることになる。
When an external force is applied, or when the amount of surplus lubricating fluid is large, an oil path is likely to be formed, and the oil path may leak the lubricating fluid. It will be.

【0143】この拡散ぬれは漏れでできた方向に拡散し
て、張力が作用しないほど無視できるほどになっている
ので、潤滑流体流出防止溝を螺旋状の溝にして、潤滑流
体流出防止溝でくいちがいをさせることによって、シー
ル可能な保持空間が同一の位置においては変化し、シー
ル効果が回転に伴って変化するので、回転位置によって
漏れ出た潤滑流体は動圧発生部に自己供給するように戻
ってしまう。
This diffusion wetting diffuses in the direction formed by the leakage and is negligible so that no tension acts. Therefore, the lubricating fluid outflow preventing groove is formed into a spiral groove, and the lubricating fluid outflow preventing groove is formed. As a result, the holding space that can be sealed changes at the same position, and the sealing effect changes with rotation, so that the lubricating fluid that leaks according to the rotation position is supplied to the dynamic pressure generation unit by itself. I will return.

【0144】さて、(数23)の拡散ぬれの発生はWs
<0のときであり、γS>γLS+γLのときである。
発生させないためにはγS<γLS+γLの関係にする
必要がある。
The occurrence of the diffusion wetting in (Equation 23) is represented by Ws
<0, and γS> γLS + γL.
In order to prevent the occurrence, it is necessary to satisfy the relationship of γS <γLS + γL.

【0145】さて、(数24)の(γS−γLS)の値
で考えてみると、拡散ぬれの場合などでは固体表面が固
体液体界面に置き変わり、自由エネルギーが下がること
になる。 (1)(γS−γLS)>0 (2)(γS−γLS)<0 (3)(γS−γLS)=0 のとき、(2)、(3)の場合はWs>0であり、拡散
もれは発生しない、(1)の場合はWs<0になる場合
があり、漏れは発生する。(γS−γLS)の値が大き
くなればなるほど漏れる可能性が高くなる。
Considering the value of (γS−γLS) in (Equation 24), in the case of diffusion wetting, the solid surface is replaced with the solid-liquid interface, and the free energy is reduced. (1) (γS−γLS)> 0 (2) (γS−γLS) <0 (3) When (γS−γLS) = 0, in the cases of (2) and (3), Ws> 0 and the diffusion No leakage occurs. In the case of (1), there may be cases where Ws <0, and leakage occurs. As the value of (γS−γLS) increases, the possibility of leakage increases.

【0146】シャフト面を潤滑流体がはい上がるという
問題はWs<0という条件になっているかどうかであ
り、拡散ぬれ(はい上がり現象)を防止するための対策
としては、 (1)Ws>0(つまり、γS<γLS+γL)の条件
にする。
The problem that the lubricating fluid rises on the shaft surface depends on whether or not the condition of Ws <0 is satisfied. As measures for preventing diffusion wetting (rising phenomenon), (1) Ws> 0 ( That is, the condition γS <γLS + γL) is satisfied.

【0147】それは、固体表面に金属面が直接表面に出
てこないようにし、できるだけ表面張力の低い材質、例
えば擬油剤等で表面を保護する方法である。 (2)固体表面と液体との実質接触角をできるだけ大き
くする。
This is a method in which a metal surface is prevented from directly coming out of a solid surface, and the surface is protected with a material having a surface tension as low as possible, for example, a simulated oil or the like. (2) Maximize the substantial contact angle between the solid surface and the liquid as much as possible.

【0148】それは、固体表面の表面粗度を小さくし
て、固体表面と液体との実質接触角をできるだけ大きく
する。 (3)シール保持力を利用する。
That is, the surface roughness of the solid surface is reduced, and the substantial contact angle between the solid surface and the liquid is increased as much as possible. (3) Use the seal holding force.

【0149】それは、拡散もれの現象を引き戻す方向に
外力が働くように工夫する。本願はこのシール保持力を
潤滑流体流出防止溝を螺旋状の溝にして、潤滑流体流出
防止溝でくいちがいをさせることによって、シール可能
な保持空間が同一の位置においては変化し、シール効果
が回転に伴って変化させ、回転位置によって漏れ出た潤
滑流体は動圧発生部に自己供給して戻ってしまうように
している。
It is devised so that an external force acts in the direction of pulling back the phenomenon of diffusion leakage. In the present application, the seal holding force is changed in the same position by changing the lubricating fluid outflow preventing groove into a spiral groove and displacing the lubricating fluid outflow preventing groove at the same position. The lubricating fluid leaked by the rotational position is supplied to the dynamic pressure generating unit by itself and returned.

【0150】(実施例5)動圧軸受は一般的偏心率が小
さな状態の軸受を前提に考えられているが、実際モータ
のアンバランス量が軸剛性にくらべて、無視できない場
合がある。軸剛性を上げるには、軸受の長さを長くした
りするが、モータの高さが決まっていることが多いの
で、長さの変更がほとんどの場合不可能である。その際
に軸剛性は軸受け隙間を小さくすることが効果的となる
が、あまり隙間を小さくすると、温度環境の変化や、組
立作業性などで問題がある。実際偏心率を0にすること
は不可能になってきている。本願では偏心率の影響を考
慮にいれて潤滑流体の漏れ防止対策を工夫している。
(Embodiment 5) Although a dynamic pressure bearing is generally supposed to be a bearing with a small eccentricity, it may not be neglected in practice because the unbalance amount of the motor is less than the shaft rigidity. In order to increase the shaft rigidity, the length of the bearing is increased. However, since the height of the motor is often determined, it is almost impossible to change the length. At this time, it is effective to reduce the bearing gap for the shaft rigidity. However, if the gap is reduced too much, there are problems such as a change in the temperature environment and an assembling workability. Actually, it is becoming impossible to reduce the eccentricity to zero. In the present application, measures are taken to prevent leakage of the lubricating fluid in consideration of the influence of the eccentricity.

【0151】隙間が均一の場合、固定部材と回転部材の
潤滑流体流出防止溝は同じ位置に合い対向するように構
成する軸受も、偏心率が5%以上になってくると、モー
タ動圧軸受の隙間は軸方向に不均一な隙間となる。その
時の軸受の潤滑流体流出防止溝を展開すると、固定部材
側の潤滑流体流出防止溝に対して、回転部材側の潤滑流
体流出防止溝は軸方向に1展開に1サイクルの周期をも
つように展開される。この展開図は図16(c)のよう
に展開される。
In the case where the clearance is uniform, the bearing in which the lubricating fluid outflow prevention grooves of the fixed member and the rotating member are aligned at the same position and are opposed to each other. Is an uneven gap in the axial direction. When the lubricating fluid outflow preventing groove of the bearing at that time is developed, the lubricating fluid outflow preventing groove on the rotating member side has a cycle of one cycle in the axial direction with respect to the lubricating fluid outflow preventing groove on the fixed member side. Be expanded. This development is developed as shown in FIG.

【0152】2つの対向する潤滑流体流出防止溝の一方
が螺旋状の溝でない場合でも、偏心率が5%以上になる
と、螺旋状の潤滑流体流出防止溝として効果を発揮し、
潤滑流体の漏れを効果的に防止してくれる。
Even if one of the two opposing grooves for preventing lubricating fluid outflow is not a spiral groove, when the eccentricity is 5% or more, the effect is exerted as a spiral lubricating fluid outflow preventing groove.
It effectively prevents leakage of lubricating fluid.

【0153】(実施例6)図18は、本発明の一実施例
としての軸固定型の記録媒体駆動用の流体動圧軸受装置
を使用したスピンドルモータの断面図である。対象とな
る記録媒体としては、光磁気ディスクや固定磁気ディス
クや、それ以外の種々の記録媒体をあげることができ
る。
(Embodiment 6) FIG. 18 is a cross-sectional view of a spindle motor using a fluid dynamic pressure bearing device for driving a fixed shaft type recording medium as an embodiment of the present invention. Examples of the target recording medium include a magneto-optical disk, a fixed magnetic disk, and various other recording media.

【0154】ハウジング29は、その上方開口の環状凹
部30の内周部に上方突出円筒部31を有し、環状凹部
30の外周側にフランジ部32を構成している。上方突
出円筒部31の中央部には貫通孔33が設けられてい
る。なお、ハウジング29は、例えば固定磁気ディスク
駆動装置の基盤内に一体的に形成することも可能であ
る。
The housing 29 has an upwardly projecting cylindrical portion 31 on the inner peripheral portion of the annular concave portion 30 at the upper opening, and forms a flange portion 32 on the outer peripheral side of the annular concave portion 30. A through hole 33 is provided at the center of the upwardly projecting cylindrical portion 31. The housing 29 can be formed integrally with the base of the fixed magnetic disk drive, for example.

【0155】ハウジング29の貫通孔33内にはシャフ
ト35の端部が嵌合固定されている。上方突出円筒部3
1の外周部には上向きの内部円筒部34が設けられ、そ
の内部円筒部34の外周部に、積層の珪素鋼鈑からなる
ステータコア36の内周の一部下端部が接着固定されて
いる。そのステータコア36は板厚0.2mmの珪素鋼
鈑を数枚積層して、ばらけ防止のためにコイニングのよ
うな突起を嵌合させるパック工法で製作され、さらにそ
のステータコアの表面にはテフロンの含浸したエポキシ
系の電着塗装膜37にて表面が絶縁され、その絶縁され
た状態にステータコア36の上にコイル38が巻配され
ている。コイル38の端末線はハウジング29の凹部3
0の表面に蒸着された銅箔線39に半田付けされてい
る。その銅箔線39はハウジング29の内部表面を通っ
て、装置側のシャーシに電気的につながっている。銅箔
線39とハウジング29とはポリイミド系絶縁膜で電気
的に絶縁されている。銅箔線39はハウジング29を放
熱器として使用できるので、銅箔線39の抵抗による温
度上昇が小さく、銅箔線39の抵抗を低く押さえられる
ので電流を多く流せることが可能である。この銅箔線3
9はフレキシブルプリント基板のようにハウジング29
の傾斜した面も容易に配線することができるので、さら
にはフレキシブルプリント基板では不可能である異形状
な箇所への配線が可能となる。そのため、複雑な部品面
で配線が不可能であった箇所への使用ができる。HDD
装置では磁気ヘッドのサスペンションやアームに銅箔線
を施して軽量化を行うことも可能となる。
The end of the shaft 35 is fitted and fixed in the through hole 33 of the housing 29. Upwardly projecting cylindrical part 3
An outer cylindrical portion 34 is provided on an outer peripheral portion of the first cylindrical portion 34. An inner lower portion of an inner peripheral portion of a stator core 36 made of a laminated silicon steel plate is adhesively fixed to an outer peripheral portion of the inner cylindrical portion 34. The stator core 36 is formed by stacking several silicon steel plates having a thickness of 0.2 mm, and packing the protrusions such as coining to prevent loosening. The surface is insulated by the impregnated epoxy electrodeposition coating film 37, and the coil 38 is wound on the stator core 36 in the insulated state. The terminal wire of the coil 38 is the concave portion 3 of the housing 29.
0 is soldered to the copper foil wire 39 deposited on the surface. The copper foil wire 39 passes through the inner surface of the housing 29 and is electrically connected to the chassis on the device side. The copper foil wire 39 and the housing 29 are electrically insulated by a polyimide-based insulating film. Since the copper foil wire 39 can use the housing 29 as a radiator, the temperature rise due to the resistance of the copper foil wire 39 is small and the resistance of the copper foil wire 39 can be kept low, so that a large amount of current can flow. This copper foil wire 3
9 is a housing 29 like a flexible printed circuit board.
Can be easily wired, so that wiring to irregularly shaped portions, which is impossible with a flexible printed board, is possible. Therefore, it can be used in places where wiring was impossible on a complicated component surface. HDD
In the apparatus, it is possible to reduce the weight by applying a copper foil wire to the suspension or arm of the magnetic head.

【0156】この銅箔線39がハウジング29の表面部
へ設置されることで、銅箔線39での熱をハウジング2
9に放熱させて、コイル38の抵抗値を上がらない。し
たがってモータ全体としての抵抗値を低減させて、電流
量の供給が容易になるのでモータの効率も向上するし、
ハウジング表面近くで構成できるので、モータの全高を
低くできるうえに、モータのコイルの発熱を抑えること
ができるので、モータ全体の温度も低減でき、軸受の温
度も低減させることになるので潤滑流体の温度変化の幅
が小さくなる。潤滑流体は温度が高くなると、粘度が低
くなるので、同じ隙間ならば軸受剛性が低下する。銅箔
線39で軸受温度上昇を抑えることができるので、高温
での軸受剛性の低下が防止でき軸受としての信頼性が向
上する。
Since the copper foil wire 39 is placed on the surface of the housing 29, heat generated by the copper foil wire 39 is removed from the housing 2.
The heat is dissipated to 9 and the resistance of the coil 38 does not increase. Therefore, the resistance value of the motor as a whole is reduced, and the supply of the current amount is facilitated, so that the efficiency of the motor is improved,
Because it can be configured near the housing surface, the overall height of the motor can be reduced, and the heat generated by the motor coil can be suppressed.The temperature of the entire motor can be reduced, and the temperature of the bearings can be reduced. The width of the temperature change becomes smaller. As the temperature of the lubricating fluid increases, the viscosity decreases, so that the same clearance reduces the bearing stiffness. Since the bearing temperature rise can be suppressed by the copper foil wire 39, a decrease in bearing stiffness at high temperatures can be prevented, and the reliability of the bearing can be improved.

【0157】スピンドルモータはセンサレス駆動のため
スピンドルモータ内部には電子部品を配置せず、コイル
の線の接続線だけをスピンドルモータ外部まで配接する
構成であり、コイル38のハウジング29の面近くまで
巻くことができるうえに、プリント基板よりも銅箔線3
9の方が薄くできるので、さらに、ステータコア36に
巻配するスペースが多くなり、太い線を多く巻くこと
で、スピンドルモータのトルク特性を向上することがで
きる。
Since the spindle motor is driven without a sensor, no electronic parts are arranged inside the spindle motor, and only the connection lines of the coil wires are connected to the outside of the spindle motor. Copper wire 3
9 can be made thinner, so that the space for winding around the stator core 36 is further increased, and by winding many thick wires, the torque characteristics of the spindle motor can be improved.

【0158】環状の抜け止め板40は、シャフト35の
上部にシャフト35に対し垂直にネジシャフト41によ
って固定されている。なお、抜け止め板40はシャフト
に一体的に形成されていてもよいし、ネジシャフト41
の方と一体に形成されていてもよい。
The annular retaining plate 40 is fixed to the upper portion of the shaft 35 by a screw shaft 41 perpendicular to the shaft 35. The retaining plate 40 may be formed integrally with the shaft, or the screw shaft 41
It may be formed integrally with the one.

【0159】スリーブ42は、上端部の外径が拡開され
たn段(nは2以上の整数)の円筒形状をなし、シャフ
ト35に対向するスリーブ42の内周部は、全体として
径小な円筒形状をなし、その中央部には径小円筒部の内
径よりも若干大きな内径を有する流体溜まり部43が構
成されている。したがってその径小円筒部は流体溜まり
部43を挟んで上部及び下部の径小円筒部44、45に
分かれる。その上部の径小円筒部44及び下部の径小円
筒部45の内周面にはへリングボーン溝が設けられ、そ
の上下ヘリングボーン溝と、シャフト35のラジアル方
向の間隙には潤滑流体が充填されている。回転に伴って
そのヘリングボーン溝によって発生する動圧によってラ
ジアル荷重支持が可能となりラジアル流体動圧軸受を構
成する。特に、上下へリングボーン溝により、その荷重
支持圧が高められる。なお、このようなへリングボーン
溝は、固定シャフト35のラジアル表面に設けてもよ
い。
The sleeve 42 has an n-stage (n is an integer of 2 or more) cylindrical shape in which the outer diameter of the upper end is expanded, and the inner peripheral portion of the sleeve 42 facing the shaft 35 has a small diameter as a whole. A fluid reservoir 43 having an inner diameter slightly larger than the inner diameter of the small-diameter cylindrical portion is formed at the center thereof. Therefore, the small-diameter cylindrical portion is divided into upper and lower small-diameter cylindrical portions 44 and 45 with the fluid reservoir portion 43 interposed therebetween. Herringbone grooves are provided on the inner peripheral surfaces of the upper small-diameter cylindrical portion 44 and the lower small-diameter cylindrical portion 45, and a lubricating fluid is filled in the radial gap between the upper and lower herringbone grooves and the shaft 35. Have been. Radial load can be supported by the dynamic pressure generated by the herringbone groove with the rotation, thereby constituting a radial fluid dynamic pressure bearing. In particular, the load bearing pressure is increased by the up and down ring bone grooves. Note that such herringbone grooves may be provided on the radial surface of the fixed shaft 35.

【0160】シャフト35のラジアル軸受部の下部の径
小円筒部45の下方に、内表面に溌油処理が施された下
方に向かうにしたがって隙間が減少する潤滑流体流出防
止溝46が構成されている。またスリーブ42側の潤滑
流体流出防止溝46に対向する位置のシャフト35の表
面にも下方に向かうにしたがって隙間が減少する潤滑流
体流出防止溝47が構成されている。図18ではスリー
ブ42側潤滑流体流出防止溝46とシャフト35側の潤
滑流体流出防止溝47の位置関係は、シャフト35の左
側は若干シャフト35側の潤滑流体流出防止溝47の方
が上方に位置しているが、シャフト35の右側は若干シ
ャフト35側の潤滑流体流出防止溝47の方が下方に位
置している。
Below the small-diameter cylindrical portion 45 below the radial bearing portion of the shaft 35, a lubricating-fluid outflow preventing groove 46 is formed in which the gap decreases as the oil-repellent treatment is performed on the inner surface. I have. Further, a lubricating fluid outflow preventing groove 47 is formed on the surface of the shaft 35 at a position facing the lubricating fluid outflow preventing groove 46 on the sleeve 42 side. In FIG. 18, the positional relationship between the lubricating fluid outflow preventing groove 46 on the sleeve 42 and the lubricating fluid outflow preventing groove 47 on the shaft 35 is such that the lubricating fluid outflow preventing groove 47 on the shaft 35 is slightly higher on the left side of the shaft 35. However, on the right side of the shaft 35, the lubricating fluid outflow prevention groove 47 on the shaft 35 side is located slightly lower.

【0161】潤滑流体流出防止溝46、47は実施例1
における例のごとく、回転部材側であるスリーブ42の
潤滑流体流出防止溝46を螺旋状の溝にして、潤滑流体
流出防止溝の位置をくいちがい位置関係にしている。
The lubricating fluid outflow prevention grooves 46 and 47 are the same as those in the first embodiment.
As in the example of the above, the lubricating fluid outflow preventing groove 46 of the sleeve 42 on the rotating member side is formed as a spiral groove, and the positions of the lubricating fluid outflow preventing grooves are in a close positional relationship.

【0162】図18でのシャフト35の左側の潤滑流体
流出防止溝の関係において、ラジアル動圧軸受部から下
へ漏れ出た潤滑流体は最初にスリーブ42とシャフト3
5の隙間が大きくなる位置すなわち、潤滑流体流出防止
溝47のところで潤滑流体の表面張力によって流出が阻
止される。これを第1段のシールとする。その潤滑流体
流出防止溝47のところのシールが損なわれて、その潤
滑流体流出防止溝47に潤滑流体が充満に近い状態にな
ると、もう一方の潤滑流体流出防止溝46の最初の端縁
ともう一方の端縁でのテーパによって、遠心力の作用が
潤滑流体に作用し、遠心力シール効果を発生させて潤滑
流体の流出は阻止される。これを第2段のシールとす
る。その遠心力シール効果だけで不十分なまでに潤滑流
体が2つの潤滑流体流出防止溝に充満に近い状態になる
と、潤滑流体流出防止溝46のスリーブ開放端側に端縁
とシャフト35とのくさび状の隙間での潤滑流体の遠心
力と表面張力の作用で流出が阻止される。これを第3段
のシールとする。潤滑流体流出防止溝の位置をくいちが
いさせていることで、何段にもわたってシール効果をも
たせることができる。
In the relationship of the lubricating fluid outflow prevention groove on the left side of the shaft 35 in FIG. 18, the lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion firstly comes into contact with the sleeve 42 and the shaft 3.
The outflow is prevented by the surface tension of the lubricating fluid at the position where the gap of 5 becomes large, that is, at the lubricating fluid outflow preventing groove 47. This is a first-stage seal. When the seal at the lubricating fluid outflow preventing groove 47 is damaged and the lubricating fluid outflow preventing groove 47 is almost full of the lubricating fluid, the first edge of the other lubricating fluid outflow preventing groove 46 and the other end thereof are connected. Due to the taper at one edge, the action of the centrifugal force acts on the lubricating fluid, generating a centrifugal sealing effect and preventing the outflow of the lubricating fluid. This is the second-stage seal. If the lubricating fluid is almost full in the two lubricating fluid outflow preventing grooves until the centrifugal sealing effect alone is insufficient, the wedge between the end of the lubricating fluid outflow preventing groove 46 and the shaft 35 is formed on the sleeve open end side. The outflow is prevented by the action of the centrifugal force and the surface tension of the lubricating fluid in the gap. This is the third-stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0163】また、図18でのシャフト35の右側の潤
滑流体流出防止溝の関係において、ラジアル動圧軸受部
から下へ漏れ出た潤滑流体は最初にスリーブ42とシャ
フト35の隙間が大きくなる位置すなわち、スリーブ側
の潤滑流体流出防止溝46のところで表面張力によって
流出が阻止される。これを第1段のシールとする。その
ところでの表面張力での保持効果はわずかであり、その
漏れた潤滑流体は回転遠心力で潤滑流体流出防止溝46
の上端縁側の半径位置の大きなところに付着する。潤滑
流体流出防止溝46の最初の端縁ともう一方の端縁での
テーパによって、遠心力の作用が潤滑流体に作用し、遠
心力シール効果を発生させて潤滑流体の流出は阻止され
る。これを第2段のシールとする。そのスリーブ42側
の潤滑流体流出防止溝46に潤滑流体が充満に近い状態
になると、もう一方のシャフト35側に潤滑流体流出防
止溝47の下部の端縁ともう一方の端縁側への傾斜面と
スリーブ42の内表面とのくさび状の隙間で潤滑流体の
表面張力の作用で流出が阻止される。これを第3段のシ
ールとする。潤滑流体流出防止溝の位置をくいちがいさ
せていることで、何段にもわたってシール効果をもたせ
ることができる。
Further, in relation to the lubricating fluid outflow prevention groove on the right side of the shaft 35 in FIG. 18, the lubricating fluid that has leaked downward from the radial dynamic pressure bearing portion first becomes a position where the gap between the sleeve 42 and the shaft 35 becomes large. That is, the outflow is prevented by the surface tension at the lubricating fluid outflow prevention groove 46 on the sleeve side. This is a first-stage seal. The effect of retaining the surface tension at that point is slight, and the leaked lubricating fluid is removed by the rotational centrifugal force.
Adheres to a large radius position on the upper edge side of. Due to the taper at the first edge and the other edge of the lubricating fluid outflow preventing groove 46, centrifugal force acts on the lubricating fluid to generate a centrifugal sealing effect, thereby preventing the lubricating fluid from flowing out. This is the second-stage seal. When the lubricating fluid outflow preventing groove 46 on the sleeve 42 is almost full of the lubricating fluid, the other shaft 35 side has a lower edge of the lubricating fluid outflow preventing groove 47 and an inclined surface toward the other edge. In the wedge-shaped gap between the lubricating fluid and the inner surface of the sleeve 42, outflow is prevented by the action of the surface tension of the lubricating fluid. This is the third-stage seal. Since the position of the lubricating fluid outflow prevention groove is different, a sealing effect can be provided over many stages.

【0164】図のようなシール効果は随所で起こり、回
転位置において、シールして保持していた潤滑流体に、
その位置でのシール効果が変化するように、螺旋状に潤
滑流体流出防止溝の位置を構成することで潤滑流体は自
己的に動圧軸受部に戻ってしまう。
The sealing effect as shown in the figure occurs everywhere.
By forming the position of the lubricating fluid outflow prevention groove in a spiral shape so that the sealing effect at that position changes, the lubricating fluid returns to the dynamic pressure bearing part by itself.

【0165】この自己補充機構が、螺旋状に潤滑流体流
出防止溝にして、潤滑流体流出防止溝の位置をくいちが
いさせて、このくいちがい位置関係を変化させているこ
とで可能となっている。
This self-replenishment mechanism is made possible by spirally forming the lubricating fluid outflow preventing groove, changing the position of the lubricating fluid outflow preventing groove, and changing the mutual positional relationship.

【0166】シャフト35の上方部のスリーブ42は、
スリーブ42の小内径部48に抜け止め板40の外周部
とわずかな径方向間隙を隔てる状態で抜け止め板40が
構成され、スリーブの中内径部49にスラスト押え板5
0が圧入固定されている。スラスト押え板50を圧入し
たことによってスリーブ42は上下の移動規制される。
その移動規制量はスリーブの小内径部48の厚みと抜け
止め板40の厚みの差である。そのスラスト移動規制量
は0.20mm以下に規制されている。
The sleeve 42 above the shaft 35 is
The retaining plate 40 is formed in the small inner diameter portion 48 of the sleeve 42 with a slight radial gap from the outer peripheral portion of the retaining plate 40.
0 is press-fitted and fixed. The press-fitting of the thrust holding plate 50 restricts the sleeve 42 from moving up and down.
The movement restriction amount is a difference between the thickness of the small inner diameter portion 48 of the sleeve and the thickness of the retaining plate 40. The thrust movement regulation amount is regulated to 0.20 mm or less.

【0167】衝撃が作用した場合、移動規制量が大きす
ぎると抜け止め板40に作用する衝撃力も大きくなるう
えに、スピンドルモータに搭載された磁気ディスクの移
動量が大きくなり磁気ヘッドへ衝撃が作用し、記録して
いる磁気ディスク面に傷をつける恐れがあるので、移動
規制量は必要以上に抑える構成をしている。
When the impact is applied, if the movement control amount is too large, the impact force acting on the retaining plate 40 becomes large, and further, the amount of movement of the magnetic disk mounted on the spindle motor becomes large, so that the impact is applied to the magnetic head. However, there is a possibility that the recording magnetic disk surface may be damaged, so that the movement restriction amount is suppressed more than necessary.

【0168】そして、スラスト押え板50はマイクロヒ
ッカース硬度600以上の熱処理鋼材で作られている。
例えば、SUS420J2やSKD11などを用いてい
る。そのスラスト押え板50の上にさらにスラスト方向
強度補強のために補強板51が中内径部49の内径より
も大きな大内径部52に圧入されている。スラスト押え
板50の圧入はスリーブの小内径部48の変形が発生し
ない程度の軽い圧入であったのに比べ、補強板51の圧
入は衝撃に耐えることができる程度に強力に圧入されて
いる。さらに、紫外線硬化型の接着剤53で補強板51
の圧入箇所を固めてより強度を補強している。さらに接
着剤53の圧入部を接着することは潤滑流体が外部にに
じみ出る経路を封止することになるので、潤滑流体の保
持にも役立つ。
The thrust holding plate 50 is made of a heat-treated steel material having a micro Hickers hardness of 600 or more.
For example, SUS420J2 or SKD11 is used. On the thrust holding plate 50, a reinforcing plate 51 is further press-fitted into a large inner diameter portion 52 larger than the inner diameter of the middle inner diameter portion 49 to reinforce the strength in the thrust direction. The press-fitting of the thrust holding plate 50 was light press-fitting such that the deformation of the small inner diameter portion 48 of the sleeve did not occur, whereas the press-fitting of the reinforcing plate 51 was strongly press-fitted so as to withstand an impact. Further, the reinforcing plate 51 is coated with an ultraviolet curing adhesive 53.
The strength of the press-fitted part is strengthened. Further, bonding the press-fit portion of the adhesive 53 seals a path through which the lubricating fluid oozes out, and thus is useful for holding the lubricating fluid.

【0169】抜け止め板40をスラスト押さえ板50と
補強板51との2重の構造体で抑えているので、大きな
衝撃で変形や脱落などの問題はない。2重の構造を取っ
ているので、スラスト押さえ板50と補強板51との間
の面にスパイラル溝などを形成して潤滑流体の保持領域
にすることもできる。
Since the retaining plate 40 is suppressed by the double structure of the thrust holding plate 50 and the reinforcing plate 51, there is no problem such as deformation or falling off due to a large impact. Since it has a double structure, it is possible to form a spiral groove or the like on the surface between the thrust holding plate 50 and the reinforcing plate 51 to provide a lubricating fluid holding area.

【0170】ロータハブ54は、略カップ形状をなし、
ロータハブ54のカップ円筒部55の上端部内方には、
中央部が円形に天面部56があり、下端部外方に外方張
出したフランジ部57がある。このロータハブ54は、
天面部56においてスリーブ42の上端部に外嵌固定さ
れている。そのためにロータハブ54はスリーブ42と
同軸を構成し、スリーブ42の径小円筒部44、45に
対してのロータハブ54の外周振れが5μm以下になる
ようにスリーブ42に組み立てられている。
The rotor hub 54 has a substantially cup shape.
Inside the upper end portion of the cup cylindrical portion 55 of the rotor hub 54,
A central portion has a top surface portion 56 in a circular shape, and a lower end portion has an outwardly extending flange portion 57 outside. This rotor hub 54
The top surface 56 is externally fitted and fixed to the upper end of the sleeve 42. For this purpose, the rotor hub 54 is coaxial with the sleeve 42 and is assembled to the sleeve 42 such that the outer peripheral runout of the rotor hub 54 with respect to the small-diameter cylindrical portions 44 and 45 of the sleeve 42 is 5 μm or less.

【0171】そのカップ円筒部55の内周部には、円筒
状で磁性材のロータヨーク58が内嵌固定され、その内
周側には駆動マグネット59がステータコア36に対し
径方向空隙を隔てて相対している。その隙間は0.15
mmから0.3mmの範囲で構成されている。
A rotor yoke 58 made of a magnetic material having a cylindrical shape is fixedly fitted inside the inner peripheral portion of the cup cylindrical portion 55, and a drive magnet 59 is provided on the inner peripheral side thereof with a radial gap therebetween relative to the stator core 36. are doing. The gap is 0.15
mm to 0.3 mm.

【0172】ロータハブ54のカップ円筒部55は磁気
ディスクの内周規制部であり、下端部外方に外方張出し
たフランジ部57は磁気ディスクを搭載する受け面部で
ある。
The cup cylindrical portion 55 of the rotor hub 54 is an inner circumference regulating portion of the magnetic disk, and the flange 57 projecting outward at the lower end is a receiving surface portion on which the magnetic disk is mounted.

【0173】抜け止め板40の上面とスラスト押え板5
0、抜け止め板40の下面とスリーブ42のスラスト面
60により、それぞれスラスト動圧軸受部が構成されて
いる。抜け止め板40の上面とスラスト押え板50、抜
け止め板40の下面とスリーブ42のスラスト面60は
それぞれ平行状に相対し、それらの間には、液状の潤滑
流体が介在してスラスト移動規制量のギャップを隔てて
いる。抜け止め板40の上下環状面全周にわたって、ヘ
リングボーン状溝が設けられている。このへリングボー
ン状溝は、スリーブ42のスラスト面60及びスラスト
押え板50の順方向回転により、抜け止め板40の面表
面に介在する潤滑流体に高圧を発生させる。なお、この
ようなヘリングボーン状溝は、スリーブ42のスラスト
面60やスラスト押え板50の面に設けてもよい。
The upper surface of the retaining plate 40 and the thrust holding plate 5
0, a thrust dynamic pressure bearing portion is constituted by the lower surface of the retaining plate 40 and the thrust surface 60 of the sleeve 42, respectively. The upper surface of the retaining plate 40 and the thrust holding plate 50, and the lower surface of the retaining plate 40 and the thrust surface 60 of the sleeve 42 are parallel to each other, and a liquid lubricating fluid is interposed therebetween to regulate thrust movement. Separates the amount gap. A herringbone groove is provided over the entire upper and lower annular surfaces of the retaining plate 40. The herringbone-shaped groove generates a high pressure in the lubricating fluid interposed on the surface of the retaining plate 40 due to the forward rotation of the thrust surface 60 of the sleeve 42 and the thrust holding plate 50. Such a herringbone-shaped groove may be provided on the thrust surface 60 of the sleeve 42 or the surface of the thrust holding plate 50.

【0174】補強板51の内周部はネジシャフト41と
の隙間が下方に向かうにしたがって大きくなるようなテ
ーパ形状をしている。さらに補強板51の内表面に溌油
処理が施されている。
The inner peripheral portion of the reinforcing plate 51 has a tapered shape such that the gap between the reinforcing plate 51 and the screw shaft 41 increases as going downward. Further, the inner surface of the reinforcing plate 51 is subjected to an oil-repellent treatment.

【0175】シャフト35及びステータコア36等に対
し、スリーブ42及びロータハブ54等が、潤滑流体を
介して自在に回転し得るよう構成されている。径小円筒
部44、45のラジアル動圧軸受部によって、スリーブ
42の回転中におけるシャフト35に対する径方向変位
を十分に小さく抑えることができるので、カップ状円筒
部55の振れを小さく抑えることができ、動圧流体軸受
であるので非繰り返し振れも0.05μm以下に抑える
ことができる。抜け止め板40の上下面のスラスト軸受
によって、スリーブ42の回転中におけるシャフト35
に対するスラスト方向変位を十分に小さく抑えることが
できる。
The sleeve 42, the rotor hub 54, and the like are configured to freely rotate via the lubricating fluid with respect to the shaft 35, the stator core 36, and the like. By the radial dynamic pressure bearings of the small diameter cylindrical portions 44 and 45, the radial displacement of the sleeve 35 with respect to the shaft 35 during rotation can be sufficiently reduced, so that the deflection of the cup-shaped cylindrical portion 55 can be reduced. Since it is a hydrodynamic bearing, non-repetitive runout can be suppressed to 0.05 μm or less. The thrust bearings on the upper and lower surfaces of the retaining plate 40 allow the shaft 35 to rotate while the sleeve 42 is rotating.
Can be suppressed sufficiently small in the thrust direction.

【0176】シャフト35に対しスリーブ42が相対回
転すると、上下の径小円筒部44、45のラジアル動圧
軸受部は、そこに介装された潤滑流体に主としてラジア
ル方向の荷重支持圧を発生させ、抜け止め板40の上下
面のスラスト軸受は、そこに介装された潤滑流体に主と
してスラスト方向の荷重支持圧を発生させる。回転停止
状態において下部の径小円筒部45に隣接するスリーブ
42の潤滑流体流出防止溝46やシャフト35の潤滑流
体流出防止溝47に潤滑流体が漏出していた場合、モー
タが回転し始めるとの潤滑流体を下部の径小円筒部17
内に取り込む。また、同様に補強板51の内周部に潤滑
流体が漏出していた場合、スピンドルモータが回転し始
めるとスラスト軸受部である抜け止め板40の方へ潤滑
流体を取り込む。
When the sleeve 42 rotates relative to the shaft 35, the radial dynamic pressure bearings of the small upper and lower cylindrical portions 44 and 45 generate a load supporting pressure mainly in the radial direction in the lubricating fluid interposed therebetween. The thrust bearings on the upper and lower surfaces of the retaining plate 40 generate load supporting pressure mainly in the thrust direction in the lubricating fluid interposed therein. If the lubricating fluid leaks into the lubricating fluid outflow preventing groove 46 of the sleeve 42 or the lubricating fluid outflow preventing groove 47 of the shaft 35 adjacent to the lower small diameter cylindrical portion 45 in the rotation stopped state, the motor starts rotating. The lubricating fluid is supplied to the lower small cylindrical portion 17
Take in. Similarly, when the lubricating fluid is leaking to the inner peripheral portion of the reinforcing plate 51, when the spindle motor starts rotating, the lubricating fluid is taken into the retaining plate 40 as the thrust bearing.

【0177】スピンドルモータの回転が停止し、シャフ
ト35とスリーブ42とが相対運動が零になるとシャフ
ト35とスリーブ42との隙間によって傾斜が生じる。
動圧軸受部に保持しきれない潤滑流体はシャフト35に
設けた潤滑流体流出防止溝47に漏れ出す。スピンドル
モータが回転すると潤滑流体流出防止溝47に漏れてい
た潤滑流体は下部の径小円筒部45内に入り込む。
When the rotation of the spindle motor stops and the relative movement between the shaft 35 and the sleeve 42 becomes zero, the gap between the shaft 35 and the sleeve 42 causes an inclination.
The lubricating fluid that cannot be held by the dynamic pressure bearing part leaks out to the lubricating fluid outflow prevention groove 47 provided in the shaft 35. When the spindle motor rotates, the lubricating fluid that has leaked into the lubricating fluid outflow preventing groove 47 enters the lower small-diameter cylindrical portion 45.

【0178】上記のように潤滑流体流出防止溝46、4
7にある漏れ出た潤滑流体が径小円筒部に入るためには
潤滑流体流出防止溝の傾斜面のシャフトの軸方向に対す
る傾斜角度は遠心力と表面張力などを考慮して実験的に
求めると、(数26)の関係にあることが好適である。
As described above, the lubricating fluid outflow preventing grooves 46, 4
In order for the leaked lubricating fluid in 7 to enter the small-diameter cylindrical portion, the inclination angle of the inclined surface of the lubricating fluid outflow prevention groove with respect to the axial direction of the shaft is determined experimentally in consideration of centrifugal force and surface tension. , (Equation 26).

【0179】[0179]

【数26】 (Equation 26)

【0180】[0180]

【発明の効果】以上のように本発明によれば、請求項1
記載の発明で、ラジアル動圧軸受の開放端部側円筒部の
端部に潤滑流体流出防止溝が回転部材側と固定部材側に
設けられることによって、固定部材側の潤滑流体流出防
止溝では表面張力による潤滑流体の保持が行われ、回転
部材側の潤滑流体流出防止溝では遠心力と表面張力によ
る潤滑流体の保持が行われることによって、ラジアル動
圧軸受の潤滑流体の回転部材からの流出は防止される。
また、2つの潤滑流体流出防止溝のうち固定部材側の潤
滑流体流出防止溝の位置は一定位置にあるが、回転部材
側の潤滑流体流出防止溝は位置は上下に周期的に変化が
あるために、2つの溝の相対位置が回転に伴って変化す
ることで、動圧発生部に自己補充することができる。さ
らには衝撃が作用した場合でも、その自己補充機能によ
り、漏れ始めた潤滑流体が潤滑流体流出防止溝に戻り、
さらには動圧発生部に戻るように潤滑流体流出防止溝の
保持能力が強化され、信頼性が高い軸受装置ができると
いう有利な効果が得られる。
According to the present invention as described above, claim 1
According to the invention described in the above, the lubricating fluid outflow preventing groove on the fixed member side is provided with the lubricating fluid outflow preventing groove on the rotating member side and the fixed member side at the end of the cylindrical portion on the open end side of the radial dynamic pressure bearing. The lubricating fluid is held by the tension and the lubricating fluid outflow prevention groove on the rotating member side holds the lubricating fluid by the centrifugal force and the surface tension. Is prevented.
Further, the position of the lubricating fluid outflow preventing groove on the fixed member side of the two lubricating fluid outflow preventing grooves is at a fixed position, but the position of the lubricating fluid outflow preventing groove on the rotating member side periodically changes vertically. In addition, when the relative position of the two grooves changes with the rotation, the dynamic pressure generating portion can be replenished by itself. Even when an impact is applied, the self-replenishing function returns the lubricating fluid that has begun to leak back to the lubricating fluid outflow prevention groove,
Furthermore, the holding ability of the lubricating fluid outflow prevention groove is enhanced so as to return to the dynamic pressure generating portion, and the advantageous effect that a highly reliable bearing device can be obtained is obtained.

【0181】請求項2記載の発明によれば、固定部材側
の潤滑流体流出防止溝では表面張力による潤滑流体の保
持が行われ、回転部材側の潤滑流体流出防止溝では遠心
力と表面張力による潤滑流体の保持が行われることで効
果的なシールが可能となるという作用を有するうえに、
固定部材側と回転部材側に設けられ潤滑流体流出防止溝
の端縁はお互いに段違いにくいちがっていて、動圧発生
部に自己補充することができるという有利な効果が得ら
れる。
According to the second aspect of the present invention, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the centrifugal force and the surface tension in the lubricating fluid outflow preventing groove on the rotating member side. In addition to having the effect that effective sealing is enabled by holding the lubricating fluid,
The edges of the lubricating fluid outflow preventing grooves provided on the fixed member side and the rotating member side are unlikely to be stepped from each other, so that an advantageous effect that self-replenishment to the dynamic pressure generating portion can be obtained.

【0182】請求項3記載の発明によれば、固定部材側
の潤滑流体流出防止溝では表面張力による潤滑流体の保
持が行われ、回転部材側の潤滑流体流出防止溝では遠心
力と表面張力による潤滑流体の保持が行われ、潤滑流体
流出防止溝の傾斜角度を所定範囲にすることで効果的な
シールが可能となるという有利な効果が得られる。
According to the third aspect of the present invention, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the centrifugal force and the surface tension are applied to the lubricating fluid outflow preventing groove in the rotating member side. The lubricating fluid is held, and the lubricating fluid outflow preventing groove has an advantageous effect that the inclination angle of the groove is within a predetermined range, whereby effective sealing can be achieved.

【0183】請求項4記載の発明によれば、固定部材側
と回転部材側に設けられ潤滑流体流出防止溝の端縁はお
互いに段違いにくいちがっていて、動圧発生部に自己補
充することができるうえに、固定部材側の潤滑流体流出
防止溝では表面張力による潤滑流体の保持が行われ、回
転部材側の潤滑流体流出防止溝では表面張力による潤滑
流体の保持が行われることで効果的なシールが可能とな
るという有利な効果が得られる。
According to the fourth aspect of the present invention, the edges of the lubricating fluid outflow preventing grooves provided on the fixed member side and the rotating member side are unlikely to be stepped from each other. In addition, the lubricating fluid is prevented by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the lubricating fluid is maintained by the surface tension in the lubricating fluid outflow preventing groove on the rotating member side. An advantageous effect that sealing can be achieved is obtained.

【0184】請求項5記載の発明によれば、固定部材側
の潤滑流体流出防止溝では表面張力による潤滑流体の保
持が行われ、回転部材側の潤滑流体流出防止溝では表面
張力による潤滑流体の保持が行われ、潤滑流体流出防止
溝の傾斜角度を所定範囲にすることで効果的なシールが
可能となるという有利な効果が得られる。
According to the fifth aspect of the present invention, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the lubricating fluid is held in the lubricating fluid outflow preventing groove on the rotating member side by the surface tension. By holding the lubricating fluid and setting the inclination angle of the lubricating fluid outflow prevention groove within a predetermined range, an advantageous effect that an effective seal can be obtained is obtained.

【0185】請求項6記載の発明によれば、固定部材側
の潤滑流体流出防止溝では表面張力による潤滑流体の保
持が行われ、回転部材側の潤滑流体流出防止溝では遠心
力と表面張力による潤滑流体の保持が行われることで効
果的なシールが可能となるという作用を有するうえに、
固定部材側と回転部材側に設けられ潤滑流体流出防止溝
の端縁はお互いに段違いにくいちがっていて、動圧発生
部に自己補充することができるという有利な効果が得ら
れる。
According to the sixth aspect of the present invention, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the centrifugal force and the surface tension cause the lubricating fluid outflow preventing groove in the rotating member side. In addition to having the effect that effective sealing is enabled by holding the lubricating fluid,
The edges of the lubricating fluid outflow preventing grooves provided on the fixed member side and the rotating member side are unlikely to be stepped from each other, so that an advantageous effect that self-replenishment to the dynamic pressure generating portion can be obtained.

【0186】請求項7記載の発明によれば、固定部材側
の潤滑流体流出防止溝では表面張力による潤滑流体の保
持が行われ、回転部材側の潤滑流体流出防止溝では遠心
力と表面張力による潤滑流体の保持が行われ、潤滑流体
流出防止溝の傾斜角度を所定範囲にすることで効果的な
シールが可能となるという有利な効果が得られる。
According to the seventh aspect of the present invention, the lubricating fluid is held by the surface tension in the lubricating fluid outflow preventing groove on the fixed member side, and the centrifugal force and the surface tension are exerted in the lubricating fluid outflow preventing groove on the rotating member side. The lubricating fluid is held, and the lubricating fluid outflow preventing groove has an advantageous effect that the inclination angle of the groove is within a predetermined range, whereby effective sealing can be achieved.

【0187】請求項8から13に記載の発明によれば、
回転部材側と固定部材側に設けられ潤滑流体流出防止溝
の端縁はお互いに段違いにくいちがっていて、固定部材
側の潤滑流体流出防止溝の一定の位置にあり、回転部材
側の潤滑流体流出防止溝が軸方向に周期的に変化するよ
うに形成されているので、各所にシール効果が発生し、
隙間での潤滑流体の遠心力や表面張力の作用で流出が阻
止されるうえに、潤滑流体流出防止溝の位置をくいちが
いさせていることで動圧発生部に潤滑流体が戻るように
潤滑流体流出防止溝の保持能力が強化され、信頼性が高
い軸受装置ができるという有利な効果が得られる。
According to the invention described in claims 8 to 13,
The edges of the lubricating fluid outflow prevention grooves provided on the rotating member side and the fixed member side are unlikely to be stepped from each other. Since the prevention groove is formed so as to periodically change in the axial direction, a sealing effect occurs at various places,
Outflow is prevented by the effect of centrifugal force and surface tension of the lubricating fluid in the gap, and the lubricating fluid flows out so that the lubricating fluid returns to the dynamic pressure generating part by making the position of the lubricating fluid outflow prevention groove different. The advantageous effect that the holding capacity of the prevention groove is enhanced and a highly reliable bearing device can be obtained is obtained.

【0188】請求項14記載の発明によれば、2つの対
向する潤滑流体流出防止溝の一方が螺旋状の溝でない場
合でも、偏心率が5%以上になると、螺旋状の潤滑流体
流出防止溝として効果を発揮し、潤滑流体の漏れを効果
的に防止するという有利な効果が得られる。
According to the fourteenth aspect of the present invention, even if one of the two opposed lubricating fluid outflow preventing grooves is not a spiral groove, the spiral lubricating fluid outflow preventing groove is formed when the eccentricity is 5% or more. And the advantageous effect of effectively preventing the leakage of the lubricating fluid is obtained.

【0189】請求項15記載の発明によれば、ラジアル
動圧軸受の開放端部側円筒部の端部に潤滑流体流出防止
溝が回転部材側と固定部材側に設けられることによっ
て、固定部材側の潤滑流体流出防止溝では表面張力によ
る潤滑流体の保持が行われ、回転部材側の潤滑流体流出
防止溝では遠心力と表面張力による潤滑流体の保持が行
われることによって、ラジアル動圧軸受の潤滑流体のス
リーブからの流出は防止される。さらに、スリーブ側と
シャフト側に設けられ潤滑流体流出防止溝の端縁はお互
いに段違いにくいちがっていて、スリーブ側の潤滑流体
流出防止溝の方が下方である場合では、何段にもわたっ
てシール効果を発揮し、スリーブ側の潤滑流体流出防止
溝の方が上方である場合では、何段にもわたってシール
効果を発揮することができるうえに、シャフト側の潤滑
流体流出防止溝の位置は一定位置にあるが、スリーブ側
の潤滑流体流出防止溝は位置は上下に周期的に変化があ
るために、2つの溝の相対位置が回転に伴って変化する
ことで、動圧発生部に自己補充することができる。さら
には衝撃が作用した場合でも、その自己補充機能によ
り、漏れ始めた潤滑流体が潤滑流体流出防止溝に戻り、
さらには動圧発生部に戻るように潤滑流体流出防止溝の
保持能力が強化され、信頼性が高い軸受装置ができると
いう有利な効果が得られる。
According to the fifteenth aspect of the present invention, the lubricating fluid outflow preventing grooves are provided at the end of the cylindrical portion at the open end of the radial dynamic pressure bearing on the side of the rotating member and the side of the fixed member. The lubricating fluid outflow prevention groove on the rotating member retains the lubricating fluid by the surface tension, and the lubricating fluid outflow preventing groove on the rotating member retains the lubricating fluid by the centrifugal force and the surface tension. Fluid escape from the sleeve is prevented. Furthermore, the edges of the lubricating fluid outflow preventing grooves provided on the sleeve side and the shaft side are unlikely to be stepped from each other, and when the lubricating fluid outflow preventing grooves on the sleeve side are lower, they extend over many steps. When the sealing effect is exhibited and the lubricating fluid outflow prevention groove on the sleeve side is higher, the sealing effect can be exerted over several stages and the position of the lubricating fluid outflow prevention groove on the shaft side Is at a fixed position, but the position of the lubricating fluid outflow prevention groove on the sleeve side changes periodically up and down, so that the relative position of the two grooves changes with rotation, Can be self-replenishing. Even when an impact is applied, the self-replenishing function returns the lubricating fluid that has begun to leak back to the lubricating fluid outflow prevention groove,
Furthermore, the holding ability of the lubricating fluid outflow prevention groove is enhanced so as to return to the dynamic pressure generating portion, and the advantageous effect that a highly reliable bearing device can be obtained is obtained.

【0190】請求項16記載の発明によれば、シャフト
側の潤滑流体流出防止溝の位置は一定位置にあるが、ス
リーブ側の潤滑流体流出防止溝は位置は上下に周期的に
変化があるために、2つの溝の相対位置が回転に伴って
変化することで、動圧発生部に自己補充することができ
るという有利な効果が得られる。
According to the sixteenth aspect, the position of the lubricating fluid outflow preventing groove on the shaft side is at a fixed position, but the position of the lubricating fluid outflow preventing groove on the sleeve side periodically changes vertically. In addition, since the relative position of the two grooves changes with the rotation, the advantageous effect that the dynamic pressure generating portion can be self-replenished can be obtained.

【0191】毛管現象による潤滑流体の保持圧力は隙間
の間隔に反比例するので、潤滑流体流出防止溝に通常回
転時でも潤滑流体を多く保持するようにして、動圧発生
部に潤滑流体を自己供給するよう、潤滑流体流出防止溝
の一方を螺旋状の溝にしている。
Since the holding pressure of the lubricating fluid due to the capillary action is inversely proportional to the interval of the gap, the lubricating fluid is prevented from being supplied to the dynamic pressure generating portion by holding the lubricating fluid in the lubricating fluid outflow preventing groove in a large amount even during normal rotation. One of the grooves for preventing lubricating fluid outflow is formed as a spiral groove.

【0192】本願では、拡散もれの現象を引き戻す方向
に外力が働くように工夫している。この工夫はこのシー
ル保持力の潤滑流体流出防止溝を螺旋状の溝にして、潤
滑流体流出防止溝でくいちがいをさせることによって、
シール可能な保持空間が同一の位置においては変化し、
シール効果を回転に伴って変化させ、回転位置によって
漏れ出た潤滑流体は動圧発生部に自己供給して戻ってし
まうようにしている。
In the present application, a device is devised so that an external force acts in a direction to pull back the phenomenon of diffusion leakage. This ingenuity is achieved by making the lubricating fluid outflow prevention groove of this seal holding force into a spiral groove, and making it interfere with the lubricating fluid outflow prevention groove.
The holding space that can be sealed changes at the same position,
The sealing effect is changed with the rotation, and the lubricating fluid leaked according to the rotation position is supplied to the dynamic pressure generating unit by itself and returned.

【0193】上記方法で潤滑流体の漏れがないようにで
きるので、スピンドルモータの信頼性が高くなるうえ
に、磁気ディスク駆動装置に応用した場合は磁気ヘッド
が磁気ディスクにダメージを及ぼす影響が小さくできる
ので装置全体としての信頼性も向上するという有利な効
果が得られる。
Since the above method can prevent the leakage of the lubricating fluid, the reliability of the spindle motor is improved, and when applied to a magnetic disk drive, the influence of the magnetic head on the magnetic disk can be reduced. Therefore, an advantageous effect of improving the reliability of the entire apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における動圧軸受装置の図FIG. 1 is a diagram of a hydrodynamic bearing device according to an embodiment of the present invention.

【図2】モータの動圧軸受の2つの潤滑流体流出防止溝
の展開図
FIG. 2 is a development view of two lubricating fluid outflow prevention grooves of the dynamic pressure bearing of the motor.

【図3】潤滑流体流出防止溝の拡大図FIG. 3 is an enlarged view of a groove for preventing lubricating fluid from flowing out.

【図4】潤滑流体流出防止溝の拡大図FIG. 4 is an enlarged view of a groove for preventing lubricating fluid from flowing out.

【図5】表面自由エネルギーを説明するための図FIG. 5 is a diagram for explaining surface free energy.

【図6】毛管現象の基本式のための図FIG. 6 is a diagram for a basic equation of capillary action.

【図7】潤滑流体の保持及び流出防止溝が形成されてい
るとした模式図
FIG. 7 is a schematic view in which a groove for holding and flowing out a lubricating fluid is formed.

【図8】角度εと潤滑流体の液面高さhの関係図FIG. 8 is a diagram showing the relationship between the angle ε and the liquid level height h of the lubricating fluid.

【図9】角度εと潤滑流体の液面高さhの変化率の関係
FIG. 9 is a graph showing the relationship between the angle ε and the rate of change of the liquid level height h of the lubricating fluid

【図10】実施例における流体動圧軸受の図FIG. 10 is a diagram of a fluid dynamic bearing according to the embodiment.

【図11】潤滑流体流出防止溝の拡大図FIG. 11 is an enlarged view of a lubricating fluid outflow prevention groove.

【図12】潤滑流体流出防止溝の拡大図FIG. 12 is an enlarged view of a lubricating fluid outflow prevention groove.

【図13】実施例における流体動圧軸受の図FIG. 13 is a view of a fluid dynamic bearing in the embodiment.

【図14】潤滑流体流出防止溝の拡大図FIG. 14 is an enlarged view of a lubricating fluid outflow prevention groove.

【図15】潤滑流体流出防止溝の拡大図FIG. 15 is an enlarged view of a lubricating fluid outflow prevention groove.

【図16】固定部材側の潤滑流体流出防止溝と回転部材
側の潤滑流体流出防止溝との位置関係を表す展開図
FIG. 16 is a developed view showing a positional relationship between the lubricating fluid outflow preventing groove on the fixed member side and the lubricating fluid outflow preventing groove on the rotating member side.

【図17】濡れ現象における接触角θの説明図FIG. 17 is an explanatory diagram of a contact angle θ in a wetting phenomenon.

【図18】実施例としての軸固定型の記録媒体駆動用の
流体動圧軸受装置を使用したスピンドルモータの断面図
FIG. 18 is a cross-sectional view of a spindle motor using a fluid dynamic bearing device for driving a fixed shaft type recording medium as an embodiment.

【図19】従来例における流体動圧軸受の図FIG. 19 is a diagram of a fluid dynamic bearing in a conventional example.

【符号の説明】[Explanation of symbols]

1、9 固定部材 2、10 回転部材 3 潤滑流体 4、5、11、12、17、18、23、24、46、
47 潤滑流体流出防止溝 6 スラスト板 7 開放端開口隙間部 8 流体保持溝 13、15、19、21 第1の傾斜面 14、16、20、22 第2の傾斜面 25 回転部材側の潤滑流体流出防止溝の下部端部の最
下点位置 26 回転部材側の潤滑流体流出防止溝の下部端部の最
上点位置 27 回転部材側の潤滑流体流出防止溝の上部端部の最
下点位置 28 回転部材側の潤滑流体流出防止溝の上部端部の最
上点位置 35 シャフト 42 スリーブ 43 流体溜まり部 44 上部の径小円筒部 45 下部の径小円筒部
1, 9 fixing member 2, 10 rotating member 3 lubricating fluid 4, 5, 11, 12, 17, 18, 23, 24, 46,
47 Lubricating fluid outflow prevention groove 6 Thrust plate 7 Open end opening gap 8 Fluid holding groove 13, 15, 19, 21 First inclined surface 14, 16, 20, 22 Second inclined surface 25 Lubricating fluid on rotating member side The lowest point of the lower end of the outflow prevention groove 26 The highest point of the lower end of the lubricating fluid outflow prevention groove on the rotating member 27 The lowest point of the upper end of the lubricating fluid outflow preventing groove on the rotating member 28 The uppermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member side 35 Shaft 42 Sleeve 43 Fluid reservoir 44 Upper small diameter cylindrical part 45 Lower small diameter cylindrical part

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 21/22 H02K 21/22 M Fターム(参考) 3J011 AA04 AA07 BA02 BA09 CA01 CA02 JA02 KA02 KA03 MA07 MA23 MA24 3J016 AA02 AA03 BB22 5H605 AA00 BB05 BB14 BB19 CC04 DD03 DD05 EA02 EB02 EB03 EB28 FF06 GG04 GG21 5H607 AA00 BB01 BB14 BB17 BB25 CC01 DD01 DD02 DD03 DD08 DD16 GG01 GG02 GG03 GG12 JJ05 JJ07 KK10 5H621 GA01 HH01 JK17 JK19 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) H02K 21/22 H02K 21/22 MF term (Reference) 3J011 AA04 AA07 BA02 BA09 CA01 CA02 JA02 KA02 KA03 MA07 MA23 MA24 3J016 AA02 AA03 BB22 5H605 AA00 BB05 BB14 BB19 CC04 DD03 DD05 EA02 EB02 EB03 EB28 FF06 GG04 GG21 5H607 AA00 BB01 BB14 BB17 BB25 CC01 DD01 DD02 DD03 DD08 DD16 GG01 GG02 GG03 GG12 JJ05 J01H01K19H01

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 固定部材に対して回転体を回転自在に支
承するためのラジアル動圧流体軸受及びスラスト動圧流
体軸受からなる動圧軸受部が設けられた動圧軸受装置に
おいて、 その動圧軸受には潤滑流体を充填させ、固定部材に対し
て回転部材を非接触で回転させるその動圧軸受の軸方向
の両端側が開放端とし、ラジアル動圧軸受の端部側円筒
部の端部に潤滑流体流出防止溝を固定部材側と回転体側
の両方に設け、固定部材側の潤滑流体流出防止溝の位置
は一定とし、回転部材側の潤滑流体流出防止溝の位置は
軸方向距離に周期的に変化し、固定部材側の潤滑流体流
出防止溝と回転部材側の潤滑流体流出防止溝は部分的に
対向するように構成された潤滑流体流出防止溝を有する
ことを特徴とする動圧軸受装置。
1. A dynamic pressure bearing device provided with a dynamic pressure bearing portion comprising a radial dynamic pressure fluid bearing and a thrust dynamic pressure fluid bearing for rotatably supporting a rotating body with respect to a fixed member. The bearing is filled with lubricating fluid, and the rotating member is rotated in a non-contact manner with respect to the fixed member. Both ends in the axial direction of the dynamic pressure bearing are open ends, and the ends of the cylindrical portion on the end side of the radial dynamic pressure bearing are provided. The lubricating fluid outflow preventing grooves are provided on both the fixed member side and the rotating body side, and the position of the lubricating fluid outflow preventing groove on the fixed member side is fixed, and the position of the lubricating fluid outflow preventing groove on the rotating member side is periodically set at an axial distance. Wherein the lubricating fluid outflow preventing groove on the fixed member side and the lubricating fluid outflow preventing groove on the rotating member side have a lubricating fluid outflow preventing groove configured to partially face each other. .
【請求項2】 回転部材側と固定部材側と両方に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が減少する溝
面が形成されたことを特徴とする請求項1記載の動圧軸
受装置。
2. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side has a groove surface in which a gap decreases toward an open end in an end side cylindrical portion of the radial dynamic pressure bearing. The hydrodynamic bearing device according to claim 1, wherein:
【請求項3】 回転部材側と固定部材側と両方に設けら
れた潤滑流体流出防止溝はラジアル動圧軸受の端部側円
筒部に開放端部に向かうにしたがって隙間が減少する溝
面が存在し、それぞれの前記溝面が軸方向からの傾斜角
度α、βで形成され、その傾斜角度α、βは(数1)の
関係にあることを特徴とする請求項2記載の動圧軸受装
置。 【数1】
3. A lubricating fluid outflow prevention groove provided on both the rotating member side and the fixed member side has a groove surface on the end side cylindrical portion of the radial dynamic pressure bearing whose gap decreases toward an open end. The hydrodynamic bearing device according to claim 2, wherein each of the groove surfaces is formed at an inclination angle α, β from the axial direction, and the inclination angles α, β have a relationship of (Equation 1). . (Equation 1)
【請求項4】 回転部材側に設けられた潤滑流体流出防
止溝はラジアル動圧軸受の端部側円筒部に開放端部に向
かうにしたがって隙間が増加する溝面が存在するように
形成され、固定部材側に設けられた潤滑流体流出防止溝
はラジアル動圧軸受の端部側円筒部に開放端部に向かう
にしたがって隙間が減少する溝面が存在するように形成
されたことを特徴とする請求項1記載の動圧軸受装置。
4. The lubricating fluid outflow preventing groove provided on the rotating member side is formed such that a groove surface whose clearance increases toward an open end exists in an end side cylindrical portion of the radial dynamic pressure bearing, The lubricating fluid outflow prevention groove provided on the fixing member side is formed so that a groove surface whose gap decreases toward the open end exists in the end side cylindrical portion of the radial dynamic pressure bearing. The dynamic pressure bearing device according to claim 1.
【請求項5】 回転部材側に設けられた潤滑流体流出防
止溝はラジアル動圧軸受の端部側円筒部に開放端部に向
かうにしたがって隙間が増加する溝面が存在するように
形成され、固定部材側に設けられた潤滑流体流出防止溝
はラジアル動圧軸受の端部側円筒部に開放端部に向かう
にしたがって隙間が減少する溝面が存在するように形成
され、それぞれの潤滑流体流出防止溝の前記溝面が軸方
向からの傾斜角度γ、δであり、その傾斜角度γ、δは
(数2)の関係にあることを特徴とする請求項4記載の
動圧軸受装置。 【数2】
5. The lubricating fluid outflow prevention groove provided on the rotating member side is formed such that a groove surface whose clearance increases toward the open end exists in the end side cylindrical portion of the radial dynamic pressure bearing, The lubricating fluid outflow preventing groove provided on the fixed member side is formed so that a groove surface whose gap decreases toward the open end exists in the end side cylindrical portion of the radial dynamic pressure bearing. 5. The hydrodynamic bearing device according to claim 4, wherein the groove surfaces of the preventing grooves have inclination angles [gamma] and [delta] from the axial direction, and the inclination angles [gamma] and [delta] have a relationship of (Equation 2). (Equation 2)
【請求項6】 回転部材側に設けられた潤滑流体流出防
止溝はラジアル動圧軸受の端部側円筒部に開放端部に向
かうにしたがって隙間が減少する溝面が存在するように
形成され、固定部材側に設けられた潤滑流体流出防止溝
はラジアル動圧軸受の端部側円筒部に開放端部に向かう
にしたがって隙間が増加する溝面が存在するように形成
されたことを特徴とする請求項1記載の動圧軸受装置。
6. The lubricating fluid outflow prevention groove provided on the rotating member side is formed such that a groove surface whose clearance decreases toward an open end exists in an end side cylindrical portion of the radial dynamic pressure bearing, The lubricating fluid outflow prevention groove provided on the fixed member side is formed so that a groove surface whose clearance increases toward the open end exists in the end side cylindrical portion of the radial dynamic pressure bearing. The dynamic pressure bearing device according to claim 1.
【請求項7】 回転部材側に設けられた潤滑流体流出防
止溝はラジアル動圧軸受の端部側円筒部に開放端部に向
かうにしたがって隙間が減少する溝面が存在するように
形成され、固定部材側に設けられた潤滑流体流出防止溝
はラジアル動圧軸受の端部側円筒部に開放端部に向かう
にしたがって隙間が増加する溝面が存在するように形成
され、それぞれの潤滑流体流出防止溝の前記溝面が軸方
向からの傾斜角度γ、δであり、その傾斜角度γ、δは
(数3)の関係にあることを特徴とする請求項6記載の
動圧軸受装置。 【数3】
7. The lubricating fluid outflow preventing groove provided on the rotating member side is formed such that a groove surface whose gap decreases toward an open end exists in an end-side cylindrical portion of the radial dynamic pressure bearing, The lubricating fluid outflow preventing groove provided on the fixing member side is formed so that the end cylindrical portion of the radial dynamic pressure bearing has a groove surface whose gap increases toward the open end. 7. The hydrodynamic bearing device according to claim 6, wherein the groove surfaces of the prevention grooves have inclination angles [gamma] and [delta] from the axial direction, and the inclination angles [gamma] and [delta] have a relationship of (Equation 3). (Equation 3)
【請求項8】 回転部材側と固定部材側との両方に設け
られた潤滑流体流出防止溝はラジアル動圧軸受の端部側
円筒部に形成され、固定部材側の潤滑流体流出防止溝は
一定の高さの位置に形成されていて、回転部材側の潤滑
流体流出防止溝の下部端部の最下点位置の方が固定部材
側の潤滑流体流出防止溝の下部端部の位置より上部(開
放端の逆)側に位置し、回転部材側の潤滑流体流出防止
溝の下部端部の最上点位置の方が固定部材側の潤滑流体
流出防止溝の上部端部の位置より上部(開放端の逆)側
に位置し、回転部材側の潤滑流体流出防止溝の上部端部
の最下点位置の方は固定部材側の潤滑流体流出防止溝の
上部端部の位置より上部(開放端の逆)側に位置し、回
転部材側の潤滑流体流出防止溝の上部端部の最上点位置
の方は固定部材側の潤滑流体流出防止溝の上部端部の位
置より上部(開放端の逆)側に位置していることを特徴
とする請求項1から7記載の動圧軸受装置。
8. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixed member side is constant. The lowermost point position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is higher than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( The uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is higher than the upper end position of the lubricating fluid outflow preventing groove on the fixed member side (open end). And the lowermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member side is higher than the position of the upper end of the lubricating fluid outflow prevention groove on the fixed member side (open end). And the uppermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member is located on the fixed member side. 8. The hydrodynamic bearing device according to claim 1, wherein the lubricating fluid outflow preventing groove is located on an upper side (opposite of an open end) side of an upper end.
【請求項9】 回転部材側と固定部材側との両方に設け
られた潤滑流体流出防止溝はラジアル動圧軸受の端部側
円筒部に形成され、固定部材側の潤滑流体流出防止溝は
一定の高さの位置に形成されていて、回転部材側の潤滑
流体流出防止溝の下部端部の最下点位置の方が固定部材
側の潤滑流体流出防止溝の下部端部の位置より上部(開
放端の逆)側に位置し、回転部材側の潤滑流体流出防止
溝の下部端部の最上点位置の方が固定部材側の潤滑流体
流出防止溝の上部端部の位置より下部(開放端)側に位
置し、回転部材側の潤滑流体流出防止溝の上部端部の最
下点位置の方は固定部材側の潤滑流体流出防止溝の上部
端部の位置より上部(開放端の逆)側に位置し、回転部
材側の潤滑流体流出防止溝の上部端部の最上点位置の方
は固定部材側の潤滑流体流出防止溝の上部端部の位置よ
り上部(開放端の逆)側に位置していることを特徴とす
る請求項1から7記載の動圧軸受装置。
9. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixing member side is constant. The lowermost point position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is higher than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( The uppermost position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the upper end position of the lubricating fluid outflow preventing groove on the fixed member side (open end). ) Side, the lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is higher than the position of the upper end of the lubricating fluid outflow preventing groove on the fixed member side (the opposite of the open end). The uppermost point of the upper end of the lubricating fluid outflow prevention groove on the rotating member side is the lubrication on the fixed member side. 8. The hydrodynamic bearing device according to claim 1, wherein the fluid outflow prevention groove is located on an upper side (opposite of an open end) side of an upper end position.
【請求項10】 回転部材側と固定部材側との両方に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に形成され、固定部材側の潤滑流体流出防止溝
は一定の高さの位置に形成されていて、回転部材側の潤
滑流体流出防止溝の下部端部の最下点位置の方が固定部
材側の潤滑流体流出防止溝の下部端部の位置より下部
(開放端)側に位置し、回転部材側の潤滑流体流出防止
溝の下部端部の最上点位置の方が固定部材側の潤滑流体
流出防止溝の上部端部の位置より下部(開放端)側に位
置しかつ固定部材側の潤滑流体流出防止溝の下部端部の
位置より上部(開放端の逆)側に位置し、回転部材側の
潤滑流体流出防止溝の上部端部の最下点位置の方は固定
部材側の潤滑流体流出防止溝の上部端部の位置より下部
(開放端)側に位置しかつ固定部材側の潤滑流体流出防
止溝の下部端部の位置より上部(開放端の逆)側に位置
し、回転部材側の潤滑流体流出防止溝の上部端部の最上
点位置の方は固定部材側の潤滑流体流出防止溝の上部端
部の位置より上部(開放端の逆)側に位置していること
を特徴とする請求項1から7記載の動圧軸受装置。
10. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixing member side is constant. The lowermost point position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( (Open end) side, and the uppermost position of the lower end of the lubricating fluid outflow prevention groove on the rotating member side is lower (open end) side than the upper end position of the lubricating fluid outflow prevention groove on the fixed member side. At the lower end of the upper end of the lubricating fluid outflow preventing groove on the rotating member, which is located above (the opposite of the open end) the lower end of the lubricating fluid outflow preventing groove on the fixed member side. Is located lower (open end) than the upper end of the lubricating fluid outflow prevention groove on the fixed member side. The upper end of the lubricating fluid outflow preventing groove on the rotating member is fixed to the uppermost position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side. 8. The hydrodynamic bearing device according to claim 1, wherein the lubricating fluid outflow prevention groove on the member side is located on the upper side (opposite of the open end) of the upper end.
【請求項11】 回転部材側と固定部材側との両方に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に形成され、固定部材側の潤滑流体流出防止溝
は一定の高さの位置に形成されていて、回転部材側の潤
滑流体流出防止溝の下部端部の最下点位置の方が固定部
材側の潤滑流体流出防止溝の下部端部の位置より下部
(開放端)側に位置し、回転部材側の潤滑流体流出防止
溝の下部端部の最上点位置の方が固定部材側の潤滑流体
流出防止溝の下部端部の位置より下部(開放端)側に位
置し、回転部材側の潤滑流体流出防止溝の上部端部の最
下点位置の方は固定部材側の潤滑流体流出防止溝の上部
端部の位置より下部(開放端)側に位置しかつ固定部材
側の潤滑流体流出防止溝の下部端部の位置より上部(開
放端の逆)側に位置し、回転部材側の潤滑流体流出防止
溝の上部端部の最上点位置の方は固定部材側の潤滑流体
流出防止溝の上部端部の位置より下部(開放端)側に位
置していることを特徴とする請求項1から7記載の動圧
軸受装置。
11. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixing member side is constant. The lowermost point position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( (Open end) side, and the uppermost position of the lower end of the lubricating fluid outflow prevention groove on the rotating member side is lower (open end) side than the lower end position of the lubricating fluid outflow prevention groove on the fixed member side. And the lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is located lower (open end) than the upper end position of the lubricating fluid outflow preventing groove on the fixed member side. And located above (at the opposite of the open end) the lower end of the lubricating fluid outflow prevention groove on the fixed member side. The uppermost position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is located lower (open end) than the upper end of the lubricating fluid outflow preventing groove on the fixed member side. The dynamic pressure bearing device according to claim 1, wherein:
【請求項12】 回転部材側と固定部材側との両方に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に形成され、固定部材側の潤滑流体流出防止溝
は一定の高さの位置に形成されていて、回転部材側の潤
滑流体流出防止溝の下部端部の最下点位置の方が固定部
材側の潤滑流体流出防止溝の下部端部の位置より下部
(開放端)側に位置し、回転部材側の潤滑流体流出防止
溝の下部端部の最上点位置の方が固定部材側の潤滑流体
流出防止溝の下部端部の位置より下部(開放端)側に位
置し、回転部材側の潤滑流体流出防止溝の上部端部の最
下点位置の方は固定部材側の潤滑流体流出防止溝の下部
端部の位置より下部(開放端)側に位置し、回転部材側
の潤滑流体流出防止溝の上部端部の最上点位置の方は固
定部材側の潤滑流体流出防止溝の上部端部の位置より下
部(開放端)側に位置しかつ固定部材側の潤滑流体流出
防止溝の下部端部の位置より上部(開放端の逆)側に位
置していることを特徴とする請求項1から7記載の動圧
軸受装置。
12. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixing member side is constant. The lowermost point position of the lower end of the lubricating fluid outflow preventing groove on the rotating member side is lower than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side ( (Open end) side, and the uppermost position of the lower end of the lubricating fluid outflow prevention groove on the rotating member side is lower (open end) side than the lower end position of the lubricating fluid outflow prevention groove on the fixed member side. The lowermost point position of the upper end of the lubricating fluid outflow preventing groove on the rotating member side is located lower (open end) than the lower end position of the lubricating fluid outflow preventing groove on the fixed member side. The uppermost position of the upper end of the lubricating fluid outflow prevention groove on the rotating member side is the lubricating fluid flow on the fixed member side. The groove is located on the lower side (open end) side of the upper end of the protrusion prevention groove and is located on the upper side (opposite to the open end) side of the lower end of the lubricating fluid outflow prevention groove on the fixed member side. The dynamic pressure bearing device according to claim 1, wherein:
【請求項13】 回転部材側と固定部材側との両方に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に形成され、固定部材側の潤滑流体流出防止溝
は一定の高さの位置に形成されていて、回転部材側の潤
滑流体流出防止溝は周方向に展開すると軸方向に螺旋状
になっていて、その螺旋状の潤滑流体流出防止溝の軸方
向距離を変位とした時1展開でnサイクルしている(n
は1以上の正の整数)ことを特徴とする請求項1から1
2記載の動圧軸受装置。
13. A lubricating fluid outflow preventing groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and the lubricating fluid outflow preventing groove on the fixed member side is fixed. The lubricating fluid outflow preventing groove on the rotating member side is spirally formed in the axial direction when it is developed in the circumferential direction, and the axial distance of the spiral lubricating fluid outflow preventing groove is increased. When the displacement is set, there are n cycles in one expansion (n
Is a positive integer of 1 or more).
2. The dynamic pressure bearing device according to 2.
【請求項14】 回転部材側と固定部材側との両方に設
けられた潤滑流体流出防止溝はラジアル動圧軸受の端部
側円筒部に形成され、かつ回転部材と固定部材との隙間
が一定では2つの潤滑流体流出防止溝は一定の高さの位
置に形成されていて、ラジアル動圧軸受の偏心率が5%
以上で使用されることを特徴とする動圧軸受装置。
14. A lubricating fluid outflow prevention groove provided on both the rotating member side and the fixed member side is formed in an end side cylindrical portion of the radial dynamic pressure bearing, and a gap between the rotating member and the fixed member is constant. In this case, the two lubricating fluid outflow prevention grooves are formed at a fixed height, and the eccentricity of the radial dynamic pressure bearing is 5%.
A hydrodynamic bearing device used as described above.
【請求項15】 ハウジングと、該ハウジングに直接ま
たは間接的に固定されたステータコアと、該ハウジング
に固定されたシャフトと、該シャフトに固定された抜け
止め板と、固定のシャフトに対して軸受を介して相対的
に回転自在である軸受スリーブと、該スリーブの外周部
に直接または間接的に固定されたロータとを備え、該シ
ャフトと該スリーブとからなりいずれか一方にヘリング
ボーン溝を形成して、隙間に潤滑流体を介したラジアル
動圧軸受とスラスト押さえ板とスリーブで抜け止め板を
挟み込み、該抜け止め板とスラスト押さえ板のいずれか
一方に動圧溝を形成し、抜け止め板とスリーブのいずれ
か一方にも動圧溝を形成して、隙間に潤滑流体を介した
スラスト動圧流体軸受であり、ラジアル動圧軸受の端部
側円筒部の端部に潤滑流体流出防止溝がシャフト側と軸
受スリーブ側の両方にあって、シャフト側の潤滑流体流
出防止溝の位置は一定であって、スリーブ側の潤滑流体
流出防止溝の位置は軸方向距離に周期的に変化してい
て、シャフト側の潤滑流体流出防止溝とスリーブ側の潤
滑流体流出防止溝は軸受の1回転で一部分が部分的に対
向するように構成された潤滑流体流出防止溝を有するこ
とを特徴とする動圧軸受装置を使用したスピンドルモー
タ。
15. A housing, a stator core fixed directly or indirectly to the housing, a shaft fixed to the housing, a retaining plate fixed to the shaft, and a bearing for the fixed shaft. A bearing sleeve that is relatively rotatable through the rotor, and a rotor that is directly or indirectly fixed to an outer peripheral portion of the sleeve. The herringbone groove is formed in one of the shaft and the sleeve. The retaining plate is sandwiched between the radial dynamic pressure bearing, the thrust retaining plate, and the sleeve via the lubricating fluid in the gap, and a dynamic pressure groove is formed in one of the retaining plate and the thrust retaining plate. A dynamic pressure groove is formed in one of the sleeves to provide a thrust hydrodynamic bearing with lubricating fluid in the gap. The lubricating fluid outflow preventing grooves are on both the shaft side and the bearing sleeve side, the position of the lubricating fluid outflow preventing groove on the shaft side is constant, and the position of the lubricating fluid outflow preventing groove on the sleeve side is periodic at the axial distance. And the lubricating fluid outflow preventing groove on the shaft side and the lubricating fluid outflow preventing groove on the sleeve side have a lubricating fluid outflow preventing groove configured to be partially opposed to each other in one rotation of the bearing. A spindle motor using a hydrodynamic bearing device characterized by the following.
【請求項16】 請求項1から14記載の動圧軸受装置
を使用したスピンドルモータ。
16. A spindle motor using the hydrodynamic bearing device according to claim 1.
JP35894898A 1998-12-17 1998-12-17 Hydrodynamic bearing device and spindle motor using the same Expired - Fee Related JP4075170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35894898A JP4075170B2 (en) 1998-12-17 1998-12-17 Hydrodynamic bearing device and spindle motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35894898A JP4075170B2 (en) 1998-12-17 1998-12-17 Hydrodynamic bearing device and spindle motor using the same

Publications (2)

Publication Number Publication Date
JP2000179543A true JP2000179543A (en) 2000-06-27
JP4075170B2 JP4075170B2 (en) 2008-04-16

Family

ID=18461950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35894898A Expired - Fee Related JP4075170B2 (en) 1998-12-17 1998-12-17 Hydrodynamic bearing device and spindle motor using the same

Country Status (1)

Country Link
JP (1) JP4075170B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337298A (en) * 2004-05-24 2005-12-08 Nippon Pulse Motor Co Ltd Sealing structure of output shaft
JP2015137724A (en) * 2014-01-23 2015-07-30 光洋シーリングテクノ株式会社 sealing device
TWI723807B (en) * 2020-03-13 2021-04-01 英業達股份有限公司 Heat pipe structure
CN113357944A (en) * 2020-03-04 2021-09-07 英业达科技有限公司 Heat pipe structure
CN113454353A (en) * 2019-02-21 2021-09-28 伊格尔工业股份有限公司 Sliding component
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
TWI803739B (en) * 2020-03-13 2023-06-01 英業達股份有限公司 Heat pipe structure
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US12018757B2 (en) 2019-02-04 2024-06-25 Eagle Industry Co., Ltd. Sliding components

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687865B2 (en) * 2004-05-24 2011-05-25 日本パルスモーター株式会社 Output shaft seal structure
JP2005337298A (en) * 2004-05-24 2005-12-08 Nippon Pulse Motor Co Ltd Sealing structure of output shaft
JP2015137724A (en) * 2014-01-23 2015-07-30 光洋シーリングテクノ株式会社 sealing device
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
US12018757B2 (en) 2019-02-04 2024-06-25 Eagle Industry Co., Ltd. Sliding components
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
CN113454353A (en) * 2019-02-21 2021-09-28 伊格尔工业股份有限公司 Sliding component
US12013040B2 (en) 2019-02-21 2024-06-18 Eagle Industry Co., Ltd. Sliding components
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
CN113357944A (en) * 2020-03-04 2021-09-07 英业达科技有限公司 Heat pipe structure
TWI803739B (en) * 2020-03-13 2023-06-01 英業達股份有限公司 Heat pipe structure
TWI723807B (en) * 2020-03-13 2021-04-01 英業達股份有限公司 Heat pipe structure

Also Published As

Publication number Publication date
JP4075170B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US8534919B2 (en) Apparatus for fluid recirculation
US7241051B2 (en) Radial capillary seal for fluid dynamic bearing motors
KR100264701B1 (en) Magnetic disc storage system with hydrodynamic bearing
US8308365B2 (en) Air purging for a fluid dynamic bearing
US6991376B2 (en) Low profile fluid dynamic bearing motor having increased journal span
US7473034B2 (en) Hydrodynamic bearing device, motor, and disk driving apparatus
US7137739B2 (en) High pressure barrier to oil loss by diffusion
US20090052817A1 (en) Methods of Hydraulic Compensation for Magnetically Biased Fluid Dynamic Bearing Motor
US7001074B2 (en) High pressure barrier to oil loss by diffusion
US7133250B2 (en) Inboard thrust surface fluid recirculation pump
JP4075170B2 (en) Hydrodynamic bearing device and spindle motor using the same
US10192579B2 (en) Fluid dynamic bearing motors with different width pump seals and journal bearings
JP2000076779A (en) Magnetic disk device
US7059771B2 (en) Motors with oil dynamic pressure bearing, oil dynamic pressure bearing devices and method for manufacturing the same
JP2009144849A (en) Hydrodynamic bearing type rotary device and information recording-reproducing apparatus having the same
US20030214193A1 (en) Top cover attachable fluid dynamic bearing motor
KR100679794B1 (en) Disk drive motor and fluid dynamic bearing system for the disk drive motor
JP2008121849A (en) Dynamic pressure fluid bearing device, spindle motor and record reproduction device
US7224552B2 (en) High-speed centrifugal seal for a spindle motor
US7056026B2 (en) Capillary seal with fill pool
JP4075148B2 (en) Spindle motor using a hydrodynamic bearing device
US6962442B2 (en) Fluid trap for oil migration
JP2008072900A (en) Spindle motor using dynamic pressure bearing
JPH11285200A (en) Fluid bearing spindle motor
JPH09180362A (en) Spindle motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees