TWI802110B - Balance device to reduce leakage current - Google Patents
Balance device to reduce leakage current Download PDFInfo
- Publication number
- TWI802110B TWI802110B TW110144153A TW110144153A TWI802110B TW I802110 B TWI802110 B TW I802110B TW 110144153 A TW110144153 A TW 110144153A TW 110144153 A TW110144153 A TW 110144153A TW I802110 B TWI802110 B TW I802110B
- Authority
- TW
- Taiwan
- Prior art keywords
- coil
- current
- balance
- load
- magnetic field
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/16—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/26—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Voltage And Current In General (AREA)
- Control Of Electrical Variables (AREA)
- Breakers (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
一種減少洩漏電流之平衡裝置,包括:一設置於預設負載及電源端之間的平衡線圈模組,以及一控制模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈,該第一線圈、第二線圈分別連結於該負載之二端,該第三線圈連結於該控制模組,該第一線圈能受到一由電源端往該負載方向的供給電流通過而產生一個正向磁場,該第二線圈能受到一由負載往電源端方向的回歸電流通過而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差異,並控制該第三線圈產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場,藉以使該平衡線圈模組內部的磁場及電流維持平衡狀態,達到降低漏觸電流及維持基本供電之功效。A balance device for reducing leakage current, comprising: a balance coil module set between a preset load and a power supply terminal, and a control module; the balance coil module has a first coil, a second coil, and a third coil , the first coil and the second coil are respectively connected to the two ends of the load, the third coil is connected to the control module, and the first coil can receive a supply current from the power supply end to the load direction to generate a Forward magnetic field, the second coil can receive a return current from the load to the direction of the power supply to generate a reverse magnetic field, the control module can detect and calculate the difference between the supply current and the return current, and control The third coil generates a compensating magnetic field that can bridge the gap between the forward magnetic field and the reverse magnetic field, so as to keep the magnetic field and current inside the balance coil module in a balanced state, so as to reduce the leakage current and maintain the basic power supply .
Description
本發明是有關減少洩漏電流之平衡裝置,尤指一種在電器設備淹水或人體觸電時,可有效降低漏(觸)電流,並維持對電器設備供電,以確保人員安全及維持電器設備基本運作之平衡裝置。 The present invention relates to a balance device for reducing leakage current, especially a device that can effectively reduce leakage (touch) current and maintain power supply to electrical equipment when electrical equipment is flooded or human body gets an electric shock, so as to ensure the safety of personnel and maintain the basic operation of electrical equipment The balance device.
隨著各種電器及電子裝置的逐漸普及化,人們對於各種用電需求亦不斷增加,在大多數(家庭或工業)的用電環境中,市電乃為一種穩定且便利的電力來源,而目前的市電供應皆係由發電廠經由電線高壓傳輸後,再經變壓至各種固定規格的電壓,以供不同終端消費者依需求經由電線連結至電器及電子裝置;然而,在一般的生活環境及用電過程中,往往會遇到許多天災或人為疏失,造成各種漏(觸)電情形發生。 With the gradual popularization of various electrical appliances and electronic devices, people's demand for various electricity consumption is also increasing. In most (household or industrial) electricity consumption environments, the mains power is a stable and convenient source of electricity, and the current The mains power supply is transmitted by the power plant through high-voltage wires, and then transformed to various fixed voltages for different end consumers to connect to electrical appliances and electronic devices through wires according to their needs; however, in general living environments and users During the electrical process, many natural disasters or human errors are often encountered, resulting in various leakage (shock) situations.
眾所周知,當電器設備浸水時,可能會由接電部(電器設備之插頭連接電源插座的部位或導入電源之電線裸露部位)往大地產生漏電流,或者當人體接觸到該外露的接電部時,會由接電部透過人體往大地產生電流,此種漏電流往往會造成使用人員的人體傷害及相關電器設備的損壞,因此目前大多數的輸配電或供電設備中會配置漏電斷路開關,可在供電線路或電器設備、電子裝置發生漏電時立即切斷與電源的連結,以達到保護人員及電器設備的用電安全;然而,上述漏電斷路開關其僅能於漏電情形發生後切斷電源,並不具有 降低或消除漏電流的功能,再者,許多電器設備(例如:維持生命之醫療設備或儲存資料之電腦設備)並不允許隨時斷電,任何非預期的斷電皆會造成生命及經濟上的嚴重損失。 As we all know, when electrical equipment is immersed in water, leakage current may be generated from the power connection part (the part where the plug of the electrical equipment is connected to the power socket or the exposed part of the wire leading into the power supply) to the earth, or when the human body touches the exposed power connection part , will generate current through the human body to the earth from the power connection part. This kind of leakage current will often cause human injury to the user and damage to related electrical equipment. Therefore, most current transmission and distribution or power supply equipment will be equipped with a leakage circuit breaker switch. Immediately cut off the connection with the power supply when a leakage occurs in the power supply line or electrical equipment or electronic device, so as to protect the safety of personnel and electrical equipment; however, the above-mentioned leakage circuit breaker can only cut off the power supply after the leakage occurs. does not have The function of reducing or eliminating leakage current. Moreover, many electrical equipment (such as: life-supporting medical equipment or computer equipment for storing data) do not allow power-off at any time. Any unexpected power-off will cause life and economic loss. serious loss.
因此,在韓國登記專利10-2270589號專利案中提供一種防電氣事故的安全裝置,依據該專利所揭露的內容,在電器線路浸水的情況之下,該安全裝置可以預防觸電事故之外,亦可對於電氣設備持續供應最低所需電力,讓電氣設備持續正常運轉。 Therefore, a safety device for preventing electrical accidents is provided in Korean Registered Patent No. 10-2270589. According to the content disclosed in the patent, in the case of electrical circuit immersion, the safety device can prevent electric shock accidents and also It can continuously supply the minimum required power to the electrical equipment, so that the electrical equipment can continue to operate normally.
除此之外,韓國登記專利10-1705090號專利案中揭露了具有接地斷線感測裝置及電源保護裝置等結構;而韓國登記專利10-2181899號專利案中公開了淹水時的防漏電裝置及使用該防漏電裝置的漏電和觸電保護方法,雖然在其說明書中記載著「發生觸電事故時,透過一平衡變壓器可以抵銷洩漏電流所產生的磁場之後,讓洩漏電流的強度可以降低到對於人體不會造成危險的程度」,然而在其專利說明書中只有提交負載和串聯連接關係的簡易圖式,因此該領域的一般技術人員無法直接由該專利所揭露的內容執行相關技術手段,更不知道該專利內容能否實際動作,即使依照該專利之內容能正常運作,也因為該正常運作的時間點落在接電部已被淹水或人體已被觸電之後的時刻,所以無法適當地預防觸電事故。 In addition, Korean registered patent No. 10-1705090 discloses structures with grounding disconnection sensing devices and power protection devices; device and the leakage and electric shock protection method using the leakage prevention device, although it is recorded in its instruction manual that "when an electric shock accident occurs, after a balance transformer can offset the magnetic field generated by the leakage current, the intensity of the leakage current can be reduced to To the extent that it does not cause danger to the human body”, however, in its patent specification, there is only a simple diagram of the relationship between load and series connection, so ordinary technical personnel in this field cannot directly implement the relevant technical means from the content disclosed in the patent, let alone I don't know whether the content of the patent can actually work. Even if it can operate normally according to the content of the patent, it is impossible to properly operate because the time point of the normal operation falls after the electrical connection part has been flooded or the human body has been electrocuted. Prevent electric shock accidents.
再者,上述洩漏電流大小係依照該接電部和大地之間所形成的線路狀態(包括人體等)而有所變化,因此在平衡變壓器之正向(由電源的電線流至負載方向)線圈上所流動的電流和逆向(由負載回流至電源的電線方向)線圈所流動的電流都會產生變化,其結果在流動正向電流的線圈和流動逆向電流的線圈上所產生的磁場大小互相不同,導致無法確實維持電流之間的平衡。 而且由於經過外露的接電部流向大地的電流會增加,所以無法適當地應付處理觸電事故。 Furthermore, the magnitude of the above-mentioned leakage current varies according to the state of the line formed between the power connection part and the earth (including the human body, etc.). Both the current flowing on the coil and the current flowing in the reverse direction (from the load back to the power supply) coil will change. As a result, the magnitude of the magnetic field generated on the coil flowing forward current and the coil flowing reverse current will be different from each other. As a result, the balance between currents cannot be reliably maintained. Furthermore, since the electric current flowing to the earth through the exposed contact part increases, it is impossible to properly deal with electric shock accidents.
另外,在韓國登記專利10-0749837號專利案中揭露了一種平衡變壓器,該平衡變壓器可以讓並聯方式連接之負載上所流動的電流調整為均勻狀態。從理論來說,在該專利中有提到一種「透過逆向連接的線圈以維持流動的電流之平衡」的方法,但該方法只是一種讓流動在並聯負載上的電流可以維持平衡狀態的理論而已;換句話說,該理論與可防止由外露之接電部流向大地的電流所造成的觸電事故完全無關。 In addition, Korean Registered Patent No. 10-0749837 discloses a balance transformer, which can adjust the current flowing on loads connected in parallel to a uniform state. Theoretically speaking, the patent mentions a method of "maintaining the balance of the flowing current through reversely connected coils", but this method is only a theory that allows the current flowing on the parallel load to maintain a balanced state. ; In other words, this theory has nothing to do with preventing electric shock accidents caused by the current flowing from the exposed contact part to the earth.
由於上述漏(觸)電過程中,在接電部和負載、大地之間會形成多種不同的電流路徑之外,依照各種條件(例如:淹水條件、接電部和大地之間的條件、整體電路接地條件等)差異,在電流路徑上所產生的電阻值(以下簡稱"漏洩負載")也會產生變化;因此,如何能因應不同漏(觸)電條件差異而產生相同減少漏(觸)電流的效果,並可維持對相關電器設備持續供電以避免失能,乃為相關業者所亟待努力之課題。 Due to the above-mentioned leakage (shock) process, in addition to forming a variety of different current paths between the power connection part, the load and the earth, according to various conditions (such as: flooding conditions, conditions between the power connection part and the earth, overall circuit grounding conditions, etc.), the resistance value generated on the current path (hereinafter referred to as "leakage load") will also change; therefore, how to reduce the leakage (touch) ) current, and can maintain continuous power supply to related electrical equipment to avoid failure, which is an urgent issue for relevant industry players.
有鑑於習見之減少漏電或防止觸電的裝置於實際應用時有上述缺點,發明人乃針對該些缺點研究改進之道,終於有本發明產生。 In view of the above-mentioned shortcomings in the actual application of conventional devices for reducing electric leakage or preventing electric shocks, the inventors have studied and improved ways to address these shortcomings, and finally have the present invention.
本發明之主要目的在於提供一種減少洩漏電流之平衡裝置,其包括:一設置於預設負載及電源端之間的平衡線圈模組,以及一控制模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈;其中該第一線圈、第二線圈分別串聯於該負載之二端,該第三線圈連結於該控制模組,該第一線圈能受到 一由電源端往該負載方向流動的供給電流通過而產生一個正向磁場,該第二線圈能受到一由負載往電源端方向流動的回歸電流通過而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差異,並控制該第三線圈產生一個可以補償該供給電流與回歸電流之間差距的補償磁場,藉以使該平衡線圈模組內部之磁場保持一平衡狀態,達到減少上述漏電流、確實保護人命安全之功效。 The main purpose of the present invention is to provide a balance device for reducing leakage current, which includes: a balance coil module set between a preset load and a power supply terminal, and a control module; the balance coil module has a first coil , the second coil, and the third coil; wherein the first coil and the second coil are respectively connected in series with the two ends of the load, the third coil is connected to the control module, and the first coil can be subjected to A supply current flowing from the power supply terminal to the load direction passes through to generate a positive magnetic field. The second coil can receive a return current flowing from the load to the power supply terminal to generate a reverse magnetic field. The control module can Detect and calculate the difference between the supply current and the return current, and control the third coil to generate a compensation magnetic field that can compensate the difference between the supply current and the return current, so as to maintain the magnetic field inside the balance coil module In a balanced state, the effect of reducing the above-mentioned leakage current and truly protecting human life is achieved.
本發明之另一目的在於提供一種減少洩漏電流之平衡裝置,其由於該平衡線圈模組之第三線圈係依需要而可配合該第一線圈或第二線圈形成互動,可使該平衡線圈模組內部之磁場接近平衡,進而將上述漏電流的強度降到最低的狀態,以達到使漏電或觸電之危險最輕微化之功效。 Another object of the present invention is to provide a balance device that reduces leakage current. Since the third coil of the balance coil module can cooperate with the first coil or the second coil to form an interaction as required, the balance coil module can The magnetic field inside the group is close to balance, and then the strength of the above-mentioned leakage current is reduced to the lowest state, so as to achieve the effect of minimizing the risk of leakage or electric shock.
本發明之又一目的在於提供一種減少洩漏電流之平衡裝置,其於該平衡線圈模組中各線圈進行互動的過程中,可同時對該負載提供最基本的電力供應,以確保該負載能維持基本正常的運作,進而可避免非預期斷電造成生命安全或經濟的損失。 Another object of the present invention is to provide a balance device for reducing leakage current, which can provide the most basic power supply to the load at the same time during the interaction of the coils in the balance coil module to ensure that the load can maintain Basic normal operation, thereby avoiding life safety or economic losses caused by unexpected power outages.
為達成上述目的及功效,本發明所採行的技術手段包括:一種減少洩漏電流之平衡線圈模組,包括:一設置於預設負載及電源端之間的平衡線圈模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈;其中該第一線圈、第二線圈分別連結於該負載之二端,該第一線圈能流通由電源端往該負載方向流動的供給電流,而產生一個正向磁場,該第二線圈能流通由負載往電源端方向流動的回歸電流,而產生一個反向磁場,該第三線圈能夠被提供一電流,以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。 In order to achieve the above purpose and effect, the technical means adopted by the present invention include: a balance coil module for reducing leakage current, including: a balance coil module arranged between a preset load and a power supply terminal; the balance coil module The group has a first coil, a second coil, and a third coil; wherein the first coil and the second coil are respectively connected to the two ends of the load, and the first coil can flow the supply current flowing from the power supply end to the load direction, To generate a positive magnetic field, the second coil can flow a return current flowing from the load to the power supply end, thereby generating a reverse magnetic field, and the third coil can be supplied with a current to generate a positive magnetic field that can compensate The compensating magnetic field for the gap with the opposing magnetic field.
本發明所採行的技術手段另包括:一種利用上述之平衡線圈模組所構成的減少洩漏電流之平衡裝置,其中該平衡線圈模組之該第一線圈、第二 線圈分別連結於該負載之二端,而該第三線圈連結於一控制模組,該第一線圈能受到一由該電源端往該負載方向流動的供給電流通過,而產生一個正向磁場,該第二線圈能受到一由該負載往該電源端方向流動的回歸電流通過,而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差值,並控制一電流通過該第三線圈,藉以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。 The technical means adopted by the present invention also includes: a balance device for reducing leakage current formed by the above-mentioned balance coil module, wherein the first coil, the second coil of the balance coil module The coils are respectively connected to the two ends of the load, and the third coil is connected to a control module. The first coil can receive a supply current flowing from the power supply end to the load direction to generate a positive magnetic field. The second coil can receive a return current flowing from the load to the power terminal to generate a reverse magnetic field. The control module can detect and calculate the difference between the supply current and the return current, and A current is controlled to pass through the third coil, so as to generate a compensating magnetic field that can make up the difference between the forward magnetic field and the reverse magnetic field.
依上述結構,其中該控制模組具有一供給電流感測部及一回歸電流感測部,分別設置於該負載的二端;該控制模組係能分別感測通過該供給電流感測部之該供給電流的大小,以及通過該回歸電流感測部之該回歸電流的大小,再計算出該供給電流與回歸電流之間的大小差異之後,以控制通過該第三線圈的電流。 According to the above structure, the control module has a supply current sensing part and a return current sensing part, which are respectively arranged at the two ends of the load; the control module can respectively sense the current passing through the supply current sensing part The magnitude of the supply current and the magnitude of the return current passing through the return current sensing part are calculated to control the current passing through the third coil after calculating the magnitude difference between the supply current and the return current.
依上述結構,其中該控制模組係能輸出一控制電流至該第三線圈,藉以使該第三線圈產生該補償磁場。 According to the above structure, the control module can output a control current to the third coil, so as to make the third coil generate the compensation magnetic field.
依上述結構,其中該控制模組係將該控制電流之方向控制調整到與通過該第一線圈之供給電流方向一致的狀態。 According to the above structure, the control module adjusts the direction control of the control current to be consistent with the direction of the supply current passing through the first coil.
依上述結構,其中該控制模組係將該控制電流之方向控制調整到與通過該第二線圈之回歸電流方向一致的狀態。 According to the above structure, the control module adjusts the direction of the control current to be consistent with the direction of the return current passing through the second coil.
依上述結構,其中該第三線圈係分別連結於該電源端,該控制模組包括一設於該第三線圈與該電源端之間的切換開關組,當該控制模組操作該切換開關組導通該第三線圈與該電源端,能使該第三線圈通電產生該補償磁場。 According to the above structure, wherein the third coils are respectively connected to the power supply terminals, the control module includes a switch group arranged between the third coil and the power supply terminals, when the control module operates the switch group Conducting the third coil and the power supply terminal can make the third coil energized to generate the compensation magnetic field.
依上述結構,其中第一線圈之匝數:第二線圈之匝數:第三線圈之匝數=1:1:2。 According to the above structure, the number of turns of the first coil: the number of turns of the second coil: the number of turns of the third coil = 1:1:2.
依上述結構,其中該第三線圈具有一中間抽頭,能將該第三線圈均分為二相同匝數之線圈,且該切換開關組包括第一切換開關及第二切換開關,該第一切換開關係設置於該第三線圈一端與該電源端之間,該第二切換開關係設置於該中間抽頭與該電源端之間。 According to the above structure, wherein the third coil has an intermediate tap, the third coil can be equally divided into two coils with the same number of turns, and the switch group includes a first switch and a second switch, the first switch The switch relationship is arranged between one end of the third coil and the power supply end, and the second switching switch relationship is arranged between the middle tap and the power supply end.
依上述結構,其中第一線圈之匝數:第二線圈之匝數:第三線圈之匝數=1:1:1。 According to the above structure, the number of turns of the first coil: the number of turns of the second coil: the number of turns of the third coil = 1:1:1.
依上述結構,其中該切換開關組另包括一斷電開關,該斷電開關係設置於該平衡線圈模組與該電源端之間。 According to the above structure, the switching switch group further includes a power-off switch, and the power-off switch is arranged between the balance coil module and the power supply terminal.
為使本發明的上述目的、功效及特徵可獲致更具體的瞭解,茲依下列附圖說明如下: In order to obtain a more specific understanding of the above-mentioned purpose, effect and characteristics of the present invention, the following drawings are hereby described as follows:
10:平衡線圈模組 10: Balance coil module
20:控制模組 20: Control module
21:供給電流感測部 21: Supply current sensing unit
22:回歸電流感測部 22: Return current sensing part
23:切換開關組 23: switch group
231:第一切換開關 231: The first toggle switch
232:第二切換開關 232: Second toggle switch
24:斷電開關 24:Power off switch
25:插座 25: socket
100:減少洩漏電流之平衡裝置 100: Balance device to reduce leakage current
200:負載 200: load
300:漏洩負載電路 300: Leakage load circuit
DI:電源端子與觸電位置之間的距離 DI: the distance between the power terminal and the electric shock position
DO:接地端子與觸電位置之間的距離 DO: the distance between the ground terminal and the electric shock location
Ls、Lt、Lp:漏電感 Ls, Lt, Lp: leakage inductance
Lm:磁化電感 Lm: magnetizing inductance
IB:漏電流 IB: leakage current
IC:控制電流 IC: Control Current
IL:負載電流 IL: load current
Iin:供給電流 Iin: supply current
Iout:回歸電流 Iout: return current
N1:第一線圈 N1: the first coil
N2:第二線圈 N2: second coil
N3:第三線圈 N3: the third coil
N11:第一端 N11: first end
N12:第二端 N12: second end
N21:第三端 N21: third end
N22:第四端 N22: the fourth terminal
N31:中間抽頭 N31: Center tap
NS、N:接地端子 NS, N: Ground terminal
PS、R、S、T:電源端子 PS, R, S, T: Power terminals
R1、R2、R3、Rbody:電阻 R1, R2, R3, Rbody: resistance
Rs、Rt、Rp:內部電阻 Rs, Rt, Rp: internal resistance
S:觸電位置 S: electric shock position
VC:控制電壓 VC: control voltage
Vin:電源端 Vin: power terminal
第1圖係本發明第一實施例之完整電路方塊圖。 Fig. 1 is a complete circuit block diagram of the first embodiment of the present invention.
第2圖係第1圖之電路方塊於特定元件數值時的模擬等效電路圖。 Figure 2 is an analog equivalent circuit diagram of the circuit block in Figure 1 at specific component values.
第3圖係第2圖之電路結構中,未設置平衡線圈模組且在漏洩負載電路連接於負載(非正常狀態)時的負載電流及漏電流比對圖。 Fig. 3 is a comparison diagram of load current and leakage current when no balance coil module is installed in the circuit structure of Fig. 2 and the leakage load circuit is connected to the load (abnormal state).
第4圖係第2圖之電路結構中,控制模組未驅動平衡線圈模組動作且在漏洩負載電路連接於負載(非正常狀態)時的負載電流及漏電流比對圖。 Fig. 4 is a comparison diagram of load current and leakage current when the control module does not drive the balance coil module in the circuit structure of Fig. 2 and the leakage load circuit is connected to the load (abnormal state).
第5圖係第2圖之電路結構中,控制模組驅動平衡線圈模組動作前、後的負載電流及漏電流比對圖。 Figure 5 is a comparison diagram of the load current and leakage current before and after the control module drives the balance coil module in the circuit structure of Figure 2.
第6圖係本發明第一實施例應用於三相四線式電源及負載之間的實施例圖。 Fig. 6 is an embodiment diagram of the first embodiment of the present invention applied between a three-phase four-wire power supply and a load.
第7圖係本發明第一實施例應用於三相三線式電源及負載之間的實施例圖。 Fig. 7 is an embodiment diagram of the first embodiment of the present invention applied between a three-phase three-wire power supply and a load.
第8圖係本發明第一實施例之一應用情形示意圖。 Fig. 8 is a schematic diagram of an application situation of the first embodiment of the present invention.
第9圖係本發明第二實施例之電路方塊圖。 Fig. 9 is a circuit block diagram of the second embodiment of the present invention.
第10圖係本發明第三實施例之電路方塊圖。 Fig. 10 is a circuit block diagram of the third embodiment of the present invention.
第11圖係本發明第四實施例之電路方塊圖。 Fig. 11 is a circuit block diagram of the fourth embodiment of the present invention.
請參第1至2圖所示,可知本發明第一實施例之減少洩漏電流之平衡裝置100主要結構包括:平衡線圈模組10及控制模組20等部份;其中該平衡線圈模組10係設置於一負載200及電源端Vin之間,該平衡線圈模組10具有第一線圈N1、第二線圈N2、第三線圈N3,該第一線圈N1一端具有一第一端N11,連接於該電源端Vin供電之電源端子PS,該第一線圈N1另一端具有一第二端N12,連接於該負載200之一端,該第二線圈N2一端具有一第四端N22,連接於該電源端Vin之接地端子NS,該第二線圈N2另一端具有一第三端N21,連接於該負載200之另一端,藉以使該第一線圈N1、第二線圈N2形成分別串聯於該負載200二端之組合狀態。
Please refer to Figures 1 to 2, it can be seen that the main structure of the
該第三線圈N3連結於該控制模組20,該控制模組20具有一供給電流感測部21及一回歸電流感測部22,分別設置於該負載200的二端;該控制模組20能分別感測通過該供給電流感測部21之由電源端Vin往該負載200方向
流動的供給電流Iin大小,以及通過該回歸電流感測部22之由負載200往電源端Vin方向流動的回歸電流Iout大小,並計算該供給電流Iin和回歸電流Iout之大小差異,再輸出一控制電流IC至該第三線圈N3產生一補償磁場,藉以驅使該平衡線圈模組10中分別經由該供給電流Iin和回歸電流Iout所產生的磁場大小形成平衡。
The third coil N3 is connected to the
上述結構中,該控制模組20係為一種可執行AC-AC轉換功能的電路裝置,且係由通電之後即開始運作,其具體之結構及運作方法屬於一種本領域中普遍的技術內容,所以在此不再針對該控制模組20作詳細的說明敘述。
In the above-mentioned structure, the
在實際應用時,由於人體接觸到該負載200(即電器、電子產品)外露之導電部位時,或該負載200之導電部位浸水時,該導電部位與大地之間會形成多種漏電迴路,且各漏電迴路係與負載200之間形成並聯迴路;為了便於了解,在第1圖中於該負載200二端並聯一漏洩負載電路300,藉以模擬該負載200在漏電或觸電等異常狀態時的電流流動狀態。
In actual application, when the human body touches the exposed conductive parts of the load 200 (i.e. electrical appliances, electronic products), or when the conductive parts of the
在一個可行的實施例中,該漏洩負載電路300具有一並聯於該負載200二端之電阻R3,於該電阻R3之二端分別經由一電阻R1、電阻R2共同連接一電阻Rbody的一端,且由該電阻Rbody的另一端接地。
In a feasible embodiment, the
在模擬條件為PSIM 64-bit Version 9.0,AC 220V:peak voltage 311V(=RMS 220V)、由控制模組20向第三線圈N3所供應的電源為60Hz之AC 44V:peak voltage 62.2V(=RMS 44V);以及該負載200係由10mH電感和100Ω電阻串聯而成,且該漏洩負載電路300的電阻R1為80Ω、電阻R2為20Ω、電阻R3為20Ω、電阻Rbody為500Ω之下,上述第1圖之模擬等效電路乃如第2圖所示。
The simulation condition is PSIM 64-bit Version 9.0, AC 220V: peak voltage 311V (=RMS 220V), the power supplied by the
請參第3至5圖所示,在一般不具有類似本發明之減少洩漏電流之平衡裝置100的負載200於運作過程中(即第2圖中,缺少該減少洩漏電流之平衡裝置100之結構)發生漏電或觸電等異常狀態時,該供給電流Iin的大小係為通過負載200之負載電流IL、通過電阻Rbody之漏電流IB,以及流動在電阻R1、電阻R2、電阻R3上之電流的總和,而該回歸電流Iout的大小係為由供給電流Iin扣除往電阻Rbody方向流動的漏電流IB;此時,由第2圖中該模擬等效電路中測出通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第3圖所示,其中,該負載電流IL約略為3.1A,而該漏電流IB約略為0.125A。
Please refer to Figures 3 to 5, in general, the
在上述第2圖之結構中,該平衡線圈模組10的第一線圈N1、第二線圈N2、第三線圈N3的線圈匝數各設為100匝,且第一線圈N1的內部電阻Rs、第二線圈N2之內部電阻Rt及第三線圈N3的內部電阻Rp皆設為0.1Ω,且該第一線圈N1的漏電感Ls、第二線圈N2的漏電感Lt及第三線圈N3的漏電感Lp皆為0.0001H;此時,磁化電感Lm為0.2H。
In the structure of the above-mentioned Fig. 2, the coil turns of the first coil N1, the second coil N2, and the third coil N3 of the
因此,該平衡線圈模組10的各項參數如下表所列:
同理,在上述第2圖之結構中,在相同發生漏電或觸電等異常狀態時,若該減少洩漏電流之平衡裝置100並未正常運作的情形下,通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第4圖所示;由上述該第3圖及第4圖所示,無論是未設置該平衡線圈模組10,或該平衡線圈模組10未動作,通過該負載200之負載電流IL以及模擬之漏電流IB的電流大小並不會有太大的變化。
Similarly, in the structure of the above-mentioned Fig. 2, when abnormal conditions such as electric leakage or electric shock occur, if the
然而,本發明上述第一實施例的結構中,在相同發生漏電或觸電等異常狀態時,若該減少洩漏電流之平衡裝置100正常運作,則該控制模組20可經由該供給電流感測部21感測該供給電流Iin的大小,並經由該回歸電流感測部22感測該回歸電流Iout的大小,並計算該供給電流Iin和回歸電流Iout之大小差異;其中,若該供給電流Iin大於該回歸電流Iout,則該控制模組20輸出之控制電流IC係與流動於該第二線圈N2之回歸電流Iout相同方向,使該第三線圈N3產生一與該第二線圈N2相同方向的補償磁場,藉以平衡該供給電流Iin通過該第一線圈N1所產生之正向磁場;而在部份特殊的情形下,若該供給電流Iin小於該回歸電流Iout,則該控制模組20輸出之控制電流IC係與流動於該第一線圈N2之供給電流Iin相同方向,使該第三線圈N3產生一與該第一線圈N1相同方向的補償磁場,藉以平衡該回歸電流Iout通過該第二線圈N2所產生之反向磁場;因此,利用上述方式可使該平衡線圈模組10中分別經由該供給電流Iin和回歸電流Iout所產生的磁場大小形成平衡。 However, in the structure of the above-mentioned first embodiment of the present invention, when abnormal conditions such as electric leakage or electric shock occur, if the balance device 100 for reducing leakage current operates normally, the control module 20 can supply current through the sensing part 21 senses the size of the supply current Iin, and senses the size of the return current Iout through the return current sensing part 22, and calculates the magnitude difference between the supply current Iin and the return current Iout; wherein, if the supply current Iin is greater than The return current Iout, the control current IC output by the control module 20 is in the same direction as the return current Iout flowing in the second coil N2, so that the third coil N3 generates a compensation in the same direction as the second coil N2 magnetic field, so as to balance the positive magnetic field generated by the supply current Iin passing through the first coil N1; and in some special cases, if the supply current Iin is smaller than the return current Iout, the output control of the control module 20 The current IC is in the same direction as the supply current Iin flowing in the first coil N2, so that the third coil N3 generates a compensating magnetic field in the same direction as the first coil N1, so as to balance the return current Iout through the second coil N2 The generated reverse magnetic field; therefore, using the above method, the magnetic field generated by the supply current Iin and the return current Iout respectively in the balance coil module 10 can be balanced.
此時,通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第5圖所示,且由該第5圖所揭露的內容中,明顯可看出通過該負載200之負載電流IL約略為3.1A,與前述第3、4圖所示
之大小相同,表示在發生漏電或觸電等異常狀態時,仍可對該負載200提供基本正常供電,但該模擬之漏電流IB則由原來約略為0.125A降至約略為0.003A,因此該漏電流IB大小明顯降低表示可有效降低漏、觸電流之情形。
At this time, the magnitude and waveform of the load current IL passing through the
請參第6、7圖所示,可知本發明之上述第一實施例的結構,若將其應用於三相四線式電源時,各減少洩漏電流之平衡裝置100係分別設置於該三相電源各供電之電源端子R、S、T與接地端子N之間(如第6圖所示);而若將其應用於三相三線式電源時,則各減少洩漏電流之平衡裝置100係分別設置於該三相電源各供電之電源端子R、S、T之間(如第7圖所示)。
Please refer to Figures 6 and 7. It can be seen that the structure of the above-mentioned first embodiment of the present invention, if it is applied to a three-phase four-wire power supply, each balancing
請參第8圖所示,可知本發明之上述減少洩漏電流之平衡裝置100於實際應用時,在一電源端Vin經由該減少洩漏電流之平衡裝置100連結一插座25或其它能與負載200連結之接電組件,且該負載200經由該插座25取得電源之使用環境(即一般較常見的漏觸電環境)下;當該插座25浸水而造成一漏電環境,且於該漏電環境中產生一觸電位置S,假設該插座25中的電源接點(即連結於該電源端子PS的接點)與觸電位置S之間的距離為DI,而該插座25中的接地接點(即連結於該接地端子NS的接點)與觸電位置S之間的距離為DO,則在上述該插座25中的電源接點與接地接點間距離足夠接近的條件下,該電源接點與觸電位置S之間的距離DI可視為等於該接地接點與觸電位置S之間的距離DO。
Please refer to FIG. 8, it can be seen that the above-mentioned
請參第9圖所示,由於在上述第8圖中之漏電環境下,該減少洩漏電流之平衡裝置100中的控制模組20輸出至第三線圈N3使漏電流最小化之控制電壓VC,係由該觸電位置S分別至該插座25中的電源接點、接地接點之間通過水下路徑的電阻(即該漏洩負載電路300中之電阻R1、電阻R2)比例所
決定;依上述該電源接點與觸電位置S之間的距離DI等於該接地接點與觸電位置S之間的距離DO的結論,可知由該電源接點與觸電位置S之間的距離DI及該接地接點與觸電位置S之間的距離DO等二路徑所產生之電阻(即該漏洩負載電路300中之電阻R1、電阻R2)幾乎相同。
Please refer to Fig. 9, because in the leakage environment in Fig. 8 above, the
在上述情形下,若該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,則該控制電壓VC=電源端Vin的電壓/2;而若該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2,則該控制電壓VC=電源端Vin電壓。 Under the above circumstances, if the number of turns of the first coil N1 in the balance coil module 10: the number of turns of the second coil N2: the number of turns of the third coil N3=1:1:1, then the control voltage VC=power supply The voltage of the terminal Vin/2; and if the number of turns of the first coil N1 in the balance coil module 10: the number of turns of the second coil N2: the number of turns of the third coil N3=1:1:2, then the control voltage VC=Vin voltage at the power supply terminal.
此時,在本發明第二實施例中,若採用該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2之組成架構,將該第三線圈N3二端分別連結於該電源端Vin,且該控制模組20再於該第三線圈N3與該電源端Vin之間設置一切換開關組23,其餘各部電路結構則與前述第一實施例相同;藉此,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後,可直接驅動該切換開關組23導通該第三線圈N3與該電源端Vin,使該第三線圈N3通電產生該補償磁場,以降低該漏電流IB的電流大小。
At this time, in the second embodiment of the present invention, if the number of turns of the first coil N1 in the balance coil module 10: the number of turns of the second coil N2: the number of turns of the third coil N3=1:1:2 The structure of the structure is that the two ends of the third coil N3 are respectively connected to the power supply terminal Vin, and the
由於此種架構中,該控制模組20無需執行複雜的運算及操作(轉換該電源端Vin之電壓,並調整該控制電流IC之大小)動作,因此可有效簡化該控制模組20的架構,達到降低成本、提昇經濟效益等功效。
Because in this structure, the
請參第10圖所示,可知在上述第8圖中的應用環境下,若該漏電發生的位置在連接於該電源端Vin之電源端子PS直接接地(與大地連接)的情形下,則該電阻R1、電阻R2、電阻R3組合後之總和為0;此時,若該平衡 線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,則該控制電壓VC=電源端Vin電壓為最佳。 Please refer to Figure 10, it can be seen that in the application environment in Figure 8 above, if the location where the leakage occurs is that the power terminal PS connected to the power terminal Vin is directly grounded (connected to the ground), then the The sum of resistance R1, resistance R2 and resistance R3 combined is 0; at this time, if the balance The number of turns of the first coil N1 in the coil module 10 : the number of turns of the second coil N2 : the number of turns of the third coil N3 = 1:1:1, then the control voltage VC=the voltage of the power supply terminal Vin is optimal.
因此,在本發明第三實施例中,若採用該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1之組成架構,將該第三線圈N3二端分別連結於該電源端Vin,且該控制模組20再於該第三線圈N3與該電源端Vin之間設置一切換開關組23,其餘各部電路結構則與前述第一實施例相同;藉此,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後,可直接驅動該切換開關組23導通該第三線圈N3與該電源端Vin,使該第三線圈N3通電產生該補償磁場,以降低該漏電流IB的電流大小。
Therefore, in the third embodiment of the present invention, if the number of turns of the first coil N1 in the balanced coil module 10: the number of turns of the second coil N2: the number of turns of the third coil N3=1:1:1 To form a structure, the two ends of the third coil N3 are respectively connected to the power supply terminal Vin, and the
請參第11圖所示,可知本發明第四實施例中該減少洩漏電流之平衡裝置100的結構包括:平衡線圈模組10及控制模組20等部份;其中該平衡線圈模組10具有第一線圈N1、第二線圈N2、第三線圈N3,該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2,該第一線圈N1、第二線圈N2係分別串聯於一負載200的二端,該第三線圈N3具有一中間抽頭N31,能將該第三線圈N3均分為二相同匝數之線圈。
Please refer to Fig. 11, it can be seen that the structure of the
該控制模組20可分別操作控制一切換開關組23及一斷電開關24,該切換開關組23包括第一切換開關231及第二切換開關232,該第一切換開關231係設置於該第三線圈N3一端與該電源端Vin之間,該第二切換開關232係設置於該中間抽頭N31與該電源端Vin之間,而該斷電開關24係設置於該平衡線圈模組10與該電源端Vin之間;除此之外,該平衡線圈模組10、控制模組20與其它相關組件的連結關係皆與前述第二、三實施例相同,在此不多作贅述。
The
在實際應用時,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後;可由該控制模組20先驅動該第一切換開關231導通該完整的第三線圈N3與該電源端Vin,此時該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2,該減少洩漏電流之平衡裝置100具有與前述第二實施例相同之結構特徵,並可產生與該第二實施例相同之功效;若上述動作無法有效降低該漏電流IB大小,則該控制模組20再改驅動該第二切換開關232導通該中間抽頭N31與該電源端Vin,此時,該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,該減少洩漏電流之平衡裝置100具有與前述第三實施例相同之結構特徵,並可產生與該第三實施例相同之功效;而若上述操作仍無法將該漏電流IB大小降至所預期的範圍之下,則該控制模組20驅動該斷電開關24動作,以切斷該平衡線圈模組10與該電源端Vin之連接,以預防可能發生的觸電事故。 In actual application, after the control module 20 senses and calculates the magnitude difference between the supply current Iin and the return current Iout; the control module 20 can first drive the first switch 231 to turn on the complete third coil N3 With the power supply terminal Vin, the number of turns of the first coil N1: the number of turns of the second coil N2: the number of turns of the third coil N3=1:1:2, the balance device 100 for reducing leakage current has the same characteristics as the aforementioned The same structural features of the second embodiment, and can produce the same effect as the second embodiment; if the above actions can not effectively reduce the magnitude of the leakage current IB, then the control module 20 will drive the second switch 232 to be turned on again The center tap N31 and the power supply terminal Vin, at this time, the number of turns of the first coil N1: the number of turns of the second coil N2: the number of turns of the third coil N3 = 1:1:1, the balance of reducing the leakage current The device 100 has the same structural features as the aforementioned third embodiment, and can produce the same effect as the third embodiment; and if the above operations still cannot reduce the size of the leakage current IB below the expected range, then the The control module 20 drives the cut-off switch 24 to cut off the connection between the balance coil module 10 and the power terminal Vin, so as to prevent possible electric shock accidents.
綜合以上所述,本發明減少洩漏電流之平衡裝置確可達成在電器設備浸水或人體觸電時,可有效降低漏(觸)電流,並維持對電器設備基本正常供電之功效,實為一具新穎性及進步性之發明,爰依法提出申請發明專利;惟上述說明之內容,僅為本發明之較佳實施例說明,舉凡依本發明之技術手段與範疇所延伸之變化、修飾、改變或等效置換者,亦皆應落入本發明之專利申請範圍內。 Based on the above, the balance device for reducing leakage current of the present invention can effectively reduce the leakage (touch) current when the electrical equipment is immersed in water or the human body gets an electric shock, and maintain the effect of basically normal power supply to the electrical equipment. It is a novel device. For innovative and progressive inventions, please apply for an invention patent in accordance with the law; however, the content of the above description is only a description of the preferred embodiment of the present invention, for example, any changes, modifications, changes or other extensions based on the technical means and scope of the present invention Effective replacements should also fall within the scope of the patent application of the present invention.
10: 平衡線圈模組 20: 控制模組 21:供給電流感測部 22: 回歸電流感測部 100: 減少洩漏電流之平衡裝置 200: 負載 300:漏洩負載電路 IB:漏電流 IC:控制電流 IL:負載電流 Iin:供給電流 Iout:回歸電流 N1: 第一線圈 N2: 第二線圈 N3:第三線圈 N11:第一端 N12:第二端 N21:第三端 N22:第四端 NS:接地端子 PS:電源端子 R1、R2、R3、Rbody:電阻 Vin:電源端 10: Balance coil module 20: Control Module 21: Supply current sensing unit 22: Return current sensing part 100: Balance device to reduce leakage current 200: load 300: Leaky load circuit IB: leakage current IC: Control current IL: load current Iin: supply current Iout: return current N1: first coil N2: second coil N3: third coil N11: first end N12: second end N21: third end N22: Fourth terminal NS: Ground terminal PS: power terminal R1, R2, R3, Rbody: Resistors Vin: power terminal
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210117058A KR102350330B1 (en) | 2021-09-02 | 2021-09-02 | Balancing Transformer for minimizing leakage current |
KR10-2021-0117058 | 2021-09-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202312638A TW202312638A (en) | 2023-03-16 |
TWI802110B true TWI802110B (en) | 2023-05-11 |
Family
ID=79355340
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110214061U TWM629694U (en) | 2021-09-02 | 2021-11-26 | Balance coil module for reducing leakage current and balance device formed thereof |
TW110144153A TWI802110B (en) | 2021-09-02 | 2021-11-26 | Balance device to reduce leakage current |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110214061U TWM629694U (en) | 2021-09-02 | 2021-11-26 | Balance coil module for reducing leakage current and balance device formed thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102350330B1 (en) |
TW (2) | TWM629694U (en) |
WO (1) | WO2023033226A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102350330B1 (en) * | 2021-09-02 | 2022-01-11 | 오정인 | Balancing Transformer for minimizing leakage current |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276574C (en) * | 2002-04-02 | 2006-09-20 | 香港大学 | Current driven synchronous rectifier with energy recovery using hysteresis driver |
JP2008048527A (en) * | 2006-08-14 | 2008-02-28 | Ntt Data Ex Techno Corp | Switching power circuit and transformer |
JP2013223354A (en) * | 2012-04-17 | 2013-10-28 | Mayekawa Mfg Co Ltd | Rectifier |
CN103826907A (en) * | 2011-09-29 | 2014-05-28 | 丰田自动车株式会社 | Power transmitting device, vehicle, and power transfer system |
CN104221249A (en) * | 2012-01-18 | 2014-12-17 | 康明斯发电Ip公司 | Transfer switch |
CN106160268A (en) * | 2015-05-15 | 2016-11-23 | 松下知识产权经营株式会社 | Detection device for foreign matter, wireless power transmission device and wireless power transmission system |
TW201921834A (en) * | 2011-09-23 | 2019-06-01 | J 伊亞勒斯波尼法西歐 | Electromagnetic energy-flux reactor |
US10367548B2 (en) * | 2015-11-18 | 2019-07-30 | Samsung Electronics Co., Ltd. | Electronic device and operation method therefor |
TWM629694U (en) * | 2021-09-02 | 2022-07-21 | 紘嘉電子股份有限公司 | Balance coil module for reducing leakage current and balance device formed thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100749837B1 (en) | 2006-05-29 | 2007-08-21 | 주식회사 경인전자 | Transformer module for balance |
KR101442527B1 (en) | 2011-12-01 | 2014-09-26 | 이재도 | Earth leakage breaking device for electric shock prevention |
KR20140059652A (en) * | 2012-11-08 | 2014-05-16 | 삼성전기주식회사 | Power suuplying apparatus and power supplying apparatus |
KR20150088504A (en) * | 2014-01-24 | 2015-08-03 | (주)바인이에스티 | Electric Transformer with Neutral Grounding and Method Thereof, and Anti-Electric Shock Apparatus In Water Immersion Using That |
JP6195676B2 (en) * | 2014-09-17 | 2017-09-13 | 三菱電機株式会社 | Power converter and compressor drive device |
KR101726340B1 (en) * | 2016-02-16 | 2017-04-12 | 서미숙 | Anti-electric shock apparatus in water immersion and method thereof |
KR102181889B1 (en) | 2020-03-25 | 2020-11-24 | 정순권 | Electric leakage prevention device in immersion, and electric leakage and electric shock protection method using the same |
KR102270589B1 (en) * | 2020-08-14 | 2021-06-29 | 주식회사 아이티이 | Terminal device and electric suppling system for preventing electric shock from flooding |
CN112886593A (en) * | 2021-03-31 | 2021-06-01 | 哈尔滨理工大学 | Mixed type active filter circuit structure |
-
2021
- 2021-09-02 KR KR1020210117058A patent/KR102350330B1/en active IP Right Grant
- 2021-09-16 WO PCT/KR2021/012691 patent/WO2023033226A1/en active Application Filing
- 2021-11-26 TW TW110214061U patent/TWM629694U/en unknown
- 2021-11-26 TW TW110144153A patent/TWI802110B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276574C (en) * | 2002-04-02 | 2006-09-20 | 香港大学 | Current driven synchronous rectifier with energy recovery using hysteresis driver |
JP2008048527A (en) * | 2006-08-14 | 2008-02-28 | Ntt Data Ex Techno Corp | Switching power circuit and transformer |
TW201921834A (en) * | 2011-09-23 | 2019-06-01 | J 伊亞勒斯波尼法西歐 | Electromagnetic energy-flux reactor |
CN103826907A (en) * | 2011-09-29 | 2014-05-28 | 丰田自动车株式会社 | Power transmitting device, vehicle, and power transfer system |
CN104221249A (en) * | 2012-01-18 | 2014-12-17 | 康明斯发电Ip公司 | Transfer switch |
JP2013223354A (en) * | 2012-04-17 | 2013-10-28 | Mayekawa Mfg Co Ltd | Rectifier |
CN106160268A (en) * | 2015-05-15 | 2016-11-23 | 松下知识产权经营株式会社 | Detection device for foreign matter, wireless power transmission device and wireless power transmission system |
US10367548B2 (en) * | 2015-11-18 | 2019-07-30 | Samsung Electronics Co., Ltd. | Electronic device and operation method therefor |
TWM629694U (en) * | 2021-09-02 | 2022-07-21 | 紘嘉電子股份有限公司 | Balance coil module for reducing leakage current and balance device formed thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202312638A (en) | 2023-03-16 |
WO2023033226A1 (en) | 2023-03-09 |
KR102350330B1 (en) | 2022-01-11 |
TWM629694U (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jou et al. | Analysis of zig-zag transformer applying in the three-phase four-wire distribution power system | |
MXPA04003842A (en) | Determining electrical faults on undergrounded power systems using directional element. | |
TWI802110B (en) | Balance device to reduce leakage current | |
Chiesa et al. | Five-leg transformer model for GIC studies | |
Soh et al. | Experimental study on the impact of harmonics on transformer | |
Sakhno et al. | Field-circuit modelling of an advanced welding transformer with two parallel rectifiers | |
Farazmand et al. | Analysis, modeling, and simulation of the phase-hop condition in transformers: The largest inrush currents | |
TWI462443B (en) | Power adaptor | |
CN217692811U (en) | Balancing device for reducing leakage | |
KR20200098359A (en) | Systems and methods for power monitoring and control | |
CN107834577B (en) | Zero line current eliminator | |
CN114389376A (en) | Balancing device for reducing leakage | |
CN204947951U (en) | A kind of generator linear resistance and nonlinear resistance mixing demagnetization circuit | |
Oliveira et al. | On-line diagnostics of transformer winding insulation failures, by Parks vector approach | |
CN203057084U (en) | Dual-proportional integration type amplifier | |
CN108603901B (en) | Current measuring device protected against surge voltage when circuit is open | |
CN112865068A (en) | Linear attenuation voltage compensation control method for dual-power switching device | |
CN216819697U (en) | Circuit for reducing residual voltage and medical equipment | |
KR20130055046A (en) | Measuring earth resistance method at the places of mixed neutral grounded and non grounded lv network | |
KR101302806B1 (en) | Eco-friendly energy-saving power quality recovery equipment equipped switchboards | |
Das | Ground fault protection for bus-connected generators in an interconnected 13.8-kV system | |
CN203434591U (en) | Security-isolation insulating power-off device | |
Opacˇak et al. | Influence of grounding transformer on ground fault current in MV networks | |
CN207542771U (en) | Electric power leakage circuit breakers | |
Amrollahi et al. | Determination losses and estimate life of distribution transformers with three computational, measurement and simulation methods, despite harmonic loads |