TWI799127B - High electron mobility semiconductor structure and high electron mobility semiconductor device - Google Patents

High electron mobility semiconductor structure and high electron mobility semiconductor device Download PDF

Info

Publication number
TWI799127B
TWI799127B TW111104657A TW111104657A TWI799127B TW I799127 B TWI799127 B TW I799127B TW 111104657 A TW111104657 A TW 111104657A TW 111104657 A TW111104657 A TW 111104657A TW I799127 B TWI799127 B TW I799127B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
energy gap
electron mobility
high electron
Prior art date
Application number
TW111104657A
Other languages
Chinese (zh)
Other versions
TW202333380A (en
Inventor
温文瑩
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111104657A priority Critical patent/TWI799127B/en
Priority to CN202210761950.0A priority patent/CN116613206A/en
Application granted granted Critical
Publication of TWI799127B publication Critical patent/TWI799127B/en
Publication of TW202333380A publication Critical patent/TW202333380A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode

Abstract

A high electron mobility semiconductor structure includes a substrate, a channel layer, a barrier layer, a conductive layer, a first dielectric layer, and a second dielectric layer. The channel layer is disposed over the substrate. The barrier layer is disposed over the channel layer. The conductive layer is disposed over the barrier layer. The first dielectric layer is disposed between the barrier layer and the conductive layer, and has a first energy gap. The second dielectric layer is disposed between the first dielectric layer and the conductive layer, and has a second energy gap. The second energy gap is larger than the first energy gap.

Description

高電子遷移率半導體結構和高電子遷移率半導體裝置High electron mobility semiconductor structure and high electron mobility semiconductor device

本揭露係關於一種高電子遷移率半導體裝置,特別是具有多層閘極介電層的高電子遷移率半導體結構的高電子遷移率半導體裝置。The present disclosure relates to a high electron mobility semiconductor device, especially a high electron mobility semiconductor device having a high electron mobility semiconductor structure with a multi-layer gate dielectric layer.

半導體積體電路(integrated circuit;IC)技術已快速發展,其中半導體裝置已經廣泛地用於各種電子產品,例如個人電腦、行動電話、數位相機及其他電子裝置。在半導體裝置中,場效電晶體扮演著重要的角色,隨著半導體積體電路技術的發展,各種類型的場效電晶體相繼產生。高電子遷移率電晶體(high electron mobility transistor,HEMT)是場效電晶體的一種。HEMT包括兩種具有不同能隙的半導體材料,而形成異質接面(hetero junction),且能作為導電通道。由於HEMT具有低阻值、高崩潰電壓以及快速開關切換頻率等優點,故在高功率電子元件之領域中受到廣泛的應用。Semiconductor integrated circuit (IC) technology has developed rapidly, and semiconductor devices have been widely used in various electronic products, such as personal computers, mobile phones, digital cameras and other electronic devices. In semiconductor devices, field effect transistors play an important role. With the development of semiconductor integrated circuit technology, various types of field effect transistors have been produced one after another. A high electron mobility transistor (HEMT) is a type of field effect transistor. A HEMT consists of two semiconductor materials with different energy gaps, forming a heterojunction (hetero junction), and can act as a conductive channel. Due to the advantages of low resistance, high breakdown voltage, and fast switching frequency, HEMTs are widely used in the field of high-power electronic components.

近年來,以三五(III-V)族化合物半導體為基礎的高電子遷移率電晶體(high electron mobility transistor;HEMT)裝置具備高崩潰電壓、較大的能隙以及優異的載子遷移率,同時經由極化現象所產生的二維電子氣可展現出色的低阻抗傳導特性,使得三五族化合物半導體材料廣泛地應用在高頻和功率元件。而金屬-絕緣體-半導體的高電子遷移率電晶體(Metal-Insulator-Semiconductor HEMT;MIS-HEMT)則為HEMT裝置中的一種。MIS-HEMT元件在金屬與半導體之間的界面具有閘極介電層,其可強化裝置效能,例如高崩潰電壓、低閘極漏電流、低裝置阻抗及寬廣的閘極操作範圍等。然而,儘管用於製造MIS-HEMT的現有技術通常已足以滿足其預期目的,但它們並非在各個方面都令人滿意。In recent years, high electron mobility transistor (HEMT) devices based on three-five (III-V) compound semiconductors have high breakdown voltage, large energy gap and excellent carrier mobility. At the same time, the two-dimensional electron gas generated by the polarization phenomenon can exhibit excellent low-impedance conduction characteristics, making the III-V compound semiconductor materials widely used in high-frequency and power components. The Metal-Insulator-Semiconductor High Electron Mobility Transistor (Metal-Insulator-Semiconductor HEMT; MIS-HEMT) is one of the HEMT devices. The MIS-HEMT device has a gate dielectric layer at the interface between the metal and the semiconductor, which can enhance device performance, such as high breakdown voltage, low gate leakage current, low device impedance, and wide gate operating range. However, although existing technologies for fabricating MIS-HEMTs are generally adequate for their intended purposes, they are not satisfactory in every respect.

本揭露提供一種高電子遷移率半導體結構。高電子遷移率半導體結構包括基板、通道層、阻障層、導電層、第一介電層、以及第二介電層。通道層設置在基板上方。阻障層設置在通道層上方。導電層設置在阻障層上方。第一介電層設置在阻障層和導電層之間,並且具有第一能隙。第二介電層設置在第一介電層和導電層之間,並且具有第二能隙。第二能隙大於第一能隙。The present disclosure provides a high electron mobility semiconductor structure. The high electron mobility semiconductor structure includes a substrate, a channel layer, a barrier layer, a conductive layer, a first dielectric layer, and a second dielectric layer. The channel layer is disposed over the substrate. The barrier layer is disposed above the channel layer. The conductive layer is disposed over the barrier layer. The first dielectric layer is disposed between the barrier layer and the conductive layer, and has a first energy gap. The second dielectric layer is disposed between the first dielectric layer and the conductive layer, and has a second energy gap. The second energy gap is larger than the first energy gap.

本揭露提供一種高電子遷移率半導體裝置。高電子遷移率半導體裝置包括基板、三五族半導體層、阻障層、第一閘極介電層、第二閘極介電層、閘極電極、以及源極電極和汲極電極。三五族半導體層設置在基板上方。阻障層設置在三五族半導體層上方。第一閘極介電層設置在阻障層上方,並且具有第一能隙。第二閘極介電層設置在第一閘極介電層上方,並且具有第二能隙。第二能隙大於第一能隙。閘極電極設置在第二閘極介電層上方。源極電極和汲極電極設置閘極電極的兩側,並且延伸穿過阻障層,以電性連接至三五族半導體層。The present disclosure provides a high electron mobility semiconductor device. The high electron mobility semiconductor device includes a substrate, a III-V semiconductor layer, a barrier layer, a first gate dielectric layer, a second gate dielectric layer, a gate electrode, and a source electrode and a drain electrode. The III-V semiconductor layer is disposed above the substrate. The barrier layer is disposed on the III-V semiconductor layer. The first gate dielectric layer is disposed above the barrier layer and has a first energy gap. The second gate dielectric layer is disposed above the first gate dielectric layer and has a second energy gap. The second energy gap is larger than the first energy gap. The gate electrode is disposed above the second gate dielectric layer. The source electrode and the drain electrode are disposed on two sides of the gate electrode and extend through the barrier layer to be electrically connected to the III-V semiconductor layer.

以下的揭露內容提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。舉例來說,若是本揭露書敘述了一第一特徵形成於一第二特徵之上或上方,即表示其可能包含上述第一特徵與上述第二特徵是直接接觸的實施例,亦可能包含了有附加特徵形成於上述第一特徵與上述第二特徵之間,而使上述第一特徵與第二特徵可能未直接接觸的實施例。另外,以下揭露書不同範例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。The following disclosure provides many different embodiments or examples for implementing different features of the present invention. The following disclosure describes specific examples of components and their arrangements for simplicity of illustration. Of course, these specific examples are not intended to be limiting. For example, if the disclosure describes that a first feature is formed on or above a second feature, it means that it may include embodiments in which the above-mentioned first feature is in direct contact with the above-mentioned second feature, and may also include Embodiments in which an additional feature is formed between the first feature and the second feature such that the first feature and the second feature may not be in direct contact. In addition, the same reference symbols and/or symbols may be reused in different examples in the following disclosure. These repetitions are for simplicity and clarity and are not intended to limit a particular relationship between the different embodiments and/or structures discussed.

為本揭露內容之詳述目的,除非特定否認,單數詞包含複數詞,反之亦然。並且字詞“包含”其意為“非限制性地包含”。此外,進似性的(approximation)用語例如“大約”、“幾乎”、“相當地”、“大概”等,可用於本揭露實施例,其意義上如“在、接近或接近在”或“在3至5%內”或“在可接受製造公差內”或任意邏輯上之組合。For purposes of elaboration of this disclosure, unless specifically denied, words in the singular include the plural and vice versa. And the word "comprising" means "including without limitation". In addition, similar (approximation) terms such as "about", "almost", "equally", "approximately", etc., can be used in the embodiments of the present disclosure, and their meanings are such as "at, close to or close to" or " Within 3 to 5%" or "within acceptable manufacturing tolerances" or any logical combination.

此外,其與空間相關用詞。例如“在…下方”、“下方”、“較低的”、“上方”、“較高的”、及類似的用詞,係為了便於描述圖示中一個元件或特徵與另一個元件或特徵之間的關係。除了在圖式中繪示的方位外,這些空間相關用詞意欲包含使用中或操作中的裝置之不同方位。舉例來說,若在示意圖中之裝置被反轉,被描述在其他元件或特徵之“下方”或“在…下方”的元件也會因而變成在另外其他元件或特徵之“上方”。如此一來,示範詞彙“下方”會涵蓋朝上面與朝下面之兩種解讀方式。除此之外,設備可能被轉向不同方位(旋轉90度或其他方位),則在此使用的空間相關詞也可依此相同解釋。Also, its terminology related to space. Words such as "below," "beneath," "lower," "above," "higher," and similar terms are used for convenience in describing one element or feature in relation to another element or feature in the drawings. The relationship between. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the illustrations is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. In this way, the model word "below" will cover the two ways of reading upwards and downwards. In addition, the device may be turned to different orientations (rotated 90 degrees or other orientations), and the spatially related words used herein may also be interpreted accordingly.

此處所使用的術語僅用於描述特定實施例的目的,並且不限制本揭露。如此處所使用的,除非上下文另外清楚的指出,否則單數形式“一”、“一個”以及“該”意旨在也包括複數形式。此外,就被用於詳細描述及/或申請專利範圍中的“囊括”、“包含”、“具有”、“有”、“含”或其變體的術語來說,這些術語旨在以相似於“包括”的方式而具有包容性。The terminology used herein is for the purpose of describing particular embodiments only and does not limit the present disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. In addition, to the extent that terms "comprises", "comprises", "has", "has", "includes" or variations thereof are used in the detailed description and/or claims, these terms are intended to be similar Inclusive by way of "include".

除非另外定義,否則此處所使用的所有術語(包括技術和科學術語)具有與所屬技術領域具有通常知識者通常理解的相同含義。此外,諸如在通用字典中定義的那些術語應該被解釋為具有與其在相關領域的上下文中的含義中相同的含義,並且不會被理解為理想化或過度正式,除非在此處有明確地如此定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. Furthermore, terms such as those defined in commonly used dictionaries should be construed to have the same meaning as they have in the context of the relevant field, and will not be construed as idealistic or overly formal, unless expressly so stated herein definition.

本揭露總體上涉及高電子遷移率半導體結構和裝置,特別是具有金屬-絕緣體-半導體結構的高電子遷移率電晶體(MIS-HEMT)。在通常的MIS-HEMT中,用作閘極介電層的介電層和阻障層(或蓋層(如果存在))之間會有能階(energy state)。當MIS-HEMT在關閉狀態(off-state)時,MIS-HEMT的閘極會被施加負電壓(低於臨界電壓(V th)),而汲極會被施加正電壓。在此情況下,雖然MIS-HEMT會被關閉,但是施加在閘極的負電壓以及閘極和汲極之間的電壓差(V GD)所導致的電場可能會導致電子從閘極跨越閘極介電層的能隙,並且被閘極介電層和阻障層(或蓋層(如果存在))之間的能階所捕捉(trap),被捕捉的電子將會影響MIS-HEMT的電性操作,從而導致MIS-HEMT的效能下降。因此,MIS-HEMT需要改進,以防止MIS-HEMT在關閉狀態時,電子從閘極跨越閘極介電層的能隙,並且被閘極介電層和阻障層(或蓋層(如果存在))之間的能階所捕捉。 The present disclosure relates generally to high electron mobility semiconductor structures and devices, in particular high electron mobility transistors with metal-insulator-semiconductor structures (MIS-HEMTs). In a typical MIS-HEMT, there is an energy state between the dielectric layer used as the gate dielectric layer and the barrier layer (or capping layer if present). When the MIS-HEMT is in an off-state, the gate of the MIS-HEMT is applied with a negative voltage (lower than the threshold voltage (V th )), and the drain is applied with a positive voltage. In this case, although the MIS-HEMT will be turned off, the electric field caused by the negative voltage applied to the gate and the voltage difference between the gate and the drain (V GD ) may cause electrons to cross the gate from the gate The energy gap of the dielectric layer is trapped by the energy level between the gate dielectric layer and the barrier layer (or capping layer (if present)), and the trapped electrons will affect the electrical potential of the MIS-HEMT. sexual manipulation, resulting in a decrease in the performance of the MIS-HEMT. Therefore, MIS-HEMT needs to be improved to prevent electrons from the gate from crossing the energy gap of the gate dielectric layer when the MIS-HEMT is in the off state, and being trapped by the gate dielectric layer and the barrier layer (or capping layer (if present) )) between the energy levels captured.

相較於現有技術,本發明之實施例提供多個優點,並應了解其他實施例可提供不同優點,於此不須討論全部優點,並且全部實施例無特定優點。舉例來說,本文討論的實施例包括高電子遷移率半導體結構和裝置,其中具有多個用於閘極介電層的介電層,以防止電子從閘極跨越閘極介電層的能隙,並且被閘極介電層和阻障層(或蓋層(如果存在))之間的能階所捕捉。Embodiments of the present invention provide several advantages over the prior art, and it should be understood that other embodiments may provide different advantages, not all advantages need to be discussed here, and all embodiments have no specific advantages. For example, embodiments discussed herein include high electron mobility semiconductor structures and devices having multiple dielectric layers for the gate dielectric layer to prevent electrons from the gate across the energy gap of the gate dielectric layer , and is trapped by the energy level between the gate dielectric and the barrier (or cap, if present).

第1A圖是根據本揭露實施例之高電子遷移率半導體裝置100的剖面圖。第1B圖是根據本揭露實施例之沿著第1A圖的高電子遷移率半導體裝置100的線段A-A’的能帶圖,其中高電子遷移率半導體裝置100在穩定狀態(閘極電極120的費米能階(fermi level)E fm與通道層106和阻障層108的費米能階E fs在同一條水平線上)。如第1A圖所示,高電子遷移率半導體裝置100包括基板102和設置在基板102上方的緩衝層104。在一個實施例中,基板102可以是矽(Si)基板。在一些實施例中,基板102可以包括另一種元素半導體,例如鍺;化合物半導體,例如碳化矽、磷化鎵、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦;合金半導體,例如矽鍺(SiGe)、碳磷化矽(SiPC)、或三五(III-V)族半導體材料。示例三五族半導體材料可以包括砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、氮化鎵(GaN)、磷砷化鎵(GaAsP)、砷化鋁銦(AlInAs)、砷化鋁鎵(AlGaAs)、磷化鎵銦(GaInP)和砷化銦鎵(InGaAs)或其組合。 FIG. 1A is a cross-sectional view of a high electron mobility semiconductor device 100 according to an embodiment of the disclosure. FIG. 1B is an energy band diagram along the line segment AA' of the high electron mobility semiconductor device 100 in FIG. 1A according to an embodiment of the present disclosure, wherein the high electron mobility semiconductor device 100 is in a steady state (gate electrode 120 The Fermi energy level (fermi level) E fm of the channel layer 106 and the Fermi energy level E fs of the barrier layer 108 are on the same horizontal line). As shown in FIG. 1A , a high electron mobility semiconductor device 100 includes a substrate 102 and a buffer layer 104 disposed above the substrate 102 . In one embodiment, the substrate 102 may be a silicon (Si) substrate. In some embodiments, the substrate 102 may include another elemental semiconductor, such as germanium; a compound semiconductor, such as silicon carbide, gallium phosphide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide ; Alloy semiconductors, such as silicon germanium (SiGe), silicon carbon phosphide (SiPC), or three five (III-V) semiconductor materials. Example III-V semiconductor materials may include gallium arsenide (GaAs), indium phosphide (InP), gallium phosphide (GaP), gallium nitride (GaN), gallium arsenide phosphide (GaAsP), aluminum indium arsenide (AlInAs ), aluminum gallium arsenide (AlGaAs), gallium indium phosphide (GaInP), indium gallium arsenide (InGaAs), or combinations thereof.

緩衝層104可以避免或減少其下方的基板102以及其上方的材料層(例如後續的通道層106)之間的晶格常數差異和熱膨脹係數差異所造成的缺陷,從而提升後續沉積的材料層的品質。緩衝層104可以具有單層或多層結構。緩衝層104可以包括第三(III)族氮化物、金屬氮化物、金屬碳化物、金屬氮碳化物、純金屬、金屬合金、含矽材料或類似的材料。可以利用磊晶製程形成緩衝層104,磊晶製程可以包括化學氣相沉積 (chemical vapor deposition;CVD)、物理氣相沉積(physical vapor deposition;PVD)、金屬有機化學氣相沉積 (metal organic chemical vapor deposition;MOCVD)、金屬有機物化學氣相磊晶(metal-organic vapor phase epitaxy;MOVPE)、電漿輔助化學氣相沉積(plasma-enhanced chemical vapor deposition;PECVD)、遠距電漿化學氣相沉積(remote plasma chemical vapor deposition;RPCVD)、分子束磊晶(molecular beam epitaxy;MBE)、氫化物氣相磊晶(hydride vapor phase epitaxy;HVPE)、液相磊晶(liquid phase epitaxy;LPE)、氯化物氣相磊晶(Chloride vapor phase epitaxy;Cl-VPE)、其他合適製程或其組合。在本揭露實施例中,緩衝層104包括第三族氮化物半導體,例如氮化鎵(GaN),但本揭露不限於此。舉例來說,在一些實施例中,用以形成緩衝層104的材料可包括氮化銦(InN)、氮化鋁(AlN)、氮化銦鎵(InGaN)、氮化鋁鎵(AlGaN)、氮化鋁銦(AlInN)、氮化鋁銦鎵(AlInGaN)、其他合適第三族氮化物半導體或其組合。在一些實施例中,緩衝層104可以包括以交錯方式堆疊複數個氮化鋁(AlN)層和複數個摻雜矽的氮化鎵(GaN)層之複數層結構。在一些實施例中,可以使用P型或N型摻雜物來摻雜緩衝層104,或不摻雜緩衝層104,使得緩衝層104為P型、N型或是未摻雜的。The buffer layer 104 can avoid or reduce the defects caused by the difference in lattice constant and the difference in thermal expansion coefficient between the substrate 102 below it and the material layer above it (such as the subsequent channel layer 106), thereby improving the quality of the subsequently deposited material layer. quality. The buffer layer 104 may have a single-layer or multi-layer structure. The buffer layer 104 may include group III (III) nitrides, metal nitrides, metal carbides, metal nitride carbides, pure metals, metal alloys, silicon-containing materials, or the like. The buffer layer 104 may be formed by an epitaxy process, and the epitaxy process may include chemical vapor deposition (chemical vapor deposition; CVD), physical vapor deposition (physical vapor deposition; PVD), metal organic chemical vapor deposition (metal organic chemical vapor deposition) deposition; MOCVD), metal-organic vapor phase epitaxy (metal-organic vapor phase epitaxy; MOVPE), plasma-enhanced chemical vapor deposition (plasma-enhanced chemical vapor deposition; PECVD), remote plasma chemical vapor deposition ( remote plasma chemical vapor deposition (RPCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), chloride Vapor phase epitaxy (Chloride vapor phase epitaxy; Cl-VPE), other suitable processes or a combination thereof. In the embodiment of the present disclosure, the buffer layer 104 includes Group III nitride semiconductor, such as gallium nitride (GaN), but the present disclosure is not limited thereto. For example, in some embodiments, the material used to form the buffer layer 104 may include indium nitride (InN), aluminum nitride (AlN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), Aluminum Indium Nitride (AlInN), Aluminum Indium Gallium Nitride (AlInGaN), other suitable Group III nitride semiconductors, or combinations thereof. In some embodiments, the buffer layer 104 may include a multi-layer structure in which a plurality of aluminum nitride (AlN) layers and a plurality of silicon-doped gallium nitride (GaN) layers are stacked in a staggered manner. In some embodiments, the buffer layer 104 can be doped with P-type or N-type dopant, or not doped, so that the buffer layer 104 is P-type, N-type or undoped.

通道層106形成並設置在緩衝層104和基板102上方。通道層106可以包括三五族半導體材料,並因此通道層106亦可以稱為半導體層或三五族半導體層。在一些實施例中,半導體層106可以是本質的(intrinsic)三五族半導體。在本揭露實施例中,半導體層106可以是第三族氮化物半導體,例如氮化鎵(GaN)。可以藉由執行磊晶製程來形成半導體層106,磊晶製程可以包括化學氣相沉積 (CVD)、物理氣相沉積(PVD)、金屬有機化學氣相沉積(MOCVD)、金屬有機物化學氣相磊晶(MOVPE)、分子束磊晶(MBE)、氫化物氣相磊晶(HVPE)、液相磊晶(LPE)、其他合適製程或其組合。在一些實施例中,通道層106的厚度在100 nm至500 nm的範圍內。The channel layer 106 is formed and disposed over the buffer layer 104 and the substrate 102 . The channel layer 106 may include a III-V semiconductor material, and thus the channel layer 106 may also be referred to as a semiconductor layer or a III-V semiconductor layer. In some embodiments, the semiconductor layer 106 may be an intrinsic III-V semiconductor. In the disclosed embodiment, the semiconductor layer 106 may be a group III nitride semiconductor, such as gallium nitride (GaN). The semiconductor layer 106 may be formed by performing an epitaxial process, which may include chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic chemical vapor deposition (MOCVD), metal organic chemical vapor epitaxy epitaxy (MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), other suitable processes or combinations thereof. In some embodiments, the channel layer 106 has a thickness in the range of 100 nm to 500 nm.

阻障層108形成並設置在通道層106上方。在一些實施例中,阻障層108可以具有二元或多元結構。在一些實施例中,阻障層108可以包括三五族半導體材料,例如第三族氮化物半導體。在本揭露實施例中,阻障層108可以包括氮化鋁鎵(AlGaN),但本揭露不限於此。舉例來說,在其他實施例中,阻障層108可以包括氮化鋁、氮化鋁銦(AlInN)、氮化鋁鎵銦(AlGaInN)、其他合適第三族氮化物半導體或其組合。在一些實施例中,可以藉由執行磊晶製程來形成阻障層108,磊晶製程可以包括化學氣相沉積 (CVD)、物理氣相沉積(PVD)、金屬有機化學氣相沉積(MOCVD)、金屬有機物化學氣相磊晶(MOVPE)、分子束磊晶(MBE)、氫化物氣相磊晶(HVPE)、液相磊晶(LPE)、其他合適製程或其組合。此外,阻障層108可以是摻雜或未摻雜的。在一些實施例中,阻障層108的厚度在15 nm至50 nm的範圍內。A barrier layer 108 is formed and disposed over the channel layer 106 . In some embodiments, the barrier layer 108 may have a binary or multi-component structure. In some embodiments, the barrier layer 108 may include Group III and V semiconductor materials, such as Group III nitride semiconductors. In the embodiment of the present disclosure, the barrier layer 108 may include aluminum gallium nitride (AlGaN), but the present disclosure is not limited thereto. For example, in other embodiments, the barrier layer 108 may include aluminum nitride, aluminum indium nitride (AlInN), aluminum gallium indium nitride (AlGaInN), other suitable Group III nitride semiconductors, or combinations thereof. In some embodiments, the barrier layer 108 may be formed by performing an epitaxial process, which may include chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic chemical vapor deposition (MOCVD) , metal organic chemical vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), other suitable processes or combinations thereof. Furthermore, barrier layer 108 may be doped or undoped. In some embodiments, barrier layer 108 has a thickness in the range of 15 nm to 50 nm.

在一些實施例中,使用適當之材料形成阻障層108和通道層106,以在通道層106和阻障層108之間的界面附近產生具有高電子遷移率的二維電子氣(two dimensional electron gas;2DEG)。具體來說,如第1B圖所示,使用適當之材料形成阻障層108和通道層106,使得阻障層108的能隙E g2(阻障層108的導帶E c和價帶E v的能量差異)大於通道層106的能隙E g1(通道層106的導帶E c和價帶E v的能量差異)。在此情況下,通道層106和阻障層108之間的能隙差異導致了在通道層104與阻障層106之間形成異質接面,使得接近阻障層106的通道層104的區域中形成具有二維電子氣110,如第1A圖所示。在一些實施例中,通道層106由氮化鎵(GaN)形成,並且阻障層108由氮化鋁鎵(AlGaN)形成。在一些實施例中,通道層106具有約3.4eV的能隙,並且阻障層108具有約4eV的能隙。 In some embodiments, the barrier layer 108 and the channel layer 106 are formed using suitable materials to generate two dimensional electron gas (TDE) with high electron mobility near the interface between the channel layer 106 and the barrier layer 108. gas; 2DEG). Specifically, as shown in FIG. 1B, the barrier layer 108 and the channel layer 106 are formed using appropriate materials such that the energy gap E g2 of the barrier layer 108 (the conduction band E c and the valence band E v of the barrier layer 108 energy difference) is greater than the energy gap E g1 of the channel layer 106 (the energy difference between the conduction band E c and the valence band E v of the channel layer 106). In this case, the difference in energy gap between the channel layer 106 and the barrier layer 108 leads to the formation of a heterojunction between the channel layer 104 and the barrier layer 106, so that in the region of the channel layer 104 close to the barrier layer 106 A two-dimensional electron gas 110 is formed, as shown in FIG. 1A. In some embodiments, channel layer 106 is formed of gallium nitride (GaN) and barrier layer 108 is formed of aluminum gallium nitride (AlGaN). In some embodiments, channel layer 106 has an energy gap of about 3.4 eV, and barrier layer 108 has an energy gap of about 4 eV.

再參照第1A圖,蓋層(capping layer)112形成並設置在阻障層108上方。在一些實施例中,蓋層112可避免或減少阻障層108發生氧化。在一些實施例中,蓋層112的材料包含三五族半導體材料,例如第三族氮化物半導體。舉例來說,蓋層112的材料可以包含氮化鎵(GaN)、氮化銦(InN)、氮化銦鎵(InGaN)、其他合適第三族氮化物半導體或其組合。在一些實施例中,可以藉由執行磊晶製程來形成蓋層112,例如化學氣相沉積 (CVD)、物理氣相沉積(PVD)、金屬有機化學氣相沉積(MOCVD)、金屬有機物化學氣相磊晶(MOVPE)、分子束磊晶(MBE)、氫化物氣相磊晶(HVPE)、液相磊晶(LPE)、其他合適製程或其組合。蓋層112是可選的。在一些實施例中,高電子遷移率半導體裝置100不具有蓋層112。Referring again to FIG. 1A , a capping layer 112 is formed and disposed over the barrier layer 108 . In some embodiments, the capping layer 112 can prevent or reduce oxidation of the barrier layer 108 . In some embodiments, the material of the capping layer 112 includes Group III and V semiconductor materials, such as Group III nitride semiconductors. For example, the material of the capping layer 112 may include gallium nitride (GaN), indium nitride (InN), indium gallium nitride (InGaN), other suitable Group III nitride semiconductors, or combinations thereof. In some embodiments, the capping layer 112 can be formed by performing an epitaxial process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic chemical vapor deposition (MOCVD), metal organic chemical gas Phase epitaxy (MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), other suitable processes or combinations thereof. Cap layer 112 is optional. In some embodiments, the high electron mobility semiconductor device 100 does not have the capping layer 112 .

再參照第1A圖,閘極結構114形成並設置在通道層106、以及阻障層108(和蓋層112(如果存在))上方。閘極結構114包括介電層116、介電層118、以及閘極電極120。Referring again to FIG. 1A, gate structure 114 is formed and disposed over channel layer 106, and barrier layer 108 (and capping layer 112, if present). The gate structure 114 includes a dielectric layer 116 , a dielectric layer 118 , and a gate electrode 120 .

介電層116形成並設置在阻障層108(和蓋層112(如果存在))上方,並且在阻障層108和閘極電極120之間。介電層118形成並設置在介電層116上方,並且在介電層116和閘極電極120之間。在一些實施例中,介電層116和118可以稱為閘極介電層。在一些實施例中,介電層116和118可以包括介電材料,例如氧化矽(SiO 2)、氮化矽(SiN x)、氧化鎂(MgO)、氧化鉿(HfO 2)、氧化鉿矽(HfSiO)、氮氧化鉿矽(HfSiON)、氧化鉿鉭(HfTaO)、氧化鉿鈦(HfTiO)、氧化鉿鋯(HfZrO)、氧化鋯(ZrO 2)、氧化鋁(Al 2O 3)、氧化鉿-氧化鋁(HfO 2-Al 2O 3)、氧化鈦(TiO 2)、氧化鈰(CeO 2)、五氧化二鉭(Ta 2O 5)、三氧化二鑭(La 2O 3)、三氧化二釔(Y 2O 3)、其他合適介電材料或其組合。介電層116和118可以藉由沉積製程形成,例如原子層沉積(ALD)。 Dielectric layer 116 is formed and disposed over barrier layer 108 (and cap layer 112 if present), and between barrier layer 108 and gate electrode 120 . Dielectric layer 118 is formed and disposed over dielectric layer 116 and between dielectric layer 116 and gate electrode 120 . In some embodiments, dielectric layers 116 and 118 may be referred to as gate dielectric layers. In some embodiments, dielectric layers 116 and 118 may include dielectric materials such as silicon oxide (SiO 2 ), silicon nitride (SiN x ), magnesium oxide (MgO), hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), oxide Hafnium-aluminum oxide (HfO 2 -Al 2 O 3 ), titanium oxide (TiO 2 ), cerium oxide (CeO 2 ), tantalum pentoxide (Ta 2 O 5 ), lanthanum trioxide (La 2 O 3 ), Yttrium trioxide (Y 2 O 3 ), other suitable dielectric materials, or combinations thereof. Dielectric layers 116 and 118 may be formed by a deposition process, such as atomic layer deposition (ALD).

如上面所述,通常的MIS-HEMT在關閉狀態時,電子從閘極跨越閘極介電層的能隙,並且被閘極介電層和阻障層(或蓋層(如果存在))之間的能階所捕捉,從而導致MIS-HEMT的效能下降。在本揭露實施例中,為了防止電子從閘極跨越閘極介電層,使用了具有不同能隙的介電層116和118,並且介電層116的能隙E g3(介電層116的導帶E c和價帶E v的能量差異)大於阻障層108的能隙E g2,而介電層118的能隙E g4(介電層118的導帶E c和價帶E v的能量差異)大於介電層116的能隙E g3,如第1B圖所示。如此一來,在閘極電極120的電子會遇到更高的能障(energy barrier),並且不易跨越介電層116和118。舉例來說,包括氮化鋁鎵(AlGaN)的阻障層108具有約4eV的能隙,介電層116可以包括具有大於4eV的能隙E g3的介電材料,而介電層116可以包括具有大於E g3的能隙E g4的介電材料。 As mentioned above, when a typical MIS-HEMT is in the off state, electrons cross the energy gap of the gate dielectric layer from the gate and are trapped between the gate dielectric layer and the barrier layer (or capping layer (if present)). The energy levels in between are captured, resulting in a decrease in the performance of the MIS-HEMT. In the presently disclosed embodiment, in order to prevent electrons from the gate across the gate dielectric layer, dielectric layers 116 and 118 with different energy gaps are used, and the energy gap E g3 of the dielectric layer 116 (of the dielectric layer 116 The energy difference between the conduction band Ec and the valence band Ev ) is greater than the energy gap Eg2 of the barrier layer 108, and the energy gap Eg4 of the dielectric layer 118 (the energy difference between the conduction band Ec and the valence band Ev of the dielectric layer 118 energy difference) is greater than the energy gap E g3 of the dielectric layer 116 , as shown in FIG. 1B . As a result, electrons at the gate electrode 120 encounter a higher energy barrier and are less likely to cross the dielectric layers 116 and 118 . For example, the barrier layer 108 comprising aluminum gallium nitride (AlGaN) has an energy gap of about 4 eV, the dielectric layer 116 may comprise a dielectric material having an energy gap E g3 greater than 4 eV, and the dielectric layer 116 may comprise A dielectric material having an energy gap E g4 greater than E g3 .

另外,為了製造具有高跨導(g m)的MIS-HEMT,從而能夠利用具有高跨導(g m)的MIS-HEMT製造具有高截止頻率(f T)和高最大振盪頻率(f max)的RF放大器裝置,介電層116可以包括高k(高介電常數)介電材料,例如介電層116可以包括介電常數大於15的介電材料。在一些實施例中,介電層118的介電常數小於介電層116的介電常數,以提升裝置效能。在一些實施例中,介電層118的厚度小於介電層116的厚度,以提升裝置效能。因此,在一些實施例中,介電層116可以包括氧化鉿(HfO 2)(介電常數約為25,能隙約為5.8eV),而介電層118可以包括氧化鋁(Al 2O 3)(介電常數約為9,能隙約為8eV),並且介電層118的厚度小於介電層116的厚度。 In addition, in order to fabricate MIS-HEMT with high transconductance (g m ), it is possible to fabricate MIS-HEMT with high transconductance (g m ) with high cut-off frequency (f T ) and high maximum oscillation frequency (f max ) For RF amplifier devices, the dielectric layer 116 may include a high-k (high dielectric constant) dielectric material, for example, the dielectric layer 116 may include a dielectric material with a dielectric constant greater than 15. In some embodiments, the dielectric constant of the dielectric layer 118 is smaller than that of the dielectric layer 116 to improve device performance. In some embodiments, the thickness of the dielectric layer 118 is smaller than that of the dielectric layer 116 to improve device performance. Thus, in some embodiments, dielectric layer 116 may comprise hafnium oxide (HfO 2 ) (dielectric constant approximately 25, energy gap approximately 5.8 eV), and dielectric layer 118 may comprise aluminum oxide (Al 2 O 3 ) (dielectric constant is about 9, energy gap is about 8eV), and the thickness of the dielectric layer 118 is smaller than the thickness of the dielectric layer 116.

閘極電極120形成並設置在阻障層108、蓋層112、介電層116和介電層118上方。在一些實施例中,閘極電極120由一或多個導電材料形成,並因此閘極電極120又可以稱為導電層。導電材料可以包括金屬或金屬氮化物,例如氮化鈦(TiN)、氮化鉭(TaN)、釕(Ru)、鉬(Mo)、鈦(Ti)、鉭(Ta)、銀(Ag)、錳(Mn)、鋯(Zr)、鈀(Pd)、鎳(Ni)、金(Au)、鋁(Al)或其組合。在一些實施例中,閘極電極120包括鎳(Ni)和金(Au)。在一些實施例中,閘極電極120的形成方法包括一或多個沉積製程、微影製程與蝕刻製程。沉積製程可以包括原子層沉積(atomic layer deposition;ALD)、CVD及/或其他合適製程。微影製程可以包括光阻(photoresist)塗佈(例如:自旋塗佈(spin-on coating))、軟烘烤、光罩對準、曝光、曝光後烘烤、顯影光阻、沖洗(rinsing)、乾燥(例如:硬烘烤)。在其他實施例中,微影製程可藉由其他適當的方法來執行或取代,例如無光罩微影(maskless photolithography)、電子束寫入(electron- beam writing)、以及離子(ion-beam writing)束寫入。蝕刻製程可以包括乾式蝕刻、濕式蝕刻、反應式離子蝕刻(reactive ion etching,  RIE)、及/或其他合適製程。Gate electrode 120 is formed and disposed over barrier layer 108 , cap layer 112 , dielectric layer 116 and dielectric layer 118 . In some embodiments, the gate electrode 120 is formed of one or more conductive materials, and thus the gate electrode 120 may also be referred to as a conductive layer. Conductive materials may include metals or metal nitrides such as titanium nitride (TiN), tantalum nitride (TaN), ruthenium (Ru), molybdenum (Mo), titanium (Ti), tantalum (Ta), silver (Ag), Manganese (Mn), Zirconium (Zr), Palladium (Pd), Nickel (Ni), Gold (Au), Aluminum (Al), or combinations thereof. In some embodiments, the gate electrode 120 includes nickel (Ni) and gold (Au). In some embodiments, the forming method of the gate electrode 120 includes one or more of deposition process, lithography process and etching process. The deposition process may include atomic layer deposition (ALD), CVD, and/or other suitable processes. The lithography process may include photoresist coating (eg, spin-on coating), soft bake, mask alignment, exposure, post-exposure bake, developing photoresist, rinsing ), dry (e.g. hard bake). In other embodiments, the lithography process can be performed or replaced by other suitable methods, such as maskless photolithography, electron-beam writing, and ion-beam writing. ) bundle writes. The etching process may include dry etching, wet etching, reactive ion etching (RIE), and/or other suitable processes.

再參照第1A圖,層間介電(interlayer dielectric;ILD)層122形成並設置在閘極結構114上方。ILD層122包括介電材料,例如二氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethylorthosilicate;TEOS)形成的氧化物、磷矽酸鹽玻璃(phosphosilicate glass;PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass;BPSG)、硼摻雜矽玻璃(boron doped silicon glass;BSG)、低k介電材料、其他合適介電材料或其組合。示例的低k介電材料包括氟化物摻雜的矽酸鹽玻璃(fluoride-doped silicate glass;FSG)、碳摻雜的氧化矽、BlackDiamond®(加利福尼亞州,聖克拉拉的應用材料)、乾凝膠(Xerogel)、氣凝膠(Aerogel)、非晶氟化碳、聚對二甲苯(parylene)、苯並環丁烯(Benzocyclobutene;BCB)、SiLK®(密西根州,米德蘭的陶氏化學公司)、聚醯亞胺(polyimide)、其他低k介電材料或其組合。在一些實施例中,ILD層122是包括低k介電材料的介電層(通常稱為低k介電層)。在一些實施例中,低k介電材料通常是指具有小於3的介電常數的材料。在一些實施例中,ILD層122是可以包括具有多個介電材料的多層結構。ILD層122可以藉由沉積製程形成,例如化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、高密度電漿化學氣相沉積(high density plasma CVD;HDPCVD)、金屬有機化學氣相沉積(MOCVD)、遠距電漿化學氣相沉積(RPCVD)、電漿輔助化學氣相沉積(PECVD)、低壓化學氣相沉積(low-pressure CVD;LPCVD)、原子層化學氣相沉積(Atomic Layer Chemical Vapor Deposition;ALCVD)、常壓化學氣相沉積(Atmospheric Pressure CVD;APCVD)、電鍍、其他合適方法或其組合。在一些實施例中,ILD層122藉由流動式化學氣相沉積(flowable CVD;FCVD)形成,FCVD包括將可流動材料(例如液體化合物)沉積在基板102上方,並且藉由合適技術(例如熱退火及/或紫外線輻射處理)將可流動材料轉換為固體材料。Referring again to FIG. 1A , an interlayer dielectric (ILD) layer 122 is formed and disposed above the gate structure 114 . The ILD layer 122 includes dielectric materials such as silicon dioxide, silicon nitride, silicon oxynitride, oxides formed from tetraethylorthosilicate (TEOS), phosphosilicate glass (PSG), borophosphorous Borophosphosilicate glass (BPSG), boron doped silicon glass (BSG), low-k dielectric material, other suitable dielectric materials or combinations thereof. Exemplary low-k dielectric materials include fluoride-doped silicate glass (FSG), carbon-doped silicon oxide, BlackDiamond® (Applied Materials, Santa Clara, CA), dry solidified Xerogel, Aerogel, amorphous fluorocarbons, parylene, benzocyclobutene (BCB), SiLK® (Dow Corporation, Midland, Michigan chemical companies), polyimide (polyimide), other low-k dielectric materials, or combinations thereof. In some embodiments, ILD layer 122 is a dielectric layer comprising a low-k dielectric material (commonly referred to as a low-k dielectric layer). In some embodiments, low-k dielectric materials generally refer to materials having a dielectric constant less than three. In some embodiments, the ILD layer 122 is a multilayer structure that may include multiple dielectric materials. The ILD layer 122 can be formed by a deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high density plasma chemical vapor deposition (high density plasma CVD; HDPCVD) , metal-organic chemical vapor deposition (MOCVD), remote plasma chemical vapor deposition (RPCVD), plasma-assisted chemical vapor deposition (PECVD), low-pressure chemical vapor deposition (low-pressure CVD; LPCVD), atomic layer Chemical vapor deposition (Atomic Layer Chemical Vapor Deposition; ALCVD), atmospheric pressure chemical vapor deposition (Atmospheric Pressure CVD; APCVD), electroplating, other suitable methods or combinations thereof. In some embodiments, the ILD layer 122 is formed by flowable chemical vapor deposition (flowable CVD; FCVD), which involves depositing a flowable material (eg, a liquid compound) over the substrate 102 and applying it by a suitable technique (eg, thermal Annealing and/or UV radiation treatment) converts the flowable material into a solid material.

再參照第1A圖,源極電極124和汲極電極126形成在閘極結構114(介電層116、介電層118、以及閘極電極120)的兩側。在一些實施例中,源極電極124和汲極電極126被形成穿過ILD層122、介電層116和介電層118。在一些實施例中,源極電極124和汲極電極126接觸蓋層112。在其他實施例中,源極電極124和汲極電極126進一步穿過蓋層112和阻障層108,並且接觸通道層106。與閘極電極120相似,源極電極124和汲極電極126可以包括一或多個導電材料,並因此源極電極124和汲極電極126又可以稱為導電層。形成源極電極124和汲極電極126的導電材料可以是如上面所述的導電材料,並且可以與閘極電極120相同或不同。相似地,源極電極124和汲極電極126的形成方法可以包括如上面所述的形成閘極電極120的沉積製程、微影製程與蝕刻製程。Referring again to FIG. 1A , a source electrode 124 and a drain electrode 126 are formed on both sides of the gate structure 114 (dielectric layer 116 , dielectric layer 118 , and gate electrode 120 ). In some embodiments, source electrode 124 and drain electrode 126 are formed through ILD layer 122 , dielectric layer 116 and dielectric layer 118 . In some embodiments, the source electrode 124 and the drain electrode 126 contact the cap layer 112 . In other embodiments, the source electrode 124 and the drain electrode 126 further pass through the cap layer 112 and the barrier layer 108 and contact the channel layer 106 . Similar to the gate electrode 120 , the source electrode 124 and the drain electrode 126 may include one or more conductive materials, and thus the source electrode 124 and the drain electrode 126 may also be referred to as conductive layers. The conductive material forming source electrode 124 and drain electrode 126 may be a conductive material as described above, and may be the same as or different from gate electrode 120 . Similarly, the forming method of the source electrode 124 and the drain electrode 126 may include the deposition process, the lithography process and the etching process for forming the gate electrode 120 as described above.

在一些實施例中,可以進一步增加閘極結構中的介電層的數量。第2A圖是根據本揭露實施例之高電子遷移率半導體裝置200的剖面圖,其中閘極結構具有三個介電層。第2B圖根據本揭露實施例顯示了沿著第2B圖的高電子遷移率半導體裝置200的線段A-A’的能帶圖,其中高電子遷移率半導體裝置200在穩定狀態(閘極電極120的費米能階E fm與通道層106和阻障層108的費米能階E fs在同一條水平線上)。高電子遷移率半導體裝置200與第1A圖的高電子遷移率半導體裝置100相似,不同之處在於高電子遷移率半導體裝置200的閘極結構114進一步包括介電層202。 In some embodiments, the number of dielectric layers in the gate structure can be further increased. FIG. 2A is a cross-sectional view of a high electron mobility semiconductor device 200 according to an embodiment of the disclosure, wherein the gate structure has three dielectric layers. FIG. 2B shows an energy band diagram along line AA' of the high electron mobility semiconductor device 200 in FIG. 2B according to an embodiment of the present disclosure, wherein the high electron mobility semiconductor device 200 is in a steady state (gate electrode 120 The Fermi energy level E fm of the channel layer 106 and the Fermi energy level E fs of the barrier layer 108 are on the same horizontal line). The HEM semiconductor device 200 is similar to the HEM semiconductor device 100 of FIG. 1A , except that the gate structure 114 of the HEM semiconductor device 200 further includes a dielectric layer 202 .

如第2B圖所示,介電層202形成並設置在介電層118上方,並且介電層118和閘極電極120之間。在一些實施例中,介電層202可以稱為閘極介電層。介電層202可以包括介電材料,例如氧化矽(SiO 2)、氮化矽(SiN x)、氧化鎂(MgO)、氧化鉿(HfO 2)、氧化鉿矽(HfSiO)、氮氧化鉿矽(HfSiON)、氧化鉿鉭(HfTaO)、氧化鉿鈦(HfTiO)、氧化鉿鋯(HfZrO)、氧化鋯(ZrO 2)、氧化鋁(Al 2O 3)、氧化鉿-氧化鋁(HfO 2-Al 2O 3)、氧化鈦(TiO 2)、氧化鈰(CeO 2)、五氧化二鉭(Ta 2O 5)、三氧化二鑭(La 2O 3)、三氧化二釔(Y 2O 3)、其他合適介電材料或其組合。介電層202可以藉由沉積製程形成,例如原子層沉積(ALD)。 As shown in FIG. 2B , a dielectric layer 202 is formed and disposed over the dielectric layer 118 and between the dielectric layer 118 and the gate electrode 120 . In some embodiments, dielectric layer 202 may be referred to as a gate dielectric layer. The dielectric layer 202 may include dielectric materials such as silicon oxide (SiO 2 ), silicon nitride (SiN x ), magnesium oxide (MgO), hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), hafnium oxide-alumina oxide (HfO 2 - Al 2 O 3 ), Titanium Oxide (TiO 2 ), Cerium Oxide (CeO 2 ), Tantalum Pentoxide (Ta 2 O 5 ), Dilanthanum Trioxide (La 2 O 3 ), Diyttrium Trioxide (Y 2 O 3 ), other suitable dielectric materials or combinations thereof. The dielectric layer 202 can be formed by a deposition process, such as atomic layer deposition (ALD).

如上面所述,為了防止電子從閘極跨越閘極介電層,介電層202可以具有更大的能隙。具體來說,在高電子遷移率半導體裝置200中,介電層116的能隙E g3大於阻障層108的能隙E g2,介電層118的能隙E g4大於介電層116的能隙E g3,並且介電層202的能隙E g5(介電層202的導帶E c和價帶E v的能量差異)大於介電層118的能隙E g4,如第2B圖所示。相似地,在一些實施例中,介電層202的介電常數小於介電層118的介電常數,並且介電層118的介電常數小於介電層116的介電常數,以提升裝置效能。在一些實施例中,介電層202的厚度小於介電層118的厚度,並且介電層118的厚度小於介電層116的厚度,以提升裝置效能。因此,在一些實施例中,介電層116可以包括氧化鉿(HfO 2)(介電常數約為25,能隙約為5.8eV),介電層118可以包括氧化鋁(Al 2O 3)(介電常數約為9,能隙約為8eV),介電層202可以包括氧化矽(SiO 2)(介電常數約為3.9,能隙約為9eV),並且介電層118的厚度小於介電層116的厚度。 As mentioned above, in order to prevent electrons from the gate from crossing the gate dielectric layer, the dielectric layer 202 may have a larger energy gap. Specifically, in the high electron mobility semiconductor device 200, the energy gap E g3 of the dielectric layer 116 is greater than the energy gap E g2 of the barrier layer 108, and the energy gap E g4 of the dielectric layer 118 is greater than the energy gap E g4 of the dielectric layer 116. Gap E g3 , and the energy gap E g5 of the dielectric layer 202 (the energy difference between the conduction band E c and the valence band E v of the dielectric layer 202) is greater than the energy gap E g4 of the dielectric layer 118, as shown in Figure 2B . Similarly, in some embodiments, the dielectric constant of dielectric layer 202 is less than that of dielectric layer 118, and the dielectric constant of dielectric layer 118 is less than that of dielectric layer 116 to improve device performance. . In some embodiments, the thickness of the dielectric layer 202 is smaller than the thickness of the dielectric layer 118 , and the thickness of the dielectric layer 118 is smaller than the thickness of the dielectric layer 116 to improve device performance. Thus, in some embodiments, dielectric layer 116 may include hafnium oxide (HfO 2 ) (dielectric constant about 25, energy gap about 5.8 eV) and dielectric layer 118 may include aluminum oxide (Al 2 O 3 ). (dielectric constant is about 9, energy gap is about 8eV), dielectric layer 202 may include silicon oxide (SiO 2 ) (dielectric constant is about 3.9, energy gap is about 9eV), and the thickness of dielectric layer 118 is less than The thickness of the dielectric layer 116 .

本揭露的實施例涉及高電子遷移率半導體結構和裝置,更具體地涉及具有金屬-絕緣體-半導體結構的高電子遷移率電晶體(MIS-HEMT),其中閘極結構具有多個介電層(閘極介電層)。 此外,本實施例提供以下優點中的一個或多個。閘極結構的多個介電層(閘極介電層)的能隙具有梯度,越接近閘極電極的介電層的能隙越大,可以有效防止電子從閘極跨越閘極介電層的能隙,並且被閘極介電層和阻障層(或蓋層(如果存在))之間的能階所捕捉。另外,多個介電層(閘極介電層)的介電常數也具有梯度,越接近阻障層的介電層的介電常數越大,以提升裝置效能。Embodiments of the present disclosure relate to high electron mobility semiconductor structures and devices, and more particularly to high electron mobility transistors (MIS-HEMT) having a metal-insulator-semiconductor structure, wherein the gate structure has multiple dielectric layers ( gate dielectric layer). Additionally, the present embodiments provide one or more of the following advantages. The energy gaps of multiple dielectric layers (gate dielectric layers) of the gate structure have a gradient, and the closer to the gate electrode, the larger the energy gap of the dielectric layer, which can effectively prevent electrons from crossing the gate dielectric layer from the gate. and is trapped by the energy level between the gate dielectric and the barrier layer (or capping layer, if present). In addition, the dielectric constants of the plurality of dielectric layers (gate dielectric layers) also have gradients, and the dielectric constants of the dielectric layers closer to the barrier layer are larger, so as to improve device performance.

前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更佳地了解本揭露。本技術領域中具有通常知識者應可理解,且可輕易地以本揭露為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本揭露的發明精神與範圍。在不背離本揭露的發明精神與範圍之前提下,可對本揭露進行各種改變、置換或修改。The foregoing text summarizes features of many embodiments so that those skilled in the art may better understand the present disclosure in various aspects. Those skilled in the art should be able to understand, and can easily design or modify other processes and structures based on this disclosure, so as to achieve the same purpose and/or achieve the same as the embodiments introduced here advantages. Those skilled in the art should also appreciate that such equivalent structures do not depart from the spirit and scope of the disclosed invention. Various changes, substitutions, or modifications may be made to the present disclosure without departing from the inventive spirit and scope of the present disclosure.

100:高電子遷移率半導體裝置 102:基板 104:緩衝層 106:通道層 108:阻障層 110:二維電子氣 112:蓋層 114:閘極結構 116:介電層 118:介電層 120:閘極電極 122:層間介電層 124:源極電極 126:汲極電極 A-A’:線段 E c:導帶 E v:價帶 E fm:費米能階 E fs:費米能階 E g1:能隙 E g2:能隙 E g3:能隙 E g4:能隙 200:高電子遷移率半導體裝置 202:介電層 E g5:能隙 100: high electron mobility semiconductor device 102: substrate 104: buffer layer 106: channel layer 108: barrier layer 110: two-dimensional electron gas 112: capping layer 114: gate structure 116: dielectric layer 118: dielectric layer 120 : gate electrode 122: interlayer dielectric layer 124: source electrode 126: drain electrode A-A': line segment E c : conduction band E v : valence band E fm : Fermi energy level E fs : Fermi energy level E g1 : energy gap E g2 : energy gap E g3 : energy gap E g4 : energy gap 200: high electron mobility semiconductor device 202: dielectric layer E g5 : energy gap

為了使本揭露之描述方式能涵蓋上述之舉例、其他優點及特徵,上述簡要說明之原理,將透過圖式中的特定範例做更具體的描述。應理解此處所示之圖式僅為本揭露之範例,並不能對本揭露之範圍形成限制。本揭露之原理係透過附圖以進行具有附加特徵與細節之描述與解釋,其中: 第1A圖根據本揭露實施例顯示了高電子遷移率半導體裝置的剖面圖,其中閘極結構具有兩個介電層。 第1B圖根據本揭露實施例顯示了沿著第1A圖的高電子遷移率半導體裝置的線段A-A’的能帶圖。 第2A圖根據本揭露實施例顯示了高電子遷移率半導體裝置的剖面圖,其中閘極結構具有三個介電層。 第2B圖根據本揭露實施例顯示了沿著第2B圖的高電子遷移率半導體裝置的線段A-A’的能帶圖。 In order to make the description of the present disclosure cover the above-mentioned examples and other advantages and features, the principle of the above-mentioned brief description will be described in more detail through specific examples in the drawings. It should be understood that the drawings shown here are only examples of the present disclosure, and should not limit the scope of the present disclosure. The principles of the present disclosure are described and explained with additional features and details through the accompanying drawings, in which: FIG. 1A shows a cross-sectional view of a high electron mobility semiconductor device in which a gate structure has two dielectric layers, according to an embodiment of the present disclosure. FIG. 1B shows an energy band diagram along the line segment A-A' of the high electron mobility semiconductor device of FIG. 1A according to an embodiment of the present disclosure. FIG. 2A shows a cross-sectional view of a high electron mobility semiconductor device in which the gate structure has three dielectric layers, according to an embodiment of the present disclosure. FIG. 2B shows an energy band diagram along line A-A' of the high electron mobility semiconductor device of FIG. 2B according to an embodiment of the present disclosure.

無。none.

100:高電子遷移率半導體裝置 100: High Electron Mobility Semiconductor Devices

102:基板 102: Substrate

104:緩衝層 104: buffer layer

106:通道層 106: Channel layer

108:阻障層 108: Barrier layer

110:二維電子氣 110: Two-dimensional electron gas

112:蓋層 112: cover layer

114:閘極結構 114:Gate structure

116:介電層 116: dielectric layer

118:介電層 118: dielectric layer

120:閘極電極 120: gate electrode

122:層間介電層 122: interlayer dielectric layer

124:源極電極 124: source electrode

126:汲極電極 126: Drain electrode

A-A’:線段 A-A': line segment

Claims (10)

一種高電子遷移率半導體結構,包括:一基板;一通道層,設置在上述基板上方;一阻障層,設置在上述通道層上方;一導電層,設置在上述阻障層上方;一第一介電層,設置在上述阻障層和上述導電層之間,並且具有一第一能隙;一第二介電層,設置在上述第一介電層和上述導電層之間,並且具有一第二能隙,其中上述第二能隙大於上述第一能隙;以及一第三介電層,在上述第二介電層和上述導電層之間,並且具有一第三能隙,其中上述第三能隙大於上述第二能隙。 A high electron mobility semiconductor structure, comprising: a substrate; a channel layer disposed above the substrate; a barrier layer disposed above the channel layer; a conductive layer disposed above the barrier layer; a first a dielectric layer, arranged between the barrier layer and the conductive layer, and has a first energy gap; a second dielectric layer, arranged between the first dielectric layer and the conductive layer, and has a second energy gap, wherein said second energy gap is greater than said first energy gap; and a third dielectric layer, between said second dielectric layer and said conductive layer, and has a third energy gap, wherein said The third energy gap is larger than the above-mentioned second energy gap. 如請求項1之高電子遷移率半導體結構,其中上述第一介電層包括一高k介電材料。 The high electron mobility semiconductor structure as claimed in claim 1, wherein the first dielectric layer comprises a high-k dielectric material. 如請求項1之高電子遷移率半導體結構,其中上述第一介電層的一介電常數大於15。 The high electron mobility semiconductor structure according to claim 1, wherein a dielectric constant of the first dielectric layer is greater than 15. 如請求項1之高電子遷移率半導體結構,其中上述第三介電層的一介電常數小於上述第二介電層的一介電常數,並且上述第二介電層的一介電常數小於上述第一介電層的一介電常數。 The high electron mobility semiconductor structure according to claim 1, wherein a dielectric constant of the third dielectric layer is smaller than a dielectric constant of the second dielectric layer, and a dielectric constant of the second dielectric layer is smaller than A dielectric constant of the first dielectric layer. 如請求項3之高電子遷移率半導體結構,其中上述 第三介電層的一厚度小於上述第二介電層的一厚度,並且上述第二介電層的一厚度小於上述第一介電層的一厚度。 Such as the high electron mobility semiconductor structure of claim 3, wherein the above A thickness of the third dielectric layer is smaller than a thickness of the second dielectric layer, and a thickness of the second dielectric layer is smaller than a thickness of the first dielectric layer. 一種高電子遷移率半導體裝置,包括:一基板;一三五族半導體層,設置在上述基板上方;一阻障層,設置在上述三五族半導體層上方;一第一閘極介電層,設置在上述阻障層上方,並且具有一第一能隙;一第二閘極介電層,設置在上述第一閘極介電層上方,並且具有一第二能隙,其中上述第二能隙大於上述第一能隙;一第三閘極介電層,在上述第二閘極介電層上方,並且具有一第三能隙,其中上述第三能隙大於上述第二能隙;一閘極電極,設置在上述第二閘極介電層和上述第三閘極介電層上方;以及一源極電極和一汲極電極,設置上述閘極電極的兩側,並且延伸穿過上述阻障層,以電性連接至上述三五族半導體層。 A high electron mobility semiconductor device, comprising: a substrate; a Group III and V semiconductor layer disposed above the substrate; a barrier layer disposed above the Group III and V semiconductor layer; a first gate dielectric layer, disposed above the barrier layer and having a first energy gap; a second gate dielectric layer disposed above the first gate dielectric layer and having a second energy gap, wherein the second gate dielectric layer a gap greater than the first energy gap; a third gate dielectric layer above the second gate dielectric layer, and has a third energy gap, wherein the third energy gap is greater than the second energy gap; a a gate electrode disposed above the second gate dielectric layer and the third gate dielectric layer; and a source electrode and a drain electrode disposed on both sides of the gate electrode and extending through the The barrier layer is electrically connected to the III-V semiconductor layer. 如請求項6之高電子遷移率半導體裝置,其中上述三五族半導體層包括氮化鎵,並且上述阻障層包括氮化鋁鎵。 The high electron mobility semiconductor device according to claim 6, wherein the III-V semiconductor layer includes gallium nitride, and the barrier layer includes aluminum gallium nitride. 如請求項6之高電子遷移率半導體裝置,更包括:一第三閘極介電層,在上述第二閘極介電層和上述閘極電極之間,並且具有一第三能隙,其中上述第三能隙大於上述第二能隙。 The high electron mobility semiconductor device according to claim 6, further comprising: a third gate dielectric layer between the second gate dielectric layer and the gate electrode, and having a third energy gap, wherein The third energy gap is larger than the second energy gap. 如請求項6之高電子遷移率半導體裝置,其中其中上述第一閘極介電層的一介電常數大於15。 The high electron mobility semiconductor device according to claim 6, wherein a dielectric constant of the first gate dielectric layer is greater than 15. 如請求項6之高電子遷移率半導體裝置,其中上述第三閘極介電層的一厚度小於上述第二閘極介電層的一厚度,並且上述第二閘極介電層的一厚度小於上述第一閘極介電層的一厚度。 The high electron mobility semiconductor device according to claim 6, wherein a thickness of the third gate dielectric layer is less than a thickness of the second gate dielectric layer, and a thickness of the second gate dielectric layer is less than A thickness of the first gate dielectric layer.
TW111104657A 2022-02-09 2022-02-09 High electron mobility semiconductor structure and high electron mobility semiconductor device TWI799127B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111104657A TWI799127B (en) 2022-02-09 2022-02-09 High electron mobility semiconductor structure and high electron mobility semiconductor device
CN202210761950.0A CN116613206A (en) 2022-02-09 2022-06-30 High electron mobility semiconductor structure and high electron mobility semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111104657A TWI799127B (en) 2022-02-09 2022-02-09 High electron mobility semiconductor structure and high electron mobility semiconductor device

Publications (2)

Publication Number Publication Date
TWI799127B true TWI799127B (en) 2023-04-11
TW202333380A TW202333380A (en) 2023-08-16

Family

ID=86948827

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111104657A TWI799127B (en) 2022-02-09 2022-02-09 High electron mobility semiconductor structure and high electron mobility semiconductor device

Country Status (2)

Country Link
CN (1) CN116613206A (en)
TW (1) TWI799127B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713800A (en) * 2005-07-21 2007-04-01 Cree Inc Switch mode power amplifier using fet with field plate extension
TW201735184A (en) * 2016-01-15 2017-10-01 創世舫電子有限公司 Enhancement mode III-nitride devices having an AL1-xSIxO gate insulator
TW201824542A (en) * 2016-12-15 2018-07-01 國立交通大學 Semiconductor device and method of manufacturing the same
TW202018770A (en) * 2018-10-31 2020-05-16 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713800A (en) * 2005-07-21 2007-04-01 Cree Inc Switch mode power amplifier using fet with field plate extension
TW201735184A (en) * 2016-01-15 2017-10-01 創世舫電子有限公司 Enhancement mode III-nitride devices having an AL1-xSIxO gate insulator
TW201824542A (en) * 2016-12-15 2018-07-01 國立交通大學 Semiconductor device and method of manufacturing the same
TW202018770A (en) * 2018-10-31 2020-05-16 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor arrangement

Also Published As

Publication number Publication date
TW202333380A (en) 2023-08-16
CN116613206A (en) 2023-08-18

Similar Documents

Publication Publication Date Title
KR101716049B1 (en) Semiconductor device and method for fabricating the same
JP6362248B2 (en) Integration of MISHFET and Schottky devices
JP4385206B2 (en) Field effect transistor
KR101487080B1 (en) High electron mobility transistor and method of forming the same
TW201417280A (en) Compound semiconductor device and method of manufacturing the same
JP5866766B2 (en) Compound semiconductor device and manufacturing method thereof
US11043583B2 (en) Semiconductor structure and method for forming the same
WO2004055905A1 (en) Field effect transistor
US9343563B2 (en) Selectively area regrown III-nitride high electron mobility transistor
JP2015046445A (en) Compound semiconductor device and method of manufacturing the same
US11114532B2 (en) Semiconductor structures and methods of forming the same
US11335797B2 (en) Semiconductor devices and methods for fabricating the same
US11735649B2 (en) Method for forming fin field effect transistor (FinFET) with a liner layer
US11450766B2 (en) High electron mobility transistor with trench isolation structure capable of applying stress
JP2020184609A (en) Semiconductor device and manufacturing method thereof
US20240021703A1 (en) High electron mobility transistor and method for forming the same
TWI799127B (en) High electron mobility semiconductor structure and high electron mobility semiconductor device
TW202125829A (en) Semiconductor structure
US11152364B1 (en) Semiconductor structure and methods for manufacturing the same
US11876118B2 (en) Semiconductor structure with gate metal layer
US20210257467A1 (en) Semiconductor structure and method of forming the same
CN113675268A (en) Semiconductor structure and forming method thereof
US20210013331A1 (en) High electron mobility transistor devices and methods for forming the same
CN115997287B (en) Nitride-based semiconductor IC chip and method for manufacturing the same
TWI652820B (en) Method of manufacturing the semiconductor structrue and semiconductor device