TWI798088B - Integrated circuit structure and method for forming the same - Google Patents

Integrated circuit structure and method for forming the same Download PDF

Info

Publication number
TWI798088B
TWI798088B TW111118431A TW111118431A TWI798088B TW I798088 B TWI798088 B TW I798088B TW 111118431 A TW111118431 A TW 111118431A TW 111118431 A TW111118431 A TW 111118431A TW I798088 B TWI798088 B TW I798088B
Authority
TW
Taiwan
Prior art keywords
dielectric material
source line
forming
bonding pad
hole
Prior art date
Application number
TW111118431A
Other languages
Chinese (zh)
Other versions
TW202347735A (en
Inventor
王立為
李鴻志
周福興
李士勤
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111118431A priority Critical patent/TWI798088B/en
Application granted granted Critical
Publication of TWI798088B publication Critical patent/TWI798088B/en
Publication of TW202347735A publication Critical patent/TW202347735A/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

An integrated circuit structure includes a substrate, a conductive layer, a plurality of memory devices, and a source line. The conductive layer is over the substrate. The memory devices are stacked in a vertical direction over the conductive layer. The bonding pad is over the conductive layer. The source line extends upwardly from the bonding pad and has a lower portion inlaid in the bonding pad and an upper portion having a sidewall coterminous with a sidewall of the bonding pad. A top end of the source line has a first lateral dimension greater than a second lateral dimension of the bonding pad.

Description

積體電路結構及其形成方法Integrated Circuit Structure and Formation Method

本揭露係關於一種積體電路結構,特別係關於一種形成積體電路結構的方法。 The present disclosure relates to an integrated circuit structure, and more particularly, to a method of forming an integrated circuit structure.

本揭露一般係關於半導體元件,且特別地係關於三維(3-dimesional,3D)記憶體元件及形成此類半導體元件的方法。 The present disclosure relates generally to semiconductor devices, and more particularly to 3-dimensional (3D) memory devices and methods of forming such semiconductor devices.

由於各種電子元件(如電晶體、二極體、電阻器、電容器等)的積體密度不斷提高,半導體產業經歷了快速增長。在大多數情況下,積體密度的提高來自於最小特徵尺寸的反復減小,這允許更多的組件整合至給定面積中。 The semiconductor industry has experienced rapid growth due to the increasing bulk density of various electronic components such as transistors, diodes, resistors, capacitors, etc. In most cases, improvements in bulk density come from repeated reductions in minimum feature size, which allow more components to fit into a given area.

本揭露提供一種積體電路結構。積體電路結構包括基材、導電層、多個記憶體元件、接合墊以及源極線。導電層位於基材上方。多個記憶體元件於一垂直方向上堆疊於導電層上方。接合墊位於導電層上方。源極線自接合墊 向上延伸且具有一下部位以及一上部位。下部位嵌入於接合墊,上部位具有一側壁,相連於接合墊的一側壁。源極線的頂端具有一第一橫向尺寸。第一橫向尺寸大於接合墊的一的一第二橫向尺寸。 The present disclosure provides an integrated circuit structure. The integrated circuit structure includes a substrate, a conductive layer, a plurality of memory elements, bonding pads and source lines. A conductive layer is over the substrate. A plurality of memory elements are stacked on the conductive layer in a vertical direction. Bond pads are over the conductive layer. Source Line Self Bonding Pad It extends upward and has a lower part and an upper part. The lower part is embedded in the bonding pad, and the upper part has a side wall connected to the side wall of the bonding pad. The top of the source line has a first lateral dimension. The first lateral dimension is greater than a second lateral dimension of one of the bond pads.

於一些實施方式中,源極線的頂端的第一橫向尺寸至少大於源極線在與接合墊的一頂端等高的一位置的一第三橫向尺寸的1.5倍。 In some embodiments, the first lateral dimension of the top of the source line is at least 1.5 times larger than a third lateral dimension of the source line at a position equal to a top of the bonding pad.

於一些實施方式中,積體電路結構更包括:橫向環繞源極線以及接合墊的一介電材料。源極線的頂端的第一橫向尺寸大於位於接合墊上的介電材料的一第三橫向尺寸。 In some embodiments, the integrated circuit structure further includes: a dielectric material laterally surrounding the source line and the bonding pad. The first lateral dimension of the top of the source line is greater than a third lateral dimension of the dielectric material on the bonding pad.

於一些實施方式中,記憶體元件各包括閘極層。記憶體元件的閘極層橫向地延伸於導電層上方,且源極線的上部位重疊於記憶體元件的閘極層。 In some embodiments, the memory elements each include a gate layer. The gate layer of the memory element extends laterally above the conductive layer, and the upper part of the source line overlaps the gate layer of the memory element.

於一些實施方式中,積體電路結構更包括:於垂直方向上與記憶體元件交替堆疊的多個絕緣層。源極線的上部位重疊於絕緣層。 In some embodiments, the integrated circuit structure further includes: a plurality of insulating layers alternately stacked with the memory device in the vertical direction. The upper portion of the source line overlaps the insulating layer.

本揭露提供一種形成積體電路結構的方法。形成積體電路結構的方法包括:在一基材上形成包含有於一垂直方向上交替堆疊的多個絕緣層以及多個犧牲層的一多層堆疊結構;在多層堆疊結構中形成第一通孔;在第一通孔中形成記憶層、通道層以及第一介電材料;在多層堆疊結構中形成第二通孔;在多層堆疊結構中形成記憶體陣列;沉積第二介電材料於記憶體陣列上方以及第二通孔中;形成 源極線於第二通孔中。 The present disclosure provides a method of forming an integrated circuit structure. The method for forming an integrated circuit structure includes: forming a multilayer stack structure comprising a plurality of insulating layers alternately stacked in a vertical direction and a plurality of sacrificial layers on a substrate; forming a first via in the multilayer stack structure hole; forming a memory layer, a channel layer, and a first dielectric material in a first through hole; forming a second through hole in a multilayer stack structure; forming a memory array in a multilayer stack structure; depositing a second dielectric material on the memory above the body array and in the second via; forming The source line is in the second through hole.

於一些實施方式中,形成積體電路結構的方法更包含:形成一接合墊於該第二通孔中,其中該第二介電材料橫向環繞該源極線以及該接合墊,該源極線的一頂端的一第一橫向尺寸大於位於該接合墊上的該第二介電材料的一第二橫向尺寸。 In some embodiments, the method of forming an integrated circuit structure further includes: forming a bonding pad in the second via hole, wherein the second dielectric material laterally surrounds the source line and the bonding pad, the source line A first lateral dimension of a tip is greater than a second lateral dimension of the second dielectric material on the bond pad.

於一些實施方式中,其中形成第二介電材料更包含:對第二介電材料進行乾蝕刻製程以移除第二介電材料中位於第二通孔上方的一懸凸部。前述乾蝕刻製程包含引入一氟化碳(CxFy)氣體至第二介電材料上方,其中x與y分別為整數,且y/x小於3。 In some embodiments, forming the second dielectric material further includes: performing a dry etching process on the second dielectric material to remove an overhang portion above the second via hole in the second dielectric material. The aforementioned dry etching process includes introducing carbon monofluoride (C x F y ) gas over the second dielectric material, wherein x and y are integers, and y/x is less than 3.

於一些實施方式中,氟化碳氣體包含C4F6、C4F8、C5F8、C3F8或前述氣體的任意組合。 In some embodiments, the fluorinated carbon gas comprises C 4 F 6 , C 4 F 8 , C 5 F 8 , C 3 F 8 , or any combination thereof.

於一些實施方式中,第二通孔的頂端具有一第一橫向尺寸。第一橫向尺寸至少大於第二通孔的中間部位的一第二橫向尺寸的1.5倍。 In some embodiments, the top of the second through hole has a first lateral dimension. The first lateral dimension is at least 1.5 times larger than a second lateral dimension of the middle portion of the second through hole.

100:積體電路結構 100: Integrated circuit structure

101:半導體基材 101: Semiconductor substrate

102:隔離層 102: isolation layer

103:導電層 103: Conductive layer

103t:頂表面 103t: top surface

104:隔離層 104: isolation layer

104t:頂表面 104t: top surface

105:接觸栓塞 105: Contact plug

105t:頂表面 105t: top surface

107:記憶層 107: memory layer

108:通道層 108: Channel layer

109:介電材料 109: Dielectric material

110:多層堆疊結構 110: Multi-layer stack structure

110t:頂表面 110t: top surface

111-115:犧牲層 111-115: sacrificial layer

120:閘極層 120: gate layer

121-126:絕緣層 121-126: insulation layer

127:記憶單元 127: memory unit

131:接合墊 131: Bonding Pad

133:介電材料 133: Dielectric material

133a:上部曲面 133a: Upper surface

133b:下部傾斜面 133b: lower inclined surface

135:接合墊 135: Bonding Pad

135s:側壁 135s: side wall

135t:頂端 135t: top

137:金屬插塞 137: metal plug

137m:下部位 137m: lower part

137t:頂端 137t: top

137u:上部位 137u: upper part

137w:底端 137w: Bottom

137a:上部凹側壁 137a: upper concave side wall

137b:下部凹側壁 137b: lower concave side wall

139:層間介電層 139: interlayer dielectric layer

141:互連導電柱 141: interconnection conductive column

143:位線 143: bit line

200:積體電路結構 200: Integrated circuit structure

233:介電材料 233: Dielectric material

233a:斜面 233a: Bevel

237:金屬插塞 237: metal plug

237t:頂端 237t: top

237w:底端 237w: Bottom

237a:上部傾斜側壁 237a: Upper sloped side wall

237b:下部凹側壁 237b: lower concave side wall

300:積體電路結構 300: Integrated circuit structure

333:介電材料 333: Dielectric material

333a:上部斜面 333a: upper bevel

333b:下部斜面 333b: lower bevel

333c:中間表面 333c: middle surface

337:金屬插塞 337: metal plug

337t:頂端 337t: top

337w:底端 337w: Bottom

337a:上部側壁 337a: upper side wall

337b:下部側壁 337b: lower side wall

337c:中間表面 337c: middle surface

C1:尖角 C1: sharp corner

D1:橫向尺寸 D1: horizontal dimension

D2:橫向尺寸 D2: Horizontal dimension

O1:接觸開口 O1: contact opening

O2:通孔 O2: through hole

O21:上部位O3:通孔 O21: upper part O3: through hole

O31:上部位 O31: upper part

O32:下部位 O32: lower part

P1:蝕刻製程 P1: Etching process

P2:平坦化製程 P2: Planarization process

P3:回蝕製程 P3: Etch back process

P4:蝕刻製程 P4: Etching process

P5:回蝕製程 P5: Etch back process

P6:乾蝕刻製程 P6: Dry etching process

P7:平坦化製程 P7: Planarization process

P8:乾蝕刻製程 P8: Dry etching process

P9:乾蝕刻製程 P9: Dry etching process

R:凹槽 R: Groove

R1:圓角 R1: Fillet

R2:尖角 R2: sharp corner

R3:尖角 R3: sharp corner

R4:尖角 R4: sharp corner

S1:空間 S1: space

W1:寬度 W1: width

W2:寬度 W2: width

W3:寬度 W3: width

Wb:寬度 Wb: width

Wm:寬度 Wm: width

Wt:寬度 Wt: width

X:方向 X: direction

Y:方向 Y: Direction

Z:方向 Z: Direction

本揭露的態樣在與隨附圖式一起研讀時自以下詳細描述內容可最佳地理解。應注意,根據行業中的標準規範,各種特徵未按比例繪製。實際上,各種特徵的尺寸可為了論述清楚經任意地增大或減小。 Aspects of the present disclosure are best understood from the following Detailed Description when read with the accompanying drawings. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.

第1圖至第13圖、第14A圖、第15A圖、第16圖繪示了根據本揭露的一些實施方式的積體電路結構於各個階段 的形成方法的剖視圖。 1 to 13, 14A, 15A, and 16 illustrate integrated circuit structures at various stages according to some embodiments of the present disclosure. A cross-sectional view of the formation method.

第14B圖以及第15B圖繪示了根據本揭露的一些實施方式的積體電路結構於各個階段的形成方法的剖視圖。 FIG. 14B and FIG. 15B illustrate cross-sectional views at various stages of a method of forming an integrated circuit structure according to some embodiments of the present disclosure.

第14C圖以及第15C圖繪示了根據本揭露的一些實施方式的積體電路結構於各個階段的形成方法的剖視圖。 FIG. 14C and FIG. 15C illustrate cross-sectional views at various stages of a method of forming an integrated circuit structure according to some embodiments of the present disclosure.

以下揭示內容提供用於實施所提供標的物的不同特徵的許多不同實施方式、或實例。下文描述組件及配置的特定實例以簡化本揭露。當然,這些僅為實例且非意欲為限制性的。舉例而言,在以下描述中第一特徵於第二特徵上方或上的形成可包括第一特徵與第二特徵直接接觸地形成的實施方式,且亦可包括額外特徵可形成於第一特徵與第二特徵之間使得第一特徵與第二特徵可不直接接觸的實施方式。此外,本揭露在各種實例中可重複參考數字及/或字母。此重複係出於簡單及清楚之目的,且本身且不指明所論述之各種實施方式及/或組態之間的關係。 The following disclosure provides many different implementations, or examples, for implementing different features of the provided subject matter. Specific examples of components and configurations are described below to simplify the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, the formation of a first feature on or over a second feature in the following description may include embodiments where the first feature is formed in direct contact with the second feature, and may also include that additional features may be formed on the first feature and the second feature. An embodiment in which the first feature and the second feature may not be in direct contact between the second features. Additionally, the present disclosure may repeat reference numbers and/or letters in various instances. This repetition is for simplicity and clarity and by itself does not indicate a relationship between the various implementations and/or configurations discussed.

此外,為了便於描述,在本文中可使用空間相對術語,諸如「在......下面」、「在......之下」、「下部」、「在......之上」、「上部」及類似者,來描述諸圖中圖示之一個元件或特徵與另一(多個)元件或特徵之關係。空間相對術語意欲涵蓋除了諸圖中所描繪的定向以外的裝置在使用或操作時的不同定向。裝置可另外定向(旋轉90度或處於其他定向),且本文中所使用之空間相對描述符可 類似地加以相應解釋。 In addition, for ease of description, spatially relative terms may be used herein, such as "below", "beneath", "lower", "at ... .over", "upper" and the like, to describe the relationship between one element or feature and another (multiple) element or feature shown in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device can be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein can be be interpreted similarly.

如本文中所使用,「大約」、「約」、「大致」、或「大體上」應通常指給定值或範圍之20%內、或10%內、或5%內。然而,熟習此項技術者將認識到,在整個描述中所引用的值或範圍僅係實例,且可隨著積體電路的規模縮小而減小。本文中給定之數量為近似值,從而意謂術語「大約」、「約」「大致」、或「大體上」在並未明確陳述情況下可予以推斷。 As used herein, "about," "approximately," "approximately," or "substantially" shall generally mean within 20%, or within 10%, or within 5% of a given value or range. However, those skilled in the art will recognize that values or ranges cited throughout the description are examples only and may decrease as the scale of integrated circuits decreases. Quantities given herein are approximate, meaning that the terms "approximately," "about," "approximately," or "substantially" can be inferred where not expressly stated.

對於半導體元件的發展,高儲存密度的記憶體元件是一個發展的方向。因此,三維(3-dimesional,3D)積體電路(integrated circuit;IC)記憶體元件,例如:三維NAND,可以通過其多層結構以提供高儲存密度。然而,三維NAND中堆疊的層數越多,在三維NAND中形成源極線的難度就越大,這可能導致在源極線中形成縫隙。在源極線上進行平坦化製程之後,蝕刻氣體(例如,氟)將被捕獲/卡在縫隙中並影響後續的製程(例如:氟洩漏)。 For the development of semiconductor devices, memory devices with high storage density are a development direction. Therefore, a 3-dimensional (3D) integrated circuit (IC) memory device, such as a 3-dimensional NAND, can provide high storage density through its multi-layer structure. However, the more layers are stacked in the 3D NAND, the more difficult it is to form the source lines in the 3D NAND, which may result in the formation of gaps in the source lines. After the planarization process is performed on the source line, etching gas (eg, fluorine) will be trapped/stuck in the gap and affect subsequent processes (eg, fluorine leakage).

因此,在各種實施方式中,本揭露提供了一種頂部加寬蝕刻製程(top widen etching process),此製程可以避免在源極線中形成接縫。具體而言,頂部加寬蝕刻製程係透過在低壓下在介電材料上引入高分子蝕刻氣體來執行頂部加寬蝕刻製程以修飾源極線溝槽,並接著在修飾後之源極線溝槽中將形成源極線。頂部加寬蝕刻製程可增加電漿垂直向下衝擊介電材料的能力以擴大源極線溝槽的上部位,並同時僅以最小限度地移除源極線溝槽中的介電 材料的下部位。因此,源極線溝槽的上部位和下部位之間的差異可以被增加,以改善後續為了形成源極線所執行之沉積製程的間隙填充製程容忍度(gap fill window)並避免於源極線中形成縫隙。 Accordingly, in various embodiments, the present disclosure provides a top widen etching process that avoids the formation of seams in the source lines. Specifically, the top widening etch process is to modify the source line trench by introducing a polymer etching gas on the dielectric material under low pressure to perform the top widen etch process, and then modify the source line trench will form the source line. The top widening etch process increases the ability of the plasma to strike the dielectric material vertically down to enlarge the upper portion of the source line trench while removing only minimal dielectric in the source line trench. lower part of the material. Therefore, the difference between the upper portion and the lower portion of the source line trench can be increased to improve the gap fill window tolerance of the subsequent deposition process performed to form the source line and avoid the source line. A gap is formed in the line.

第1圖至第13圖、第14A圖、第15A圖、第16圖繪示了根據本揭露的一些實施方式的積體電路結構100於各個階段的形成方法的剖視圖。請參照第1圖,於一些實施方式中,隔離層102、導電層103以及隔離層104係依序地形成於半導體基材101上。於一些實施方式中,導電層103可做為記憶體元件的一共用源極線。接著,多個接觸開口O1係被形成以穿過隔離層102、導電層103以及隔離層104,以暴露出半導體基材101的多個部位。接著,多個接觸栓塞105分別形成於多個接觸開口O1中以透過導電層103而電性連接觸半導體基材101。 1 to 13, 14A, 15A, and 16 are cross-sectional views of various stages of a method of forming an integrated circuit structure 100 according to some embodiments of the present disclosure. Referring to FIG. 1 , in some embodiments, the isolation layer 102 , the conductive layer 103 and the isolation layer 104 are sequentially formed on the semiconductor substrate 101 . In some embodiments, the conductive layer 103 can be used as a common source line of the memory device. Next, a plurality of contact openings O1 are formed to pass through the isolation layer 102 , the conductive layer 103 and the isolation layer 104 to expose a plurality of positions of the semiconductor substrate 101 . Next, a plurality of contact plugs 105 are respectively formed in the plurality of contact openings O1 to electrically connect to the semiconductor substrate 101 through the conductive layer 103 .

於一些實施方式中,接觸栓塞105的形成方法包含進行一蝕刻製程以移除部分的隔離層102、導電層103以及隔離層104,進而形成多個接觸開口O1。接著,一導電材料,例如:多晶矽,透過一沉積製程,例如:低壓化學氣體沉積(low pressure chemical vapor deposition(LPCVD))製程,而形成於隔離層104上以填充多個接觸開口O1。接著,一平坦化製程,例如:化學機械研磨(chemical mechanical polish(CMP))製程利用隔離層104作為停止層被執行以移除位於隔離層104上方的導電材料,進而形成接觸栓塞105。因此,各個接觸栓塞105 具有頂表面105t,頂表面105t實質上高於導電層103的頂表面103t,且實質上齊平於隔離層104的頂表面104t。 In some embodiments, the method for forming the contact plug 105 includes performing an etching process to remove part of the isolation layer 102 , the conductive layer 103 and the isolation layer 104 , thereby forming a plurality of contact openings O1 . Next, a conductive material, such as polysilicon, is formed on the isolation layer 104 through a deposition process, such as a low pressure chemical vapor deposition (LPCVD) process, to fill the plurality of contact openings O1. Next, a planarization process, such as chemical mechanical polish (CMP) process is performed using the isolation layer 104 as a stop layer to remove the conductive material above the isolation layer 104 to form the contact plug 105 . Therefore, each contact plug 105 It has a top surface 105t, the top surface 105t is substantially higher than the top surface 103t of the conductive layer 103, and is substantially flush with the top surface 104t of the isolation layer 104.

於一些實施方式中,半導體基材101的材質可包含p型摻雜或n型摻雜的半導體材料或非摻雜的半導體材料,例如:多晶矽、鍺或任何其他適合的半導體材料。於一些實施方式中,隔離層102、104的材質可包含介電材料,例如:氧化矽、氮化矽、氮氧化矽、矽酸鹽、前述材料的任意組合或任何適當的介電材料。於一些實施方式中,接觸栓塞105的材質可包含TiN、TaN、Ti、Ta、Cu、Al、Ag、W、Ir、Ru、Pt、前述材料的任意組合或其他適合的導電材料。 In some embodiments, the material of the semiconductor substrate 101 may include p-type doped or n-type doped semiconductor material or undoped semiconductor material, such as polysilicon, germanium or any other suitable semiconductor material. In some embodiments, the material of the isolation layers 102 and 104 may include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, silicate, any combination of the foregoing materials, or any suitable dielectric material. In some embodiments, the material of the contact plug 105 may include TiN, TaN, Ti, Ta, Cu, Al, Ag, W, Ir, Ru, Pt, any combination of the foregoing materials, or other suitable conductive materials.

請參考第2圖,包含有交替堆疊的絕緣層121-126和犧牲層111-115的多層堆疊結構110形成在半導體基材101上。絕緣層121-126以及犧牲層111-115係彼此平行地延伸配置且沿著方向Z交互的堆疊。絕緣層121以及絕緣層126分別作為多層堆疊結構110的最底層以及最頂層。於一些實施方式中,多層堆疊結構110也可被稱為膜狀堆疊結構。 Referring to FIG. 2 , a multi-layer stack structure 110 comprising alternately stacked insulating layers 121 - 126 and sacrificial layers 111 - 115 is formed on a semiconductor substrate 101 . The insulating layers 121 - 126 and the sacrificial layers 111 - 115 are arranged parallel to each other and alternately stacked along the direction Z. The insulating layer 121 and the insulating layer 126 serve as the bottommost layer and the topmost layer of the multilayer stack structure 110 respectively. In some embodiments, the multi-layer stack structure 110 may also be called a film-like stack structure.

於一些實施方式中,犧牲層111-115的材質可包含氮化矽化合物,例如:氮化矽、氮氧化矽、氮碳化矽或前述材料的任意組合。於一些實施方式中,位於最頂的犧牲層115也可被稱為虛擬源極線氮化矽層,而犧牲層111-114也可被稱為虛擬字線氮化矽層。於一些實施方式 中,絕緣層121-126的材質可包含介電材料,例如:氧化矽、氮化矽、氮氧化矽、矽酸鹽或前述材料的任意組合。於一些實施方式中,位於最頂的絕緣層126也可被稱為硬遮罩氧化物層。然而,應注意的是,在本揭露的實施方式中,犧牲層111-115的材質係不同於與絕緣層121-126的材質。舉例而言,犧牲層111-115的材質可為氮化矽,而絕緣層121-126的材質可為氧化矽。於一些實施方式中,犧牲層111-115以及絕緣層121-126可透過低壓化學氣相沉積(low pressure chemical vapor deposition(LPCVD))而形成。 In some embodiments, the material of the sacrificial layers 111 - 115 may include silicon nitride compounds, such as silicon nitride, silicon oxynitride, silicon carbide nitride, or any combination of the aforementioned materials. In some embodiments, the top sacrificial layer 115 may also be called a dummy source line silicon nitride layer, and the sacrificial layers 111 - 114 may also be called a dummy word line silicon nitride layer. in some implementations Among them, the material of the insulating layers 121-126 may include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, silicate, or any combination of the aforementioned materials. In some embodiments, the top insulating layer 126 may also be referred to as a hard mask oxide layer. However, it should be noted that, in the embodiments of the present disclosure, the material of the sacrificial layers 111-115 is different from that of the insulating layers 121-126. For example, the material of the sacrificial layers 111-115 can be silicon nitride, and the material of the insulating layers 121-126 can be silicon oxide. In some embodiments, the sacrificial layers 111-115 and the insulating layers 121-126 can be formed by low pressure chemical vapor deposition (LPCVD).

請參考第3圖,蝕刻製程P1,例如:通孔製程(hole etch process),係被執行而形成穿過多層堆疊結構110的多個通孔O2以暴露接觸栓塞105。於一些實施方式中,蝕刻製程P1可為非等向性蝕刻製程,例如:反應性離子蝕刻(reactive ion etching;RIE)製程。蝕刻製程P1係利用一圖案化的硬遮罩層(圖未示)作為蝕刻遮罩而被執行於多層堆疊結構110上。通孔O2可為沿著方向Z延伸而穿過多層堆疊結構110的圓孔狀通孔,並延伸至接觸栓塞105的頂表面105t。犧牲層111-115以及絕緣層121-126所暴露的多個部位可做為通孔O2的側壁。 Referring to FIG. 3 , an etching process P1 , such as a hole etch process, is performed to form a plurality of via holes O2 through the multilayer stack structure 110 to expose the contact plugs 105 . In some embodiments, the etching process P1 may be an anisotropic etching process, such as a reactive ion etching (RIE) process. The etching process P1 is performed on the multilayer stack structure 110 by using a patterned hard mask layer (not shown) as an etching mask. The via hole O2 may be a circular hole-shaped via hole extending along the direction Z through the multilayer stack structure 110 , and extending to the top surface 105 t of the contact plug 105 . The exposed portions of the sacrificial layers 111-115 and the insulating layers 121-126 can be used as sidewalls of the via hole O2.

請參考第4圖,記憶層107以及通道層108依序形成在通孔O2的側壁。因此,記憶層107係設置於通道層108與犧牲層111-115之間。於一些實施方式中,記憶層107可包含複合層。前述複合層具有但不限制於氧化 物層-氮化物層-氧化物層(oxide-nitride-oxide;ONO)結構、氧化物層-氮化物層-氧化物層-氮化物層-氧化物層(oxide-nitride-oxide;ONONO)結構或氧化物層-氮化物層-氧化物層-氮化物層-氧化物層-氮化物層-氧化物層(oxide-nitride-oxide;ONONONO)結構,且共形地形成而覆蓋在多層堆疊結構110上方、通孔O2的側壁以及底部。接著,一蝕刻製程係被執行以移除前述複合層的位於多層堆疊結構110的頂表面110t以及通孔O2的底部上的部分,使得接觸栓塞105的頂表面105t被暴露出。 Please refer to FIG. 4, the memory layer 107 and the channel layer 108 are sequentially formed on the sidewall of the through hole O2. Therefore, the memory layer 107 is disposed between the channel layer 108 and the sacrificial layers 111-115. In some embodiments, the memory layer 107 may include composite layers. The aforementioned composite layer has but is not limited to oxidation Material layer-nitride layer-oxide layer (oxide-nitride-oxide; ONO) structure, oxide layer-nitride layer-oxide layer-nitride layer-oxide layer (oxide-nitride-oxide; ONONO) structure Or oxide layer-nitride layer-oxide layer-nitride layer-oxide layer-nitride layer-oxide layer (oxide-nitride-oxide; ONONONO) structure, and conformally formed to cover the multilayer stack structure 110, the sidewall and the bottom of the through hole O2. Next, an etching process is performed to remove the above composite layer on the top surface 110t of the multilayer stack structure 110 and the bottom of the via hole O2, so that the top surface 105t of the contact plug 105 is exposed.

接著,通道層108共形地沉積於記憶層107上方,因而積體電路結構100可包含垂直通道快閃記憶體元件。通道層108係電性接觸於接觸栓塞105的頂表面105t。於一些實施方式中,通道層108可包含半導體材料,例如:多晶矽、鍺或其他摻雜或非摻雜的半導體材料。舉例而言,通道層108的材質可包含非摻雜的多晶矽。 Next, a channel layer 108 is conformally deposited over the memory layer 107 so that the integrated circuit structure 100 can include vertical channel flash memory devices. The channel layer 108 is in electrical contact with the top surface 105t of the contact plug 105 . In some embodiments, the channel layer 108 may include semiconductor materials, such as polysilicon, germanium or other doped or undoped semiconductor materials. For example, the material of the channel layer 108 may include undoped polysilicon.

請參考第5圖,介電材料109沉積於通道層108上方並且填充於通孔O2中。於一些實施方式中,介電材料109的材質可包含氧化矽。於一些實施方式中,介電材料109可使用相同於絕緣層121-126的材料所製成。於一些實施方式中,介電材料109可使用不同於絕緣層121-126的材料所製成。 Referring to FIG. 5, a dielectric material 109 is deposited over the channel layer 108 and filled in the via hole O2. In some implementations, the material of the dielectric material 109 may include silicon oxide. In some embodiments, the dielectric material 109 can be made of the same material as the insulating layers 121-126. In some embodiments, the dielectric material 109 may be made of a material different from the insulating layers 121-126.

請參考第6圖,平坦化製程P2(例如:化學機械研磨(chemical mechanical polishing;CMP)製程)係 被執行以移除在多層堆疊結構110的頂表面110t上方多餘的介電材料109以及通道層108。在此步驟進行之後,通道層108會環繞位於通孔O2中的介電材料109。記憶層107會環繞位於於通孔O2中的通道層108。 Please refer to FIG. 6, the planarization process P2 (for example: chemical mechanical polishing (CMP) process) is is performed to remove excess dielectric material 109 and channel layer 108 above the top surface 110t of the multilayer stack structure 110 . After this step, the channel layer 108 surrounds the dielectric material 109 in the via O2. The memory layer 107 surrounds the channel layer 108 located in the through hole O2.

請參考第7圖,對介電材料109、通道層108以及記憶層107執行回蝕(etching back)製程P3以再現通孔O2的上部位O21。於一些實施方式中,回蝕製程P3可為濕蝕刻製程,例如:將半導體基材101浸入氫氟酸(hydrofluoric acid;HF)中。於一些實施方式中,回蝕製程P3可為乾蝕刻製程。舉例而言,乾蝕刻製程的執行可利用氫氟酸/氨(HF/NH3)或三氟化氮/氨(NF3/NH3)作為蝕刻氣體。 Referring to FIG. 7 , an etching back process P3 is performed on the dielectric material 109 , the channel layer 108 and the memory layer 107 to reproduce the upper portion O21 of the through hole O2 . In some embodiments, the etch-back process P3 may be a wet etching process, for example, immersing the semiconductor substrate 101 in hydrofluoric acid (HF). In some implementations, the etch-back process P3 may be a dry etching process. For example, the dry etching process may be performed using hydrofluoric acid/ammonia (HF/NH 3 ) or nitrogen trifluoride/ammonia (NF 3 /NH 3 ) as the etching gas.

請參考第8圖,接合墊131係形成於通孔O2的上部位O21中並位於介電材料109上以與通道層108形成電性接觸。於一些實施方式中,接合墊131係藉由於多層堆疊結構110上方沉積多晶矽、鍺或摻雜的半導體材料所形成。一般而言,前述摻雜的半導體材料可使用n型摻雜劑(N+),例如:磷或砷。接著,一平坦化製程可被執行以移除在多層堆疊結構110的頂表面110t上方多餘的半導體材料。在此步驟進行之後,接合墊131可形成如第8圖所示。於一些實施方式中,接合墊131可為p型摻雜(P+)多晶矽接合墊。 Referring to FIG. 8 , the bonding pad 131 is formed in the upper portion O21 of the via hole O2 and located on the dielectric material 109 to form electrical contact with the channel layer 108 . In some embodiments, the bonding pads 131 are formed by depositing polysilicon, germanium or doped semiconductor material over the multilayer stack structure 110 . In general, n-type dopants (N + ), such as phosphorus or arsenic, can be used for the aforementioned doped semiconductor materials. Next, a planarization process may be performed to remove excess semiconductor material above the top surface 110 t of the multilayer stack structure 110 . After this step is performed, the bonding pads 131 can be formed as shown in FIG. 8 . In some embodiments, the bonding pad 131 may be a p-type doped (P + ) polysilicon bonding pad.

請參考第9圖,蝕刻製程P4係被執行以形成沿著方向Z穿過多層堆疊結構110並終止在導電層103的頂 表面103t的通孔O3,藉此通孔O3可部分暴露出犧牲層111-115以及絕緣層121-126。於一些實施方式中,蝕刻製程P4可為非等向性蝕刻製程,例如:反應性離子蝕刻(reactive ion etching;RIE)製程。蝕刻製程P4係利用一圖案化的硬遮罩層(圖未示)作為蝕刻遮罩而被執行於多層堆疊結構110上。如第9圖所示,當蝕刻製程P4完成時,通孔O3可以形成為具有碗形截面輪廓。具體而言,當於一剖面視角下,通孔O3的寬度可自通孔O3的下部位向通孔O3的中部位漸增,並且從通孔O3的中間部位向通孔O3的上部位漸減。於一些實施方式中,通孔O3可以與多層堆疊110中犧牲層111-115以及絕緣層122-125中之一者相同的一水平高度上具有最大寬度。於一些實施方式中,通孔O3可以在通孔O3的中間位置具有最大寬度Wm,最大寬度Wm大於通孔O3的底端和頂端的寬度Wb和寬度Wt。於一些實施方式中,通孔O3的最大寬度Wm係位於與犧牲層111-115中的最高一者的頂表面相同的一水平高度。於一些實施方式中,通孔O3也可被稱為源極線溝槽(source line trench;SLT)。於一些實施方式中,寬度也可被稱為橫向尺寸。 Please refer to FIG. 9, the etching process P4 is performed to form a multilayer stack structure 110 along the direction Z and terminate at the top of the conductive layer 103 The through hole O3 on the surface 103t, whereby the through hole O3 can partially expose the sacrificial layers 111-115 and the insulating layers 121-126. In some embodiments, the etching process P4 may be an anisotropic etching process, such as a reactive ion etching (RIE) process. The etching process P4 is performed on the multilayer stack structure 110 using a patterned hard mask layer (not shown) as an etching mask. As shown in FIG. 9, when the etching process P4 is completed, the via hole O3 may be formed to have a bowl-shaped cross-sectional profile. Specifically, in a cross-sectional view, the width of the through hole O3 can gradually increase from the lower part of the through hole O3 to the middle part of the through hole O3, and gradually decrease from the middle part of the through hole O3 to the upper part of the through hole O3. . In some embodiments, the via O3 may have a maximum width at the same level as one of the sacrificial layers 111 - 115 and the insulating layers 122 - 125 in the multilayer stack 110 . In some embodiments, the through hole O3 may have a maximum width Wm at a middle position of the through hole O3, and the maximum width Wm is greater than the width Wb and the width Wt of the bottom and top ends of the through hole O3. In some embodiments, the maximum width Wm of the via hole O3 is located at the same level as the top surface of the tallest one of the sacrificial layers 111 - 115 . In some embodiments, the through hole O3 may also be called a source line trench (SLT). In some embodiments, width may also be referred to as a lateral dimension.

請參考第10圖,犧牲層111-115係使用,例如:磷酸(phosphoric acid;H3PO4),並透過通孔O3而被移除,以暴露出部分的記憶層107。因此,空間S1係被形成而繼承了犧牲層111-115的形狀。 Please refer to FIG. 10 , the sacrificial layers 111 - 115 are made of phosphoric acid (phosphoric acid; H 3 PO 4 ), and removed through the through hole O3 to expose part of the memory layer 107 . Therefore, the space S1 is formed to inherit the shape of the sacrificial layers 111-115.

請參考第11圖,多個閘極層120透過通孔O3而 形成於空間S1中。因此,多個記憶單元127可被定義在閘極層120、記憶層107以及通道層108交會的位置,以在多層堆疊結構110中形成記憶體單元陣列。於一些實施方式中,記憶單元127也可被稱為記憶體元件。於一些實施方式中,閘極層120的材質可包含多晶矽、金屬或其他適合的導電材料。於一些實施方式中,閘極層120可包含多個金屬層,例如:TiN/W,TaN/W,TaN/Cu或其他適合的金屬層。於一些實施方式中,閘極層120可包含介電層,例如:AlOx。舉例而言,每一閘極層120可為多層結構而包含高介電常數材料層(例如:HfOx層或AlOx層)、TiN層以及鎢層。於一些實施方式中,多個閘極層120中的至少一者的橫向端部可朝向記憶層107凹陷。 Please refer to FIG. 11 , a plurality of gate layers 120 are formed in the space S1 through the via hole O3. Therefore, a plurality of memory cells 127 can be defined at the intersection of the gate layer 120 , the memory layer 107 and the channel layer 108 to form a memory cell array in the multilayer stack structure 110 . In some embodiments, the memory unit 127 can also be called a memory element. In some embodiments, the material of the gate layer 120 may include polysilicon, metal or other suitable conductive materials. In some embodiments, the gate layer 120 may include multiple metal layers, such as TiN/W, TaN/W, TaN/Cu or other suitable metal layers. In some embodiments, the gate layer 120 may include a dielectric layer, such as AlO x . For example, each gate layer 120 may be a multi-layer structure including a high dielectric constant material layer (for example: HfO x layer or AlO x layer), a TiN layer and a tungsten layer. In some embodiments, a lateral end of at least one of the plurality of gate layers 120 may be recessed toward the memory layer 107 .

請參考第12圖,介電材料133沉積於多層堆疊結構110上方並且填充於通孔O3中以襯於通孔O3的側壁。於一些實施方式中,介電材料133的材質可包含介電材料,例如:氧化矽、氮化矽、氮氧化矽、矽酸鹽、前述材料的任意組合或任何適當的介電材料。於一些實施方式中,介電材料133的材質可相同於絕緣層121-126的材質。於一些實施方式中,介電材料133的材質可不同於絕緣層121-126的材質。接著,一蝕刻製程係被執行以移除介電材料133位於導電層103的頂表面103t的部位以使得導電層103被暴露出。 Referring to FIG. 12, a dielectric material 133 is deposited over the multilayer stack structure 110 and filled in the via O3 to line the sidewall of the via O3. In some embodiments, the material of the dielectric material 133 may include a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride, silicate, any combination of the foregoing materials, or any suitable dielectric material. In some embodiments, the material of the dielectric material 133 may be the same as that of the insulating layers 121-126. In some embodiments, the material of the dielectric material 133 may be different from the material of the insulating layers 121-126. Next, an etching process is performed to remove the portion of the dielectric material 133 located on the top surface 103t of the conductive layer 103 so that the conductive layer 103 is exposed.

請參考第13圖,接合墊135係形成於通孔O3中以與導電層103形成電性接觸。於一些實施方式中,接合 墊135係藉由於多層堆疊結構110上方沉積多晶矽、鍺或摻雜的半導體材料所形成。一般而言,前述摻雜的半導體材料可使用n型摻雜劑(N+),例如:磷或砷。接著,一平坦化製程可被執行以移除在多層堆疊結構110的頂表面110t上方多餘的半導體材料。接著,對接合墊135執行退火(annealing)製程。接著,對接合墊135執行回蝕(etching back)製程P5以再現通孔O3的上部位O31。於一些實施方式中,回蝕製程P5可為濕蝕刻製程,例如:將半導體基材101浸入氫氟酸(hydrofluoric acid;HF)中。於一些實施方式中,回蝕製程P5可為乾蝕刻製程。舉例而言,乾蝕刻製程的執行可利用氫氟酸/氨(HF/NH3)或三氟化氮/氨(NF3/NH3)作為蝕刻氣體。在此步驟進行之後,接合墊135可形成如第13圖所示。於一些實施方式中,接合墊135可為p型摻雜(P+)多晶矽接合墊。於一些實施方式中,由於沉積的性質,接合墊135在其頂面具有凹槽R。 Please refer to FIG. 13 , the bonding pad 135 is formed in the through hole O3 to form electrical contact with the conductive layer 103 . In some embodiments, the bonding pads 135 are formed by depositing polysilicon, germanium or doped semiconductor material over the multilayer stack structure 110 . In general, n-type dopants (N + ), such as phosphorus or arsenic, can be used for the aforementioned doped semiconductor materials. Next, a planarization process may be performed to remove excess semiconductor material above the top surface 110 t of the multilayer stack structure 110 . Next, an annealing process is performed on the bonding pads 135 . Next, an etching back process P5 is performed on the bonding pad 135 to reproduce the upper portion O31 of the through hole O3. In some embodiments, the etch-back process P5 may be a wet etching process, for example, immersing the semiconductor substrate 101 in hydrofluoric acid (HF). In some embodiments, the etch-back process P5 may be a dry etching process. For example, the dry etching process may be performed using hydrofluoric acid/ammonia (HF/NH 3 ) or nitrogen trifluoride/ammonia (NF 3 /NH 3 ) as the etching gas. After this step is performed, bond pads 135 may be formed as shown in FIG. 13 . In some embodiments, the bonding pad 135 may be a p-type doped (P + ) polysilicon bonding pad. In some embodiments, due to the nature of the deposition, the bond pad 135 has a groove R on its top surface.

請參考第14A圖,對介電材料133執行一乾蝕刻製程P6以移除介電材料133上靠近通孔O3的尖角C1(見第13圖),使得通孔O3的上部位O31的橫向尺寸D1可以被擴大,進而改善了隨後的一個或多個沉積製程(例如,用於形成如第15A圖中所示的位於通孔O3中的金屬插塞137的製程)的間隙填充製程容忍度,且避免了在金屬插塞137中形成縫隙(seam)。於一些實施方式中,乾蝕刻製程P6也可被稱為頂部加寬蝕刻製程。於一些實施方式中,尖 角C1也可被稱為懸凸部。 Please refer to FIG. 14A, perform a dry etching process P6 on the dielectric material 133 to remove the sharp corner C1 (see FIG. 13 ) close to the through hole O3 on the dielectric material 133, so that the lateral dimension of the upper part O31 of the through hole O3 D1 may be enlarged to improve the gap-fill process tolerance of one or more subsequent deposition processes (eg, the process used to form metal plug 137 in via O3 as shown in FIG. 15A ), And avoid forming a seam in the metal plug 137 . In some embodiments, the dry etching process P6 may also be called a top widening etching process. In some embodiments, the pointed Corner C1 may also be referred to as an overhang.

如果通孔O3的上部位O31的橫向尺寸D1小於通孔O3在與接合墊135的最頂端齊平的位置處的橫向尺寸D2(例如:具有碗形輪廓的通孔),通孔O3的間隙填充製程容忍度可能太小而無法使得隨後的沉積製程可適當地在具有碗形輪廓的通孔中進行,因而縫隙會形成在通孔O3中的金屬插塞中。在金屬插塞上進行平坦化製程之後,蝕刻氣體(例如:氟)將被捕獲/卡在縫隙中並影響後續的製程(例如:氟洩漏)。 If the lateral dimension D1 of the upper portion O31 of the via O3 is smaller than the lateral dimension D2 of the via O3 at a position flush with the topmost end of the bonding pad 135 (for example: a via hole with a bowl-shaped profile), the clearance of the via O3 The fill process tolerance may be too small for the subsequent deposition process to properly proceed in the via with the bowl-shaped profile, so that a gap is formed in the metal plug in the via O3. After the planarization process on the metal plug, etching gas (eg, fluorine) will be trapped/stuck in the gap and affect subsequent processes (eg, fluorine leakage).

因此,本揭露提供一種可避免在通孔O3中的金屬插塞中形成縫隙的方法。具體而言,乾蝕刻製程P6是透過將高分子蝕刻氣體引入其中具有半導體基材101的處理腔室來執行的。在將高分子化學物質引入處理腔室之後,電漿(plasma)會被觸發而形成。乾蝕刻製程P6會電漿中的離子相對於半導體基材101的表面上下移動。 Therefore, the present disclosure provides a method for avoiding the formation of a gap in the metal plug in the via O3. Specifically, the dry etching process P6 is performed by introducing a polymer etching gas into the processing chamber having the semiconductor substrate 101 therein. After the polymer chemical is introduced into the processing chamber, a plasma is triggered to form. The dry etching process P6 causes ions in the plasma to move up and down relative to the surface of the semiconductor substrate 101 .

於一些實施方式中,半導體基材101下方的晶圓支撐結構可做為電容耦合結構的一塊板,而半導體基材101上方的導電電漿則提供互補電極。乾蝕刻製程P6的射頻(radio frequency;RF)偏置功率電性連接至晶圓支撐件,以產生與半導體基材101的表面正交的電場,前述電場可以加速電漿離子進入和離開半導體基材101的表面。離子濺射通過物理轟擊表面以蝕刻半導體基材101的表面,進而去除介電材料133的尖角C1(見第13圖)。 In some embodiments, the wafer support structure below the semiconductor substrate 101 may serve as a plate of the capacitive coupling structure, while the conductive plasma above the semiconductor substrate 101 provides a complementary electrode. The radio frequency (radio frequency; RF) bias power of the dry etching process P6 is electrically connected to the wafer support to generate an electric field perpendicular to the surface of the semiconductor substrate 101. The aforementioned electric field can accelerate plasma ions entering and leaving the semiconductor substrate. The surface of material 101. Ion sputtering etches the surface of the semiconductor substrate 101 by physically bombarding the surface, thereby removing the sharp corner C1 of the dielectric material 133 (see FIG. 13 ).

於一些實施方式中,乾蝕刻製程P6可為電漿蝕刻 製程,並使用高分子氣體(例如:氟化碳(CxFy))、氧氣(O2)以及氬氣(Ar)且在低壓下進行,這樣增加了電漿垂直向下衝擊介電材料133的能力以擴大通孔O3的上部位O31,並同時僅以最小限度地移除通孔O3中的介電材料133的下部位。因此,通孔O3的上部位O31和下部位O32之間的差異可以被增加,以改善後續沉積製程的間隙填充製程容忍度。作為舉例而非限製本揭露,通孔O3的橫向尺寸D1可以至少大於通孔O3的橫向尺寸D2的1.5倍,其中橫向尺寸D2係位於在與接合墊135的最頂端齊平的位置。 In some embodiments, the dry etching process P6 can be a plasma etching process, and uses a polymer gas (eg: carbon fluoride (C x F y )), oxygen (O 2 ) and argon (Ar) at a low pressure This increases the ability of the plasma to strike the dielectric material 133 vertically downward to enlarge the upper portion O31 of the via O3 while only minimally removing the lower portion of the dielectric material 133 in the via O3. Therefore, the difference between the upper portion O31 and the lower portion O32 of the via hole O3 can be increased to improve the gapfill process tolerance of the subsequent deposition process. By way of example and not limitation of the present disclosure, the lateral dimension D1 of the via O3 may be at least 1.5 times greater than the lateral dimension D2 of the via O3 , wherein the lateral dimension D2 is located flush with the topmost end of the bonding pad 135 .

於一些實施方式中,高聚合氣體(例如:氟化碳(CxFy)氣體,其中x與y分別為整數,且y/x小於3)可提供更多的電漿物質以用於濺射蝕刻介電材料133的上層。於一些實施方式中,氟化碳氣體可包含C4F6、C4F8、C5F8、C3F8或前述氣體的任意組合。於一些實施方式中,在乾蝕刻製程P6中所使用的蝕刻氣體可不同於在回蝕製程P5(參見第13圖)和/或蝕刻製程P4(參見第9圖)中所使用的蝕刻氣體。在蝕刻過程中,乾蝕刻製程P6中高分子氣體流入處理腔室的流量可以在約20至50sccm的範圍(例如:20、30、40或50sccm),且氬氣流入處理腔室的流量可以在從大約200到500sccm的範圍(例如:200、250、300、350、400、450或500sccm)。 In some embodiments, a highly polymeric gas (eg, carbon fluoride (C x F y ) gas, where x and y are integers, and y/x is less than 3) can provide more plasma species for splashing The upper layer of dielectric material 133 is shot etched. In some embodiments, the fluorinated carbon gas may comprise C 4 F 6 , C 4 F 8 , C 5 F 8 , C 3 F 8 , or any combination thereof. In some embodiments, the etching gas used in the dry etching process P6 may be different from the etching gas used in the etch-back process P5 (see FIG. 13 ) and/or the etching process P4 (see FIG. 9 ). During the etching process, the flow rate of the polymer gas flowing into the processing chamber in the dry etching process P6 can be in the range of about 20 to 50 sccm (for example: 20, 30, 40 or 50 sccm), and the flow rate of the argon gas flowing into the processing chamber can be from 20 to 50 sccm. In the range of about 200 to 500 seem (eg: 200, 250, 300, 350, 400, 450 or 500 seem).

於一些實施方式中,乾蝕刻製程P6中的壓力可以在約10至100mT的範圍(例如:約10、20、30、40、 50、60、70、80、90或100mT)。於一些實施方式中,乾蝕刻製程P6可在低於回蝕製程P5(參見第13圖)和/或蝕刻製程P4(參見第9圖)的壓力下進行。於一些實施方式中,乾蝕刻製程P6的持續時間可大於約15秒。在乾蝕刻製程P6的執行期間,電漿可以透過開啟頂部射頻源產生器以及射頻偏壓產生器來形成,其中頂部射頻源產生器的頻率在大約1到3MHz的範圍(例如:1、1.5、2、2.5或3MHz),而功率在大約800到1200的範圍(例如,800、900、1000、1100或1200W),射頻偏壓產生器的頻率在大約25到35MHz的範圍(例如:25、27、30或35MHz),而功率在大約3000到4000的範圍(例如,3000、3500或4000W)。於一些實施方式中,射頻偏壓產生器的射頻偏壓功率的增加可以增加通孔O3的上部位O31與下部位O32之間寬度的差異,使得可後續沉積製程的間隙填充製程容忍度可以被改善。 In some embodiments, the pressure in the dry etching process P6 may be in the range of about 10 to 100 mT (for example: about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100mT). In some embodiments, dry etching process P6 may be performed at a lower pressure than etch-back process P5 (see FIG. 13 ) and/or etching process P4 (see FIG. 9 ). In some embodiments, the duration of the dry etching process P6 may be greater than about 15 seconds. During the execution of the dry etching process P6, the plasma can be formed by turning on the top RF source generator and the RF bias voltage generator, wherein the frequency of the top RF source generator is in the range of about 1 to 3 MHz (for example: 1, 1.5, 2, 2.5 or 3MHz), while the power is in the range of about 800 to 1200 (for example, 800, 900, 1000, 1100 or 1200W), and the frequency of the RF bias generator is in the range of about 25 to 35MHz (for example: 25, 27 , 30 or 35MHz), and the power is in the range of about 3000 to 4000 (for example, 3000, 3500 or 4000W). In some embodiments, the increase of the RF bias power of the RF bias generator can increase the width difference between the upper part O31 and the lower part O32 of the through hole O3, so that the gap filling process tolerance of the subsequent deposition process can be improved. improve.

因此,與不進行乾蝕刻製程P6的情況相比,乾蝕刻製程P6可抑制在介電材料133上形成懸凸(overhang),因而改善了一個或多個後續沉積製程的間隙填充製程容忍度(例如:形成如第15A圖所示之金屬插塞137的製程)。乾蝕刻製程P6中的濺射蝕刻可導致在介電材料133上形成圓角R1,圓角R1包括上部曲面133a和具有比曲面133a更陡的斜率的下部傾斜面133b。上部曲面133a和下部傾斜面133b的形成使得介電材料133中通孔O3的上部位O31的剩餘部分隨著其延伸遠離接合 墊135而變寬,因而改善了一個或多個後續沉積製程的間隙填充製程容忍度。於一些實施方式中,如圖14A所示的介電材料133中的通孔O3的上部位O31的剩餘部分也可被稱為紅酒杯形輪廓。於一些實施方式中,本揭露也可應用於動態隨機存取記憶體(dynamic random access memory;DARM)、NOR快閃記憶體(NOR flash memory)或NAND快閃記憶體(NAND flash memory)中的其他介電材料或電導蝕刻(conductance etch)。 Accordingly, the dry etching process P6 can suppress the formation of overhangs on the dielectric material 133 compared to the case where the dry etching process P6 is not performed, thereby improving the gap-fill process tolerance of one or more subsequent deposition processes ( For example: the process of forming the metal plug 137 as shown in FIG. 15A). The sputter etching in the dry etching process P6 may result in the formation of a fillet R1 on the dielectric material 133 , and the fillet R1 includes an upper curved surface 133 a and a lower inclined surface 133 b having a steeper slope than the curved surface 133 a. The upper curved surface 133a and the lower inclined surface 133b are formed such that the remaining portion of the upper portion O31 of the through hole O3 in the dielectric material 133 moves away from the joint as it extends Pad 135 is widened, thereby improving gapfill process tolerance for one or more subsequent deposition processes. In some embodiments, the remaining portion of the upper portion O31 of the through hole O3 in the dielectric material 133 as shown in FIG. 14A may also be called a wine glass-shaped profile. In some embodiments, the present disclosure can also be applied to dynamic random access memory (dynamic random access memory; DARM), NOR flash memory (NOR flash memory) or NAND flash memory (NAND flash memory) Other dielectric materials or conductance etch.

請參考第15A圖,金屬插塞137形成在通孔O3的上部位O31。具體而言,導電材料沉積在多層堆疊結構110上方,並填充於通孔O3中。接著,平坦化製程P7(例如:化學機械研磨(chemical mechanical polishing;CMP)製程)係被執行以移除在多層堆疊結構110的頂表面110t上方多餘的導電材料。在此步驟進行之後,金屬插塞137形成在通孔O3中。金屬插塞137可透過介電材料133與閘極層120電性絕緣,並通過接合墊135與導電層103電性接觸。於一些實施方式中,金屬插塞137也可被稱為源極線。於一些實施方式中,金屬插塞137的材質可包含TiN、TaN、Ti、Ta、Cu、Al、Ag、W、Ir、Ru、Pt、前述材料的任意組合或其他適合的導電材料。 Referring to FIG. 15A, the metal plug 137 is formed on the upper portion O31 of the through hole O3. Specifically, a conductive material is deposited on the multi-layer stack structure 110 and filled in the through hole O3. Next, a planarization process P7 (such as a chemical mechanical polishing (CMP) process) is performed to remove excess conductive material above the top surface 110 t of the multilayer stack structure 110 . After this step is performed, a metal plug 137 is formed in the via O3. The metal plug 137 can be electrically insulated from the gate layer 120 through the dielectric material 133 and electrically connected to the conductive layer 103 through the bonding pad 135 . In some embodiments, the metal plug 137 may also be called a source line. In some embodiments, the material of the metal plug 137 may include TiN, TaN, Ti, Ta, Cu, Al, Ag, W, Ir, Ru, Pt, any combination of the foregoing materials, or other suitable conductive materials.

金屬插塞137自接合墊135向上延伸且具有下部位137m以及上部位137u。金屬插塞137的下部位137m嵌入於接合墊135。於一些實施方式中,金屬插塞137的上部位137u可具有上部凹側壁137a,而金屬插塞137 的下部位137m可具有下部凹側壁137b。金屬插塞137的上部位137u的上部凹側壁137a可相連於接合墊135的側壁135s。金屬插塞137可具有從其底端137w到其頂端137t增加的寬度。金屬插塞137的頂端137t的寬度W1大於接合墊135的寬度。於一些實施方式中,金屬插塞137的頂端137t的寬度W1可至少大於金屬插塞137與接合墊135的頂端135t齊平處的寬度W2的1.5倍。於一些實施方式中,金屬插塞137的頂端137t或上部位137u可重疊閘極層120。於一些實施方式中,金屬插塞137的頂端137t的橫向尺寸可大於通孔O3的最大橫向尺寸。於一些實施方式中,金屬插塞137中不存在縫隙。介電材料133橫向環繞金屬插塞137以及接合墊135。於一些實施方式中,金屬插塞137的頂端137t的寬度W1可大於位於接合墊135上的介電材料133的寬度W3。於一些實施方式中,金屬插塞137的上部位137u可重疊於絕緣層122-125。 The metal plug 137 extends upward from the bonding pad 135 and has a lower portion 137m and an upper portion 137u. The lower portion 137 m of the metal plug 137 is embedded in the bonding pad 135 . In some embodiments, the upper portion 137u of the metal plug 137 may have an upper concave sidewall 137a, and the metal plug 137 The lower portion 137m of the can have a lower concave side wall 137b. The upper concave sidewall 137a of the upper portion 137u of the metal plug 137 can be connected to the sidewall 135s of the bonding pad 135 . The metal plug 137 may have a width that increases from its bottom end 137w to its top end 137t. The width W1 of the top end 137 t of the metal plug 137 is greater than the width of the bonding pad 135 . In some embodiments, the width W1 of the top end 137 t of the metal plug 137 may be at least 1.5 times greater than the width W2 of the metal plug 137 flush with the top end 135 t of the bonding pad 135 . In some embodiments, the top 137t or the upper portion 137u of the metal plug 137 can overlap the gate layer 120 . In some embodiments, the lateral dimension of the top end 137t of the metal plug 137 may be larger than the maximum lateral dimension of the through hole O3. In some embodiments, there is no gap in the metal plug 137 . Dielectric material 133 laterally surrounds metal plug 137 and bond pad 135 . In some embodiments, the width W1 of the top end 137 t of the metal plug 137 may be greater than the width W3 of the dielectric material 133 on the bonding pad 135 . In some embodiments, the upper portion 137u of the metal plug 137 may overlap the insulating layers 122-125.

請參考第16圖,層間介電(inter-layer dielectric;ILD)層139形成在介電材料133與金屬插塞137上方。接著,多個位線(bit line)143透過形成在層間介電層139中的互連導電柱141而電性連接到接合墊131。接著,在執行一系列後端(back end of line;BEOL)製程(圖未示)之後,包括多個存儲單元127的基體電路結構100形成如圖16所示。於一些實施方式中,由閘極層120、記憶層107以及通道層108所定義的記憶單 元127可透過位線143電性耦合到解碼器(圖未示),例如:行解碼器或列解碼器。來自位線143的電流可通過通道層108、接觸插塞105、導電層103(作為底部共用源極線)、接合墊131以及金屬插塞134流至地線。換言之,用於執行讀取/編程操作的電流路徑不流經半導體基材101。因此,執行讀/寫操作的電流路徑可被縮短,因而記憶體元件的操作電阻和功耗可被降低。 Please refer to FIG. 16 , an inter-layer dielectric (inter-layer dielectric; ILD) layer 139 is formed above the dielectric material 133 and the metal plug 137 . Next, a plurality of bit lines 143 are electrically connected to the bonding pads 131 through interconnecting conductive pillars 141 formed in the interlayer dielectric layer 139 . Next, after performing a series of back end of line (BEOL) processes (not shown), the base circuit structure 100 including a plurality of memory cells 127 is formed as shown in FIG. 16 . In some embodiments, the memory cell defined by the gate layer 120, the memory layer 107, and the channel layer 108 The cell 127 can be electrically coupled to a decoder (not shown), such as a row decoder or a column decoder, through the bit line 143 . The current from the bit line 143 can flow through the channel layer 108 , the contact plug 105 , the conductive layer 103 (as the bottom common source line), the bonding pad 131 and the metal plug 134 to the ground line. In other words, the current path for performing read/program operations does not flow through the semiconductor substrate 101 . Therefore, a current path for performing read/write operations can be shortened, and thus the operation resistance and power consumption of the memory element can be reduced.

於一些實施方式中,層間介電層139的材質可包含介電材料,例如:氧化矽、氮化矽、氮氧化矽、矽酸鹽、前述材料的任意組合或任何適當的介電材料。於一些實施方式中,位線143的材質可包含TiN、TaN、Ti、Ta、Cu、Al、Ag、W、Ir、Ru、Pt、前述材料的任意組合或其他適合的導電材料。於一些實施方式中,互連導電柱141的材質可包含TiN、TaN、Ti、Ta、Cu、Al、Ag、W、Ir、Ru、Pt、前述材料的任意組合或其他適合的導電材料。 In some embodiments, the material of the interlayer dielectric layer 139 may include a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride, silicate, any combination of the foregoing materials, or any suitable dielectric material. In some embodiments, the material of the bit line 143 may include TiN, TaN, Ti, Ta, Cu, Al, Ag, W, Ir, Ru, Pt, any combination of the foregoing materials, or other suitable conductive materials. In some embodiments, the material of the interconnection conductive pillar 141 may include TiN, TaN, Ti, Ta, Cu, Al, Ag, W, Ir, Ru, Pt, any combination of the foregoing materials, or other suitable conductive materials.

第14B圖以及第15B圖繪示了根據本揭露的一些實施方式的積體電路結構200於各個階段的形成方法的剖視圖。形成積體電路結構200的過程與前述形成積體電路結構100的過程基本相同,為了清楚起見,在此不再贅述。第14B圖以及第15B中金屬插塞237的輪廓不同於第1-13、14A、15A、16圖中金屬插塞137的輪廓。 FIG. 14B and FIG. 15B illustrate cross-sectional views of the formation method of the integrated circuit structure 200 at various stages according to some embodiments of the present disclosure. The process of forming the integrated circuit structure 200 is basically the same as the aforementioned process of forming the integrated circuit structure 100 , and will not be repeated here for clarity. The profile of the metal plug 237 in FIG. 14B and FIG. 15B is different from the profile of the metal plug 137 in FIGS. 1-13, 14A, 15A, and 16.

第14B圖繪示了根據本揭露的一些實施方式的對應於第14A圖的步驟的積體電路結構200。如第14B圖所示,乾蝕刻製程P8可為電漿蝕刻製程,並使用高分子氣 體且在低壓下進行,這樣增加了電漿垂直向下衝擊介電材料233的能力。蝕刻氣體可包含高聚合氣體,例如:C4F6、C4F8、C5F8、C3F8或它們的組合。與不進行乾蝕刻製程P8的情況相比,乾蝕刻製程P8可抑制在介電材料233上形成懸凸(overhang),因而改善了一個或多個後續沉積製程的間隙填充製程容忍度(例如:形成如第15B圖所示之金屬插塞237的製程)。乾蝕刻製程P8中的濺射蝕刻可導致在介電材料233上形成尖角R2,尖角R2包括斜面233a。斜面233a的形成使得介電材料233中通孔O3的上部位O31的剩餘部分隨著其延伸遠離接合墊135而變寬,因而改善了一個或多個後續沉積製程的間隙填充製程容忍度。於一些實施方式中,如圖14B所示的介電材料233中的通孔O3的上部位O31的剩餘部分也可被稱為角形輪廓。 FIG. 14B illustrates an integrated circuit structure 200 corresponding to the steps of FIG. 14A according to some embodiments of the present disclosure. As shown in FIG. 14B , the dry etching process P8 can be a plasma etching process, which uses polymer gas and is performed under low pressure, which increases the ability of the plasma to strike the dielectric material 233 vertically downward. The etching gas may include high polymer gas, such as C 4 F 6 , C 4 F 8 , C 5 F 8 , C 3 F 8 or combinations thereof. Compared to the case where dry etching process P8 is not performed, dry etching process P8 can inhibit the formation of overhangs on dielectric material 233, thereby improving the gap-fill process tolerance of one or more subsequent deposition processes (eg: The process of forming the metal plug 237 as shown in FIG. 15B). The sputter etching in the dry etching process P8 may result in the formation of a sharp corner R2 on the dielectric material 233, and the sharp corner R2 includes a slope 233a. The formation of the slope 233 a widens the remaining portion of the upper portion O31 of the via O3 in the dielectric material 233 as it extends away from the bond pad 135 , thereby improving gapfill process tolerance for one or more subsequent deposition processes. In some embodiments, the remaining portion of the upper portion O31 of the through hole O3 in the dielectric material 233 as shown in FIG. 14B may also be referred to as an angular profile.

第15B圖繪示了根據本揭露的一些實施方式的對應於第14B圖的步驟的積體電路結構200。如第15B圖所示,金屬插塞237可具有上部傾斜側壁237a和下部凹側壁237b。金屬插塞237可具有從其底端237w到其頂端237t增加的寬度。具體而言,金屬插塞237的頂端237t的寬度可至少大於金屬插塞237與接合墊135的頂端135t齊平處的寬度的1.5倍。於一些實施方式中,金屬插塞237的頂端237t的橫向尺寸可至少大於通孔O3的最大橫向尺寸。於一些實施方式中,金屬插塞237中不存在縫隙。 FIG. 15B illustrates an integrated circuit structure 200 corresponding to the steps of FIG. 14B according to some embodiments of the present disclosure. As shown in FIG. 15B, the metal plug 237 may have an upper sloped sidewall 237a and a lower concave sidewall 237b. Metal plug 237 may have a width that increases from its bottom end 237w to its top end 237t. Specifically, the width of the top end 237 t of the metal plug 237 may be at least 1.5 times larger than the width of the metal plug 237 at the level with the top end 135 t of the bonding pad 135 . In some embodiments, the lateral dimension of the top end 237t of the metal plug 237 may be at least larger than the maximum lateral dimension of the through hole O3. In some embodiments, there is no gap in the metal plug 237 .

第14C圖以及第15C圖繪示了根據本揭露的一些實施方式的積體電路結構300於各個階段的形成方法的剖視圖。形成積體電路結構300的過程與前述形成積體電路結構100的過程基本相同,為了清楚起見,在此不再贅述。第14C圖以及第15C中金屬插塞337的輪廓不同於第1-13、14A、15A、16圖中金屬插塞137的輪廓。 FIG. 14C and FIG. 15C illustrate cross-sectional views of the method of forming the integrated circuit structure 300 at various stages according to some embodiments of the present disclosure. The process of forming the integrated circuit structure 300 is basically the same as the aforementioned process of forming the integrated circuit structure 100 , and will not be repeated here for clarity. The profile of the metal plug 337 in FIG. 14C and FIG. 15C is different from the profile of the metal plug 137 in FIGS. 1-13, 14A, 15A, and 16.

第14C圖繪示了根據本揭露的一些實施方式的對應於第14A圖的步驟的積體電路結構300。如第14C圖所示,乾蝕刻製程P9可為電漿蝕刻製程,並使用高分子氣體且在低壓下進行,這樣增加了電漿垂直向下衝擊介電材料333的能力。蝕刻氣體可包含高聚合氣體,例如:C4F6、C4F8、C5F8、C3F8或它們的組合。與不進行乾蝕刻製程P9的情況相比,乾蝕刻製程P9可抑制在介電材料333上形成懸凸(overhang),因而改善了一個或多個後續沉積製程的間隙填充製程容忍度(例如:形成如第15C圖所示之金屬插塞337的製程)。 FIG. 14C illustrates an integrated circuit structure 300 corresponding to the steps of FIG. 14A according to some embodiments of the present disclosure. As shown in FIG. 14C , the dry etching process P9 can be a plasma etching process, which uses a polymer gas and is performed at a low pressure, which increases the ability of the plasma to strike the dielectric material 333 vertically downward. The etching gas may include high polymer gas, such as C 4 F 6 , C 4 F 8 , C 5 F 8 , C 3 F 8 or combinations thereof. Compared to the case where dry etching process P9 is not performed, dry etching process P9 can suppress the formation of overhangs on dielectric material 333, thereby improving the gap-fill process tolerance of one or more subsequent deposition processes (eg: The process of forming the metal plug 337 as shown in FIG. 15C).

乾蝕刻製程P9中的濺射蝕刻可導致在介電材料333上形成尖角R3、R4,尖角R3、R4包括上部斜面333a、下部斜面333b以及中間表面333c。上部斜面333a自下部斜面333b的頂部橫向縮回,中間表面337c將下部斜面333b的頂部連接到上部斜面333a的底部。上部斜面333a、下部斜面333b的形成使得介電材料333中通孔O3的上部位O31的剩餘部分隨著其延伸遠離接合墊135而變寬,因而改善了一個或多個後續沉積製程的間 隙填充製程容忍度。於一些實施方式中,如圖14C所示的介電材料333中的通孔O3的上部位O31的剩餘部分也可被稱為階梯形輪廓。 The sputter etching in the dry etching process P9 can result in the formation of sharp corners R3 , R4 on the dielectric material 333 , and the sharp corners R3 , R4 include an upper slope 333 a , a lower slope 333 b and a middle surface 333 c . The upper ramp 333a is set back laterally from the top of the lower ramp 333b, and an intermediate surface 337c connects the top of the lower ramp 333b to the bottom of the upper ramp 333a. The formation of the upper slope 333a and the lower slope 333b makes the remaining portion of the upper portion O31 of the via O3 in the dielectric material 333 widen as it extends away from the bonding pad 135, thereby improving the interval between one or more subsequent deposition processes. Gap fill process tolerance. In some embodiments, the remaining portion of the upper portion O31 of the through hole O3 in the dielectric material 333 as shown in FIG. 14C may also be referred to as a stepped profile.

第15C圖繪示了根據本揭露的一些實施方式的對應於第14C圖的步驟的積體電路結構300。如第15C圖所示,金屬插塞337包含上部側壁337a、自上部側壁337a的底部橫向後退的下部側壁337b以及將上部側壁337a的底部連接到下部側壁337b的頂部的中間表面337c。金屬插塞337可具有從其底端337w到其頂端337t增加的寬度。具體而言,金屬插塞337的頂端337t的寬度可至少大於金屬插塞337與接合墊135的頂端135t齊平處的寬度的1.5倍。於一些實施方式中,金屬插塞337的頂端337t的橫向尺寸可至少大於通孔O3的最大橫向尺寸。於一些實施方式中,金屬插塞337中不存在縫隙。 FIG. 15C illustrates an integrated circuit structure 300 corresponding to the steps of FIG. 14C according to some embodiments of the present disclosure. As shown in FIG. 15C, the metal plug 337 includes an upper sidewall 337a, a lower sidewall 337b set back laterally from the bottom of the upper sidewall 337a, and an intermediate surface 337c connecting the bottom of the upper sidewall 337a to the top of the lower sidewall 337b. Metal plug 337 may have a width that increases from its bottom end 337w to its top end 337t. Specifically, the width of the top 337 t of the metal plug 337 may be at least 1.5 times larger than the width of the metal plug 337 at the level with the top 135 t of the bonding pad 135 . In some embodiments, the lateral dimension of the top end 337t of the metal plug 337 may be at least larger than the maximum lateral dimension of the through hole O3. In some embodiments, there is no gap in the metal plug 337 .

對於半導體元件的發展,高儲存密度的記憶體元件是一個發展的方向。因此,三維(3-dimesional,3D)積體電路(integrated circuit;IC)記憶體元件,例如:三維NAND,可以通過其多層結構以提供高儲存密度。然而,三維NAND中堆疊的層數越多,在三維NAND中形成源極線的難度就越大,這可能導致在源極線中形成縫隙。在源極線上進行平坦化製程之後,蝕刻氣體(例如,氟)將被捕獲/卡在縫隙中並影響後續的製程(例如:氟洩漏)。 For the development of semiconductor devices, memory devices with high storage density are a development direction. Therefore, a 3-dimensional (3D) integrated circuit (IC) memory device, such as a 3-dimensional NAND, can provide high storage density through its multi-layer structure. However, the more layers are stacked in the 3D NAND, the more difficult it is to form the source lines in the 3D NAND, which may result in the formation of gaps in the source lines. After the planarization process is performed on the source line, etching gas (eg, fluorine) will be trapped/stuck in the gap and affect subsequent processes (eg, fluorine leakage).

因此,基於上述討論,可看出本揭露具有優點。然而應理解,其他實施方式也可提供額外的優點,且並非所 有的優點都必須在本文中揭示。此外,沒有特定的優點需要用於所有的實施方式中。在本揭露的各種實施方式中提供了一種頂部加寬蝕刻製程,此製程可以避免在源極線中形成接縫。具體而言,頂部加寬蝕刻製程係透過在低壓下在介電材料上引入高分子蝕刻氣體來執行頂部加寬蝕刻製程以修飾源極線溝槽,並接著在修飾後之源極線溝槽中將形成源極線。頂部加寬蝕刻製程可增加電漿垂直向下衝擊介電材料的能力以擴大源極線溝槽的上部位,並同時僅以最小限度地移除源極線溝槽中的介電材料的下部位。因此,源極線溝槽的上部位和下部位之間的差異可以被增加,以改善後續為了形成源極線所執行之沉積製程的間隙填充製程容忍度(gap fill window)並避免於源極線中形成縫隙。 Therefore, based on the above discussion, it can be seen that the present disclosure has advantages. It should be understood, however, that other embodiments may provide additional advantages, and not all All advantages must be revealed in this article. Furthermore, no particular advantage needs to be used in all embodiments. Various embodiments of the present disclosure provide a top widening etch process that avoids the formation of seams in the source lines. Specifically, the top widening etch process is to modify the source line trench by introducing a polymer etching gas on the dielectric material under low pressure to perform the top widen etch process, and then modify the source line trench will form the source line. The top widening etch process increases the ability of the plasma to strike the dielectric material vertically downward to enlarge the upper portion of the source line trenches while only minimally removing the lower portion of the dielectric material in the source line trenches. parts. Therefore, the difference between the upper portion and the lower portion of the source line trench can be increased to improve the gap fill window tolerance of the subsequent deposition process performed to form the source line and avoid the source line. A gap is formed in the line.

前述內容概述若干實施方式的特徵,使得熟習此項技術者可更佳地理解本揭露的態樣。熟習此項技術者應瞭解,其可易於使用本揭露作為用於設計或修改用於實施本文中引入之實施方式之相同目的及/或達成相同優勢之其他製程及結構的基礎。熟習此項技術者亦應認識到,此類等效構造並不偏離本揭露的精神及範疇,且此類等效構造可在本文中進行各種改變、取代、及替代而不偏離本揭露的精神及範疇。 The foregoing summary summarizes features of several embodiments so that those skilled in the art may better understand aspects of the present disclosure. Those skilled in the art should appreciate that they can readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions, and substitutions can be made herein without departing from the spirit and scope of the present disclosure. and categories.

100:積體電路結構 100: Integrated circuit structure

101:半導體基材 101: Semiconductor substrate

102:隔離層 102: isolation layer

103:導電層 103: Conductive layer

103t:頂表面 103t: top surface

104:隔離層 104: isolation layer

105:接觸栓塞 105: Contact plug

107:記憶層 107: memory layer

108:通道層 108: Channel layer

109:介電材料 109: Dielectric material

110:多層堆疊結構 110: Multi-layer stack structure

110t:頂表面 110t: top surface

120:閘極層 120: gate layer

121-126:絕緣層 121-126: insulation layer

127:記憶單元 127: memory unit

131:接合墊 131: Bonding Pad

133:介電材料 133: Dielectric material

133a:上部曲面 133a: Upper surface

133b:下部傾斜面 133b: lower inclined surface

135:接合墊 135: Bonding Pad

D1:橫向尺寸 D1: horizontal dimension

D2:橫向尺寸 D2: Horizontal dimension

O1:接觸開口 O1: contact opening

O3:通孔 O3: through hole

O31:上部位 O31: upper part

O32:下部位 O32: lower part

P6:乾蝕刻製程 P6: Dry etching process

R1:圓角 R1: Fillet

S1:空間 S1: space

Z:方向 Z: Direction

X:方向 X: direction

Claims (10)

一種積體電路結構,包括:一基材;一導電層,位於該基材上方;複數個記憶體元件,於一垂直方向上堆疊於該導電層上方,且包括複數個閘極層,該些閘極層橫向地延伸於該導電層上方;複數個絕緣層,於該垂直方向上與該些閘極層交替堆疊而形成一多層堆疊結構,該多層堆疊結構具有暴露出該導電層的一通孔;一接合墊,位於該多層堆疊結構的該通孔中,且接觸該導電層;以及一源極線,位於該多層堆疊結構的該通孔的一上部位中,且自該接合墊向上延伸且具有一下部位以及一上部位,該源極線的該下部位嵌入於該接合墊,該源極線的該上部位具有一側壁,相連於該接合墊的一側壁,其中該源極線的一頂端具有一第一橫向尺寸,該第一橫向尺寸大於該接合墊的一第二橫向尺寸。 An integrated circuit structure, comprising: a substrate; a conductive layer located above the substrate; a plurality of memory elements stacked above the conductive layer in a vertical direction, and including a plurality of gate layers, the The gate layer extends laterally above the conductive layer; a plurality of insulating layers are alternately stacked with the gate layers in the vertical direction to form a multilayer stack structure, and the multilayer stack structure has a through hole exposing the conductive layer. a hole; a bonding pad located in the via hole of the multilayer stack structure and contacting the conductive layer; and a source line located in an upper portion of the via hole of the multilayer stack structure and upward from the bonding pad Extending and having a lower portion and an upper portion, the lower portion of the source line is embedded in the bonding pad, the upper portion of the source line has a side wall connected to the side wall of the bonding pad, wherein the source line A top end has a first lateral dimension that is greater than a second lateral dimension of the bonding pad. 如請求項1所述之積體電路結構,其中該源極線的該頂端的該第一橫向尺寸至少大於該源極線在與該接合墊的一頂端等高的一位置的一第三橫向尺寸的1.5倍。 The integrated circuit structure as claimed in claim 1, wherein the first lateral dimension of the top end of the source line is at least larger than a third lateral dimension of the source line at a position equal to a top end of the bonding pad 1.5 times the size. 如請求項1所述之積體電路結構,更包括:橫向環繞該源極線以及該接合墊的一介電材料,其中該源極線的該頂端的該第一橫向尺寸大於位於該接合墊上的該介電材料的一第三橫向尺寸。 The integrated circuit structure as claimed in claim 1, further comprising: a dielectric material laterally surrounding the source line and the bonding pad, wherein the first lateral dimension of the top end of the source line is larger than that on the bonding pad A third lateral dimension of the dielectric material. 如請求項1所述之積體電路結構,其中該源極線的該上部位重疊於該些記憶體元件的該些閘極層。 The integrated circuit structure as claimed in claim 1, wherein the upper portion of the source line overlaps the gate layers of the memory devices. 如請求項1所述之積體電路結構,其中該源極線的該上部位重疊於該些絕緣層。 The integrated circuit structure as claimed in claim 1, wherein the upper portion of the source line overlaps the insulating layers. 一種形成積體電路結構的方法,包括:在一基材上形成包含有於一垂直方向上交替堆疊的複數個絕緣層以及複數個犧牲層的一多層堆疊結構;在該多層堆疊結構中形成一第一通孔;在該第一通孔中形成一記憶層、一通道層以及一第一介電材料;在該多層堆疊結構中形成一第二通孔;在該多層堆疊結構中形成一記憶體陣列;形成一第二介電材料於該記憶體陣列上方以及該第二通孔中;以及形成一源極線於該第二通孔中。 A method for forming an integrated circuit structure, comprising: forming a multilayer stack structure comprising a plurality of insulating layers and a plurality of sacrificial layers alternately stacked in a vertical direction on a substrate; forming in the multilayer stack structure A first through hole; forming a memory layer, a channel layer and a first dielectric material in the first through hole; forming a second through hole in the multilayer stack structure; forming a memory array; forming a second dielectric material above the memory array and in the second through hole; and forming a source line in the second through hole. 如請求項6所述之形成積體電路結構的方法, 更包含:形成一接合墊於該第二通孔中,其中該第二介電材料橫向環繞該源極線以及該接合墊,該源極線的一頂端的一第一橫向尺寸大於位於該接合墊上的該第二介電材料的一第二橫向尺寸。 The method for forming an integrated circuit structure as described in Claim 6, Further comprising: forming a bonding pad in the second via hole, wherein the second dielectric material laterally surrounds the source line and the bonding pad, and a top end of the source line has a first lateral dimension larger than that located at the bonding pad. A second lateral dimension of the second dielectric material on the pad. 如請求項6所述之形成積體電路結構的方法,其中形成該第二介電材料更包含:對該第二介電材料進行一乾蝕刻製程以移除該第二介電材料中位於該第二通孔上方的一懸凸部,該乾蝕刻製程包含引入一氟化碳(CxFy)氣體至該第二介電材料上方,其中x與y分別為整數,且y/x小於3。 The method for forming an integrated circuit structure as described in Claim 6, wherein forming the second dielectric material further includes: performing a dry etching process on the second dielectric material to remove the second dielectric material located on the second dielectric material. An overhang above the two via holes, the dry etching process includes introducing carbon monofluoride (C x F y ) gas over the second dielectric material, wherein x and y are integers, and y/x is less than 3 . 如請求項8所述之形成積體電路結構的方法,其中該氟化碳氣體包含C4F6、C4F8、C5F8、C3F8或前述氣體的任意組合。 The method for forming an integrated circuit structure as claimed in claim 8, wherein the fluorinated carbon gas comprises C 4 F 6 , C 4 F 8 , C 5 F 8 , C 3 F 8 or any combination thereof. 如請求項6所述之形成積體電路結構的方法,其中該第二通孔的一頂端具有一第一橫向尺寸,該第一橫向尺寸至少大於該第二通孔的一中間部位的一第二橫向尺寸的1.5倍。 The method for forming an integrated circuit structure as claimed in item 6, wherein a top end of the second through hole has a first lateral dimension, and the first lateral dimension is at least larger than a first lateral dimension of a middle portion of the second through hole 1.5 times the horizontal dimension.
TW111118431A 2022-05-17 2022-05-17 Integrated circuit structure and method for forming the same TWI798088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118431A TWI798088B (en) 2022-05-17 2022-05-17 Integrated circuit structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118431A TWI798088B (en) 2022-05-17 2022-05-17 Integrated circuit structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI798088B true TWI798088B (en) 2023-04-01
TW202347735A TW202347735A (en) 2023-12-01

Family

ID=86945134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118431A TWI798088B (en) 2022-05-17 2022-05-17 Integrated circuit structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI798088B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150037951A1 (en) * 2011-02-07 2015-02-05 Samsung Electronics Co., Ltd. Three-Dimensional Semiconductor Devices and Methods of Fabricating the Same
TW201804473A (en) * 2016-07-28 2018-02-01 愛思開海力士有限公司 Semiconductor memory device and operating method thereof
US20220093639A1 (en) * 2020-09-24 2022-03-24 Samsung Electronics Co., Ltd. Integrated circuit devices and electronic systems including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150037951A1 (en) * 2011-02-07 2015-02-05 Samsung Electronics Co., Ltd. Three-Dimensional Semiconductor Devices and Methods of Fabricating the Same
TW201804473A (en) * 2016-07-28 2018-02-01 愛思開海力士有限公司 Semiconductor memory device and operating method thereof
US20220093639A1 (en) * 2020-09-24 2022-03-24 Samsung Electronics Co., Ltd. Integrated circuit devices and electronic systems including the same

Also Published As

Publication number Publication date
TW202347735A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5361626B2 (en) Manufacturing method of memory device having recessed gate structure
WO2020082252A1 (en) Three-dimensional memory devices and fabricating methods thereof
US7445997B2 (en) Methods of forming non-volatile memory devices having floating gate electrodes
US10770464B2 (en) Semiconductor device including bit line structure of dynamic random access memory (DRAM) and method for fabricating the same
US8647973B2 (en) Semiconductor device capable of reducing electrical defects and method of fabricating the same
CN114420642B (en) Method for forming semiconductor structure and semiconductor structure
US8026604B2 (en) Semiconductor devices having contact holes including protrusions exposing contact pads
US20230147923A1 (en) Three-Dimensional Memory Device and Method
CN113394185A (en) Semiconductor device, manufacturing method thereof and chip
CN114420641B (en) Method for forming semiconductor structure and semiconductor structure
KR20160006029A (en) Patterning method using metal mask, and method for fabricating semiconductor device comprising the same patterning method
TWI572019B (en) Vertical channel structure
US6486025B1 (en) Methods for forming memory cell structures
US20060145292A1 (en) Antifuse having uniform dielectric thickness and method for fabricating the same
US6509244B2 (en) Method for forming storage node electrode using a polysilicon hard mask on a sacrificial insulation film
TWI798088B (en) Integrated circuit structure and method for forming the same
CN101315905A (en) Semiconductor device and method of manufacturing the same
TW202347449A (en) Semiconductor device and method of manufacturing the same
US20100261345A1 (en) Method of manufacturing a semiconductor device
TWI773492B (en) Integrated circuit
CN117135928A (en) Integrated circuit structure and forming method thereof
CN110459507B (en) Method for forming semiconductor memory device
US9330966B2 (en) Methods of forming semiconductor devices
TWI819648B (en) Integrated circuit structure and method for forming memory device
TWI849802B (en) Integrated circuit structure and method for forming memory device