TWI797992B - Method for manufacturing vanadium electrolyte - Google Patents

Method for manufacturing vanadium electrolyte Download PDF

Info

Publication number
TWI797992B
TWI797992B TW111105626A TW111105626A TWI797992B TW I797992 B TWI797992 B TW I797992B TW 111105626 A TW111105626 A TW 111105626A TW 111105626 A TW111105626 A TW 111105626A TW I797992 B TWI797992 B TW I797992B
Authority
TW
Taiwan
Prior art keywords
aqueous solution
vanadyl
vanadium
solution
vanadium electrolyte
Prior art date
Application number
TW111105626A
Other languages
Chinese (zh)
Other versions
TW202335344A (en
Inventor
孫玉龍
蔡明哲
劉永浩
Original Assignee
虹京金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 虹京金屬股份有限公司 filed Critical 虹京金屬股份有限公司
Priority to TW111105626A priority Critical patent/TWI797992B/en
Application granted granted Critical
Publication of TWI797992B publication Critical patent/TWI797992B/en
Publication of TW202335344A publication Critical patent/TW202335344A/en

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

A method for manufacturing a vanadium electrolyte is used to solve the problem of high manufacturing cost of the conventional vanadium electrolyte. The method for manufacturing the vanadium electrolyte includes mixing an aqueous vanadate solution and a first aqueous sulfuric acid solution to form a mixing slurry including a dioxovanadium(V) cation (VO2 +) and a sulfate anion (SO4 2-). The mixing slurry is constant current electrolyzed to reduce the dioxovanadium(V) cation, forming a vanadyl(IV) anion (VO2+). The vanadyl(IV) anion and the sulfate anion can thus form vanadyl(IV) sulfate (VOSO4), forming an aqueous vanadyl(IV) sulfate solution. An alkali solution is added to the aqueous vanadyl(IV) sulfate solution to form vanadium(IV) oxydihydroxide (VO(OH)2) that is not water soluble. The vanadium(IV) oxydihydroxide is filtered and then dissolved in a second aqueous sulfuric acid solution to obtain the vanadium electrolyte.

Description

釩電解液的製備方法 Preparation method of vanadium electrolyte

本發明係關於一種電解液的製備方法,尤其是一種釩電解液的製備方法。 The invention relates to a method for preparing an electrolyte, in particular to a method for preparing a vanadium electrolyte.

釩液流電池(vanadium redox battery,VFB),又稱為全釩氧化還原液流電池(vanadium redox flow battery,VRFB),為利用不同氧化態的釩離子來儲存化學勢能(chemical potential energy)的可充電液流電池(rechargeable flow battery),釩液流電池由於具有極大的能量容量(energy capacity),非常適合用於大型電力存儲應用。 Vanadium redox battery (VFB), also known as vanadium redox flow battery (VRFB), is a possibility to use vanadium ions in different oxidation states to store chemical potential energy. Rechargeable flow batteries, vanadium flow batteries are very suitable for large-scale power storage applications due to their extremely large energy capacity.

釩液流電池係以釩電解液(vanadium electrolyte)作為電解液,因此,釩電解液的性能好壞,對於釩液流電池的發展至關重要。舉例而言,中國公開第102110837號專利案揭示一種習知釩電解液的製備方法,該習知製備方法中,係以五氧化二釩(vanadium pentoxide,V2O5)作為原料,以濃硫酸溶液(濃度為98%的硫酸水溶液)於高溫下溶解五氧化二釩之後,再電解形成硫酸氧釩,再進一步配製形成該習知釩電解液。然而,該習知釩電解液的製備方法係以價格昂貴的五氧化二釩作為原料(每公斤約為4000元),且於高溫下以該濃硫酸溶液溶解五氧化二釩不僅存在有相當風險,對製備設備亦有相對高的要求,因而提升了習知釩電解液的製備成本。 Vanadium redox flow battery uses vanadium electrolyte as electrolyte. Therefore, the performance of vanadium electrolyte is very important for the development of vanadium redox flow battery. For example, Chinese Patent Publication No. 102110837 discloses a method for preparing a conventional vanadium electrolyte. In this conventional preparation method, vanadium pentoxide (V 2 O 5 ) is used as a raw material, and concentrated sulfuric acid The solution (aqueous sulfuric acid solution with a concentration of 98%) dissolves vanadium pentoxide at high temperature, and then electrolyzes to form vanadyl sulfate, and further prepares to form the conventional vanadium electrolyte. However, the conventional method for preparing vanadium electrolyte uses expensive vanadium pentoxide as a raw material (about 4,000 yuan per kilogram), and dissolving vanadium pentoxide with the concentrated sulfuric acid solution at high temperature not only has considerable risks , also has relatively high requirements on the preparation equipment, thus increasing the preparation cost of the conventional vanadium electrolyte.

有鑑於此,習知的釩電解液的製備方法確實仍有加以改善之必 要。 In view of this, the preparation method of known vanadium electrolyte really still needs to be improved. want.

為解決上述問題,本發明的目的是提供一種釩電解液的製備方法,係以價格低廉的含釩化合物作為原料者。 In order to solve the above problems, the purpose of this invention is to provide a preparation method of vanadium electrolyte, which uses cheap vanadium-containing compounds as raw materials.

本發明的釩電解液的製備方法,包含:混合一釩酸鹽水溶液及一第一硫酸水溶液(例如,包含以重量百分比計為50~60%的硫酸及40~50%的水),得一混合漿料,該釩酸鹽水溶液為25~50g/L的釩酸鈉水溶液,該混合漿料包含一雙氧釩根離子一硫酸根離子;對該混合漿料進行恆流電解,使該雙氧釩根離子經還原形成一氧釩根離子,並與該硫酸根離子共同形成硫酸氧釩,以形成一硫酸氧釩水溶液;於該硫酸氧釩水溶液中加入一鹼液(例如,一氫氧化鈉水溶液、一氨水溶液或一氫氧化鉀水溶液),使硫酸氧釩形成不溶於水的氫氧化氧釩;及將過濾所得的氫氧化氧釩溶於一第二硫酸水溶液,以獲得一釩電解液。 The preparation method of the vanadium electrolyte solution of the present invention comprises: mixing a vanadate aqueous solution and a first sulfuric acid aqueous solution (for example, including 50-60% sulfuric acid and 40-50% water in weight percent), to obtain a Mixed slurry, the vanadate aqueous solution is 25 ~ 50g/L sodium vanadate aqueous solution, the mixed slurry contains a dioxyvanadyl ion-sulfate ion; the mixed slurry is subjected to constant current electrolysis, so that the double The vanadyl ion is reduced to form a vanadyl ion, and together with the sulfate ion, vanadyl sulfate is formed to form a vanadyl sulfate aqueous solution; a lye (for example, a hydroxide Sodium aqueous solution, an ammonia solution or a potassium hydroxide aqueous solution), so that vanadyl sulfate forms vanadyl hydroxide insoluble in water; and the vanadyl hydroxide obtained by filtering is dissolved in a second sulfuric acid aqueous solution to obtain a vanadium electrolytic liquid.

據此,本發明的釩電解液的製備方法,可以將該混合漿料中的三價釩離子(VO2 +)還原形成四價釩離子(VO2+),並使包含該四價釩離子的硫酸亞釩能夠與硫酸鈉、硫酸銨或硫酸鉀等硫酸鹽分離,進而獲得該釩電解液。再且,工者可以選用價格低廉的釩酸鹽作為原料,在與該第一硫酸水溶液進行反應之後,即能夠獲得能夠進行恆流電解的三價釩離子(VO2 +),進而製備獲得該釩電解液,可以達成降低釩電解液的製造成本之功效。 Accordingly, the preparation method of the vanadium electrolyte of the present invention can reduce the trivalent vanadium ions (VO 2 + ) in the mixed slurry to form tetravalent vanadium ions (VO 2+ ), and make the The vanadium sulfate can be separated from sulfates such as sodium sulfate, ammonium sulfate or potassium sulfate to obtain the vanadium electrolyte. Moreover, workers can choose low-cost vanadate as a raw material, and after reacting with the first sulfuric acid aqueous solution, they can obtain trivalent vanadium ions (VO 2 + ) capable of constant current electrolysis, and then prepare the The vanadium electrolyte can achieve the effect of reducing the manufacturing cost of the vanadium electrolyte.

本發明的釩電解液的製備方法,其中,該混合漿料可以包含以體積百分比計為30~70%的該釩酸鹽水溶液及30~70%的該第一硫酸水溶液,該混合漿料較佳可以包含以體積百分比計為30~50%的該釩酸鹽水溶液及50~70%的該第一硫酸水溶液。如此,可以提升後續恆流電解的電解效率 以提升所獲得的硫酸氧釩水溶液中的四價釩離子(VO2+)的佔比。 The preparation method of the vanadium electrolyte solution of the present invention, wherein, the mixed slurry can comprise the vanadate aqueous solution of 30-70% and the first sulfuric acid aqueous solution of 30-70% in volume percentage, and the mixed slurry is relatively Preferably, it may contain 30-50% of the vanadate aqueous solution and 50-70% of the first sulfuric acid aqueous solution in terms of volume percentage. In this way, the electrolysis efficiency of the subsequent constant current electrolysis can be improved to increase the proportion of tetravalent vanadium ions (VO 2+ ) in the obtained vanadyl sulfate aqueous solution.

本發明的釩電解液的製備方法將該混合漿料置入一電解槽中,以進行恆流電解,其中,該電解槽中設有一陽極電極及一陰極電極,該陽極電極可以為一鈦鍍銥電極或一鈦鍍銠電極,該陰極電極可以為一鉛電極或一石墨電極。如此,該些電極不會參與該電解反應,亦不會被該混合漿料溶解而產生雜質。 The preparation method of the vanadium electrolyte solution of the present invention puts the mixed slurry into an electrolytic tank for constant current electrolysis, wherein, an anode electrode and a cathode electrode are arranged in the electrolytic tank, and the anode electrode can be a titanium plated An iridium electrode or a rhodium-plated titanium electrode, and the cathode electrode can be a lead electrode or a graphite electrode. In this way, the electrodes will not participate in the electrolysis reaction, and will not be dissolved by the mixed slurry to generate impurities.

本發明的釩電解液的製備方法其中,能夠以10~20A的電流進行恆流電解2~8小時後,以形成該硫酸氧釩水溶液,較佳能夠以15~20A的電流進行恆流電解4~8小時。如此,可以使該混合漿料中的雙氧釩根離子經還原反應而形成氧釩根離子。 In the preparation method of the vanadium electrolyte of the present invention, the constant current electrolysis can be carried out with a current of 10 to 20A for 2 to 8 hours to form the vanadyl sulfate aqueous solution, preferably the constant current electrolysis can be carried out with a current of 15 to 20A for 4 ~8 hours. In this way, the vanadyl ions in the mixed slurry can be reduced to form vanadyl ions.

本發明的釩電解液的製備方法,其中,於該硫酸氧釩水溶液中加入該鹼液,以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為4~6,以使硫酸氧釩形成氫氧化氧釩,較佳可以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為5。如此,可以有效促進硫酸氧釩形成不溶於水的氫氧化氧釩,進而能夠與該硫酸氧釩水溶液中的硫酸鈉、硫酸銨或硫酸鉀等硫酸鹽有效分離。 The preparation method of the vanadium electrolyte solution of the present invention, wherein, the alkaline solution is added to the vanadyl sulfate aqueous solution to adjust the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the alkaline solution to 4~6, so that The vanadyl sulfate forms vanadyl hydroxide, preferably the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the lye can be adjusted to 5. In this way, vanadyl sulfate can be effectively promoted to form water-insoluble vanadyl hydroxide, and then can be effectively separated from sulfates such as sodium sulfate, ammonium sulfate or potassium sulfate in the vanadyl sulfate aqueous solution.

本發明的釩電解液的製備方法,其中,該第二硫酸水溶液的濃度為3~6M,該第二硫酸水溶液的濃度較佳可以為5M。如此,使該第二硫酸水溶液可以有效溶解該氫氧化氧釩,進而形成該釩電解液。 In the preparation method of the vanadium electrolyte of the present invention, the concentration of the second sulfuric acid aqueous solution is 3-6M, and the concentration of the second sulfuric acid aqueous solution is preferably 5M. In this way, the second sulfuric acid aqueous solution can effectively dissolve the vanadium oxyhydroxide, thereby forming the vanadium electrolyte.

〔本發明〕 〔this invention〕

1:電解槽 1: Electrolyzer

2:電極組 2: electrode group

21:陽極電極 21: Anode electrode

21:陰極電極 21: Cathode electrode

3:攪拌件 3: Stirring piece

E:直流電源 E: DC power supply

S1:漿料形成步驟 S1: slurry forming step

S2:恆流電解步驟 S2: Constant current electrolysis step

S3:沉澱步驟 S3: precipitation step

S4:回溶步驟 S4: Redissolution step

〔第1圖〕本發明之一實施例的釩電解液的製備方法之流程圖。 [Fig. 1] A flowchart of a method for preparing a vanadium electrolyte solution according to an embodiment of the present invention.

〔第2圖〕用以實施本實施例之釩電解液的製備方法的電解裝置之示意圖。 [Fig. 2] The schematic diagram of the electrolysis device for implementing the preparation method of the vanadium electrolyte solution of the present embodiment.

為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式作詳細說明。 In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments of the present invention are specifically cited below and described in detail with the accompanying drawings.

請參照第1圖所示,本發明之一實施例的釩電解液的製備方法大致可以包含一漿料形成步驟S1、一恆流電解步驟S2、一沉澱步驟S3及一回溶步驟S4,藉由前述四個步驟,工者係能夠以一釩酸鹽作為原料,生成一釩電解液。 Please refer to Fig. 1, the method for preparing a vanadium electrolyte solution according to an embodiment of the present invention may roughly include a slurry forming step S1, a constant current electrolysis step S2, a precipitation step S3 and a back-dissolution step S4, by From the aforementioned four steps, workers can use vanadate as a raw material to generate a vanadium electrolyte.

詳而言之,於該漿料形成步驟S1中,工者係先將該釩酸鹽溶於水,獲得一釩酸鹽水溶液之後,再混合該釩酸鹽水溶液及一第一硫酸水溶液,以得一混合漿料,此時,該釩酸鹽會於水中解離形成一釩酸根離子(orthovanadate(V)anion,VO4 3-),而該釩酸根離子會再與該第一硫酸水溶液反應而形成一雙氧釩根離子(dioxovanadium(V)cation,VO2 +)。 Specifically, in the slurry forming step S1, workers first dissolve the vanadate in water to obtain a vanadate aqueous solution, and then mix the vanadate aqueous solution and a first sulfuric acid aqueous solution to obtain A mixed slurry is obtained. At this time, the vanadate will dissociate in water to form a vanadate ion (orthovanadate(V)anion, VO 4 3- ), and the vanadate ion will react with the first sulfuric acid aqueous solution to form A dioxovanadium(V)cation, VO 2 + ) is formed.

舉例而言,該釩酸鹽可以為釩酸鈉(sodium orthovanadate,Na3VO4)、釩酸銨(ammonia orthovanadate,(NH4)3VO4)或釩酸鉀(potassium orthovanadate,K3VO4),如此,該些釩酸鹽的解離常數(dissociation constant,KD)較大,故均可以於水中有效解離形成該釩酸根離子,並受到該第一硫酸水溶液的作用,分別依下列化學反應式式一、式二、式三而形成該雙氧釩根離子。 For example, the vanadate can be sodium vanadate (sodium orthovanadate, Na 3 VO 4 ), ammonium orthovanadate ((NH 4 ) 3 VO 4 ) or potassium vanadate (potassium orthovanadate, K 3 VO 4 ), so, the dissociation constant (dissociation constant, K D ) of these vanadates is relatively large, so they can be effectively dissociated in water to form the vanadate ions, and subjected to the first sulfuric acid aqueous solution, respectively according to the following chemical reactions formula one, formula two, formula three to form the dioxyvanadyl ion.

2Na 3 VO 4+5H 2 SO 4VO 2 ++3Na ++2SO 4 2-+2H 2 O (式一) 2 Na 3 VO 4 +5 H 2 SO 4VO 2 + +3 Na + +2 SO 4 2- +2 H 2 O (Formula 1)

2(NH 4)3 VO 4+5H 2 SO 4VO 2 ++3Na ++2SO 4 2-+2H 2 O (式二) 2( NH 4 ) 3 VO 4 +5 H 2 SO 4VO 2 + +3 Na + +2 SO 4 2- +2 H 2 O (Formula 2)

2K 3 VO 4+5H 2 SO 4VO 2 ++3K ++2SO 4 2-+2H 2 O (式三) 2 K 3 VO 4 +5 H 2 SO 4VO 2 + +3 K + +2 SO 4 2- +2 H 2 O (Formula 3)

較佳地,該釩酸鹽可以選擇為價格低廉的釩酸鈉(比五氧化二釩便宜約三成),以降低該釩電解液的製備成本。於本實施例中,該釩酸鹽水溶液為25~50g/L的釩酸鈉水溶液(即,將25~50g的釩酸鈉溶於水中,所形成的總體積為1L的水溶液)。 Preferably, the vanadate can be selected as cheap sodium vanadate (about 30% cheaper than vanadium pentoxide), so as to reduce the preparation cost of the vanadium electrolyte. In this embodiment, the vanadate aqueous solution is a 25-50 g/L sodium vanadate aqueous solution (that is, 25-50 g of sodium vanadate is dissolved in water to form an aqueous solution with a total volume of 1 L).

又,為提供足以與該釩酸鹽反應的硫酸,該第一硫酸水溶液可以包含以重量百分比計為50~60%的硫酸及40~50%的水(換言之,該第一硫酸水溶液的重量百分濃度係介於50~60%,即每公斤的第一硫酸水溶液,係以500~600克的硫酸與400~500克的水所共同配製形成)。 Again, in order to provide enough sulfuric acid to react with the vanadate, the first sulfuric acid aqueous solution may comprise 50-60% sulfuric acid and 40-50% water in weight percent (in other words, the weight percent of the first sulfuric acid aqueous solution The sub-concentration is between 50-60%, that is, every kilogram of the first sulfuric acid aqueous solution is formed by jointly preparing 500-600 grams of sulfuric acid and 400-500 grams of water).

為提升後續的電解效率,該混合漿料可以包含以體積百分比計為30~70%的該釩酸鹽水溶液及30~70%的該第一硫酸水溶液,較佳可以包含以體積百分比計為30~50%的該釩酸鹽水溶液及50~70%的該第一硫酸水溶液。 In order to improve the subsequent electrolysis efficiency, the mixed slurry can include 30-70% of the vanadate aqueous solution and 30-70% of the first aqueous sulfuric acid solution by volume percentage, and preferably can include 30% by volume percentage. ~50% of the vanadate aqueous solution and 50~70% of the first sulfuric acid aqueous solution.

該恆流電解步驟S2中,工者係可以設置如第2圖所示之電解裝置,該電解裝置可以包含一電解槽1及一電極組2,工者係可以將該混合漿料容置於該電解槽1中,並藉由設置於該電解槽1中的一攪拌件3,持續攪拌該混合漿料,使該混合漿料中的懸浮物可以均勻懸浮於該混合漿料中,不致發生沉澱而影響恆流電解的效率。 In the constant current electrolysis step S2, workers can set the electrolysis device as shown in Figure 2, and the electrolysis device can include an electrolytic cell 1 and an electrode group 2, and workers can accommodate the mixed slurry in In the electrolytic tank 1, the mixed slurry is continuously stirred by a stirring member 3 arranged in the electrolytic tank 1, so that the suspended solids in the mixed slurry can be evenly suspended in the mixed slurry without occurrence of Precipitation affects the efficiency of constant current electrolysis.

再請參照第2圖所示,該電極組2包含一陽極電極21及一陰極電極22,該陽極電極21及該陰極電極22分別設置於該混合漿料中,該陽極電極21連接一直流電源E的正極,且該陰極電極22連接該直流電極E的負極。該陽極電極21、該陰極電極22的材質不限,僅須注意要選擇不會參與該電解反應,亦不會被該混合漿料而產生雜質的材質即可,舉例而言,該陽極電極21可以為一鈦鍍銥電極或一鈦鍍銠電極,且該陰極電極22可以為一 鉛電極或一石墨電極。 Please refer to Fig. 2 again, the electrode group 2 includes an anode electrode 21 and a cathode electrode 22, the anode electrode 21 and the cathode electrode 22 are respectively arranged in the mixed slurry, and the anode electrode 21 is connected to a DC power supply E, and the cathode electrode 22 is connected to the negative electrode of the DC electrode E. The materials of the anode electrode 21 and the cathode electrode 22 are not limited, it is only necessary to select a material that will not participate in the electrolysis reaction and will not be generated by the mixed slurry. For example, the anode electrode 21 Can be a titanium iridium plated electrode or a titanium rhodium plated electrode, and the cathode electrode 22 can be a lead electrode or a graphite electrode.

在該電解裝置設置完成後,工者即可以開啟該直流電源E,以進行恆流電解(constant current electrolysis),使該雙氧釩根離子經還原形成一氧釩根離子(vanadyl(IV)anion,VO2+)。 After the electrolysis device is set up, the worker can turn on the DC power supply E to perform constant current electrolysis, so that the vanadyl (IV) anion is reduced to form a vanadyl (IV) anion , VO 2+ ).

此時,該電解反應於該陽極電極21處的半反應式(half equation)係如下列式四所示。 At this time, the half equation of the electrolysis reaction at the anode electrode 21 is shown in Equation 4 below.

Figure 111105626-A0305-02-0008-3
Figure 111105626-A0305-02-0008-3

該電解反應於該陰極電極22處的半反應式係如下列式五所示。 The half-reaction formula of the electrolysis reaction at the cathode electrode 22 is shown in the following formula 5.

Figure 111105626-A0305-02-0008-2
Figure 111105626-A0305-02-0008-2

該電解反應的全反應式(cell equation)則如下列式六所示。 The cell equation of the electrolysis reaction is shown in Equation 6 below.

Figure 111105626-A0305-02-0008-5
Figure 111105626-A0305-02-0008-5

接著,在經過一預訂之電解時間之後,工者可以關閉該直流電源E,此時,該電解槽1中的氧釩根離子即可以與該硫酸根離子共同形成硫酸氧釩(vanadyl(IV)sulfate,VOSO4),進而工者能夠於該電解槽1中收取一硫酸氧釩水溶液。依據法拉第電解定律(Faraday's law of electrolysis)可以得知,於恆流電解反應中,所使用的電流大小會與所需的電解時間呈現反比,故工者可以依據需求,調整該恆流電解反應的電流大小與電解時間,舉例而言,工者可以選擇以10~20A的電流進行恆流電解2~8小時,較佳能夠以15~20A的電流進行恆流電解4~8小時。 Then, after a predetermined electrolysis time, the worker can turn off the DC power supply E, at this time, the vanadyl ions in the electrolytic cell 1 can form vanadyl (IV) sulfate (vanadyl (IV) ) together with the sulfate ions. sulfate, VOSO 4 ), and then workers can collect a vanadyl sulfate aqueous solution in the electrolytic cell 1 . According to Faraday's law of electrolysis, in the constant current electrolysis reaction, the magnitude of the current used will be inversely proportional to the required electrolysis time, so workers can adjust the constant current electrolysis reaction according to their needs. Current size and electrolysis time, for example, workers can choose to conduct constant current electrolysis with a current of 10~20A for 2~8 hours, and it is better to conduct constant current electrolysis with a current of 15~20A for 4~8 hours.

需要注意的是,由於在進行恆流電解之前,該混合漿料中存在有由該釩酸鹽所解離形成的陽離子〔例如,釩酸鈉所解離形成的鈉離子(sodium cation,Na+)、釩酸銨所解離形成的銨根離子(ammonium cation,NH4 +)或釩酸鉀所解離形成的鉀離子(potassium cation,K+)〕,故於關閉該直流電源E之後,存在於該電解槽1中的該氧釩根離子與該硫酸根離子,亦會分別依化學反應式式七、式八、式九所示的化學反應式,與存在於該電解槽1中的該陽離子(例如,該鈉離子、該銨根離子或該鉀離子)進行反應,因而所獲得的硫酸氧釩水溶液中,除硫酸氧釩之外,另包含可以溶於水的硫酸鈉(sodium sulfate,Na2SO4)、硫酸銨(ammonia sulfate,(NH4)2SO4)或硫酸鉀(potassium sulfate,K2SO4)等硫酸鹽。 It should be noted that, before the constant current electrolysis, there are cations formed by the dissociation of the vanadate in the mixed slurry (for example, sodium ions (sodium cation, Na + ) formed by the dissociation of sodium vanadate, The ammonium cation (NH 4 + ) formed by the dissociation of ammonium vanadate or the potassium ion (potassium cation, K + ) formed by the dissociation of potassium vanadate], after the DC power supply E is turned off, exists in the electrolytic The vanadyl ion and the sulfate ion in the tank 1 will also react with the cation (such as , the sodium ions, the ammonium ions or the potassium ions) react, and thus the obtained aqueous solution of vanadyl sulfate contains, in addition to vanadyl sulfate, sodium sulfate (sodium sulfate, Na 2 SO 4 ), ammonium sulfate (NH 4 ) 2 SO 4 ) or potassium sulfate (potassium sulfate, K 2 SO 4 ) and other sulfates.

VO 2++2Na ++2SO 4 2-VOSO 4+Na 2 SO 4 (式七) VO 2+ +2 Na + +2 SO 4 2-VOSO 4 + Na 2 SO 4 (Formula 7)

VO 2++2NH 4 ++2SO 4 2-VOSO 4+(NH 4)2 SO 4 (式八) VO 2+ +2 NH 4 + +2 SO 4 2-VOSO 4 +( NH 4 ) 2 SO 4 (Formula 8)

VO 2++2K ++2SO 4 2-VOSO 4+K 2 SO 4 (式九) VO 2+ +2 K + +2 SO 4 2-VOSO 4 + K 2 SO 4 (Formula 9)

為去除該硫酸氧釩水溶液中的非硫酸氧釩的硫酸鹽,於該沉澱步驟S3中,工者可以於該硫酸氧釩水溶液中加入一鹼液,使硫酸氧釩形成不溶於水的氫氧化氧釩(vanadium oxydihydroxide,VO(OH)2)而沉澱。舉例而言,該鹼液可以為一氫氧化鈉(sodium hydroxide,NaOH)水溶液、一氨水溶液(ammonia solution,NH3‧H2O)或一氫氧化鉀(potassium hydroxide,KOH)水溶液,因而硫酸氧釩均可以受到該些鹼液的作用,分別依下列化學反應式式十、式十一、式十二而形成不溶於水的氫氧化氧釩。 In order to remove sulfates other than vanadyl sulfate in the vanadyl sulfate aqueous solution, in the precipitation step S3, workers can add a lye to the vanadyl sulfate aqueous solution to form a water-insoluble hydroxide Vanadium oxydihydroxide (VO(OH) 2 ) precipitates. For example, the lye can be a sodium hydroxide (NaOH) aqueous solution, an ammonia solution (NH 3 ‧H 2 O) or a potassium hydroxide (potassium hydroxide, KOH) aqueous solution, so sulfuric acid Vanadyl can be affected by these lyes, and form water-insoluble vanadyl hydroxide according to the following chemical reaction formulas 10, 11 and 12 respectively.

VOSO 4+2NaOHVO(OH)2+Na 2 SO 4 (式十) VOSO 4 +2 NaOHVO ( OH ) 2 + Na 2 SO 4 (Formula 10)

VOSO 4+2NH 3 ‧H 2 OVO(OH)2+(NH 4)2 SO 4 (式十一) VOSO 4 +2 NH 3 ‧H 2 OVO ( OH ) 2 +( NH 4 ) 2 SO 4 (Formula 11)

VOSO 4+2KOHVO(OH)2+K 2 SO 4 (式十二) VOSO 4 +2 KOHVO ( OH ) 2 + K 2 SO 4 (Formula 12)

較佳地,工者係可以藉由該鹼液的加入,以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為4~6,如此可以提供足量的氫氧根離子(hydroxide anion,OH-),促進硫酸氧釩可以快速形成氫氧化氧釩。於本實施例中,係將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為5。 Preferably, workers can adjust the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the lye to 4-6 by adding the lye, so that sufficient hydroxide ions can be provided (hydroxide anion, OH - ), promoting vanadyl sulfate can quickly form vanadyl hydroxide. In this embodiment, the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the alkaline solution is adjusted to 5.

接著,於該回溶步驟S4中,工者可以藉由過濾等手段,分離不溶於水的氫氧化氧釩之後,再將所得的氫氧化氧釩回溶於一第二硫酸水溶液,即可以獲得該釩電解液。 Next, in the back-dissolving step S4, workers can separate the water-insoluble vanadium hydroxide by means of filtration, etc., and then dissolve the obtained vanadium hydroxide in a second sulfuric acid aqueous solution to obtain The vanadium electrolyte.

VO(OH)2+H 2 SO 4VOSO 4+2H 2 O (式十三) VO ( OH ) 2 + H 2 SO 4VOSO 4 +2 H 2 O (Formula 13)

為提供足以溶解氫氧化氧釩的硫酸,該第二硫酸水溶液的濃度可以為3~6M。於本實施例中,該第二硫酸水溶液的濃度為5M。 In order to provide enough sulfuric acid to dissolve vanadyl hydroxide, the concentration of the second sulfuric acid aqueous solution may be 3-6M. In this embodiment, the concentration of the second sulfuric acid aqueous solution is 5M.

為證實依本實施例之釩電解液的製備方法確實可以製備獲得該釩電解液,遂進行以下試驗: In order to confirm that the vanadium electrolyte can be prepared according to the preparation method of the vanadium electrolyte of the present embodiment, the following tests were carried out:

(A)混合漿料的混合體積比 (A) Mixing volume ratio of mixed slurry

本試驗係取濃度為35g/L的釩酸鈉水溶液作為該釩酸鹽水溶液,並取重量百分濃度為50%的硫酸水溶液作為該第一硫酸水溶液(包含以重量百分比計為50%的硫酸及50%的水),依如第1表所示的混合體積比混合該釩酸鹽水溶液及該第一硫酸水溶液之後,得各組的混合漿料。接著,取 1000g的混合漿料,置於如第2圖所示之電解裝置的電解槽1中,以該鈦鍍銥電極作為該陽極電極21,並以該鉛電極作為該陰極電極22,以15A的電流進行恆流電解4小時(電壓為4V),將所獲得的硫酸氧釩水溶液進行氧化還原滴定檢測,以換算該硫酸氧釩水溶液中四價釩離子(VO2+)與五價釩離子(VO2 +)的莫耳百分比。 This test system takes the sodium vanadate aqueous solution that concentration is 35g/L as this vanadate aqueous solution, and gets the sulfuric acid aqueous solution that is 50% by weight percent concentration as this first sulfuric acid aqueous solution (comprising 50% sulfuric acid by weight percent) and 50% water), after mixing the vanadate aqueous solution and the first sulfuric acid aqueous solution according to the mixing volume ratio shown in the first table, the mixed slurry of each group was obtained. Then, get the mixed slurry of 1000g, be placed in the electrolyzer 1 of the electrolytic device as shown in Fig. A current of 15A was used for constant-current electrolysis for 4 hours (the voltage was 4V), and the obtained aqueous solution of vanadyl sulfate was subjected to redox titration detection to convert tetravalent vanadium ions (VO 2+ ) and pentavalent vanadium in the aqueous solution of vanadyl sulfate. Molar percentage of ions (VO 2 + ).

Figure 111105626-A0305-02-0011-6
Figure 111105626-A0305-02-0011-6

請參照第1表所示,以介於1:0.5~1:2的混合體積比混合該釩酸鈉水溶液及該第一硫酸水溶液所得的混合漿料,在經恆流電解之後均可以有效將五價釩離子(VO2 +)還原形成四價釩離子(VO2+),且當混合體積比達1:1以上時,該四價釩離子係能夠佔釩離子總量(包含該五價釩離子及該四價釩離子)的莫耳百分比的99%以上(第A2~A4組)。 Please refer to Table 1, the mixed slurry obtained by mixing the sodium vanadate aqueous solution and the first sulfuric acid aqueous solution at a mixing volume ratio of 1:0.5~1:2 can effectively dissolve the Pentavalent vanadium ions (VO 2 + ) are reduced to form tetravalent vanadium ions (VO 2+ ), and when the mixed volume ratio reaches 1:1 or more, the tetravalent vanadium ions can account for the total amount of vanadium ions (including the pentavalent Vanadium ions and the mole percentage of the tetravalent vanadium ions) is more than 99% (groups A2~A4).

(B)恆流電解的電流 (B) Current of constant current electrolysis

本試驗係取濃度為35g/L的釩酸鈉水溶液作為該釩酸鹽水溶液,並取重量百分濃度為50%的硫酸水溶液作為該第一硫酸水溶液(包含以重量百分比計為50%的硫酸及50%的水),依1:1的混合體積比混合該釩酸 鹽水溶液及該第一硫酸水溶液之後,得各組的混合漿料。接著,取1000g的混合漿料,置於如第2圖所示之電解裝置的電解槽1中,以該鈦鍍銥電極作為該陽極電極21,並以該鉛電極作為該陰極電極22,以如第2表所示的電流進行恆流電解4小時(電壓為4V),將所獲得的硫酸氧釩水溶液進行氧化還原滴定檢測,以換算該硫酸氧釩水溶液中四價釩離子(VO2+)與五價釩離子(VO2 +)的莫耳百分比。 This test system takes the sodium vanadate aqueous solution that concentration is 35g/L as this vanadate aqueous solution, and gets the sulfuric acid aqueous solution that is 50% by weight percent concentration as this first sulfuric acid aqueous solution (comprising 50% sulfuric acid by weight percent) and 50% water), after mixing the vanadate aqueous solution and the first sulfuric acid aqueous solution according to the mixing volume ratio of 1:1, the mixed slurry of each group was obtained. Then, get the mixed slurry of 1000g, be placed in the electrolyzer 1 of the electrolytic device as shown in Fig. Carry out constant current electrolysis 4 hours (voltage is 4V) as the electric current shown in the 2nd table, the vanadyl sulfate aqueous solution obtained is carried out redox titration detection, to convert tetravalent vanadium ion (VO in this vanadyl sulfate aqueous solution ) to the molar percentage of pentavalent vanadium ions (VO 2 + ).

Figure 111105626-A0305-02-0012-8
Figure 111105626-A0305-02-0012-8

請參照第2表所示,以介於5~20A的電流進行恆流電解之後均可以有效將五價釩離子(VO2 +)還原形成四價釩離子(VO2+),且當所使用的電流為15A以上時,該四價釩離子係能夠佔釩離子總量(包含該五價釩離子及該四價釩離子)的莫耳百分比的99%以上(第B3~B4組)。 Please refer to Table 2, after constant current electrolysis with a current between 5~20A can effectively reduce pentavalent vanadium ions (VO 2 + ) to form tetravalent vanadium ions (VO 2+ ), and when used When the current is above 15A, the tetravalent vanadium ions can account for more than 99% of the molar percentage of the total amount of vanadium ions (including the pentavalent vanadium ions and the tetravalent vanadium ions) (groups B3-B4).

(C)恆流電解的時間 (C) Time for constant current electrolysis

本試驗係取濃度為35g/L的釩酸鈉水溶液作為該釩酸鹽水溶液,並取重量百分濃度為50%的硫酸水溶液作為該第一硫酸水溶液(包含以重量百分比計為50%的硫酸及50%的水),依1:1的混合體積比混合該釩酸鹽水溶液及該第一硫酸水溶液之後,得各組的混合漿料。接著,取1000g的 混合漿料,置於如第2圖所示之電解裝置的電解槽1中,以該鈦鍍銥電極作為該陽極電極21,並以該鉛電極作為該陰極電極22,以15A的電流進行恆流電解(電壓為4V),電解時間如第3表所示,將所獲得的硫酸氧釩水溶液進行氧化還原滴定檢測,以換算該硫酸氧釩水溶液中四價釩離子(VO2+)與五價釩離子(VO2 +)的莫耳百分比。 This test system takes the sodium vanadate aqueous solution that concentration is 35g/L as this vanadate aqueous solution, and gets the sulfuric acid aqueous solution that is 50% by weight percent concentration as this first sulfuric acid aqueous solution (comprising 50% sulfuric acid by weight percent) and 50% water), after mixing the vanadate aqueous solution and the first sulfuric acid aqueous solution according to the mixing volume ratio of 1:1, the mixed slurry of each group was obtained. Then, get the mixed slurry of 1000g, be placed in the electrolyzer 1 of the electrolytic device as shown in Fig. The electric current of 15A carries out constant-current electrolysis (voltage is 4V), and electrolysis time is as shown in the 3rd table, and the obtained vanadyl sulfate aqueous solution is carried out oxidation-reduction titration detection, to convert tetravalent vanadium ion (VO) in this vanadyl sulfate aqueous solution 2+ ) to the molar percentage of pentavalent vanadium ions (VO 2 + ).

Figure 111105626-A0305-02-0013-9
Figure 111105626-A0305-02-0013-9

請參照第3表所示,進行恆流電解2~8小時之後均可以有效將五價釩離子(VO2 +)還原形成四價釩離子(VO2+),且當恆流電解時間達4小時時,該四價釩離子係能夠佔釩離子總量(包含該五價釩離子及該四價釩離子)的莫耳百分比的99%以上(第C2~C4組)。 Please refer to Table 3, after 2~8 hours of constant current electrolysis, pentavalent vanadium ions (VO 2 + ) can be effectively reduced to tetravalent vanadium ions (VO 2+ ), and when the constant current electrolysis time reaches 4 Hours, the tetravalent vanadium ions can account for more than 99% of the molar percentage of the total amount of vanadium ions (comprising the pentavalent vanadium ions and the tetravalent vanadium ions) (groups C2-C4).

(D)陽極電極的選用 (D) Selection of anode electrodes

本試驗係取濃度為35g/L的釩酸鈉水溶液作為該釩酸鹽水溶液,並取重量百分濃度為50%的硫酸水溶液作為該第一硫酸水溶液(包含以重量百分比計為50%的硫酸及50%的水),依1:1的混合體積比混合該釩酸鹽水溶液及該第一硫酸水溶液之後,得各組的混合漿料。接著,取1000g的混合漿料,置於如第2圖所示之電解裝置的電解槽1中,以如第4表所示的 電極作為該陽極電極21,並以該鉛電極作為該陰極電極22,以15A的電流進行恆流電解4小時(電壓為4V),將所獲得的硫酸氧釩水溶液進行氧化還原滴定檢測,以換算該硫酸氧釩水溶液中四價釩離子(VO2+)與五價釩離子(VO2 +)的莫耳百分比。 This test system takes the sodium vanadate aqueous solution that concentration is 35g/L as this vanadate aqueous solution, and gets the sulfuric acid aqueous solution that is 50% by weight percent concentration as this first sulfuric acid aqueous solution (comprising 50% sulfuric acid by weight percent) and 50% water), after mixing the vanadate aqueous solution and the first sulfuric acid aqueous solution according to the mixing volume ratio of 1:1, the mixed slurry of each group was obtained. Then, take 1000g of the mixed slurry, place it in the electrolytic cell 1 of the electrolysis device as shown in Fig. 2, use the electrode as shown in Table 4 as the anode electrode 21, and use the lead electrode as the cathode electrode 22. Carry out constant current electrolysis with a current of 15A for 4 hours (the voltage is 4V), and perform redox titration detection on the obtained vanadyl sulfate aqueous solution to convert the tetravalent vanadium ion (VO 2+ ) in the vanadyl sulfate aqueous solution. Molar percentage of pentavalent vanadium ions (VO 2 + ).

Figure 111105626-A0305-02-0014-10
Figure 111105626-A0305-02-0014-10

請參照第4表所示,無論是以該鈦鍍銥電極或該鈦鍍銠電極作為該陽極電極21,均可以有效將五價釩離子(VO2 +)還原形成四價釩離子(VO2+),且該四價釩離子係能夠佔釩離子總量(包含該五價釩離子及該四價釩離子)的莫耳百分比的99%以上(第D1、D2組)。 Please refer to Table 4, whether the titanium iridium-plated electrode or the titanium rhodium-plated electrode is used as the anode electrode 21, the pentavalent vanadium ions (VO 2 + ) can be effectively reduced to form tetravalent vanadium ions (VO 2 + ), and the tetravalent vanadium ions can account for more than 99% of the molar percentage of the total amount of vanadium ions (including the pentavalent vanadium ions and the tetravalent vanadium ions) (groups D1 and D2).

(E)陰極電極的選用 (E) Selection of cathode electrode

本試驗係取濃度為35g/L的釩酸鈉水溶液作為該釩酸鹽水溶液,並取重量百分濃度為50%的硫酸水溶液作為該第一硫酸水溶液(包含以重量百分比計為50%的硫酸及50%的水),依1:1的混合體積比混合該釩酸鹽水溶液及該第一硫酸水溶液之後,得各組的混合漿料。接著,取1000g的混合漿料,置於如第2圖所示之電解裝置的電解槽1中,以該鈦鍍銥電極作為該陽極電極21,並以如第5表所示的電極作為該陰極電極22,以15A的電流進行恆流電解4小時(電壓為4V),將所獲得的硫酸氧釩水溶液進行氧化還原滴定檢測,以換算該硫酸氧釩水溶液中四價釩離子(VO2+)與五價釩 離子(VO2 +)的莫耳百分比。 This test system takes the sodium vanadate aqueous solution that concentration is 35g/L as this vanadate aqueous solution, and gets the sulfuric acid aqueous solution that is 50% by weight percent concentration as this first sulfuric acid aqueous solution (comprising 50% sulfuric acid by weight percent) and 50% water), after mixing the vanadate aqueous solution and the first sulfuric acid aqueous solution according to the mixing volume ratio of 1:1, the mixed slurry of each group was obtained. Then, get the mixed slurry of 1000g, be placed in the electrolyzer 1 of the electrolysis device as shown in Fig. Cathode electrode 22, carry out constant current electrolysis 4 hours (voltage is 4V) with the electric current of 15A, the vanadyl sulfate aqueous solution obtained is carried out redox titration detection, to convert the tetravalent vanadium ion (VO in this vanadyl sulfate aqueous solution ) to the molar percentage of pentavalent vanadium ions (VO 2 + ).

Figure 111105626-A0305-02-0015-11
Figure 111105626-A0305-02-0015-11

請參照第5表所示,無論是以該鉛電極或該石墨電極作為該陰極電極22,均可以有效將五價釩離子(VO2 +)還原形成四價釩離子(VO2+),且該四價釩離子係能夠佔釩離子總量(包含該五價釩離子及該四價釩離子)的莫耳百分比的99%以上(第E1、E2組)。 Please refer to Table 5, whether the lead electrode or the graphite electrode is used as the cathode electrode 22, the pentavalent vanadium ions (VO 2 + ) can be effectively reduced to form tetravalent vanadium ions (VO 2+ ), and The tetravalent vanadium ions can account for more than 99% of the molar percentage of the total amount of vanadium ions (including the pentavalent vanadium ions and the tetravalent vanadium ions) (groups E1 and E2).

(F)釩電解液的產出 (F) Output of vanadium electrolyte

本試驗係取前述第E2組的硫酸氧釩水溶液於該硫酸氧釩水溶液中加入該鹼液(重量百分濃度為10~20%的氫氧化鈉水溶液),以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為5之後,形成不溶於水的氫氧化氧釩,藉由過濾手段取得氫氧化氧釩之後,將氫氧化氧釩溶於該第二硫酸水溶液(濃度為5M的硫酸水溶液),最終將所獲得的釩電解液進行氧化還原滴定檢測,以換算該釩電解液中四價釩離子(VO2+)與五價釩離子(VO2 +)的莫耳百分比,並檢測該釩電解液的釩損失率。 This test is to get the vanadyl sulfate aqueous solution of the aforementioned E2 group and add the lye (aqueous sodium hydroxide solution that is 10 to 20% by weight) in the vanadyl sulfate aqueous solution, so as to contain the vanadyl sulfate aqueous solution and After the pH value of the mixed solution of the lye is adjusted to 5, water-insoluble vanadium hydroxide is formed, and after the vanadium hydroxide is obtained by means of filtration, the vanadium hydroxide is dissolved in the second sulfuric acid aqueous solution (concentration is 5M sulfuric acid aqueous solution), and finally the obtained vanadium electrolyte was subjected to redox titration detection to convert the molar percentage of tetravalent vanadium ions (VO 2+ ) and pentavalent vanadium ions (VO 2 + ) in the vanadium electrolyte , and detect the vanadium loss rate of the vanadium electrolyte.

Figure 111105626-A0305-02-0015-12
Figure 111105626-A0305-02-0015-12
Figure 111105626-A0305-02-0016-14
Figure 111105626-A0305-02-0016-14

請參照第6表所示,經該沉澱步驟S3及該回溶步驟S4所獲得的釩電解液中仍包含莫耳百分比的99%以上的四價釩離子(VO2+),且釩損失率僅為1.8%,顯示藉由本實施例的釩電解液的製備方法所製備獲得的產物確實能夠用作釩電解液使用。 Please refer to Table 6, the vanadium electrolyte solution obtained through the precipitation step S3 and the back-dissolution step S4 still contains more than 99% of the molar percentage of tetravalent vanadium ions (VO 2+ ), and the vanadium loss rate Only 1.8%, showing that the product prepared by the preparation method of the vanadium electrolyte in this embodiment can indeed be used as a vanadium electrolyte.

綜上所述,本發明的釩電解液的製備方法,藉由該恆流電解步驟S2,可以將該混合漿料中的三價釩離子(VO2 +)還原形成四價釩離子(VO2+),再藉由該沉澱步驟S3及該回溶步驟S4,使包含該四價釩離子的硫酸亞釩能夠與硫酸鈉、硫酸銨或硫酸鉀等硫酸鹽分離,進而獲得該釩電解液,為本發明之功效。 In summary, the preparation method of the vanadium electrolyte of the present invention can reduce the trivalent vanadium ions (VO 2 + ) in the mixed slurry to form tetravalent vanadium ions (VO 2 + ) through the constant current electrolysis step S2 + ), and then through the precipitation step S3 and the back-dissolution step S4, the vanadium sulfate containing the tetravalent vanadium ion can be separated from sulfates such as sodium sulfate, ammonium sulfate or potassium sulfate, and then obtain the vanadium electrolyte, It is the effect of the present invention.

再且,藉由該漿料形成步驟S1,工者可以選用價格低廉的釩酸鹽作為原料,在與該第一硫酸水溶液進行反應之後,即能夠獲得能夠進行該恆流電解步驟S2的三價釩離子(VO2 +),進而製備獲得該釩電解液,可以達成降低釩電解液的製造成本之功效。 Moreover, through the slurry forming step S1, workers can choose low-cost vanadate as a raw material, and after reacting with the first aqueous sulfuric acid solution, they can obtain trivalent vanadate that can carry out the constant current electrolysis step S2 Vanadium ions (VO 2 + ), and then preparing the vanadium electrolyte, can achieve the effect of reducing the production cost of the vanadium electrolyte.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當包含後附之申請專利範圍所記載的文義及均等範圍內之所有變更。 Although the present invention has been disclosed by using the above-mentioned preferred embodiments, it is not intended to limit the present invention. It is still within the scope of this invention for anyone skilled in the art to make various changes and modifications relative to the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall include all changes within the meaning and equivalent scope described in the appended scope of application.

Figure 111105626-A0305-02-0002-1
Figure 111105626-A0305-02-0002-1

S1:漿料形成步驟 S1: slurry forming step

S2:恆流電解步驟 S2: Constant current electrolysis step

S3:沉澱步驟 S3: precipitation step

S4:回溶步驟 S4: Redissolution step

Claims (15)

一種釩電解液的製備方法,包含:混合一釩酸鹽水溶液及一第一硫酸水溶液,得一混合漿料,該釩酸鹽水溶液為25~50g/L的釩酸鈉水溶液,該混合漿料包含一雙氧釩根離子及一硫酸根離子;對該混合漿料進行恆流電解,使該雙氧釩根離子經還原形成一氧釩根離子,並與該硫酸根離子共同形成硫酸氧釩,以形成一硫酸氧釩水溶液;於該硫酸氧釩水溶液中加入一鹼液,使硫酸氧釩形成不溶於水的氫氧化氧釩;及將過濾所得的氫氧化氧釩溶於一第二硫酸水溶液,以獲得一釩電解液。 A method for preparing a vanadium electrolyte, comprising: mixing a vanadate aqueous solution and a first sulfuric acid aqueous solution to obtain a mixed slurry, the vanadate aqueous solution being a 25-50 g/L sodium vanadate aqueous solution, and the mixed slurry It contains a vanadyl ion and a sulfate ion; the mixed slurry is subjected to constant current electrolysis, so that the vanadyl ion is reduced to form a vanadyl ion, and together with the sulfate ion, vanadyl sulfate is formed , to form a vanadyl sulfate aqueous solution; add a lye to the vanadyl sulfate aqueous solution, so that the vanadyl sulfate forms water-insoluble vanadyl hydroxide; and dissolve the vanadyl hydroxide obtained by filtration in a second sulfuric acid aqueous solution to obtain a vanadium electrolyte. 如請求項1之釩電解液的製備方法,其中,該第一硫酸水溶液包含以重量百分比計為50~60%的硫酸及40~50%的水。 The method for preparing a vanadium electrolyte according to claim 1, wherein the first sulfuric acid aqueous solution comprises 50-60% sulfuric acid and 40-50% water by weight percentage. 如請求項1之釩電解液的製備方法,其中,該混合漿料包含以體積百分比計為30~70%的該釩酸鹽水溶液及30~70%的該第一硫酸水溶液。 The method for preparing a vanadium electrolyte according to claim 1, wherein the mixed slurry contains 30-70% of the vanadate aqueous solution and 30-70% of the first sulfuric acid aqueous solution in volume percentage. 如請求項3之釩電解液的製備方法,其中,該混合漿料包含以體積百分比計為30~50%的該釩酸鹽水溶液及50~70%的該第一硫酸水溶液。 The method for preparing a vanadium electrolyte according to claim 3, wherein the mixed slurry contains 30-50% of the vanadate aqueous solution and 50-70% of the first sulfuric acid aqueous solution in volume percentage. 如請求項1之釩電解液的製備方法,將該混合漿料置入一電解槽中,以進行恆流電解。 Such as the preparation method of the vanadium electrolyte of claim item 1, the mixed slurry is placed in an electrolytic cell for constant current electrolysis. 如請求項5之釩電解液的製備方法,其中,該電解槽中設有一陽極電極,該陽極電極為一鈦鍍銥電極或一鈦鍍銠電極。 The preparation method of vanadium electrolyte as claimed in item 5, wherein, an anode electrode is provided in the electrolytic cell, and the anode electrode is a titanium iridium-plated electrode or a titanium rhodium-plated electrode. 如請求項5之釩電解液的製備方法,其中,該電解槽中設有一陰極電極,該陰極電極為一鉛電極或一石墨電極。 The preparation method of vanadium electrolyte as claimed in item 5, wherein a cathode electrode is provided in the electrolytic cell, and the cathode electrode is a lead electrode or a graphite electrode. 如請求項1之釩電解液的製備方法,其中,以10~20A的電流進行恆流電解2~8小時後,以形成該硫酸氧釩水溶液。 Such as the preparation method of the vanadium electrolyte in claim item 1, wherein the constant current electrolysis is performed with a current of 10-20A for 2-8 hours to form the vanadyl sulfate aqueous solution. 如請求項8之釩電解液的製備方法,其中,以15~20A的電流進行恆流電解。 Such as the preparation method of the vanadium electrolyte of claim item 8, wherein the constant current electrolysis is performed with a current of 15-20A. 如請求項8之釩電解液的製備方法,其中,進行恆流電解4~8小時。 Such as the preparation method of the vanadium electrolyte of claim item 8, wherein the constant current electrolysis is carried out for 4 to 8 hours. 如請求項1之釩電解液的製備方法,其中,於該硫酸氧釩水溶液中加入該鹼液,以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為4~6,以使硫酸氧釩形成氫氧化氧釩。 The preparation method of the vanadium electrolytic solution as claimed in item 1, wherein, the alkaline solution is added to the vanadyl sulfate aqueous solution to adjust the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the alkaline solution to 4~6, To make vanadyl sulfate form vanadyl hydroxide. 如請求項11之釩電解液的製備方法,其中,於該硫酸氧釩水溶液中加入該鹼液,以將包含該硫酸氧釩水溶液及該鹼液的混合溶液的pH值調整為5,以使硫酸氧釩形成氫氧化氧釩。 The preparation method of the vanadium electrolyte as claimed in item 11, wherein, the alkaline solution is added to the vanadyl sulfate aqueous solution to adjust the pH value of the mixed solution comprising the vanadyl sulfate aqueous solution and the alkaline solution to 5, so that Vanadyl sulfate forms vanadyl hydroxide. 如請求項11之釩電解液的製備方法,其中,該鹼液為一氫氧化鈉水溶液、一氨水溶液或一氫氧化鉀水溶液。 The preparation method of the vanadium electrolyte solution as claimed in item 11, wherein the lye is an aqueous sodium hydroxide solution, an aqueous ammonia solution or an aqueous potassium hydroxide solution. 如請求項1之釩電解液的製備方法,其中,該第二硫酸水溶液的濃度為3~6M。 The method for preparing the vanadium electrolyte as claimed in item 1, wherein the concentration of the second sulfuric acid aqueous solution is 3-6M. 如請求項14之釩電解液的製備方法,其中,該第二硫酸水溶液的濃度為5M。 The method for preparing the vanadium electrolyte according to claim 14, wherein the concentration of the second sulfuric acid aqueous solution is 5M.
TW111105626A 2022-02-16 2022-02-16 Method for manufacturing vanadium electrolyte TWI797992B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111105626A TWI797992B (en) 2022-02-16 2022-02-16 Method for manufacturing vanadium electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111105626A TWI797992B (en) 2022-02-16 2022-02-16 Method for manufacturing vanadium electrolyte

Publications (2)

Publication Number Publication Date
TWI797992B true TWI797992B (en) 2023-04-01
TW202335344A TW202335344A (en) 2023-09-01

Family

ID=86945079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105626A TWI797992B (en) 2022-02-16 2022-02-16 Method for manufacturing vanadium electrolyte

Country Status (1)

Country Link
TW (1) TWI797992B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355955A (en) * 2015-10-23 2016-02-24 攀钢集团攀枝花钢铁研究院有限公司 Preparation method for high-purity vanadyl sulfate solution
CN108808052A (en) * 2018-05-31 2018-11-13 四川星明能源环保科技有限公司 A kind of all vanadium ion redox flow battery electrolyte and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355955A (en) * 2015-10-23 2016-02-24 攀钢集团攀枝花钢铁研究院有限公司 Preparation method for high-purity vanadyl sulfate solution
CN108808052A (en) * 2018-05-31 2018-11-13 四川星明能源环保科技有限公司 A kind of all vanadium ion redox flow battery electrolyte and preparation method thereof

Also Published As

Publication number Publication date
TW202335344A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
CN104134791A (en) High-voltage mono-crystal lithium nickel cobalt manganese oxide anode material and preparation method thereof
CN106997958A (en) A kind of method for eliminating all-vanadium redox flow battery electrolyte impurity effect
CN112390292A (en) Bulk phase doped manganous-manganic oxide and preparation method and application thereof
CN110304665A (en) A kind of preparation method of micron-order single-crystal nickel lithium manganate anode material
CN107611384A (en) A kind of high-performance concentration gradient high-nickel material, its preparation method and the purposes in lithium ion battery
WO2023155539A1 (en) Preparation method for sodium ferrovanadium phosphate material and application thereof
CN108336381B (en) Method for producing vanadyl sulfate from vanadium-containing leaching solution
CN111115662A (en) Lithium battery material recovery method
CN110994061A (en) Method for recovering vanadium electrolyte
CN106252592A (en) The carbon in lithium ion battery of a kind of micro-nano structure is combined the preparation method of niobium pentaoxide material
CN111446478A (en) Method for preparing vanadium battery electrolyte by taking vanadium-rich liquid as raw material
CN103904343A (en) Preparation method of electrolyte for all-vanadium redox flow battery
CN101525752B (en) Clean production method for high-purity cobaltosic oxide powder
CN110745795A (en) Method for electrochemically synthesizing lithium bis (fluorosulfonate) imide
TWI797992B (en) Method for manufacturing vanadium electrolyte
CN106684421B (en) Method for preparing vanadium electrolyte
JPH09180745A (en) Manufacture of vanadium electrolyte
CN116259811B (en) Method for preparing vanadium electrolyte from sodium vanadate solution
CN115411326B (en) Vanadium electrolyte using ammonium metavanadate as raw material and preparation method thereof
CN106463755A (en) Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
CN116207318A (en) All-vanadium redox flow battery electrolyte and preparation method thereof
KR20160043392A (en) Preparation and analyze method of the electrolyte for the all-vanadium redox flow secondary battery
CN106517345B (en) Method for preparing ultrafine manganese dioxide by using potassium permanganate and potassium manganate
CN109534401A (en) A kind of preparation method of copper vanadate, the copper vanadate that this method is prepared and its application in lithium ion battery
CN101997112B (en) Method for preparing lithium iron phosphate-lithium vanadium phosphate composite precursor from coulsonite