TWI797684B - Imaging system - Google Patents

Imaging system Download PDF

Info

Publication number
TWI797684B
TWI797684B TW110126815A TW110126815A TWI797684B TW I797684 B TWI797684 B TW I797684B TW 110126815 A TW110126815 A TW 110126815A TW 110126815 A TW110126815 A TW 110126815A TW I797684 B TWI797684 B TW I797684B
Authority
TW
Taiwan
Prior art keywords
lens
lens unit
imaging system
axis
beam splitter
Prior art date
Application number
TW110126815A
Other languages
Chinese (zh)
Other versions
TW202305439A (en
Inventor
王智鵬
Original Assignee
大陸商信泰光學(深圳)有限公司
亞洲光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商信泰光學(深圳)有限公司, 亞洲光學股份有限公司 filed Critical 大陸商信泰光學(深圳)有限公司
Priority to TW110126815A priority Critical patent/TWI797684B/en
Publication of TW202305439A publication Critical patent/TW202305439A/en
Application granted granted Critical
Publication of TWI797684B publication Critical patent/TWI797684B/en

Links

Images

Abstract

An imaging system includes a beam splitter, a first lens unit, a second lens unit, a third lens unit, and a fourth lens unit. The first lens unit is with refractive power. The second lens unit is with refractive power. The third lens unit is with refractive power. The fourth lens unit is with positive refractive power. The fourth lens unit, the beam splitter, and the first lens unit are arranged in order from an projection side to an image source side along a first axis. The second lens unit, the beam splitter, and the third lens unit are arranged in order along a second axis. The first axis intersects the second axis.

Description

成像系統 imaging system

本發明係有關於一種成像系統。 The present invention relates to an imaging system.

微型投影成像系統已廣泛應用於頭戴式顯示器,未來更將被使用於AR、VR及MR等新科技。但傳統架構的成像系統大都使用軸對稱透鏡,不容易控制水平軸像與垂直軸像的有效焦距,較難達成人眼因為水平軸像與垂直軸像不均等的人因設計,又因為體積較大重量較重不利於長久配戴。所以需要有另一種新架構的成像系統才能同時滿足體積小、重量輕及具備可控制水平軸像與垂直軸像的有效焦距。 Micro-projection imaging systems have been widely used in head-mounted displays, and will be used in new technologies such as AR, VR, and MR in the future. However, most imaging systems with traditional architectures use axisymmetric lenses. It is not easy to control the effective focal length of the horizontal axis image and the vertical axis image. Heavy weight is not conducive to long-term wear. Therefore, another imaging system with a new structure is required to satisfy the requirements of small size, light weight and effective focal length that can control the horizontal axis image and the vertical axis image at the same time.

有鑑於此,本發明之主要目的在於提供一種成像系統,在成像系統的光學路徑中導入分光鏡,以達到縮小成像系統體積及重量,另搭配使用柱面透鏡來控制水平軸像與垂直軸像的有效焦距。 In view of this, the main purpose of the present invention is to provide an imaging system. A beam splitter is introduced into the optical path of the imaging system to reduce the volume and weight of the imaging system. In addition, a cylindrical lens is used to control the horizontal axis image and the vertical axis image. effective focal length.

本發明之成像系統包括一分光鏡、一第一透鏡單元、一第二透鏡單元、一第三透鏡單元及一第四透鏡單元。第一透鏡單元具有屈光力。第二透鏡單元具有屈光力。第三透鏡單元具有屈光力。第四透鏡單元具有正屈光力。第四透鏡單元、分光鏡及第一透鏡單元沿著一第一軸線從一投影側至一影像源側依序排列。第二透鏡單元、分光鏡及第三透鏡單元 沿著一第二軸線依序排列。第一軸線與第二軸線相交。 The imaging system of the present invention includes a beam splitter, a first lens unit, a second lens unit, a third lens unit and a fourth lens unit. The first lens unit has refractive power. The second lens unit has refractive power. The third lens unit has refractive power. The fourth lens unit has positive refractive power. The fourth lens unit, the beam splitter and the first lens unit are arranged in sequence along a first axis from a projection side to an image source side. Second lens unit, beam splitter and third lens unit arranged in sequence along a second axis. The first axis intersects the second axis.

其中第一透鏡單元包括一第一透鏡,第二透鏡單元包括一第二透鏡,第三透鏡單元包括一第三透鏡,第四透鏡單元包括一第五透鏡,第五透鏡具有正屈光力,第一透鏡、第二透鏡及第三透鏡為柱面透鏡,來自一影像源之光線依序通過第一透鏡單元、分光鏡、第二透鏡單元、分光鏡、第三透鏡單元、分光鏡、第四透鏡單元,最後投影於一投影面。 Wherein the first lens unit includes a first lens, the second lens unit includes a second lens, the third lens unit includes a third lens, the fourth lens unit includes a fifth lens, the fifth lens has positive refractive power, and the first lens unit includes a third lens. The lens, the second lens and the third lens are cylindrical lenses, and the light from an image source passes through the first lens unit, the beam splitter, the second lens unit, the beam splitter, the third lens unit, the beam splitter, and the fourth lens in sequence unit, and finally projected on a projection plane.

其中第二透鏡單元可更包括一第一偏振狀態變化結構,此第一偏振狀態變化結構設置於分光鏡與第二透鏡之間,第三透鏡單元可更包括一第二偏振狀態變化結構,此第二偏振狀態變化結構設置於分光鏡與第三透鏡之間。 Wherein the second lens unit may further include a first polarization state changing structure, the first polarization state changing structure is arranged between the beam splitter and the second lens, the third lens unit may further include a second polarization state changing structure, The second polarization state changing structure is disposed between the beam splitter and the third lens.

其中第一透鏡、第二透鏡及第三透鏡具有正屈光力,第二透鏡及第三透鏡可更包括一高反射膜鍍覆或貼覆於一柱面表面。 Wherein the first lens, the second lens and the third lens have positive refractive power, and the second lens and the third lens may further include a high reflection film coating or pasting on a cylindrical surface.

其中第三透鏡單元可更包括一第四透鏡,第四透鏡具有正屈光力,第三透鏡介於第二偏振狀態變化結構及第四透鏡之間。 The third lens unit may further include a fourth lens with positive refractive power, and the third lens is located between the second polarization state changing structure and the fourth lens.

其中第四透鏡為柱面透鏡,第二透鏡及第四透鏡可更包括一高反射膜鍍覆或貼覆於一柱面表面。 Wherein the fourth lens is a cylindrical lens, and the second lens and the fourth lens may further include a high reflective film coated or pasted on a cylindrical surface.

其中成像系統滿足以下其中至少一條件:1<PBSL/PBSH

Figure 110126815-A0101-12-0002-46
1.72;0.5
Figure 110126815-A0101-12-0002-47
PBSH/PBSL<1;1.5
Figure 110126815-A0101-12-0002-48
PBSL/PBST
Figure 110126815-A0101-12-0002-49
2.3;1
Figure 110126815-A0101-12-0002-51
PBSH/PBST
Figure 110126815-A0101-12-0002-50
1.7;1.9
Figure 110126815-A0101-12-0002-52
OPL/PBSL
Figure 110126815-A0101-12-0002-53
3;2.6
Figure 110126815-A0101-12-0002-54
OPL/PBSH
Figure 110126815-A0101-12-0002-55
4.2;3.6
Figure 110126815-A0101-12-0002-56
OPL/PBST
Figure 110126815-A0101-12-0002-57
5.7;0.01
Figure 110126815-A0101-12-0002-58
BFL/OPL
Figure 110126815-A0101-12-0002-59
0.04;0.05
Figure 110126815-A0101-12-0002-60
BFL/f
Figure 110126815-A0101-12-0002-61
0.15;0.25
Figure 110126815-A0101-12-0002-62
IMGH/f
Figure 110126815-A0101-12-0002-63
0.45;0.1
Figure 110126815-A0101-12-0002-64
IMGH/OPL
Figure 110126815-A0101-12-0002-65
0.17;1.4
Figure 110126815-A0101-12-0002-66
3fy/f
Figure 110126815-A0101-12-0002-67
2.3;0.5
Figure 110126815-A0101-12-0002-68
2fx/f
Figure 110126815-A0101-12-0002-69
0.9;0.9
Figure 110126815-A0101-12-0002-70
1fy/f
Figure 110126815-A0101-12-0002-71
1.7;0.52
Figure 110126815-A0101-12-0002-72
1fy/3fy
Figure 110126815-A0101-12-0002-73
0.89;0.3
Figure 110126815-A0101-12-0002-74
2fx/3fy
Figure 110126815-A0101-12-0002-75
0.5;3fy>1fy;1.7
Figure 110126815-A0101-12-0002-76
fFLG/f
Figure 110126815-A0101-12-0002-77
3;其中,PBSL為成像系統 之一長度,亦即投影側至影像源側在第一軸線上之距離,PBSH為成像系統之一高度,亦即第二透鏡單元遠離分光鏡之一側至第三透鏡單元遠離分光鏡之一側在第二軸線上的距離,PBST為分光鏡之一厚度,亦即分光鏡之投影側面至影像源側面在第一軸線上的距離,OPL為成像系統之一光程長度,BFL為最靠近影像源側之透鏡之一影像源側面至一影像源沿著第一軸線之一間隔,f為成像系統之一有效焦距,IMGH為成像系統之一半像高,1fy為第一透鏡單元之一Y軸方向有效焦距,2fx為第二透鏡單元之一X軸方向有效焦距,3fy為第三透鏡單元之一Y軸方向有效焦距,f為成像系統之一有效焦距,fFLG為第四透鏡單元之一有效焦距,以下本發明表格中所示的fx、fy有效焦距方向須以右手定則來判斷,中指表示為光軸方向並定義為Z軸,食指定義為X軸,拇指定義為Y軸,此三軸互相垂直;以第一透鏡單元為例,其光軸沿第一軸線由影像源側朝投影側方向,因此其Z軸朝左,以右手定則判斷則其Y軸沿第二軸線朝上,X軸朝一第三軸線朝內;第二透鏡單元其光軸沿第二軸線往遠離分光鏡的方向指向上方,所以Z軸朝上,其餘X軸和Y軸同上述判斷;第三透鏡單元的光軸沿第二軸線往遠離分光鏡的方向指向下方,所以Z軸朝下,其餘X軸和Y軸同上述判斷。 The imaging system meets at least one of the following conditions: 1<PBSL/PBSH
Figure 110126815-A0101-12-0002-46
1.72; 0.5
Figure 110126815-A0101-12-0002-47
PBSH/PBSL<1; 1.5
Figure 110126815-A0101-12-0002-48
PBSL/PBST
Figure 110126815-A0101-12-0002-49
2.3;1
Figure 110126815-A0101-12-0002-51
PBSH/PBST
Figure 110126815-A0101-12-0002-50
1.7; 1.9
Figure 110126815-A0101-12-0002-52
OPL/PBSL
Figure 110126815-A0101-12-0002-53
3;2.6
Figure 110126815-A0101-12-0002-54
OPL/PBSH
Figure 110126815-A0101-12-0002-55
4.2; 3.6
Figure 110126815-A0101-12-0002-56
OPL/PBST
Figure 110126815-A0101-12-0002-57
5.7; 0.01
Figure 110126815-A0101-12-0002-58
BFL/OPL
Figure 110126815-A0101-12-0002-59
0.04; 0.05
Figure 110126815-A0101-12-0002-60
BFL/f
Figure 110126815-A0101-12-0002-61
0.15; 0.25
Figure 110126815-A0101-12-0002-62
IMGH/f
Figure 110126815-A0101-12-0002-63
0.45; 0.1
Figure 110126815-A0101-12-0002-64
IMGH/OPL
Figure 110126815-A0101-12-0002-65
0.17; 1.4
Figure 110126815-A0101-12-0002-66
3fy/f
Figure 110126815-A0101-12-0002-67
2.3; 0.5
Figure 110126815-A0101-12-0002-68
2fx/f
Figure 110126815-A0101-12-0002-69
0.9; 0.9
Figure 110126815-A0101-12-0002-70
1fy/f
Figure 110126815-A0101-12-0002-71
1.7; 0.52
Figure 110126815-A0101-12-0002-72
1fy/3fy
Figure 110126815-A0101-12-0002-73
0.89; 0.3
Figure 110126815-A0101-12-0002-74
2fx/3fy
Figure 110126815-A0101-12-0002-75
0.5; 3fy>1fy; 1.7
Figure 110126815-A0101-12-0002-76
f FLG /f
Figure 110126815-A0101-12-0002-77
3; Among them, PBSL is the length of the imaging system, that is, the distance from the projection side to the image source side on the first axis, and PBSH is the height of the imaging system, that is, the side of the second lens unit away from the beam splitter to the first axis The distance of the three-lens unit away from one side of the beam splitter on the second axis, PBST is the thickness of the beam splitter, that is, the distance from the projected side of the beam splitter to the side of the image source on the first axis, and OPL is one of the imaging systems Optical path length, BFL is the distance between one image source side of the lens closest to the image source side and an image source along the first axis, f is an effective focal length of the imaging system, IMGH is a half-image height of the imaging system, 1fy is the effective focal length of one of the first lens units in the Y-axis direction, 2fx is the effective focal length of one of the second lens units in the X-axis direction, 3fy is the effective focal length of one of the third lens units in the Y-axis direction, and f is one of the effective focal lengths of the imaging system, f FLG is one of the effective focal lengths of the fourth lens unit. The directions of fx and fy effective focal lengths shown in the following table of the present invention must be judged by the right-hand rule. The middle finger represents the direction of the optical axis and is defined as the Z axis, and the index finger is defined as the X axis. , the thumb is defined as the Y axis, and these three axes are perpendicular to each other; taking the first lens unit as an example, its optical axis is along the first axis from the image source side to the projection side, so its Z axis is facing left, judging by the right-hand rule. The Y axis faces upward along the second axis, and the X axis faces inward toward a third axis; the optical axis of the second lens unit points upward along the second axis away from the beam splitter, so the Z axis faces upward, and the remaining X and Y axes The same judgment as above; the optical axis of the third lens unit points downward along the second axis away from the beam splitter, so the Z-axis faces downward, and the rest of the X-axis and Y-axis are the same as the above judgment.

其中成像系統滿足條件:2fx≒1/((1/3fy)+(1/1fy));或條件:2fx=(3fy×1fy)/(3fy+1fy);其中,1fy為第一透鏡單元之一Y軸方向有效焦距,2fx為第二透鏡單元之一X軸方向有效焦距,3fy為第三透鏡單元之一Y軸方向有效焦距。 The imaging system satisfies the condition: 2fx≒1/((1/3fy)+(1/1fy)); or the condition: 2fx=(3fy×1fy)/(3fy+1fy); among them, 1fy is the first lens unit - an effective focal length in the Y-axis direction, 2fx is an effective focal length in the X-axis direction of one of the second lens units, and 3fy is an effective focal length in the Y-axis direction of one of the third lens units.

其中第一軸與第二軸垂直。 where the first axis is perpendicular to the second axis.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下 文特舉較佳實施例並配合所附圖式做詳細說明。 In order to make the above-mentioned objects, features, and advantages of the present invention more obvious and understandable, the following Wen Te cites preferred embodiments and explains in detail with the accompanying drawings.

1、2、3:成像系統 1, 2, 3: Imaging system

LG11、LG21、LG31:第一透鏡單元 LG11, LG21, LG31: first lens unit

LG12、LG22:第二透鏡單元 LG12, LG22: Second lens unit

LG13、LG23:第三透鏡單元 LG13, LG23: Third lens unit

FLG1、FLG2、FLG3:第四透鏡單元 FLG1, FLG2, FLG3: fourth lens unit

L11、L21:第一透鏡 L11, L21: first lens

L12、L22:第二透鏡 L12, L22: second lens

L13、L23:第三透鏡 L13, L23: third lens

L14:第四透鏡 L14: Fourth lens

L15、L25:第五透鏡 L15, L25: fifth lens

PBS1、PBS2:分光鏡 PBS1, PBS2: Beamsplitter

ST1、ST2:光圈 ST1, ST2: Aperture

QWP11、QWP21:第一偏振狀態變化結構(第一四分之一波長延遲片) QWP11, QWP21: The first polarization state changing structure (the first quarter-wave retarder)

QWP12、QWP22:第二偏振狀態變化結構(第二四分之一波長延遲) QWP12, QWP22: Second Polarization State Changing Structure (Second Quarter Wavelength Retardation)

PS1、PS2:投影面 PS1, PS2: projection surface

IS1、IS2:影像源 IS1, IS2: image source

AX11、AX21:第一軸線 AX11, AX21: first axis

AX12、AX22:第二軸線 AX12, AX22: second axis

S11、S21:第一表面 S11, S21: the first surface

S12、S22:第二表面 S12, S22: second surface

S13、S23:第三表面 S13, S23: the third surface

S14、S24:第四表面 S14, S24: the fourth surface

S15、S25:斜面 S15, S25: Bevel

X:X軸 X: X-axis

Y:Y軸 Y: Y-axis

Z:Z軸 Z: Z-axis

40:光路轉折元件 40: Optical path turning element

100:眼球 100: eyeball

第1圖係依據本發明之成像系統之第一實施例的透鏡配置與光路示意圖。 FIG. 1 is a schematic diagram of the lens configuration and optical path of the first embodiment of the imaging system according to the present invention.

第2A、2B、2C圖係依據本發明之成像系統之第一實施例的場曲(Field Curvature)圖、畸變(Distortion)圖、調變轉換函數(Modulation Transfer Function)圖。 Figures 2A, 2B, and 2C are Field Curvature, Distortion, and Modulation Transfer Function diagrams of the first embodiment of the imaging system according to the present invention.

第3圖係依據本發明之成像系統之第二實施例的透鏡配置示意圖。 FIG. 3 is a schematic diagram of the lens configuration of the second embodiment of the imaging system according to the present invention.

第4圖係依據本發明之成像系統應用於AR、VR或XR之示意圖。 Fig. 4 is a schematic diagram of the application of the imaging system according to the present invention to AR, VR or XR.

本發明提供一種成像系統,包括:一分光鏡;一第一透鏡單元,此第一透鏡單元具有屈光力;一第二透鏡單元,此第二透鏡單元具有屈光力;一第三透鏡單元,此第三透鏡單元具有屈光力;一第四透鏡單元,此第四透鏡單元具有正屈光力;其中第四透鏡單元、分光鏡及第一透鏡單元沿著一第一軸線從一投影側至一影像源側依序排列;第二透鏡單元、分光鏡及第三透鏡單元沿著一第二軸線依序排列;其中第一軸線與第二軸線相交。於其他實施例中該分光鏡可以是偏振分光鏡、平板分光鏡、極化分光稜鏡或是方形稜鏡等具有可達到分光功效的光學元件。透過上述設計有助於有效的縮小體積、有效減少重量、有效的修正像差、有效的延長光路。 The present invention provides an imaging system, comprising: a beam splitter; a first lens unit, the first lens unit has a refractive power; a second lens unit, the second lens unit has a refractive power; a third lens unit, the third The lens unit has a refractive power; a fourth lens unit, the fourth lens unit has a positive refractive power; wherein the fourth lens unit, the beam splitter and the first lens unit are sequentially along a first axis from a projection side to an image source side Arrangement; the second lens unit, the beam splitter and the third lens unit are sequentially arranged along a second axis; wherein the first axis intersects the second axis. In other embodiments, the beam splitter may be a polarized beam splitter, a plate beam splitter, a polarized beam splitter or a square beam, and other optical elements capable of achieving light splitting. Through the above design, it is helpful to effectively reduce the volume, effectively reduce the weight, effectively correct the aberration, and effectively extend the optical path.

請參閱底下表一、表二、表四及表五,其中表一及表四分 別為依據本發明之成像系統之第一實施例至第二實施例的各元件之相關參數表,表二及表五分別為表一及表四中非球面透鏡之非球面表面之相關參數表。 Please refer to Table 1, Table 2, Table 4 and Table 5 below, of which Table 1 and Table 4 are divided into Table 2 and Table 5 are the relevant parameter tables of the aspheric surface of the aspheric lens in Table 1 and Table 4 respectively. .

請同時參閱第1及2圖,其餘成像系統之第三實施例的透鏡配置與光路示意圖與第二實施例近似,因此省略其圖示,但在以下有關於第三實施例的內容,仍將繼續使用第三實施例的各元件符號以方便說明。其中第一透鏡單元LG11、LG21、LG31具有正屈光力,且分別包括一第一透鏡L11、L21、L31,第二透鏡單元LG12、LG22、LG32具有正屈光力,且分別包括一第二透鏡L12、L22、L32及一第一偏振狀態變化結構QWP11、QWP21、QWP31,第三透鏡單元LG13、LG23、LG33具有正屈光力,且分別包括一第三透鏡L13、L23、L33及一第二偏振狀態變化結構QWP12、QWP22、QWP32,第四透鏡單元FLG1、FLG2、FLG3具有正屈光力,且分別包括一第五透鏡L15、L25、L35,分光鏡PBS1、PBS2、PBS3分別包括一第一表面S11、S21、S31、一第二表面S12、S22、S32、一第三表面S13、S23、S33、一第四表面S14、S24、S34、一斜面S15、S25、S35,於其他實施例斜面可以呈45度設置。 Please refer to Figures 1 and 2 at the same time. The lens configuration and optical path schematic diagram of the third embodiment of the remaining imaging system are similar to the second embodiment, so its illustration is omitted, but the content about the third embodiment will still be described below The symbols of the elements in the third embodiment are continued to be used for convenience of description. Wherein the first lens units LG11, LG21, LG31 have positive refractive power, and respectively include a first lens L11, L21, L31, and the second lens units LG12, LG22, LG32 have positive refractive power, and respectively include a second lens L12, L22 . . A second surface S12, S22, S32, a third surface S13, S23, S33, a fourth surface S14, S24, S34, an inclined surface S15, S25, S35, in other embodiments the inclined surface can be set at 45 degrees.

第一透鏡L11、L21、L31為柱面透鏡具有正屈光力,其投影側面為平面,影像源側面為柱面,柱面之X軸方向為平面Y軸方向為凸面,凸面為球面表面,柱面之Y軸方向為球面表面。第二透鏡L12、L22、L32為柱面透鏡具有正屈光力,其面對分光鏡側面為平面,非面對分光鏡側面為柱面,柱面之X軸方向為凸面Y軸方向為平面,凸面為球面表面,柱面表面鍍覆或貼覆高反射膜(未圖示)。第三透鏡L13、L23、L33為柱面透鏡, 其面對分光鏡側面為平面,非面對分光鏡側面為柱面,柱面X軸方向為平面。第五透鏡L15、L25、L35為非球面透鏡具有正屈光力,其投影側面為凹面,影像源側面為凸面,投影側面及影像源側面皆為非球面表面。分光鏡PBS1、PBS2、PBS3之第一表面S11、S21、S31、第二表面S12、S22、S32、第三表面S13、S23、S33、第四表面S14、S24、S34、斜面S15、S25、S35皆為平面,分光鏡PBS1、PBS2、PBS3可將來自第一表面S11、S21、S31入射的S偏振光於45度斜面S15、S25、S35處反射射向第二表面S12、S22、S32,另可將入射的P偏振光於45度斜面S15、S25、S35處穿透射向第四表面S14、S24、S34,或者將來自第二表面S12、S22、S32入射的S偏振光於45度斜面S15、S25、S35處反射射向第一表面S11、S21、S31,另可將入射的P偏振光於45度斜面S15、S25、S35處穿透射向第三表面S13、S23、S33,或者將來自第三表面S13、S23、S33入射的S偏振光於45度斜面S15、S25、S35處反射射向第四表面S14、S24、S34,另可將入射的P偏振光於45度斜面S15、S25、S35處穿透射向第二表面S12、S22、S32。分光鏡PBS1、PBS2、PBS3與第一透鏡L11、L21、L31、第二透鏡L12、L22、L32以及第三透鏡L13、L23、L33之間可以存在空氣間隔或是不存在空氣間隔(例如:膠合)的方式設置。使用柱面透鏡有利於控制水平軸像與垂直軸像的有效焦距與放大倍率。 The first lenses L11, L21, and L31 are cylindrical lenses with positive refractive power. The projection side is a plane, the side of the image source is a cylinder, the X-axis direction of the cylinder is a plane, and the Y-axis direction is a convex surface. The Y-axis direction is a spherical surface. The second lenses L12, L22, and L32 are cylindrical lenses with positive refractive power. The side facing the beam splitter is a plane, and the side not facing the beam splitter is a cylinder. The X-axis direction of the cylinder is convex and the Y-axis direction is a plane and convex surface. It is a spherical surface, and the cylindrical surface is plated or pasted with a high reflection film (not shown). The third lenses L13, L23, L33 are cylindrical lenses, The side facing the beam splitter is a plane, the side not facing the beam splitter is a cylinder, and the X-axis direction of the cylinder is a plane. The fifth lenses L15 , L25 , and L35 are aspherical lenses with positive refractive power. The projection side is concave, the image source side is convex, and both the projection side and the image source side are aspheric surfaces. First surface S11, S21, S31, second surface S12, S22, S32, third surface S13, S23, S33, fourth surface S14, S24, S34, slope S15, S25, S35 of beam splitter PBS1, PBS2, PBS3 All are planes, and the beam splitters PBS1, PBS2, and PBS3 can reflect the incident S-polarized light from the first surface S11, S21, and S31 on the 45-degree inclined planes S15, S25, and S35 to the second surface S12, S22, and S32. The incident P-polarized light can be transmitted to the fourth surface S14, S24, S34 at the 45-degree slope S15, S25, S35, or the S-polarized light incident from the second surface S12, S22, S32 can be transmitted to the 45-degree slope Reflection at S15, S25, S35 is directed to the first surface S11, S21, S31, and the incident P-polarized light can be transmitted to the third surface S13, S23, S33 at the 45-degree inclined plane S15, S25, S35, or The S-polarized light incident from the third surface S13, S23, S33 is reflected at the 45-degree inclined plane S15, S25, S35 and directed to the fourth surface S14, S24, S34, and the incident P-polarized light can be incident on the 45-degree inclined plane S15 , S25, and S35 penetrate to the second surface S12, S22, and S32. There can be an air gap or no air gap between the beam splitter PBS1, PBS2, PBS3 and the first lens L11, L21, L31, the second lens L12, L22, L32 and the third lens L13, L23, L33 (for example: cemented ) way to set. Using a cylindrical lens is beneficial to control the effective focal length and magnification of the horizontal axis image and the vertical axis image.

本說明書中所述第一透鏡、第二透鏡、第三透鏡的X軸和Y軸須分別以右手定則來判斷,中指表示為光軸方向並定義為Z軸,食指定義為X軸,拇指定義為Y軸,X、Y、Z軸互相垂直;以第一透鏡單元為例,其光軸沿第一軸線由影像源側朝投影側方向,因此Z軸(中指)朝左,Y 軸(拇指)沿第二軸線朝上,X軸(食指)朝第三軸線(未圖示)朝內,該第三軸線與第一軸線和第二軸線垂直;第二透鏡單元光軸沿第二軸線往遠離分光鏡的方向指向上方,所以Z軸朝上,其餘X軸和Y軸同上述判斷;第三透鏡單元的光軸沿第二軸線往遠離分光鏡的方向指向下方,所以Z軸朝下,其餘X軸和Y軸同上述判斷。 The X-axis and Y-axis of the first lens, the second lens, and the third lens mentioned in this manual must be judged by the right-hand rule respectively. is the Y axis, and the X, Y, and Z axes are perpendicular to each other; taking the first lens unit as an example, its optical axis is along the first axis from the image source side to the projection side, so the Z axis (middle finger) faces to the left, and the Y The axis (thumb) faces upward along the second axis, and the X-axis (index finger) faces inward toward a third axis (not shown), which is perpendicular to the first and second axes; the second lens unit optical axis is along the first The second axis points upward away from the beam splitter, so the Z axis faces upward, and the rest of the X axis and Y axis are the same as the above judgment; the optical axis of the third lens unit points down along the second axis away from the beam splitter, so the Z axis Downward, the rest of the X-axis and Y-axis are the same as the above judgment.

透過上述設置使得成像系統1、2、3能有效的縮小體積、有效減少重量、有效的修正像差,另外,成像系統1、2、3滿足以下條件(1)至條件(20)其中至少一條件: Through the above settings, the imaging systems 1, 2, and 3 can effectively reduce the volume, effectively reduce the weight, and effectively correct aberrations. In addition, the imaging systems 1, 2, and 3 satisfy at least one of the following conditions (1) to (20) condition:

Figure 110126815-A0101-12-0007-9
Figure 110126815-A0101-12-0007-9

Figure 110126815-A0101-12-0007-10
Figure 110126815-A0101-12-0007-10

Figure 110126815-A0101-12-0007-12
Figure 110126815-A0101-12-0007-12

Figure 110126815-A0101-12-0007-13
Figure 110126815-A0101-12-0007-13

Figure 110126815-A0101-12-0007-14
Figure 110126815-A0101-12-0007-14

Figure 110126815-A0101-12-0007-15
Figure 110126815-A0101-12-0007-15

Figure 110126815-A0101-12-0007-16
Figure 110126815-A0101-12-0007-16

Figure 110126815-A0101-12-0007-17
Figure 110126815-A0101-12-0007-17

Figure 110126815-A0101-12-0007-18
Figure 110126815-A0101-12-0007-18

Figure 110126815-A0101-12-0007-19
Figure 110126815-A0101-12-0007-19

Figure 110126815-A0101-12-0007-20
Figure 110126815-A0101-12-0007-20

Figure 110126815-A0101-12-0007-21
Figure 110126815-A0101-12-0007-21

Figure 110126815-A0101-12-0007-22
Figure 110126815-A0101-12-0007-22

Figure 110126815-A0101-12-0007-23
Figure 110126815-A0101-12-0007-23

Figure 110126815-A0101-12-0008-24
Figure 110126815-A0101-12-0008-24

Figure 110126815-A0101-12-0008-26
Figure 110126815-A0101-12-0008-26

3fy>1fy; (17) 3fy>1fy; (17)

Figure 110126815-A0101-12-0008-28
Figure 110126815-A0101-12-0008-28

2fx≒1/((1/3fy)+(1/1fy)) (19) 2fx≒1/((1/3fy)+(1/1fy)) (19)

2fx=(3fy×1fy)/(3fy+1fy) (20) 2fx=(3fy×1fy)/(3fy+1fy) (20)

其中,PBSL為第一實施例至第三實施例中,成像系統1、2、3之一長度,亦即成像系統在第一軸線方向上投影側至影像源側之距離,PBSH為第一實施例至第三實施例中,成像系統1、2、3之一高度,亦即第二透鏡單元遠離分光鏡之一側至第三透鏡單元遠離分光鏡之一側在第二軸線方向上的距離,PBST為第一實施例至第三實施例中,分光鏡PBS1、PBS2、PBS3之一厚度,亦即分光鏡之投影側面至影像源側面在第一軸線方向上的距離,OPL為成像系統1、2、3之一光程長度,BFL為最靠近影像源側之透鏡L11、L21、L31之一影像源側面至一影像源IS1、IS2、IS3沿這第一軸線AX11、AX12、AX13之一間隔,IMGH為成像系統1、2、3之一半像高,1fy為第一透鏡單元LG11、LG21、LG31之一Y軸方向有效焦距,2fx為第二透鏡單元LG12、LG22、LG32之一X軸方向有效焦距,3fy為該第三透鏡單元LG13、LG23、LG33之一Y軸方向有效焦距,fFLG為第四透鏡單元FLG1、FLG2、FLG3之一有效焦距。 Among them, PBSL is the length of the imaging systems 1, 2, and 3 in the first embodiment to the third embodiment, that is, the distance from the projection side of the imaging system to the image source side in the first axis direction, and PBSH is the first embodiment For example, in the third embodiment, a height of the imaging system 1, 2, 3, that is, the distance from the side of the second lens unit away from the beam splitter to the side of the third lens unit away from the beam splitter in the direction of the second axis , PBST is the thickness of the beam splitter PBS1, PBS2, PBS3 in the first embodiment to the third embodiment, that is, the distance between the projected side of the beam splitter and the side of the image source in the first axis direction, OPL is the imaging system 1 , an optical path length of 2, 3, BFL is one of the image source sides of the lenses L11, L21, L31 closest to the image source side to an image source IS1, IS2, IS3 along the first axis AX11, AX12, AX13 Interval, IMGH is the half-image height of one of imaging systems 1, 2, and 3, 1fy is the effective focal length in the Y-axis direction of one of the first lens units LG11, LG21, and LG31, and 2fx is the X-axis of one of the second lens units LG12, LG22, and LG32 3fy is the effective focal length of one of the third lens units LG13, LG23, LG33 in the Y-axis direction, and f FLG is the effective focal length of one of the fourth lens units FLG1, FLG2, FLG3.

當滿足條件(1)~(4)、(9)、(10)、(11)時,可有助於縮小成像系統體積,當滿足條件(5)~(8)時,可有助於增加成像系統光程長度與縮小體積,當滿足條件(12)~(16)、(18)時,可有助於控制成像系統體積,當滿足條 件(17)時,可有助於縮短第一透鏡單元與影像源之間距,當滿足條件(19)、(20)時,有利於最終成像位置點X軸有效焦距與Y軸有效焦距相同。 When the conditions (1)~(4), (9), (10), and (11) are met, it can help to reduce the volume of the imaging system; when the conditions (5)~(8) are met, it can help increase the The optical path length and reduced volume of the imaging system, when the conditions (12)~(16) and (18) are met, can help to control the volume of the imaging system. When the item (17) is used, it can help to shorten the distance between the first lens unit and the image source. When the conditions (19) and (20) are met, it is beneficial for the effective focal length of the X-axis and the Y-axis of the final imaging position to be the same.

現詳細說明本發明之成像系統之第一實施例。請參閱第1圖,成像系統1沿著一第一軸線AX11從一投影側至一影像源側依序包括一光圈ST1、一第四透鏡單元FLG1、一分光鏡PBS1及一第一透鏡單元LG11,成像系統1沿著一第二軸線AX12依序包括一第二透鏡單元LG12、一分光鏡PBS1及一第三透鏡單元LG13。第一透鏡單元LG11包括一第一透鏡L11。第二透鏡單元LG12包括一第二透鏡L12以及一第一偏振狀態變化結構,此第一偏振狀態變化結構設置於第二透鏡L12與分光鏡PBS1之間,本實例中第一偏振狀態變化結構為一第一四分之一波長延遲片(quarter-wave plate)QWP11,實務上依照需求可為二分之一波片或是其他具有調整偏振光的結構。第三透鏡單元LG13包括一第三透鏡L13以及一第二偏振狀態變化結構,此第二偏振狀態變化結構設置於第三透鏡L13與分光鏡PBS1之間,本實例中第二偏振狀態變化結構為一第二四分之一波長延遲片QWP12,實務上依照需求可為二分之一波片或是其他具有調整偏振光的結構,以及一第四透鏡L14。第四透鏡單元FLG1包括一第五透鏡L15。根據【實施方式】第一至五段落,其中: The first embodiment of the imaging system of the present invention will now be described in detail. Please refer to FIG. 1 , the imaging system 1 sequentially includes an aperture ST1, a fourth lens unit FLG1, a beam splitter PBS1 and a first lens unit LG11 along a first axis AX11 from a projection side to an image source side. , the imaging system 1 sequentially includes a second lens unit LG12 , a beam splitter PBS1 and a third lens unit LG13 along a second axis AX12 . The first lens unit LG11 includes a first lens L11. The second lens unit LG12 includes a second lens L12 and a first polarization state changing structure. The first polarization state changing structure is arranged between the second lens L12 and the beam splitter PBS1. In this example, the first polarization state changing structure is A first quarter-wave retarder (quarter-wave plate) QWP11 can be a half-wave plate or other structure for adjusting polarized light according to practical requirements. The third lens unit LG13 includes a third lens L13 and a second polarization state changing structure, the second polarization state changing structure is arranged between the third lens L13 and the beam splitter PBS1, the second polarization state changing structure in this example is A second quarter-wave retardation plate QWP12, which can be a half-wave plate or other structures for adjusting polarized light according to practical requirements, and a fourth lens L14. The fourth lens unit FLG1 includes a fifth lens L15. According to the first to fifth paragraphs of [implementation mode], where:

第三透鏡L13為柱面透鏡具有負屈光力,其柱面之Y軸方向為凹面,此凹面為球面表面;第四透鏡L14為柱面透鏡具有正屈光力,其面對分光鏡側面為凸面,非面對分光鏡側面為柱面,柱面之X軸方向為平面Y軸方向為凸面,此凸面為球面表面,柱面表面鍍覆或貼覆高反射膜(未圖示)。投影時,來自一影像源IS1之光線先入射穿透第一透鏡L11,由第一 表面S11入射分光鏡PBS1,分光鏡PBS1再將入射的光線,本實施例以具有S偏振光的光線為例,於45度斜面S15處反射射向第二表面S12,此S偏振光於第二表面S12射出分光鏡PBS1並入射第一四分之一波長延遲片QWP11,S偏振光穿透第一四分之一波長延遲片QWP11後將轉換為圓偏振光,此圓偏振光入射第二透鏡L12後於柱面表面被高反射膜(未圖示)反射回第二透鏡L12並再度入射第一四分之一波長延遲片QWP11,當上述圓偏振光穿透第一四分之一波長延遲片QWP11後將轉換為P偏振光,此P偏振光由第二表面S12入射分光鏡PBS1將直接穿透45度斜面S15射向第三表面S13,由第三表面S13射出分光鏡PBS1並入射第二四分之一波長延遲片QWP12,上述P偏振光穿透第二四分之一波長延遲片QWP12後將轉換為圓偏振光,此圓偏振光再先後入射第三透鏡L13及第四透鏡L4後於柱面表面被高反射膜(未圖示)反射,再先後入射第四透鏡L14及第三透鏡L13並再度入射第二四分之一波長延遲片QWP12,當上述圓偏振光穿透第二四分之一波長延遲片QWP12後將轉換為S偏振光,此S偏振光由第三表面S13入射分光鏡PBS1,於45度斜面S15處被反射射向第四表面S14,由第四表面S14射出分光鏡PBS1再入射第五透鏡L15,最後投影於一投影面PS1。上述影像源IS1可為一自發光影像面板或為OLED、MicroLED、LCOS、LCD等。柱面透鏡的設置有助於調整單一軸向的光斑,具有整形與延長光路的功效。 The third lens L13 is a cylindrical lens with negative refractive power, and the Y-axis direction of its cylindrical surface is a concave surface, and this concave surface is a spherical surface; the fourth lens L14 is a cylindrical lens with positive refractive power, and its side facing the beam splitter is a convex surface. The side facing the beam splitter is a cylindrical surface. The X-axis direction of the cylindrical surface is a plane and the Y-axis direction is a convex surface. The convex surface is a spherical surface. The cylindrical surface is coated or pasted with a high reflection film (not shown). When projecting, the light from an image source IS1 first enters and penetrates the first lens L11, and the light from the first lens L11 The surface S11 is incident on the beam splitter PBS1, and the beam splitter PBS1 then reflects the incident light. This embodiment takes the light with S polarized light as an example, and reflects it at the 45-degree inclined plane S15 to the second surface S12. The surface S12 exits the beam splitter PBS1 and enters the first quarter-wavelength retarder QWP11. After passing through the first quarter-wavelength retarder QWP11, the S-polarized light will be converted into circularly polarized light, and this circularly polarized light enters the second lens. L12 is reflected back to the second lens L12 by the high-reflection film (not shown) on the surface of the cylinder and enters the first quarter-wave retarder QWP11 again. When the circularly polarized light passes through the first quarter-wave retardation After the sheet QWP11, it will be converted into P polarized light. This P polarized light will enter the beam splitter PBS1 from the second surface S12 and will directly pass through the 45-degree inclined plane S15 and shoot to the third surface S13. The third surface S13 will exit the beam splitter PBS1 and enter the second surface. Two quarter-wave retarder QWP12, the above-mentioned P-polarized light will be converted into circularly polarized light after passing through the second quarter-wave retarder QWP12, and this circularly polarized light will enter the third lens L13 and the fourth lens L4 successively Afterwards, it is reflected by a high reflection film (not shown) on the surface of the cylinder, and then successively enters the fourth lens L14 and the third lens L13 and then enters the second quarter-wave retarder QWP12 again. After the quarter-wave retarder QWP12, it will be converted into S-polarized light. This S-polarized light is incident on the beam splitter PBS1 from the third surface S13, and is reflected at the 45-degree inclined plane S15 to the fourth surface S14. S14 exits the beam splitter PBS1 and then enters the fifth lens L15, and is finally projected on a projection plane PS1. The above-mentioned image source IS1 can be a self-luminous image panel or OLED, MicroLED, LCOS, LCD and the like. The setting of the cylindrical lens helps to adjust the single-axis light spot, and has the effect of shaping and extending the light path.

利用上述透鏡單元、光圈、分光鏡、第一偏振狀態變化結構、第二偏振狀態變化結構及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像系統1能有效的縮小體積、有效減少重量、有效的修正像差。表一為第1圖中成像系統1之各元件之相關參數表。 Utilizing the above-mentioned lens unit, aperture, beam splitter, first polarization state changing structure, second polarization state changing structure and the design satisfying at least one of the conditions (1) to (20), the imaging system 1 can effectively reduce the volume , effectively reduce weight, and effectively correct aberrations. Table 1 is a table of relevant parameters of each component of the imaging system 1 in FIG. 1 .

Figure 110126815-A0101-12-0011-31
Figure 110126815-A0101-12-0011-31

表一中非球面透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12,其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~E:非球面係數。表二為表一中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 The concavity z of the aspheric surface of the aspheric lens in Table 1 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 +Ch 8 +Dh 10 +Eh 12 , where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~E: aspheric coefficient. Table 2 is a list of relevant parameters of the aspheric surface of the aspheric lens in Table 1, where k is the conic constant, and A~E are the aspheric coefficients.

Figure 110126815-A0101-12-0011-33
Figure 110126815-A0101-12-0011-33

表三為第一實施例之成像系統1之相關參數值及其對應條件(1)至條件(20)之計算值,由表三可知,第一實施例之成像系統1皆能滿足條件(1)至條件(20)之要求。 Table 3 shows the relevant parameter values of the imaging system 1 of the first embodiment and the calculated values corresponding to conditions (1) to (20). It can be seen from Table 3 that the imaging system 1 of the first embodiment can all satisfy the condition (1 ) to the requirements of condition (20).

Figure 110126815-A0101-12-0011-34
Figure 110126815-A0101-12-0011-34

Figure 110126815-A0101-12-0012-35
Figure 110126815-A0101-12-0012-35

另外,第一實施例之成像系統1的光學性能也可達到要求。由第2A圖可看出,第一實施例之成像系統1其場曲介於-0.8mm至0.2mm之間。由第2B圖可看出,第一實施例之成像系統1其畸變介於-25%至0%之間。由第2C圖可看出,第一實施例之成像系統1其調變轉換函數值介於0.34至1.0之間。顯見第一實施例之成像系統1之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging system 1 of the first embodiment can also meet the requirements. It can be seen from FIG. 2A that the field curvature of the imaging system 1 of the first embodiment is between -0.8mm and 0.2mm. It can be seen from FIG. 2B that the distortion of the imaging system 1 of the first embodiment is between -25% and 0%. It can be seen from FIG. 2C that the MTF value of the imaging system 1 of the first embodiment is between 0.34 and 1.0. It is obvious that the field curvature and distortion of the imaging system 1 in the first embodiment can be effectively corrected, and the resolution of the lens can also meet the requirements, thereby obtaining better optical performance.

現詳細說明本發明之成像系統之第二實施例。請參閱第3圖,成像系統2沿著一第一軸線AX21從一投影側至一影像源側依序包括一光圈ST2、一第四透鏡單元FLG2、一分光鏡PBS2及一第一透鏡單元LG21,成像系統2沿著一第二軸線AX22依序包括一第二透鏡單元LG22、一分光鏡PBS2及一第三透鏡單元LG23。第一透鏡單元LG21包括一第一透鏡L21。第二透鏡單元LG22依序包括一第二透鏡L22以及一第一偏振狀態變化結構,此第一偏振狀態變化結構設置於第二透鏡L22與分光鏡PBS2之間,本實施例為一第一四分之一波長延遲片QWP21,但實務上不限於此。第三透鏡單元LG23包括一第三透鏡L23以及一第二偏振狀態變化結構,此第二偏振狀態變化結構設置於第三透鏡L23與分光鏡PBS2之間,本實施例為一第 二四分之一波長延遲片QWP22,但實務上不限於此。第四透鏡單元FLG2包括一第五透鏡L25。根據【實施方式】第一至五段落,其中: The second embodiment of the imaging system of the present invention will now be described in detail. Please refer to FIG. 3 , the imaging system 2 sequentially includes a diaphragm ST2, a fourth lens unit FLG2, a beam splitter PBS2 and a first lens unit LG21 along a first axis AX21 from a projection side to an image source side. , the imaging system 2 sequentially includes a second lens unit LG22 , a beam splitter PBS2 and a third lens unit LG23 along a second axis AX22 . The first lens unit LG21 includes a first lens L21. The second lens unit LG22 includes a second lens L22 and a first polarization state changing structure in sequence, and the first polarization state changing structure is arranged between the second lens L22 and the beam splitter PBS2, and this embodiment is a first four One-wave retarder QWP21, but not limited to this in practice. The third lens unit LG23 includes a third lens L23 and a second polarization state changing structure. The second polarization state changing structure is arranged between the third lens L23 and the beam splitter PBS2. This embodiment is a first polarization state changing structure. Two quarter-wave retarders QWP22, but practically not limited thereto. The fourth lens unit FLG2 includes a fifth lens L25. According to the first to fifth paragraphs of [implementation mode], where:

第三透鏡L23具有正屈光力,其柱面之Y軸方向為凸面,此凸面為球面表面,柱面表面鍍覆或貼覆高反射膜(未圖示)。投影時,來自一影像源IS2之光線先入射穿透第一透鏡L21,由第一表面S21入射分光鏡PBS2,光線進入分光鏡PBS2後的光學路徑與第一實施例相似,在此皆不加以贅述,最後投影於一投影面PS2。上述影像源IS2可為一自發光影像面板或為OLED、MicroLED、LCOS、LCD。 The third lens L23 has positive refractive power, and its cylindrical surface is convex in the Y-axis direction. The convex surface is a spherical surface, and the cylindrical surface is coated or pasted with a high reflection film (not shown). During projection, the light from an image source IS2 first enters and penetrates the first lens L21, and then enters the beam splitter PBS2 from the first surface S21. To repeat, the final projection is on a projection plane PS2. The above-mentioned image source IS2 can be a self-luminous image panel or OLED, MicroLED, LCOS, LCD.

利用上述透鏡單元、光圈、分光鏡、第一偏振狀態變化結構、第二偏振狀態變化結構及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像系統2能有效的縮小體積、有效減少重量、有效的修正像差。表四為第3圖中成像系統2之各元件之相關參數表。 Utilizing the above-mentioned lens unit, aperture, beam splitter, first polarization state changing structure, second polarization state changing structure and the design satisfying at least one of the conditions (1) to (20), the imaging system 2 can effectively reduce the volume , effectively reduce weight, and effectively correct aberrations. Table 4 is a table of relevant parameters of each component of the imaging system 2 in FIG. 3 .

Figure 110126815-A0101-12-0013-36
Figure 110126815-A0101-12-0013-36

表四中非球面透鏡之非球面表面凹陷度z之定義,與第一 實施例中表一之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。表五為表一中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~E為非球面係數。 The definition of the aspheric surface concave degree z of the aspheric lens in Table 4 is the same as that of the first The definition of the aspheric surface sag z of the aspheric lens in Table 1 in the embodiment is the same, and will not be repeated here. Table 5 is a list of relevant parameters of the aspheric surface of the aspheric lens in Table 1, where k is the conic constant, and A~E are the aspheric coefficients.

Figure 110126815-A0101-12-0014-37
Figure 110126815-A0101-12-0014-37

表六為第二實施例之成像系統2之相關參數值及其對應條件(1)至條件(20)之計算值,由表六可知,第二實施例之成像系統2皆能滿足條件(1)至條件(20)之要求。 Table 6 shows the relevant parameter values of the imaging system 2 of the second embodiment and the calculated values corresponding to conditions (1) to (20). As can be seen from Table 6, the imaging system 2 of the second embodiment can all satisfy the condition (1 ) to the requirements of condition (20).

Figure 110126815-A0101-12-0014-38
Figure 110126815-A0101-12-0014-38

本發明之成像系統之第三實施例其架構與第二實施例相同,相對應的元件規格只有分光鏡PBS3之長度與高度不同於分光鏡PBS2之長度與高度,其餘相對應的元件規格皆相同。 The structure of the third embodiment of the imaging system of the present invention is the same as that of the second embodiment. Only the length and height of the beam splitter PBS3 are different from the length and height of the beam splitter PBS2 in the corresponding component specifications, and the other corresponding component specifications are the same. .

表七為第三實施例之成像系統3(未圖式)之相關參數值及其對應條件(1)至條件(20)之計算值,由表七可知,第三實施例之成像系統3皆能滿足條件(1)至條件(20)之要求。 Table 7 shows the relevant parameter values of the imaging system 3 (not shown) of the third embodiment and the calculated values corresponding to conditions (1) to (20). As can be seen from Table 7, the imaging system 3 of the third embodiment is all Can meet the requirements of condition (1) to condition (20).

Figure 110126815-A0101-12-0015-39
Figure 110126815-A0101-12-0015-39

於其他實施例中分光鏡與第一透鏡單元、第二透鏡單元以及第三透鏡單元中的設置不限於上述,亦即實務上若須將光斑整形呈圓形,則第一透鏡單元中的柱面透鏡與第三透鏡單元中的柱面透鏡設計上在X軸方向曲率半徑具有數值時,則第二透鏡單元中的柱面透鏡在設計上則是Y軸方向曲率半徑具有數值即可,例如當第一透鏡其投影側面為平面,影像源側面為柱面,柱面之Y軸方向為平面、X軸方向為凸面或凹面,則第三透鏡其面對分光鏡側面為平面,非面對分光鏡側面為柱面,柱面Y軸方向同樣為平面,X軸方向同樣為凸面或凹面,而第二透鏡其面對分光鏡側面為平面,非面對分光鏡側面為柱面,柱面之Y軸方向為凸面或凹面,X軸方向為平面。 In other embodiments, the settings of the beam splitter and the first lens unit, the second lens unit, and the third lens unit are not limited to the above, that is, if the light spot needs to be shaped into a circle in practice, the column in the first lens unit When the design of the surface lens and the cylindrical lens in the third lens unit has a numerical value in the radius of curvature in the X-axis direction, the cylindrical lens in the second lens unit is designed to have a numerical value in the radius of curvature in the Y-axis direction, for example When the projection side of the first lens is a plane, the image source side is a cylinder, the Y-axis direction of the cylinder is a plane, and the X-axis direction is a convex or concave surface, then the side of the third lens facing the beam splitter is a plane, and the non-facing The side of the beam splitter is cylindrical, the Y-axis direction of the cylindrical surface is also a plane, and the X-axis direction is also convex or concave, and the side of the second lens facing the beam splitter is a plane, and the side not facing the beam splitter is a cylindrical surface. The Y-axis direction is convex or concave, and the X-axis direction is a plane.

請參閱第4圖,第4圖係依據本發明之成像系統應用於AR、VR或XR之示意圖,如圖所示,一光源IS3由第一透鏡單元LG31入射成像系統3,由第四透鏡單元FLG3射出成像系統3投射出影像,此投射出的影像再入射光路轉折元件40,光路轉折元件40再將此投射出的影像由反方向 導出,再進入使用者眼球100,光源IS3與本案成像系統3間的距離可依需求調整,且三個成像系統各對應一種色光(紅光、綠光、藍光),此排列與數量可不限於如第4圖所示的一列,依實際需求可安排成矩形,例如:設置四個成像系統,上方兩個可各為紅光、綠光,下方兩個可各為綠光、藍光,且上下兩個綠光設置在對角線。 Please refer to Fig. 4, Fig. 4 is a schematic diagram of applying the imaging system of the present invention to AR, VR or XR. FLG3 exits the imaging system 3 to project an image, and the projected image enters the optical path turning element 40 again, and the optical path turning element 40 turns the projected image from the opposite direction The distance between the light source IS3 and the imaging system 3 of this case can be adjusted according to requirements, and each of the three imaging systems corresponds to a color light (red light, green light, blue light). The arrangement and quantity are not limited to the following The column shown in Figure 4 can be arranged into a rectangle according to actual needs. For example, if four imaging systems are set up, the upper two can be red light and green light, the lower two can be green light and blue light respectively, and the upper and lower two green light set on the diagonal.

上述實施例中,第一透鏡單元、第二透鏡單元及第三透鏡單元中的柱面透鏡皆具有正屈光力,然而可以了解到,若第一透鏡單元、第二透鏡單元及第三透鏡單元中的柱面透鏡皆改為具有負屈光力,亦應屬本發明之範疇。上述實施例中,第一透鏡單元、第二透鏡單元、第三透鏡單元及第四透鏡單元皆可包含一個以上的透鏡,亦應屬本發明之範疇。 In the above-mentioned embodiment, the cylindrical lenses in the first lens unit, the second lens unit and the third lens unit all have positive refractive power, but it can be understood that if the first lens unit, the second lens unit and the third lens unit All the cylindrical lenses are changed to have negative refractive power, which should also belong to the scope of the present invention. In the above embodiments, the first lens unit, the second lens unit, the third lens unit and the fourth lens unit may all include more than one lens, which also falls within the scope of the present invention.

第1圖與第3圖右下角所示之座標為機構座標,非上述透鏡單元之X、Y、Z軸。 The coordinates shown in the lower right corner of Figure 1 and Figure 3 are the coordinates of the mechanism, not the X, Y, and Z axes of the above-mentioned lens unit.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟悉此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Any skilled person can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined by the scope of the appended patent application.

1:成像系統 1: Imaging system

LG11:第一透鏡單元 LG11: The first lens unit

LG12:第二透鏡單元 LG12: Second lens unit

LG13:第三透鏡單元 LG13: Third lens unit

FLG1:第四透鏡單元 FLG1: Fourth lens unit

L11:第一透鏡 L11: first lens

L12:第二透鏡 L12: second lens

L13:第三透鏡 L13: third lens

L14:第四透鏡 L14: Fourth lens

L15:第五透鏡 L15: fifth lens

PBS1:分光鏡 PBS1: Beamsplitter

ST1:光圈 ST1: Aperture

QWP11:第一偏振狀態變化結構(第一四分之一波長延遲片) QWP11: The first polarization state changing structure (the first quarter-wave retarder)

QWP12:第二偏振狀態變化結構(第二四分之一波長延遲片) QWP12: second polarization state change structure (second quarter-wave retarder)

PS1:投影面 PS1: projection surface

IS1:影像源 IS1: image source

AX11:第一軸線 AX11: first axis

AX12:第二軸線 AX12: second axis

S11:第一表面 S11: first surface

S12:第二表面 S12: second surface

S13:第三表面 S13: The third surface

S14:第四表面 S14: The fourth surface

S15:斜面 S15: Bevel

YY:軸 YY: axis

ZZ:軸 ZZ: axis

Claims (9)

一種成像系統,包括:一分光鏡;一第一透鏡單元,該第一透鏡單元具有屈光力;一第二透鏡單元,該第二透鏡單元具有屈光力;一第三透鏡單元,該第三透鏡單元具有屈光力;以及一第四透鏡單元,該第四透鏡單元具有正屈光力;其中該第四透鏡單元、該分光鏡以及該第一透鏡單元沿著一第一軸線從一投影側至一影像源側依序排列;其中該第二透鏡單元、該分光鏡以及該第三透鏡單元沿著一第二軸線依序排列;其中該第一軸線與該第二軸線相交;其中該成像系統滿足以下其中至少一條件:1<PBSL/PBSH
Figure 110126815-A0305-02-0020-2
1.72;0.5
Figure 110126815-A0305-02-0020-3
PBSH/PBSL<1;1.5
Figure 110126815-A0305-02-0020-4
PBSL/PBST
Figure 110126815-A0305-02-0020-5
2.3;1
Figure 110126815-A0305-02-0020-6
PBSH/PBST
Figure 110126815-A0305-02-0020-7
1.7;1.9
Figure 110126815-A0305-02-0020-8
OPL/PBSL
Figure 110126815-A0305-02-0020-9
3;2.6
Figure 110126815-A0305-02-0020-10
OPL/PBSH
Figure 110126815-A0305-02-0020-11
4.2;3.6
Figure 110126815-A0305-02-0020-13
OPL/PBST
Figure 110126815-A0305-02-0020-14
5.7;0.01
Figure 110126815-A0305-02-0020-16
BFL/OPL
Figure 110126815-A0305-02-0020-17
0.04;0.05
Figure 110126815-A0305-02-0020-18
BFL/f
Figure 110126815-A0305-02-0020-19
0.15; 0.25
Figure 110126815-A0305-02-0021-20
IMGH/f
Figure 110126815-A0305-02-0021-21
0.45;0.1
Figure 110126815-A0305-02-0021-22
IMGH/OPL
Figure 110126815-A0305-02-0021-23
0.17;1.4
Figure 110126815-A0305-02-0021-24
3fy/f
Figure 110126815-A0305-02-0021-25
2.3;0.5
Figure 110126815-A0305-02-0021-26
2fx/f
Figure 110126815-A0305-02-0021-27
0.9;0.9
Figure 110126815-A0305-02-0021-28
1fy/f
Figure 110126815-A0305-02-0021-29
1.7;0.52
Figure 110126815-A0305-02-0021-30
1fy/3fy
Figure 110126815-A0305-02-0021-31
0.89;0.3
Figure 110126815-A0305-02-0021-32
2fx/3fy
Figure 110126815-A0305-02-0021-33
0.5;3fy>1fy;1.7
Figure 110126815-A0305-02-0021-34
fFLG/f
Figure 110126815-A0305-02-0021-35
3;2fx≒1/((1/3fy)+(1/1fy));2fx=(3fy×1fy)/(3fy+1fy);其中,PBSL為該成像系統之一長度,PBSH為該成像系統之一高度,PBST為該分光鏡之一厚度,OPL為該成像系統之一光程長度,BFL為最靠近該影像源側之透鏡之一影像源側面至一影像源沿著該第一軸線之一間隔,BFL為最靠近該影像源側之透鏡之一影像源側面至一影像源沿著該第一軸線之一間隔,f為該成像系統之一有效焦距,IMGH為該成像系統之一半像高,OPL為該成像系統之一光程長度,1fy為該第一透鏡單元之一Y軸方向有效焦距,2fx為該第二透鏡單元之一X軸方向有效焦距,3fy為該第三透鏡單元之一Y軸方向有效焦距,f為該成像系統之一有效焦距,fFLG為該第四透鏡單元之一有效焦距,1fy為該第一透鏡單元之一Y軸方向有效焦距,2fx為該第二透鏡單元之一X軸方向有效焦距,3fy為該第三透鏡單元之一Y軸方向有效焦距。
An imaging system, comprising: a beam splitter; a first lens unit, the first lens unit has a refractive power; a second lens unit, the second lens unit has a refractive power; a third lens unit, the third lens unit has Refractive power; and a fourth lens unit, the fourth lens unit has a positive refractive power; wherein the fourth lens unit, the beam splitter, and the first lens unit follow along a first axis from a projection side to an image source side sequence; wherein the second lens unit, the beam splitter and the third lens unit are arranged in sequence along a second axis; wherein the first axis intersects the second axis; wherein the imaging system satisfies at least one of the following Condition: 1<PBSL/PBSH
Figure 110126815-A0305-02-0020-2
1.72; 0.5
Figure 110126815-A0305-02-0020-3
PBSH/PBSL<1; 1.5
Figure 110126815-A0305-02-0020-4
PBSL/PBST
Figure 110126815-A0305-02-0020-5
2.3;1
Figure 110126815-A0305-02-0020-6
PBSH/PBST
Figure 110126815-A0305-02-0020-7
1.7; 1.9
Figure 110126815-A0305-02-0020-8
OPL/PBSL
Figure 110126815-A0305-02-0020-9
3;2.6
Figure 110126815-A0305-02-0020-10
OPL/PBSH
Figure 110126815-A0305-02-0020-11
4.2; 3.6
Figure 110126815-A0305-02-0020-13
OPL/PBST
Figure 110126815-A0305-02-0020-14
5.7; 0.01
Figure 110126815-A0305-02-0020-16
BFL/OPL
Figure 110126815-A0305-02-0020-17
0.04; 0.05
Figure 110126815-A0305-02-0020-18
BFL/f
Figure 110126815-A0305-02-0020-19
0.15; 0.25
Figure 110126815-A0305-02-0021-20
IMGH/f
Figure 110126815-A0305-02-0021-21
0.45; 0.1
Figure 110126815-A0305-02-0021-22
IMGH/OPL
Figure 110126815-A0305-02-0021-23
0.17; 1.4
Figure 110126815-A0305-02-0021-24
3fy/f
Figure 110126815-A0305-02-0021-25
2.3; 0.5
Figure 110126815-A0305-02-0021-26
2fx/f
Figure 110126815-A0305-02-0021-27
0.9; 0.9
Figure 110126815-A0305-02-0021-28
1fy/f
Figure 110126815-A0305-02-0021-29
1.7; 0.52
Figure 110126815-A0305-02-0021-30
1fy/3fy
Figure 110126815-A0305-02-0021-31
0.89; 0.3
Figure 110126815-A0305-02-0021-32
2fx/3fy
Figure 110126815-A0305-02-0021-33
0.5; 3fy>1fy; 1.7
Figure 110126815-A0305-02-0021-34
f FLG /f
Figure 110126815-A0305-02-0021-35
3; 2fx≒1/((1/3fy)+(1/1fy)); 2fx=(3fy×1fy)/(3fy+1fy); among them, PBSL is one of the lengths of the imaging system, and PBSH is the length of the imaging system PBST is the thickness of the beam splitter, OPL is the optical path length of the imaging system, BFL is the distance from the image source side of the lens closest to the image source side to an image source along the first axis An interval, BFL is the distance from one image source side of the lens closest to the image source side to an image source along the first axis, f is an effective focal length of the imaging system, and IMGH is a half-image of the imaging system High, OPL is an optical path length of the imaging system, 1fy is the effective focal length in the Y-axis direction of the first lens unit, 2fx is the effective focal length in the X-axis direction of the second lens unit, and 3fy is the third lens unit An effective focal length in the Y-axis direction, f is an effective focal length of the imaging system, f FLG is an effective focal length of the fourth lens unit, 1fy is an effective focal length in the Y-axis direction of the first lens unit, and 2fx is the effective focal length of the fourth lens unit One of the second lens units has an effective focal length in the X-axis direction, and 3fy is the effective focal length in the Y-axis direction of one of the third lens units.
如申請專利範圍第1項所述之成像系統,其中:該第一透鏡單元包括一第一透鏡;該第二透鏡單元包括一第二透鏡;該第三透鏡單元包括一第三透鏡;以及該第四透鏡單元包括一第五透鏡,該第五透鏡具有正屈光力;其中該第一透鏡、該第二透鏡以及該第三透鏡為柱面透鏡;其中來自一影像源之光線依序通過該第一透鏡單元、該分光鏡、該第二透鏡單元、該分光鏡、該第三透鏡單元、該分光鏡、該第四透鏡單元,最後投影於一投影面。 The imaging system described in item 1 of the scope of the patent application, wherein: the first lens unit includes a first lens; the second lens unit includes a second lens; the third lens unit includes a third lens; and the The fourth lens unit includes a fifth lens, and the fifth lens has positive refractive power; wherein the first lens, the second lens and the third lens are cylindrical lenses; wherein light from an image source passes through the first lens in sequence A lens unit, the beam splitter, the second lens unit, the beam splitter, the third lens unit, the beam splitter, and the fourth lens unit are finally projected on a projection surface. 如申請專利範圍第2項所述之成像系統,其中該第二透鏡單元更包括一第一偏振狀態變化結構,該第一偏振狀態變化結構設置於該分光鏡與該第二透鏡之間,該第三透鏡單元更包括一第二偏振狀態變化結構,該第二偏振狀態變化結構設置於該分光鏡與該第三透鏡之間。 The imaging system described in item 2 of the scope of the patent application, wherein the second lens unit further includes a first polarization state changing structure, the first polarization state changing structure is arranged between the beam splitter and the second lens, the The third lens unit further includes a second polarization state changing structure disposed between the beam splitter and the third lens. 如申請專利範圍第2項所述之成像系統,其中該第一透鏡、該第二透鏡以及該第三透鏡具有正屈光力,該第二透鏡以及該第三透鏡更包括一高反射膜鍍覆或貼覆於一柱面表面。 The imaging system described in item 2 of the scope of the patent application, wherein the first lens, the second lens and the third lens have positive refractive power, and the second lens and the third lens further include a high reflective film coating or Attached to a cylindrical surface. 如申請專利範圍第3項所述之成像系統,其中該第三透鏡單元更包括一第四透鏡,該第四透鏡具有正屈光力,該第三透鏡介於該第二偏振狀態變化結構以及該第四透鏡之間。 The imaging system described in item 3 of the scope of the patent application, wherein the third lens unit further includes a fourth lens, the fourth lens has positive refractive power, and the third lens is interposed between the second polarization state changing structure and the first between the four lenses. 如申請專利範圍第5項所述之成像系統,其中該第四透鏡為柱面透鏡,該第二透鏡以及該第四透鏡更包括一高反射膜鍍覆或貼覆於一柱面表面。 The imaging system described in item 5 of the scope of the patent application, wherein the fourth lens is a cylindrical lens, and the second lens and the fourth lens further include a high reflective film coated or pasted on a cylindrical surface. 如申請專利範圍第1至第6項任一所述之成像系統,其中該第一軸與該第二軸垂直。 The imaging system as described in any one of claims 1 to 6 of the patent application, wherein the first axis is perpendicular to the second axis. 一種成像系統,包括:一分光鏡;一第一透鏡單元,該第一透鏡單元具有屈光力;一第二透鏡單元,該第二透鏡單元具有屈光力;一第三透鏡單元,該第三透鏡單元具有屈光力;以及一第四透鏡單元,該第四透鏡單元具有正屈光力;其中該第四透鏡單元、該分光鏡以及該第一透鏡單元沿著一第一軸線從一投影側至一影像源側依序排列;其中該第二透鏡單元、該分光鏡以及該第三透鏡單元沿著一第二軸線依序排列;其中該第一軸線與該第二軸線相交;其中該第三透鏡單元包括一第三透鏡、一第四透鏡以及一第二偏振狀態變化結構,該第二偏振狀態變化結構設置於該分光鏡與該第三透鏡之間,該第四透鏡具有正屈光力,該第三透鏡介於該第二偏振狀態變化結構以及該第四透鏡之間。 An imaging system, comprising: a beam splitter; a first lens unit, the first lens unit has a refractive power; a second lens unit, the second lens unit has a refractive power; a third lens unit, the third lens unit has Refractive power; and a fourth lens unit, the fourth lens unit has a positive refractive power; wherein the fourth lens unit, the beam splitter, and the first lens unit follow along a first axis from a projection side to an image source side sequence; wherein the second lens unit, the beam splitter and the third lens unit are arranged in sequence along a second axis; wherein the first axis intersects the second axis; wherein the third lens unit includes a first Three lenses, a fourth lens and a second polarization state changing structure, the second polarization state changing structure is arranged between the beam splitter and the third lens, the fourth lens has positive refractive power, and the third lens is between Between the second polarization state changing structure and the fourth lens. 如申請專利範圍第8項所述之成像系統,其中該成像系統滿足以下其中至少一條件:1<PBSL/PBSH
Figure 110126815-A0305-02-0023-36
1.72;0.5
Figure 110126815-A0305-02-0023-37
PBSH/PBSL<1;1.5
Figure 110126815-A0305-02-0023-39
PBSL/PBST
Figure 110126815-A0305-02-0023-40
2.3; 1
Figure 110126815-A0305-02-0024-41
PBSH/PBST
Figure 110126815-A0305-02-0024-42
1.7;1.9
Figure 110126815-A0305-02-0024-43
OPL/PBSL
Figure 110126815-A0305-02-0024-44
3;2.6
Figure 110126815-A0305-02-0024-45
OPL/PBSH
Figure 110126815-A0305-02-0024-46
4.2;3.6
Figure 110126815-A0305-02-0024-47
OPL/PBST
Figure 110126815-A0305-02-0024-48
5.7;0.01
Figure 110126815-A0305-02-0024-49
BFL/OPL
Figure 110126815-A0305-02-0024-50
0.04;0.05
Figure 110126815-A0305-02-0024-51
BFL/f
Figure 110126815-A0305-02-0024-52
0.15;0.25
Figure 110126815-A0305-02-0024-53
IMGH/f
Figure 110126815-A0305-02-0024-54
0.45;0.1
Figure 110126815-A0305-02-0024-55
IMGH/OPL
Figure 110126815-A0305-02-0024-56
0.17;1.4
Figure 110126815-A0305-02-0024-57
3fy/f
Figure 110126815-A0305-02-0024-58
2.3;0.5
Figure 110126815-A0305-02-0024-60
2fx/f
Figure 110126815-A0305-02-0024-61
0.9;0.9
Figure 110126815-A0305-02-0024-62
1fy/f
Figure 110126815-A0305-02-0024-63
1.7;0.52
Figure 110126815-A0305-02-0024-64
1fy/3fy
Figure 110126815-A0305-02-0024-65
0.89;0.3
Figure 110126815-A0305-02-0024-66
2fx/3fy
Figure 110126815-A0305-02-0024-67
0.5;3fy>1fy;1.7
Figure 110126815-A0305-02-0024-68
fFLG/f
Figure 110126815-A0305-02-0024-69
3;2fx≒1/((1/3fy)+(1/1fy));2fx=(3fy×1fy)/(3fy+1fy);其中,PBSL為該成像系統之一長度,PBSH為該成像系統之一高度,PBST為該分光鏡之一厚度,OPL為該成像系統之一光程長度,BFL為最靠近該影像源側之透鏡之一影像源側面至一影像源沿著該第一軸線之一間隔,BFL為最靠近該影像源側之透鏡之一影像源側面至一影像源沿著該第一軸線之一間隔,f為該成像系統之一有效焦距,IMGH為該成像系統 之一半像高,OPL為該成像系統之一光程長度,1fy為該第一透鏡單元之一Y軸方向有效焦距,2fx為該第二透鏡單元之一X軸方向有效焦距,3fy為該第三透鏡單元之一Y軸方向有效焦距,f為該成像系統之一有效焦距,fFLG為該第四透鏡單元之一有效焦距。
The imaging system described in item 8 of the patent application, wherein the imaging system satisfies at least one of the following conditions: 1<PBSL/PBSH
Figure 110126815-A0305-02-0023-36
1.72; 0.5
Figure 110126815-A0305-02-0023-37
PBSH/PBSL<1; 1.5
Figure 110126815-A0305-02-0023-39
PBSL/PBST
Figure 110126815-A0305-02-0023-40
2.3; 1
Figure 110126815-A0305-02-0024-41
PBSH/PBST
Figure 110126815-A0305-02-0024-42
1.7; 1.9
Figure 110126815-A0305-02-0024-43
OPL/PBSL
Figure 110126815-A0305-02-0024-44
3;2.6
Figure 110126815-A0305-02-0024-45
OPL/PBSH
Figure 110126815-A0305-02-0024-46
4.2; 3.6
Figure 110126815-A0305-02-0024-47
OPL/PBST
Figure 110126815-A0305-02-0024-48
5.7; 0.01
Figure 110126815-A0305-02-0024-49
BFL/OPL
Figure 110126815-A0305-02-0024-50
0.04; 0.05
Figure 110126815-A0305-02-0024-51
BFL/f
Figure 110126815-A0305-02-0024-52
0.15; 0.25
Figure 110126815-A0305-02-0024-53
IMGH/f
Figure 110126815-A0305-02-0024-54
0.45; 0.1
Figure 110126815-A0305-02-0024-55
IMGH/OPL
Figure 110126815-A0305-02-0024-56
0.17; 1.4
Figure 110126815-A0305-02-0024-57
3fy/f
Figure 110126815-A0305-02-0024-58
2.3; 0.5
Figure 110126815-A0305-02-0024-60
2fx/f
Figure 110126815-A0305-02-0024-61
0.9; 0.9
Figure 110126815-A0305-02-0024-62
1fy/f
Figure 110126815-A0305-02-0024-63
1.7; 0.52
Figure 110126815-A0305-02-0024-64
1fy/3fy
Figure 110126815-A0305-02-0024-65
0.89; 0.3
Figure 110126815-A0305-02-0024-66
2fx/3fy
Figure 110126815-A0305-02-0024-67
0.5; 3fy>1fy; 1.7
Figure 110126815-A0305-02-0024-68
f FLG /f
Figure 110126815-A0305-02-0024-69
3; 2fx≒1/((1/3fy)+(1/1fy)); 2fx=(3fy×1fy)/(3fy+1fy); among them, PBSL is one of the lengths of the imaging system, and PBSH is the length of the imaging system A height, PBST is a thickness of the beam splitter, OPL is an optical path length of the imaging system, BFL is the distance from the image source side of the lens closest to the image source side to an image source along the first axis An interval, BFL is the distance from one image source side of the lens closest to the image source side to an image source along the first axis, f is an effective focal length of the imaging system, and IMGH is a half-image of the imaging system High, OPL is an optical path length of the imaging system, 1fy is the effective focal length in the Y-axis direction of the first lens unit, 2fx is the effective focal length in the X-axis direction of the second lens unit, and 3fy is the third lens unit an effective focal length in the Y-axis direction, f is an effective focal length of the imaging system, and f FLG is an effective focal length of the fourth lens unit.
TW110126815A 2021-07-21 2021-07-21 Imaging system TWI797684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110126815A TWI797684B (en) 2021-07-21 2021-07-21 Imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110126815A TWI797684B (en) 2021-07-21 2021-07-21 Imaging system

Publications (2)

Publication Number Publication Date
TW202305439A TW202305439A (en) 2023-02-01
TWI797684B true TWI797684B (en) 2023-04-01

Family

ID=86661403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126815A TWI797684B (en) 2021-07-21 2021-07-21 Imaging system

Country Status (1)

Country Link
TW (1) TWI797684B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM577117U (en) * 2016-12-02 2019-04-21 以色列商魯姆斯有限公司 Optical system
EP3693785A1 (en) * 2017-10-25 2020-08-12 Huawei Technologies Co., Ltd. Projector, camera module and terminal device
CN113009759A (en) * 2021-05-10 2021-06-22 杭州灵伴科技有限公司 Miniature projection display device and AR display system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM577117U (en) * 2016-12-02 2019-04-21 以色列商魯姆斯有限公司 Optical system
EP3693785A1 (en) * 2017-10-25 2020-08-12 Huawei Technologies Co., Ltd. Projector, camera module and terminal device
CN113009759A (en) * 2021-05-10 2021-06-22 杭州灵伴科技有限公司 Miniature projection display device and AR display system

Also Published As

Publication number Publication date
TW202305439A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US9785043B2 (en) Projection optical system and projector apparatus
US20210141211A1 (en) Eyepiece and Display Device
WO2020168817A1 (en) Optical system and near-eye display device
WO2019242324A1 (en) Focus-fixed lens and imaging system
WO2023184752A1 (en) Optical projection system and electronic device
TWI551884B (en) Projection lens
CN218003854U (en) Optical module and head-mounted display equipment
CN107490846B (en) Projection lens
TWI696029B (en) Projector
WO2023092705A1 (en) Optical module and head-mounted display device
CN215986726U (en) Augmented reality display system
TWI797684B (en) Imaging system
CN116027532A (en) Short-focus folded back projection system and near-eye display device
CN101893750A (en) Fixed focal lens
CN211603729U (en) Display system
WO2023143008A1 (en) Projection lens, projection device, and vehicle
CN112505920A (en) Miniaturized short-distance optical system
TWI798853B (en) Augmented reality display device
CN217846782U (en) Optical module and head-mounted display equipment
CN217787509U (en) Optical module and head-mounted display equipment
CN219957993U (en) Optical module and head-mounted display device
TWI829434B (en) Optical lens module, optical engine module and head mounted display
CN218003853U (en) Optical module and head-mounted display equipment
US11604403B2 (en) Imaging system and projection device having off axis reflective element
WO2023246436A1 (en) Optical system and display device