TWI796604B - 低溫泵、低溫泵系統及低溫泵的運轉開始方法 - Google Patents

低溫泵、低溫泵系統及低溫泵的運轉開始方法 Download PDF

Info

Publication number
TWI796604B
TWI796604B TW109134878A TW109134878A TWI796604B TW I796604 B TWI796604 B TW I796604B TW 109134878 A TW109134878 A TW 109134878A TW 109134878 A TW109134878 A TW 109134878A TW I796604 B TWI796604 B TW I796604B
Authority
TW
Taiwan
Prior art keywords
cryopump
aforementioned
temperature
combustible
adsorbent
Prior art date
Application number
TW109134878A
Other languages
English (en)
Other versions
TW202117185A (zh
Inventor
谷津貴裕
木村敏之
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW202117185A publication Critical patent/TW202117185A/zh
Application granted granted Critical
Publication of TWI796604B publication Critical patent/TWI796604B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • F04B37/085Regeneration of cryo-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

[課題]本發明提供一種搭載有對不凝性氣體進行排氣之代替吸附材料之新型低溫泵。 [解決手段]本發明的低溫泵(10)具備:不燃性吸附材料(64);及控制器(100),前述控制器為了開始低溫泵(10)的真空排氣運轉,依序執行如下步驟:藉由在室溫或比其更高溫下將不燃性吸附材料(64)暴露於乾燥環境,以對不燃性吸附材料(64)進行脫水;進行不燃性吸附材料(64)的脫水之後,對不燃性吸附材料(64)的周圍環境進行真空排氣;及在真空環境下將不燃性吸附材料(64)冷卻至極低溫。

Description

低溫泵、低溫泵系統及低溫泵的運轉開始方法
本發明係有關一種低溫泵、低溫泵系統及低溫泵的運轉開始方法。
低溫泵係將氣體分子藉由凝結或吸附捕捉到冷卻至極低溫之低溫板而進行排氣之真空泵。低溫泵通常為了實現在半導體電路製造製程等所要求之潔淨的真空環境而被利用。低溫泵係所謂氣體儲存式真空泵,因此需要進行將捕捉到之氣體定期排出到外部之再生。 [先前技術文獻]
[專利文獻1] 日本特開平5-263760號公報
[發明所欲解決之問題]
低溫泵在低溫板上具有吸附材料,以將不凝結之氫氣等不凝性氣體吸附到低溫板。典型的吸附材料為活性碳,在某些用途中,包含氧氣或臭氧之氣體藉由低溫泵被排氣。在該情況下,在再生中活性碳有可能暴露於氧氣環境中。由於活性碳是可燃物,因此有可能因某種原因而意外起火。
本發明人等為了盡可能地減小安全上的風險,對使用與活性碳不同的代替吸附材料之低溫泵的可行性進行了研究。然而,判明這種代替吸附材料與活性碳相比具有容易因使用環境等各種因素破碎成粉末狀之趨向。若吸附材料破損,則低溫泵的排氣性能降低。又,有可能因破碎之粉末飛散而侵入低溫泵的構成零件而對該構件造成不良影響。例如,有可能因吸附材料的粉末卡入附屬於低溫泵或與其連接之閥中,而產生閥洩漏。
本發明的一樣態的例示性目的之一,是為了提供一種搭載有對不凝性氣體進行排氣之代替吸附材料之新型低溫泵。 [解決問題之技術手段]
依本發明的一樣態,低溫泵具備:低溫泵殼體;低溫板,配置於低溫泵殼體內且具備不燃性吸附材料;加熱裝置,對不燃性吸附材料及低溫板進行加熱;沖洗閥,安裝於低溫泵殼體且將低溫泵殼體連接於沖洗氣體源;粗抽閥,安裝於低溫泵殼體且將低溫泵殼體連接於粗抽泵;感測器,生成表示不燃性吸附材料的溫度或低溫泵殼體的內壓之測量訊號;及控制器,接收再生開始指令,並根據測量訊號控制加熱裝置、沖洗閥、粗抽閥中的至少一個,以執行(i)昇華再生順序或(ii)脫水順序中的任一個順序,前述昇華再生順序構成為藉由將不燃性吸附材料暴露於真空環境,以使水從不燃性吸附材料昇華,前述脫水順序構成為藉由在室溫或比其更高溫下將不燃性吸附材料暴露於壓力比真空環境高的乾燥環境,以對不燃性吸附材料進行脫水。
依本發明的一樣態,低溫泵具備低溫泵殼體;低溫板,配置於低溫泵殼體內且具備不燃性吸附材料;加熱裝置,對不燃性吸附材料及低溫板進行加熱;沖洗閥,安裝於低溫泵殼體且將低溫泵殼體連接於沖洗氣體源;粗抽閥,安裝於低溫泵殼體且將低溫泵殼體連接於粗抽泵;及控制器,按照脫水順序控制加熱裝置、沖洗閥、粗抽閥中的至少一個,且控制粗抽閥以在脫水順序之後在低溫泵殼體生成真空環境。脫水順序構成為藉由在室溫或比其更高溫下將不燃性吸附材料暴露於壓力比真空環境高的乾燥環境,以對不燃性吸附材料進行脫水。
依本發明的一樣態,低溫泵具備:不燃性吸附材料;及控制器,為了開始低溫泵的真空排氣運轉,依序執行如下步驟:藉由在室溫或比其更高溫下將不燃性吸附材料暴露於乾燥環境,以對不燃性吸附材料進行脫水;進行不燃性吸附材料的脫水之後,對不燃性吸附材料的周圍環境進行真空排氣;及在真空環境下將不燃性吸附材料冷卻至極低溫。
依本發明的一樣態,提供一種低溫泵的運轉開始方法。低溫泵具有不燃性吸附材料。運轉開始方法具備如下步驟:藉由在室溫或比其更高溫下將不燃性吸附材料暴露於乾燥環境,以對不燃性吸附材料進行脫水;進行不燃性吸附材料的脫水之後,對不燃性吸附材料的周圍環境進行真空排氣;及在真空環境下將不燃性吸附材料冷卻至極低溫。
另外,在方法、裝置、系統等之間相互置換以上構成要素的任意組合、本發明的構成要素和表述者,作為本發明的樣態同樣有效。 [發明之效果]
依本發明,能夠提供一種搭載有對不凝性氣體進行排氣之代替吸附材料之新型低溫泵。
以下,參閱圖式對用於實施本發明的形態進行詳細說明。另外,在說明中,對同一要素標註同一符號,並適當省略重複說明。又,以下描述之構成係例示,並非係對本發明的範圍進行任何限定者。又,以下說明中所參閱之圖式中,各構成構件的大小或厚度係為了便於說明者,未必係表示實際尺寸或比率者。
圖1係概略地顯示一實施形態之低溫泵10。低溫泵10例如安裝於離子植入裝置、濺鍍裝置、蒸鍍裝置或其他真空製程裝置的真空腔室,用於將真空腔室內部的真空度提高至所期望的真空製程所要求之等級。低溫泵10具有用於從真空腔室接收應排出的氣體的吸氣口12。氣體通過吸氣口12進入到低溫泵10的內部空間14。
另外,以下為了清晰易懂地表示低溫泵10的構成要素的位置關係,有時使用「軸向」、「徑向」等用語。軸向表示通過吸氣口12之方向(圖1中沿中心軸A之方向),徑向表示沿吸氣口12之方向(與中心軸A垂直的方向)。為方便起見,有時關於軸向將相對靠近吸氣口12稱為「上」,將相對遠離稱為「下」。亦即,有時將相對遠離低溫泵10的底部稱為「上」,將相對靠近稱為「下」。關於徑向,將靠近吸氣口12的中心(圖1中為中心軸A)稱為「內」,將靠近吸氣口12的周緣稱為「外」。另外,這種表現形式與低溫泵10安裝於真空腔室時的配置無關。例如,低溫泵10可以以吸氣口12在鉛垂方向朝下之方式安裝於真空腔室。
又,有時將圍繞軸向之方向稱為「周向」。周向為沿吸氣口12之第2方向,且為與徑向正交之切線方向。
低溫泵10具備冷凍機16、第1低溫板單元18、第2低溫板單元20及低溫泵殼體70。第1低溫板單元18亦可以稱為高溫低溫板部或100K部。第2低溫板單元20亦可以稱為低溫低溫板部或10K部。
冷凍機16例如為吉福德-麥克馬洪式冷凍機(所謂GM冷凍機)等極低溫冷凍機。冷凍機16為二段式冷凍機。因此,冷凍機16具備第1冷卻台22及第2冷卻台24。冷凍機16構成為將第1冷卻台22冷卻為第1冷卻溫度,並將第2冷卻台24冷卻為第2冷卻溫度。第2冷卻溫度為比第1冷卻溫度低的溫度。例如,第1冷卻台22冷卻為65K~120K左右,80K~100K為較佳,第2冷卻台24冷卻為10K~20K左右。第1冷卻台22及第2冷卻台24亦可以分別稱為高溫冷卻台及低溫冷卻台。
又,冷凍機16具備結構上由第1冷卻台22支撐第2冷卻台24且結構上由冷凍機16的室溫部26支撐第1冷卻台22之冷凍機結構部21。因此,冷凍機結構部21具備沿徑向同軸延伸之第1缸體23及第2缸體25。第1缸體23將冷凍機16的室溫部26連接於第1冷卻台22。第2缸體25將第1冷卻台22連接於第2冷卻台24。室溫部26、第1缸體23、第1冷卻台22、第2缸體25及第2冷卻台24依序呈直線狀排成一列。
第1缸體23及第2缸體25各自的內部配設有能夠往復移動之第1置換器及第2置換器(未圖示)。在第1置換器及第2置換器中分別組裝有第1蓄冷器及第2蓄冷器(未圖示)。又,室溫部26具有用於使第1置換器及第2置換器往復移動的驅動機構(未圖示)。驅動機構包括以週期性地反覆對冷凍機16的內部進行工作氣體(例如氦氣)的供給和排出之方式切換工作氣體的流路之流路切換機構。
冷凍機16連接於工作氣體的壓縮機(未圖示)。冷凍機16使藉由壓縮機加壓之工作氣體在內部膨脹,而將第1冷卻台22及第2冷卻台24冷卻。膨脹後之工作氣體,由壓縮機回收並再度被加壓。冷凍機16藉由反覆進行熱循環而產生寒冷,該熱循環是包括工作氣體的供排、及與其同步之第1置換器及第2置換器的往復移動。
圖示之低溫泵10為所謂臥式低溫泵。臥式低溫泵通常是指冷凍機16以與低溫泵10的中心軸A交叉(通常為正交)之方式配設之低溫泵。
第1低溫板單元18具備放射屏蔽件30及入口低溫板32,並包圍第2低溫板單元20。第1低溫板單元18提供極低溫表面,以保護第2低溫板單元20免受來自低溫泵10的外部或低溫泵殼體70的輻射熱。第1低溫板單元18熱耦合於第1冷卻台22。藉此,第1低溫板單元18冷卻為第1冷卻溫度。第1低溫板單元18在與第2低溫板單元20之間具有間隙,第1低溫板單元18不與第2低溫板單元20接觸。第1低溫板單元18亦不與低溫泵殼體70接觸。
第1低溫板單元18亦能夠稱為凝結低溫板。第2低溫板單元20亦能夠稱為吸附低溫板。
放射屏蔽件30為了保護第2低溫板單元20免受來自低溫泵殼體70的輻射熱而設置。放射屏蔽件30存在於低溫泵殼體70與第2低溫板單元20之間,並包圍第2低溫板單元20。放射屏蔽件30具有用於從低溫泵10的外部向內部空間14接收氣體的屏蔽件主開口34。屏蔽件主開口34位於吸氣口12。
放射屏蔽件30具備:屏蔽件前端36,界定屏蔽件主開口34;屏蔽件底部38,位於與屏蔽件主開口34相反的一側;及屏蔽件側部40,將屏蔽件前端36連接於屏蔽件底部38。屏蔽件側部40在軸向從屏蔽件前端36朝向與屏蔽件主開口34相反的一側延伸,且以在周向包圍第2冷卻台24之方式延伸。
屏蔽件側部40具有供冷凍機結構部21插入之屏蔽件側部開口44。第2冷卻台24及第2缸體25通過屏蔽件側部開口44從放射屏蔽件30的外部插入到放射屏蔽件30中。屏蔽件側部開口44為形成於屏蔽件側部40之安裝孔,例如為圓形。第1冷卻台22配置於放射屏蔽件30的外部。
屏蔽件側部40具備冷凍機16的安裝座46。安裝座46為用於將第1冷卻台22安裝於放射屏蔽件30的平坦部分,從放射屏蔽件30的外部觀察時稍微凹陷。安裝座46形成屏蔽件側部開口44的外周。藉由第1冷卻台22安裝於安裝座46,放射屏蔽件30熱耦合於第1冷卻台22。
代替如此般將放射屏蔽件30直接安裝於第1冷卻台22,在一實施形態中,放射屏蔽件30亦可以經由追加的導熱構件而熱耦合於第1冷卻台22。
在圖示之實施形態中,放射屏蔽件30構成為一體的筒狀。取而代之,放射屏蔽件30亦可以構成為藉由複數個零件而整體呈筒狀的形狀。該等複數個零件可以以彼此具有間隙之方式配設。例如,放射屏蔽件30可以在軸向分割為兩個部分。
入口低溫板32為了保護第2低溫板單元20免受來自低溫泵10的外部的熱源(例如安裝有低溫泵10之真空腔室內的熱源)的輻射熱而設置於吸氣口12(或屏蔽件主開口34,以下相同)。又,因為入口低溫板32的冷卻溫度而凝結之氣體(例如水分)被捕捉到其表面。
入口低溫板32在吸氣口12配置於與第2低溫板單元20對應之部位。入口低溫板32佔有吸氣口12的開口面積的至少中心部分。入口低溫板32具備配設於吸氣口12之平面結構。入口低溫板32例如可以具備以同心圓狀或格子狀形成之百葉窗或人字形構造,亦可以具備平板(例如圓板)的盤。
入口低溫板32經由安裝構件(未圖示)而安裝於屏蔽件前端36。如此,入口低溫板32固定於放射屏蔽件30,且熱連接於放射屏蔽件30。入口低溫板32靠近第2低溫板單元20,但不與其接觸。
第2低溫板單元20設置於低溫泵10的內部空間14的中心部。第2低溫板單元20具備複數個低溫板60及板安裝構件62。板安裝構件62從第2冷卻台24在軸向朝向上方及下方延伸。第2低溫板單元20經由板安裝構件62而安裝於第2冷卻台24。如此,第2低溫板單元20熱連接於第2冷卻台24。藉此,第2低溫板單元20冷卻為第2冷卻溫度。
複數個低溫板60沿著從屏蔽件主開口34朝向屏蔽件底部38之方向(亦即,沿中心軸A)排列於板安裝構件62上。複數個低溫板60為分別與中心軸A垂直地延伸之平板(例如圓板),且彼此平行地安裝於板安裝構件62。另外,低溫板60並不限定於平板,其形狀並無特別限定。例如,低溫板60可以具有倒圓錐台狀或圓錐台狀的形狀。
複數個低溫板60如圖示般可以分別具有相同的形狀,亦可以具有不同形狀(例如不同直徑)。複數個低溫板60中的某些低溫板60可以具有與其上方相鄰之低溫板60相同的形狀,或者可以比其更大型。又,複數個低溫板60的間隔可以如圖示般恆定,亦可以互不相同。
在第2低溫板單元20中,在至少一部分表面配置有不燃性吸附材料64。不燃性吸附材料64為了藉由吸附而捕捉不凝性氣體(例如氫氣)而設置,且在低溫板60上形成吸附區域。吸附區域可以以從吸氣口12看不見的方式形成於與上方相鄰之低溫板60的背後之部位。例如,吸附區域形成於低溫板60的下表面(背面)的整個區域。又,吸附區域可以形成於低溫板60的上表面(前面)的至少中心部。
不燃性吸附材料64可以是粒狀的吸附材料,亦可以藉由將其黏著於低溫板60的表面而形成吸附區域。吸附材料的粒徑例如可以是2mm至5mm。藉此,容易進行製造時的黏著作業。
在該實施形態中,不燃性吸附材料64含有矽膠作為主成分。不燃性吸附材料64可以包含至少約50質量百分比、或至少約60質量百分比、至少約70質量百分比、至少約80質量百分比、至少約90質量百分比的矽膠。不燃性吸附材料64可以實質上全部是矽膠。矽膠以二氧化矽作為主成分,因此不會與氧氣進行化學反應。
如此,吸附區域由利用無機物構成之多孔體形成,不包含有機物質。與典型的低溫泵不同,低溫泵10不包含活性碳。
作為與多孔體的吸附特性相關之代表性參數,包括平均細孔直徑、填充密度、細孔容積及比表面積。通常能夠取得之矽膠中有幾種類型,例如包括矽膠A型、矽膠B型、矽膠N型、矽膠RD型、矽膠ID型。於是,圖2中示出各類型矽膠的這4個參數。
本發明人藉由將各類型的粒狀矽膠黏著於低溫板60,以在低溫板60上形成吸附區域,並在共用的條件下測量了氫氣的吸留量。判明矽膠A型、矽膠RD型、矽膠N型與矽膠B型及ID型相比吸附更多的氫氣。關於矽膠A型、矽膠N型、矽膠RD型,以下示出吸附區域的每單位面積的氫氣吸留量的測量結果。 矽膠A型:251(L/m2 ) 矽膠RD型:195(L/m2 ) 矽膠N型:179(L/m2 )
從而,矽膠A型、矽膠RD型、矽膠N型被期待可以實際用作低溫泵10中所使用之不凝性氣體的吸附材料。矽膠B型及ID型在所要求之吸留量較少的用途中,亦能夠用作不凝性氣體的吸附材料。
根據以下兩個理由,一吸附材料之不凝性氣體的吸留量應是,該吸附材料的平均細孔直徑越小則越提高。第1個理由在於,細孔的直徑越小,在吸附材料的表面能夠使每單位面積的細孔數越多。其結果,吸附氣體之表面積變大,氣體分子容易被吸附。
又,吸附是藉由吸附材料的表面與氣體分子的物理相互作用(例如分子間力)而產生。細孔的直徑越小,細孔的尺寸越接近於氣體分子的大小。如此,當氣體分子進入到細孔內時,在以氣體分子為中心可產生相互作用之距離範圍內存在細孔的內壁面之可能性提高。容易產生氣體分子與細孔的壁面的相互作用,使氣體分子容易被吸附。其為第2個理由。
根據這樣的認識,為了得到良好的不凝性氣體的吸附特性,矽膠具有3.0nm以下的平均細孔直徑為較佳。又,氫分子的大小大致為0.1nm,因此矽膠具有比其更大的平均細孔直徑,例如0.5nm以上的平均細孔直徑為較佳。
矽膠具有2.0nm至3.0nm的平均細孔直徑為更佳。由圖2可知,矽膠A型、矽膠RD型、矽膠N型具有該較佳範圍內所包含之平均細孔直徑。矽膠B型及ID型的平均細孔直徑遠大於該範圍。
若比較矽膠A型、矽膠RD型、矽膠N型的平均細孔直徑,則矽膠A型的平均細孔直徑大於其他兩種類型。但如上所述,矽膠A型的每單位面積的氫氣吸留量大。如此,矽膠A型獲得良好的結果之理由在於,因為矽膠A型容易取得均勻形狀的粒狀矽膠。均勻粒狀矽膠容易緊密地排列並黏著於低溫板表面。藉此,與不規則形狀的粒狀矽膠相比,矽膠A型能夠高密度地設置於低溫板60上,進而能夠提高吸留量。
又,矽膠不僅具有上述範圍的平均細孔直徑,而且具有0.7~0.9g/mL的填充密度、0.25~0.45mL/g的細孔容積、550~750m2 /g為較佳。只要是具有這樣的物性之矽膠,則可期待是與矽膠A型、矽膠RD型、矽膠N型同樣地具有良好的吸附特性者。
在第2低溫板單元20的至少一部分表面形成有用於藉由凝結而捕捉凝結性氣體的凝結區域66。凝結區域66是例如在低溫板表面上欠缺吸附材料之區域,使低溫板基材表面(例如金屬面)露出。例如,低溫板60的上表面外周部可以是凝結區域66。
低溫泵殼體70是容納第1低溫板單元18、第2低溫板單元20及冷凍機16之低溫泵10的殼體,是構成為保持內部空間14的真空氣密之真空容器。低溫泵殼體70以非接觸之方式包含第1低溫板單元18及冷凍機結構部21。低溫泵殼體70安裝於冷凍機16的室溫部26。
藉由低溫泵殼體70的前端劃定吸氣口12。低溫泵殼體70具備從其前端朝向徑向外側延伸之吸氣口凸緣72。吸氣口凸緣72設置於低溫泵殼體70的全周。低溫泵10是利用吸氣口凸緣72而安裝於真空排氣對象的真空腔室。
在低溫泵殼體70上安裝有粗抽閥80、沖洗閥84及排氣閥88。
粗抽閥80連接於粗抽泵82。藉由粗抽閥80的開閉,粗抽泵82與低溫泵10被連通或阻斷。藉由開啟粗抽閥80,粗抽泵82與低溫泵殼體70被連通,藉由關閉粗抽閥80,粗抽泵82與低溫泵殼體70被阻斷。藉由開啟粗抽閥80且使粗抽泵82動作,能夠對低溫泵10的內部進行減壓。
粗抽泵82是用於進行低溫泵10的真空抽吸的真空泵。粗抽泵82是用於將低溫泵10的動作壓力範圍的低真空區域,換言之,將低溫泵10的動作開始壓力(亦即基礎壓力等級)提供給低溫泵10的真空泵。粗抽泵82能夠將低溫泵殼體70從大氣壓減壓至基礎壓力等級。基礎壓力等級在粗抽泵82的高真空區域附近,是包括於粗抽泵82與低溫泵10的動作壓力範圍的重複部分。基礎壓力等級例如為1Pa以上且50Pa以下(例如10Pa左右)的範圍。
粗抽泵82典型地作為與低溫泵10為不同個體的真空裝置而設置,例如構成包括連接低溫泵10之真空腔室之真空系統的一部分。低溫泵10是用於真空腔室的主泵,粗抽泵82是輔助泵。
沖洗閥84連接於包括沖洗氣體源86之沖洗氣體供給裝置。藉由沖洗閥84的開閉,沖洗氣體源86與低溫泵10被連通或阻斷,而控制對低溫泵10的沖洗氣體的供給。藉由開啟沖洗閥84,容許從沖洗氣體源86對低溫泵殼體70的沖洗氣體流動。藉由關閉沖洗閥84,從沖洗氣體源86對低溫泵殼體70的沖洗氣體流動被阻斷。藉由開啟沖洗閥84且從沖洗氣體源86將沖洗氣體導入到低溫泵殼體70,能夠對低溫泵10的內部進行升壓。所供給之沖洗氣體通過粗抽閥80從低溫泵10排出。
沖洗氣體的溫度例如被調整為室溫,但在一實施形態中沖洗氣體可以是被加熱為比室溫更高溫之氣體,或者比室溫稍微低溫的氣體。在本說明書中,室溫是從10℃~30℃的範圍或15℃~25℃的範圍選擇之溫度,例如約為20℃。沖洗氣體例如為氮氣。沖洗氣體可以是已乾燥氣體。
排氣閥88為了從低溫泵10的內部向外部環境排出流體而設置。排氣閥88通常是閉鎖的,但有可能因為外部壓力與低溫泵殼體70的內壓的壓力差而機械性地開閥。藉由排氣閥88開閥,能夠將在低溫泵殼體70的內部產生之正壓釋放到外部。從排氣閥88排出之流體基本上為氣體,但亦可以是液體或氣液混合物。
在低溫泵10設置有對不燃性吸附材料64及低溫板60進行加熱之加熱裝置。加熱裝置例如為冷凍機16。冷凍機16能夠升溫運轉(所謂反向升溫)。亦即,冷凍機16構成為設置於室溫部26之驅動機構以與冷卻運轉相反的方向動作時,會在工作氣體產生隔熱壓縮。藉由如此得到之壓縮熱,冷凍機16對第1冷卻台22及第2冷卻台24進行加熱。第1低溫板單元18及第2低溫板單元20分別以第1冷卻台22及第2冷卻台24作為熱源而被加熱。
在供給已加熱之沖洗氣體之情況下,可視為是沖洗閥84構成加熱裝置的一部分。或者可以在低溫泵10設置有例如電熱器等加熱裝置。例如,能夠與冷凍機16的運轉獨立地進行控制的電熱器可以安裝於冷凍機16的第1冷卻台22及/或第2冷卻台24。
低溫泵10具備用於測量第1冷卻台22的溫度的第1溫度感測器90及用於測量第2冷卻台24的溫度的第2溫度感測器92。第1溫度感測器90安裝於第1冷卻台22。第2溫度感測器92安裝於第2冷卻台24。藉此,第1溫度感測器90能夠測量第1低溫板單元18的溫度,第2溫度感測器92能夠測量第2低溫板單元20的溫度。第2溫度感測器92的測量溫度可視為是表示不燃性吸附材料64的溫度者。又,如低溫泵10的運轉開始前般,在低溫泵10的整體溫度均匀(例如室溫)之情況下,第1溫度感測器90的測量溫度可視為是表示不燃性吸附材料64的溫度者。
又,在低溫泵殼體70的內部設置有壓力感測器94。壓力感測器94例如設置於第1低溫板單元18的外側且冷凍機16的附近。壓力感測器94能夠測量低溫泵殼體70的內壓。
低溫泵10具備控制低溫泵10的運轉(例如真空排氣運轉、再生運轉等)之控制器100。控制器100亦可以稱為低溫泵控制器或者再生控制器。
控制器100在後面進行詳述,其構成為能夠執行用於使不燃性吸附材料64乾燥的脫水順序。脫水順序構成為藉由在室溫或比其更高溫下將不燃性吸附材料64暴露於壓力比真空環境高的(例如至少1000Pa)乾燥環境,以對不燃性吸附材料64進行脫水。控制器100按照脫水順序控制加熱裝置、沖洗閥84、粗抽閥80中的至少一個。控制器100控制粗抽閥80以在脫水順序之後在低溫泵殼體70生成真空環境(例如小於100Pa)。控制器100控制冷凍機16以在該真空環境下提供極低溫冷卻。
如本說明書開頭所述般,以往典型的低溫泵將活性碳用作吸附材料,在某些用途中,包含氧氣或臭氧之氣體藉由低溫泵被排氣。在該情況下,在再生中活性碳暴露於氧氣環境中。由於活性碳是可燃物,因此有可能因某些因素而發生意外起火。為了減少事故的可能性,避免複數種危險因素併存是非常重要的。
依實施形態,低溫泵10具有不燃性吸附材料64,因此即使存在氧氣,亦可確實地防止吸附材料起火及燃燒。與以往不同,能夠避免複數種危險因素(活性碳與氧氣)的併存,而能夠消除起火的風險。藉此,低溫泵10的安全性提高。能夠提供適用於應排出氣體中包含氧氣之用途之低溫泵10。
不燃性吸附材料64並不限於矽膠。作為不燃性吸附材料64,亦可考慮使用分子篩等其他無機多孔體。只要是無機吸附材料,則安全性同樣地提高。
但若如本實施形態般使用矽膠,則具有使低溫泵10的再生容易之優點。多孔體的吸附特性通常具有溫度依存性,亦即越是高溫則吸附量越降低。亦即,若多孔體被加熱,則被吸附於多孔體之氣體容易被釋放。與其他無機多孔體相比,矽膠在高溫下的吸附特性的降低顯著變大。從而,含有矽膠之不燃性吸附材料64容易進行再生。
然而,低溫泵10從製造商出厰時,以在吸氣口12安裝有蓋子之狀態配送至使用者。低溫泵10內可以填充氮氣或其他潔净的乾燥氣體。送到使用者之低溫泵10以蓋上蓋子之狀態保管。使用者在使用低溫泵10之現場,從吸氣口12取下蓋子,並將低溫泵10安裝於真空腔室。之後,低溫泵10通過粗抽閥80,藉由粗抽泵82被真空抽吸至基礎壓力(例如小於100Pa的微小壓力),冷凍機16的冷卻運轉開始。第1低溫板單元18、第2低溫板單元20冷卻至極低溫,低溫泵10的真空排氣運轉開始。
在以從低溫泵10取下蓋子之狀態放置等使用者的保管方式不當的情況下,不燃性吸附材料64長時間接觸大氣,有可能吸附大量的水分。若保管不當,使不燃性吸附材料64長期暴露於大氣,則不燃性吸附材料64的吸濕率(質量比,例如每1g不燃性吸附材料64的吸水量)有可能至少達到30%。
本發明人發現,若在這樣的情況下為了運轉開始而對低溫泵10進行真空抽吸,則會發生不燃性吸附材料64立即破碎成粉末狀等前所未見的現象。作為吸附材料具有活性碳之以往的低溫泵中不會發生該現象。
這是問題所在。若不燃性吸附材料64破損,則低溫泵的不凝性氣體的排氣性能降低。又,若不燃性吸附材料64的破碎之粉末卡入粗抽閥80、沖洗閥84等附屬於低溫泵10或與其連接之閥中,則有可能在閥產生洩漏。若在粗抽閥80、沖洗閥84產生洩漏,則低溫泵10內部無法維持真空,而需要進行閥的更換等維護。有可能因破碎之粉末侵入感測器等低溫泵10的其他構成零件而對該零件造成不良影響。
該新現象應是根據如下機制,藉由真空抽吸,不燃性吸附材料64的周圍被急速地減壓,使水分從不燃性吸附材料64急劇地氣化而脫離,這導致在吸附材料內部產生局部冷卻和熱應力,其結果,不燃性吸附材料64被破壞。這種粉碎在不燃性吸附材料64由矽膠形成之情況下很顯著,例如沸石等其他無機吸附材料亦有可能因相同的機制而產生這種粉碎。
本發明人藉由實驗發現,只要將不燃性吸附材料64的吸濕率設為小於24%(小於20%為較佳),則可防止因真空抽吸引起之不燃性吸附材料64的粉碎。於是,在實施形態中,為了開始低溫泵10的真空排氣運轉,低溫泵10構成為執行使不燃性吸附材料64乾燥之脫水順序。乾燥條件設定為,將不燃性吸附材料64的吸濕率降低至小於24%(小於20%為較佳)。乾燥條件可包括加熱溫度、乾燥環境的壓力及乾燥時間中的至少一個。
圖3係顯示基於加熱之矽膠的吸濕率的變化之曲線圖。該曲線圖是藉由本發明人所進行之實驗獲得之結果,圖3中描繪出在乾燥爐中將矽膠加熱至既定的乾燥溫度時的吸濕率的歷時變化。初始吸濕率設為30%,這是模擬了設置於低溫泵之矽膠長期暴露於大氣中而吸附大量的水分之狀態。以80℃、60℃、50℃這三種乾燥溫度,在大氣壓下進行了試驗。
不論哪一種乾燥溫度,吸濕率都隨著時間的經過而降低,且水分從矽膠脫離。乾燥溫度越高,吸濕率降低得越快。在80℃的乾燥溫度下,吸濕率從開始乾燥起在約20~25分鐘內降低為約24%,在約35~40分鐘內降低為約20%。在60℃的乾燥溫度下,吸濕率在約50分鐘內降低為約24%,在約90分鐘內降低為約20%。在50℃的乾燥溫度下,吸濕率在約140分鐘內降低為約24%,在約250分鐘內降低為約20%。
從而,從該實驗結果可知,矽膠的脫水中將乾燥溫度設為至少50℃才有效。乾燥時間越短,實際使用中越有利。只要將乾燥溫度設為至少60℃,則能夠在約1小時以內的乾燥時間內將吸濕率降低為約24%以下。又,只要將乾燥溫度設為至少80℃,則能夠在約30分鐘以內的乾燥時間內將吸濕率降低為約24%以下。
從而,不燃性吸附材料64的乾燥溫度(目標加熱溫度)可以是比室溫更高溫(例如30℃以上或40℃以上),較佳為可以是至少50℃(例如60℃以上或70℃以上),更佳為可以是至少80℃(例如90℃以上)。
若將乾燥溫度設定得過高,則存在導致超過低溫泵10的耐熱溫度之風險。於是,乾燥溫度可以是130℃以下,或120℃以下,或110℃以下,或100℃以下,或95℃以下。
圖4係顯示基於沖洗氣體流動之矽膠的吸濕率的變化之曲線圖。該曲線圖亦是藉由本發明人所進行之實驗獲得之結果,圖4中描繪出以既定的沖洗氣體流量將沖洗氣體供給至容器來對矽膠進行乾燥時的吸濕率的歷時變化。沖洗氣體為乾燥氮氣。初始吸濕率為30%。以90SLM(standard liter/min)、44SLM、28SLM這三種沖洗氣體流量在不加熱的條件下(亦即室溫)進行試驗。
不論哪一種沖洗氣體流量,吸濕率都隨著時間的經過而降低,且水分從矽膠脫離。沖洗氣體流量越多,吸濕率降低得越快。如圖4所示般,例如為90SLM的沖洗氣體流量的情況下,吸濕率在約40分鐘內降低為約24%,在約70分鐘內降低為約20%。從該實驗結果可知,沖洗氣體的供給對矽膠的脫水有效。脫水中無需加熱,僅供給沖洗氣體亦可。
圖5係顯示低壓乾燥環境下的矽膠的吸濕率的變化之曲線圖。該曲線圖也是藉由本發明人所進行之實驗獲得之結果,圖5中描繪出在1000~1100Pa的低壓乾燥環境下保持矽膠時的吸濕率的歷時變化。同樣地,初始吸濕率為30%。既沒有對乾燥環境進行沖洗氣體的供給,亦沒有加熱。
藉由將乾燥環境設為比大氣壓更低壓,吸濕率亦隨著時間的經過而降低,且水分從矽膠脫離。如圖5所示般,在1000~1100Pa的低壓乾燥環境下,吸濕率在約200分鐘內降低為約24%,在約400分鐘內降低為約20%。此時,未發現有矽膠粉碎。從該實驗結果可知,將乾燥環境設為比大氣壓更低壓,對矽膠的脫水有效。乾燥環境的壓力例如可以是至少1000Pa、或至少0.1氣壓、或至少1氣壓。
圖6係例示實施形態之低溫泵10的運轉開始方法之流程圖。該方法具備藉由在室溫或比其更高溫下將不燃性吸附材料64暴露於乾燥環境,以對不燃性吸附材料64進行脫水之步驟(S10)。如上所述般,乾燥條件設定為將不燃性吸附材料64的吸濕率降低為小於24%(小於20%為較佳)。
不燃性吸附材料64的脫水製程包括藉由如下步驟中的至少一個步驟,以在不燃性吸附材料64的周圍形成乾燥環境:將不燃性吸附材料64加熱至比室溫高的乾燥溫度(例如50℃以上或80℃以上);對低溫泵殼體70供給沖洗氣體;及將低溫泵殼體70保持在比1000Pa高的壓力(例如大氣壓以上的壓力)。不燃性吸附材料64藉由加熱裝置(例如冷凍機16的反向升溫、高溫沖洗氣體的供給、或設置於冷凍機16或低溫板60之電熱器的工作)被加熱。沖洗氣體的供給藉由沖洗閥84被控制。低溫泵殼體70的減壓藉由粗抽閥80被控制。
進行不燃性吸附材料64的脫水(S10)之後,進行不燃性吸附材料64的周圍環境的真空排氣(S20)。粗抽閥80開啓,粗抽泵82工作。低溫泵殼體70通過粗抽閥80,藉由粗抽泵82粗抽至基礎壓力。如上所述般,基礎壓力例如小於100Pa。不燃性吸附材料64的周圍形成真空環境。
不燃性吸附材料64在真空環境下冷卻至極低溫(S30)。冷凍機16的冷卻運轉開始,第1冷卻台22及第2冷卻台24分別冷卻為第1冷卻溫度及第2冷卻溫度。藉此,熱耦合於該等之第1低溫板單元18、第2低溫板單元20亦分別冷卻為第1冷卻溫度及第2冷卻溫度。不燃性吸附材料64設置於第2低溫板單元20,因此不燃性吸附材料64亦冷卻為第2冷卻溫度。
實施形態之控制器100構成為執行圖6所示之低溫泵10的運轉開始方法。為了開始低溫泵10的真空排氣運轉,控制器100構成為依序執行如下步驟:(a)藉由在室溫或比其更高溫下將不燃性吸附材料64暴露於乾燥環境,以對不燃性吸附材料64進行脫水;(b)進行不燃性吸附材料64的脫水之後,對不燃性吸附材料64的周圍環境進行真空排氣;及(c)在真空環境下將不燃性吸附材料64冷卻至極低溫。
如此,低溫泵10的真空排氣運轉開始。入口低溫板32對從真空腔室朝向低溫泵10飛來之氣體進行冷卻。在入口低溫板32的表面,讓在第1冷卻溫度下蒸氣壓力充分低的(例如10-8 Pa以下的)氣體凝結。該氣體可以稱為第1種氣體。第1種氣體例如為水蒸氣。如此,入口低溫板32能夠對第1種氣體進行排氣。在第1冷卻溫度下蒸氣壓力不夠低的氣體的一部分,從吸氣口12進入到內部空間14。或者氣體的其他一部分在入口低溫板32被反射,不進入到內部空間14。
進入到內部空間14之氣體藉由第2低溫板單元20被冷卻。在第2低溫板單元20的表面,讓在第2冷卻溫度下蒸氣壓力充分低的(例如10-8 Pa以下的)氣體凝結。該氣體可以稱為第2種氣體。第2種氣體例如為氬氣。如此,第2低溫板單元20能夠對第2種氣體進行排氣。
在第2冷卻溫度下蒸氣壓不夠低的氣體,藉由第2低溫板單元20的不燃性吸附材料64吸附。該氣體可以稱為第3種氣體。第3種氣體亦可以稱為不凝性氣體,例如為氫氣。如此,第2低溫板單元20能夠對第3種氣體進行排氣。從而,低溫泵10能夠藉由凝結或吸附而對各種氣體進行排氣,並能夠使真空腔室的真空度達到所期望的等級。
藉由持續排氣運轉,在低溫泵10逐步蓄積氣體。為了將所蓄積之氣體排出到外部,進行低溫泵10的再生。在低溫泵進行排氣之氣體中含有水蒸氣之情況並不罕見。在低溫泵10的真空排氣運轉中,水蒸氣於第1低溫板單元18凝結而變成冰。在再生中,低溫泵10被加熱為室溫或比其更高溫(例如290K~330K),因此冰融化成水。有可能在吸附材料上附著水滴。
矽膠為具有OH基之親水性材料的一種。若這種親水性吸附材料接觸到液體水,則在吸附材料的分子與水分子之間容易形成氫鍵。氫鍵是強鍵結,因此可以預測到吸附材料的脫水需要很長時間,而導致再生時間變長。這並不理想。而且,矽膠具有浸漬於液體水中則變脆,之後自然破碎之性質。因此,在不燃性吸附材料64含有矽膠之情況下,特別期望避免與液體水接觸。另外,以往經常使用之活性碳與矽膠不同,其為疏水性材料。
於是,低溫泵10的再生可以是藉由將冰昇華,不經過液體水而氣化為水蒸氣,並排出到外部來進行。以下對將不燃性吸附材料64的脫水順序組合到這樣的昇華再生中來進行安裝之實施形態進行說明。
圖7係一實施形態之低溫泵10的方塊圖。
第1溫度感測器90定期測量第1低溫板單元18的溫度,並生成表示第1低溫板單元18的測量溫度之第1溫度測量訊號S1。第1溫度感測器90以能夠通訊之方式連接於控制器100,並將第1溫度測量訊號S1輸出到控制器100。第2溫度感測器92定期測量第2低溫板單元20的溫度,並生成表示第2低溫板單元20的測量溫度之第2溫度測量訊號S2。第2溫度感測器92以能夠通訊之方式連接於控制器100,並將第2溫度測量訊號S2輸出到控制器100。
壓力感測器94定期測量低溫泵殼體70的內壓,並生成表示低溫泵殼體70的內壓之壓力測量訊號S3。壓力感測器94以能夠通訊之方式連接於控制器100,並將壓力測量訊號S3輸出到控制器100。
控制器100構成為接收第1溫度測量訊號S1、第2溫度測量訊號S2、壓力測量訊號S3。控制器100構成為根據第1溫度測量訊號S1、第2溫度測量訊號S2、壓力測量訊號S3中的至少一個訊號,生成冷凍機控制訊號S4、粗抽閥控制訊號S5、沖洗閥控制訊號S6中的至少一個訊號。控制器100構成為將冷凍機控制訊號S4發送至冷凍機16,將粗抽閥控制訊號S5發送至粗抽閥80,將沖洗閥控制訊號S6發送至沖洗閥84。
冷凍機16按照冷凍機控制訊號S4進行控制。冷凍機16的冷卻運轉的開閉或反向升溫運轉的開閉、冷卻運轉與反向升溫運轉的切換基於冷凍機控制訊號S4。又,冷凍機16的運轉頻率(驅動冷凍機16之馬達的轉速)可以按照冷凍機控制訊號S4可變地進行控制。粗抽閥80按照粗抽閥控制訊號S5開閥或閉閥。沖洗閥84按照沖洗閥控制訊號S6開閥或閉閥。又,控制器100可以以切換設置於低溫泵10之加熱裝置(例如安裝於冷凍機16之電熱器)的開閉之方式控制加熱裝置。
低溫泵10具備記憶部102、輸入部104及輸出部106。記憶部102構成為儲存與低溫泵10的控制相關之資料。記憶部102可以是半導體記憶體或其他資料記憶媒體。輸入部104構成為接收來自使用者或其他裝置的輸入。輸入部104例如包括用於接收來自使用者的輸入的滑鼠、鍵盤等的輸入手段及/或用於與其他裝置進行通訊的通訊手段。輸出部106構成為輸出與低溫泵10的控制相關之資料,並包括顯示器、印表機等的輸出手段。記憶部102、輸入部104及輸出部106分別以能夠與控制器100通訊之方式連接。
控制器100具備昇華再生部110和脫水部112。昇華再生部110構成為根據第1溫度測量訊號S1、第2溫度測量訊號S2、壓力測量訊號S3,執行昇華再生順序。脫水部112構成為根據第1溫度測量訊號S1、第2溫度測量訊號S2、壓力測量訊號S3,執行脫水順序。
控制器100構成為接收再生開始指令S7,並開始低溫泵10的再生。再生開始指令S7例如從輸入部104輸入到控制器100。
控制器100作為硬體構成是藉由以電腦的CPU和記憶體為代表之元件和電路來實現,作為軟體構成是藉由電腦程式等來實現,圖7中適當描繪成藉由該等的配合而實現之功能方塊。本領域技術人員應可理解,該等功能方塊能夠藉由硬體及軟體的組合而以各種形式實現。
例如控制器100能夠藉由將CPU(Central Processing Unit:中央處理單元)、微電腦等的處理器(硬體)和處理器(硬體)所執行之軟體程式的組合來安裝。這種硬體處理器例如可以由FPGA(Field Pro grammable Gate Array:現場可程式閘陣列)等的可程式邏輯元件構成,亦可以是如可程式邏輯控制器(PLC)般的控制電路。軟體程式可以是用於使控制器100執行低溫泵10的再生順序(例如昇華再生順序、脫水順序)的電腦程式。
圖8係顯示一實施形態之低溫泵再生方法的概略之流程圖。該低溫泵再生方法藉由控制器100執行。控制器100接收再生開始指令S7,並根據表示不燃性吸附材料64的溫度之溫度測量訊號(例如第1溫度測量訊號S1及第2溫度測量訊號S2中的至少一個訊號)控制作為加熱裝置的冷凍機16、沖洗閥84、粗抽閥80,以執行昇華再生順序或脫水順序中的任一個順序。昇華再生順序構成為藉由將不燃性吸附材料64暴露於真空環境,以使水不燃性吸附材料64昇華。脫水順序構成為藉由在室溫或比其更高溫下將不燃性吸附材料64暴露於壓力比真空環境高的乾燥環境,以對不燃性吸附材料64進行脫水。
若接收再生開始指令S7,則如圖8所示般,控制器100根據第1溫度測量訊號S1,判定第1低溫板單元18的測量溫度(亦即第1測量溫度T1)是否低於第1基準溫度Tr1(S51)。又,控制器100根據第2溫度測量訊號S2,判定第2低溫板單元20的測量溫度(亦即第2測量溫度T2)是否低於第2基準溫度Tr2(S52)。
基於該等溫度之判定是為了掌握接收再生開始指令S7之前的低溫泵10而進行。在進行低溫泵10的真空排氣運轉之情況下,第1低溫板單元18、第2低溫板單元20冷卻至極低溫。另一方面,在低溫泵10新設置於真空腔室,之後應開始真空排氣運轉之情況下,低溫泵10處於室溫。或者即使在發生斷電或其他異常狀況而恢復要耗費很長時間之情況下,低溫泵10亦從極低溫自然升溫至室溫。於是,為了區分低溫泵10是冷卻至極低溫還是處於室溫,第1基準溫度Tr1和第2基準溫度Tr2例如可以設定為250K~280K的溫度值,例如亦可以設定為273K。在此,第1基準溫度Tr1和第2基準溫度Tr2設定為相同的值,但亦可以設定為不同值。
在第1測量溫度T1低於第1基準溫度Tr1並且第2測量溫度T2低於第2基準溫度Tr2之情況下(S51的否且S52的否),能夠視為至控制器100接收再生開始指令S7為止進行了低溫泵10的真空排氣運轉。藉此,在該情況下,控制器100的昇華再生部110執行昇華再生順序(S100)。
另一方面,在第1測量溫度T1為第1基準溫度Tr1以上或第2測量溫度T2為第2基準溫度Tr2以上之情況下(S51的是或S52的是),可視為低溫泵10處於室溫。藉此,在該情況下,控制器100的脫水部112執行脫水順序(S200)。脫水順序之後,控制器100的昇華再生部110執行昇華再生順序(S100)。如此,低溫泵10再生完成。若再生完成,則低溫泵10開始進行真空排氣運轉。
如此,控制器100根據表示不燃性吸附材料64的溫度之溫度測量訊號,控制加熱裝置、沖洗閥84、粗抽閥80中的至少一個,以在可視為不燃性吸附材料64處於室溫之情況下執行脫水順序。又,控制器100根據表示不燃性吸附材料64的溫度之溫度測量訊號,控制加熱裝置、沖洗閥84、粗抽閥80中的至少一個,以在可視為不燃性吸附材料64處於比室溫低的溫度之情況下執行昇華再生順序。
另外,控制器100可以接收再生開始指令S7並根據壓力測量訊號S3,控制作為加熱裝置的冷凍機16、沖洗閥84、粗抽閥80,以執行昇華再生順序或脫水順序中的任一個順序。在進行低溫泵10的真空排氣運轉之情況下,低溫泵殼體70內部呈真空狀態。另一方面,在低溫泵10新設置於真空腔室,之後應開始真空排氣運轉之情況下,低溫泵殼體70內部呈大氣壓狀態。或者即使在發生斷電或其他異常狀況而恢復要耗費很長時間之情況下,低溫泵殼體70內部亦藉由捕捉到之氣體的再氣化而從真空升壓為大氣壓(或其以上)。從而,能夠從低溫泵殼體70的內壓掌握低溫泵10的狀態。
或者,控制器100可以代替來自感測器的測量訊號,而根據接收再生開始指令S7之前的低溫泵10的狀態,控制加熱裝置、沖洗閥、粗抽閥中的至少一個,以執行昇華再生順序或脫水順序中的任一個順序。控制器100可以構成為生成表示低溫泵10的現在的狀態(例如真空排氣運轉中、新設置、再生中等)之狀態資料,並保存到記憶部102。控制器100可以在接收再生開始指令S7之前的狀態資料顯示真空排氣運轉之情況下選擇昇華再生順序,在接收再生開始指令S7之前的狀態資料顯示新設置之情況下選擇脫水順序。
如此,在無需脫水順序之情況下,能夠省略脫水順序。能夠防止再生時間變長。
圖9係顯示圖8所示之昇華再生順序之流程圖。若昇華再生順序開始,則昇華再生部110開啓沖洗閥84,並且關閉粗抽閥80(S101)。從沖洗氣體源86通過沖洗閥84對低溫泵殼體70供给沖洗氣體。同時,昇華再生部110開始冷凍機16的反向升溫運轉。昇華再生部110可以根據第1溫度測量訊號S1控制冷凍機16的運轉頻率,以使第1測量溫度T1與目標加熱溫度一致。
昇華再生部110根據第1溫度測量訊號S1將第1測量溫度T1與沖洗停止溫度Tp進行比較(S102)。根據溫度比較的結果,昇華再生部110控制粗抽閥80、粗抽泵82。在第1測量溫度T1低於沖洗停止溫度Tp之情況下(S102的否),維持現在的狀態。亦即,沖洗閥84開放,粗抽閥80閉鎖。昇華再生部110在經過既定時間之後,再度將第1測量溫度T1與沖洗停止溫度Tp進行比較(S102)。另外,昇華再生部110可以根據第2溫度測量訊號S2將第2測量溫度T2與沖洗停止溫度Tp進行比較。
沖洗停止溫度Tp設定為比水的三相點溫度(亦即273.15K)更低的溫度值。沖洗停止溫度Tp可以在水的三相點溫度的附近設定為比其低的溫度,例如設定於約230K~270K的範圍。沖洗停止溫度Tp可以設定為250K。
在第1測量溫度T1高於沖洗停止溫度Tp之情況下(S102的是),昇華再生部110關閉沖洗閥84,開啓粗抽閥80 (S103)。如此,在低溫板溫度超過水的三相點溫度之前,停止對低溫泵10的沖洗氣體的供給。另外,粗抽閥80可以比沖洗閥84的閉鎖稍晚再開放。昇華再生部110持續進行冷凍機16的反向升溫運轉。
接著,昇華再生部110判定是否滿足粗抽閥閉鎖條件(S104)。粗抽閥閉鎖條件包括如下(a1)、(a2)。 (a1)低溫泵殼體70的測量內壓低於壓力臨界值。 (a2)第2低溫板單元20的測量溫度高於溫度臨界值。
從而,昇華再生部110根據壓力測量訊號S3將低溫泵殼體70的測量內壓與壓力臨界值進行比較。昇華再生部110根據第2溫度測量訊號S2將第2測量溫度T2與溫度臨界值進行比較。根據該等比較結果,昇華再生部110控制粗抽閥80及沖洗閥84。
在低溫泵殼體70的測量內壓高於壓力臨界值的情況下(S104的否),維持現在狀態。在第2低溫板單元20的測量溫度低於溫度臨界值的情況下(S104的否),亦維持現在狀態。亦即,粗抽閥80開放,沖洗閥84閉鎖。在經過既定時間之後,再度判定是否滿足粗抽閥閉鎖條件(S104)。
壓力臨界值例如選自10Pa~100Pa的壓力範圍,例如可以是30Pa。溫度臨界值例如選自290K~330K的溫度範圍,例如可以是300K。
在滿足粗抽閥閉鎖條件之情況下(S104的是),亦即,在低溫泵殼體70的測量內壓低於壓力臨界值且第2低溫板單元20的測量溫度高於溫度臨界值的情況下,粗抽閥80閉鎖(S105)。沖洗閥84可以與粗抽閥80的閉鎖同時或稍晚再開放。
在步驟S105中的粗抽閥80閉鎖之後,進行未圖示之進一步的排出製程及降溫製程,昇華再生順序結束。
昇華再生順序是所謂完全再生,第1低溫板單元18和第2低溫板單元20兩者被再生。因此低溫泵10持續被加熱,升溫為室溫或比其更高溫的再生溫度(例如290K~330K)。如此,再生中將低溫泵10維持較高的溫度,有助於再生時間的縮短。
另外,實施形態之低溫泵再生適合於在低溫泵10內凝結之水的量少且藉由昇華而低溫泵10的內壓不超過水的三相點壓力的情況。在低溫泵10內凝結有大量的水之情況下,藉由昇華,大量的水蒸氣氣化,低溫泵10的內壓有可能超過水的三相點壓力。在這樣的情況下,控制器100可以將低溫泵10的溫度保持為比水的三相點溫度更低的溫度,以代替將低溫泵10加熱為比室溫更高溫。
圖10係顯示圖8所示之脫水順序之流程圖。若脫水順序開始,則脫水部112開啓沖洗閥84,並且關閉粗抽閥80(S201)。從沖洗氣體源86通過沖洗閥84對低溫泵殼體70供给沖洗氣體。所供給之沖洗氣體通過排氣閥88從低溫泵殼體70排出。
伴隨沖洗閥84的開閥,脫水部112開始冷凍機16的反向升溫運轉。脫水部112可以根據第2溫度測量訊號S2控制冷凍機16的運轉頻率,以使第2測量溫度T2與目標加熱溫度一致。或者脫水部112可以根據第1溫度測量訊號S1控制冷凍機16的運轉頻率,以使第1測量溫度T1與目標加熱溫度一致。如上所述般,目標加熱溫度例如設定為50℃以上的溫度。
接著,脫水部112判定是否滿足脫水完成條件(S202)。脫水完成條件包括如下(b1)、(b2)。 (b1)第2低溫板單元20的測量溫度高於溫度臨界值。 (b2)經過了預先設定之乾燥時間(脫水等待時間)。
從而,脫水部112根據第2溫度測量訊號S2將第2測量溫度T2與溫度臨界值進行比較。溫度臨界值可以與目標加熱溫度相等。脫水部112測量經過時間,並將經過時間與預先設定之乾燥時間進行比較。該經過時間例如可以從第2測量溫度T2達到溫度臨界值之時點起計算,或者可以從再生開始指令S7開始計算。預先設定之乾燥時間例如可以設定為10分鐘至60分鐘(例如30分鐘)。根據該等比較結果,脫水部112控制粗抽閥80及沖洗閥84。
在第2低溫板單元20的測量溫度低於溫度臨界值的情況下(S202的否),維持現在狀態。在未經過預先設定之乾燥時間的情況下(S202的否),亦維持現在狀態。亦即,粗抽閥80開放,沖洗閥84保持閉鎖。在經過既定時間之後,再度判定是否滿足脫水完成條件(S202)。
在滿足脫水完成條件之情況下(S202的是),亦即,在第2低溫板單元20的測量溫度高於溫度臨界值且經過了預先設定之乾燥時間之情況下,沖洗閥84閉鎖(S203)。脫水順序期間,粗抽閥80保持閉鎖。如此,脫水順序結束。
另外,根據沖洗氣體的可供給量有限之情況等需要,脫水部112可以在滿足脫水完成條件之前閉鎖沖洗閥84。
圖11係顯示圖8中所示出之再生方法中的溫度及壓力的歷時變化的一例。圖中,符號T1、T2分別表示第1低溫板單元18、第2低溫板單元20的測量溫度。溫度值示於左側縱軸上。符號P表示低溫泵殼體70的測量內壓,壓力值以對數形式示於右側縱軸上。
圖示之製程為使低溫泵10新運轉開始之情況。低溫泵10整體處於室溫,內壓呈大氣壓狀態。在再生順序的開始時點T0 ,第1低溫板單元18和第2低溫板單元20均為約297K。藉此,第1測量溫度T1高於第1基準溫度Tr1,第2測量溫度T2高於第2基準溫度Tr2。從而,按照圖8所示之流程,首先執行脫水順序(圖8的S200),然後再執行昇華再生順序(圖8的S100)。
若脫水順序開始,則沖洗閥84開啟,粗抽閥80閉鎖(圖10的S201)。藉由沖洗氣體的供給,低溫泵殼體70的測量內壓P保持大氣壓程度。藉由冷凍機16的反向升溫,第1低溫板單元18和第2低溫板單元20(包括不燃性吸附材料64)被加熱為目標加熱溫度(例如335K)。
在圖11所示之時刻Ta,第2測量溫度T2達到目標加熱溫度。從第2測量溫度T2達到目標加熱溫度之時點起,控制器100計算乾燥時間(脫水等待時間)。乾燥時間設定為30分鐘。若在圖11所示之時刻Tb,乾燥時間完成,則判定為滿足脫水完成條件(圖10的S202),脫水順序結束(圖10的S203)。
接著,昇華再生順序開始。低溫泵10已被加熱,因此第1測量溫度T1和第2測量溫度T2均高於沖洗停止溫度。從而,在時刻Tb,沖洗閥84關閉,粗抽閥80開啓(圖9的S103)。
當進行低溫泵10的真空排氣(粗抽)而低溫泵10的內壓變得充分低時,粗抽閥80閉鎖,低溫泵10的真空排氣結束(圖11的時刻Tc)。更具體而言,在低溫泵殼體70的測量內壓P低於壓力臨界值Pa且第2低溫板單元20的測量溫度T2高於溫度臨界值的情況下(圖9的S104),粗抽閥80閉鎖(圖9的S105)。
接著,如圖11所示般,可以進行包括所謂粗抽及沖洗(rough and purge)之排出製程。粗抽及沖洗是交替反覆進行對低溫泵10的沖洗氣體的供給和真空排氣之製程。粗抽及沖洗有助於將吸附材料上所吸附之水蒸氣排出。在粗抽及沖洗期間,監視低溫泵10的內壓及壓力上升率,當該等滿足既定值時(圖11中的時刻Td),低溫泵10的降溫開始。若第1低溫板單元18及第2低溫板單元20分別冷卻為目標冷卻溫度,則再生完成。
如以上所說明般,依實施形態,能夠在開始低溫泵10的真空排氣運轉之前進行不燃性吸附材料64的脫水。即使在到目前為止的作業(製造、運輸、保管、設置等)中不燃性吸附材料64吸收了濕氣,亦能夠防止因真空抽吸引起之不燃性吸附材料64的破損,能夠使低溫泵10運行。
又,即使因為低溫泵10的真空排氣運轉中發生之斷電或其他異常狀況而使儲存於低溫泵10中之冰融化,使不燃性吸附材料64暴露於高濕度環境,低溫泵10亦在異常狀況得到恢復之後執行脫水順序,進而能夠使不燃性吸附材料64乾燥。藉此,能夠防止因真空抽吸引起之不燃性吸附材料64的破損,能夠使低溫泵10運行。
控制器100在脫水順序中控制加熱裝置,以將不燃性吸附材料64及低溫板60加熱為50℃以上。利用加熱,能夠在短時間內進行不燃性吸附材料64的脫水。
又,控制器100在脫水順序中開啓沖洗閥84,以對低溫泵殼體70供給沖洗氣體。利用沖洗氣體,能夠在短時間內進行不燃性吸附材料64的脫水。
又,控制器100在脫水順序期間,保持關閉粗抽閥80。藉此,可防止在脫水順序中途低溫泵殼體70的內壓被過度減壓。
依昇華再生順序,藉由昇華,冰不經過液體水而氣化為水蒸氣。藉此,親水性吸附材料在再生中不與液體水接觸。在吸附材料上所吸附之水的量變少,因此能夠縮短吸附材料的脫水所需時間。藉此,能夠縮短再生時間。又,如上所述般,矽膠具有浸漬於液體水中則變脆,之後自然破碎之性質。然而,依本實施形態,親水性吸附材料在再生中不與液體水接觸。藉此,在親水性吸附材料含有矽膠之情況下,能夠長時間保持親水性吸附材料。
以上,根據實施例對本發明進行了說明。本發明並不限定於上述實施形態,而能夠進行各種設計變更,本領域技術人員可以理解能夠進行各種變形例,又,這種變形例亦在本發明的範圍內。與一實施形態相關地已說明之各種特徵亦能夠適用於其他實施形態中。藉由組合而生成之新的實施形態兼具所組合之實施形態各自的效果。
在一實施形態中,可以在脫水順序之後再執行追加脫水順序。控制器100(例如脫水部112)可以構成為根據第1溫度測量訊號S1、第2溫度測量訊號S2、壓力測量訊號S3執行追加脫水順序。追加脫水順序可以構成為藉由通過粗抽閥80之低溫泵殼體70的真空排氣(粗抽),減少殘留於不燃性吸附材料64之水。或者追加脫水順序可以構成為藉由交替反覆進行通過粗抽閥80之低溫泵殼體70的真空排氣和通過沖洗閥84之對低溫泵殼體70的沖洗氣體供給之粗抽及沖洗,以減少殘留於不燃性吸附材料64之水。粗抽及沖洗例示於圖11。粗抽及沖洗之後,進行降溫,追加脫水順序完成。如此,低溫泵10的真空排氣運轉開始。
圖12係概略地顯示一實施形態之低溫泵系統之圖。低溫泵系統具備複數個低溫泵,具體而言,具備至少一個第1低溫泵10a及至少一個第2低溫泵10b。在圖12所示之例子中,低溫泵系統由包括2台第1低溫泵10a和2台第2低溫泵10b之共計4台低溫泵構成,但第1低溫泵10a、第2低溫泵10b的數量並無特別限定。該等複數個低溫泵可以分別設置於不同的真空腔室,亦可以設置於同一個真空腔室。
第1低溫泵10a是具有含有矽膠作為主成分之吸附材料之低溫泵,例如為圖1所示之低溫泵10。第2低溫泵10b是具有不含有矽膠的吸附材料(例如活性碳)之低溫泵。第2低溫泵10b除吸附材料以外具有與圖1所示之低溫泵10相同的構成。藉此,第1低溫泵10a具備低溫泵殼體70及粗抽閥80。同樣地,第2低溫泵10b具備低溫泵殼體70及粗抽閥80。
低溫泵系統具備粗抽排氣管線130。粗抽排氣管線130具備:粗抽泵82,在第1低溫泵10a和第2低溫泵10b中共用;及粗抽配管132,從各低溫泵10a、10b的粗抽閥80向共用的粗抽泵82進行合流。粗抽泵82在複數個第1低溫泵10a和複數個第2低溫泵10b中共用。
控制器100構成為接收關於各低溫泵10a、10b的再生開始指令S7並開始該低溫泵的再生。再生開始指令S7例如從輸入部104(參閱圖3)輸入到控制器100。
然而,各低溫泵10a、10b通過粗抽排氣管線130而彼此連接,因此在幾個低溫泵中同時進行再生之情況下,氣體可能從某一低溫泵(稱為低溫泵A)向其他低溫泵(稱為低溫泵B)逆流。例如,粗抽泵82正在進行低溫泵A的粗抽中,若低溫泵B從沖洗轉移到粗抽,則在該轉移時點,低溫泵B的內壓因沖洗氣體而變得高於低溫泵A。因此,藉由2個低溫泵的壓力差,氣體有可能通過粗抽配管132而從低溫泵B向低溫泵A逆流。
尤其在低溫泵A是第1低溫泵10a之情況下,這樣的氣體的逆流並不理想。其理由在於,第1低溫泵10a因逆流而升壓,內壓有可能超過水的三相點壓力。在該情況下,在第1低溫泵10a中冰有可能液化成水。吸附材料中所含之矽膠與液體水接觸之風險提高。
又,由於從粗抽配管132向低溫泵10a、10b產生之逆流,亦有顆粒進入到低溫泵的疑慮。
於是,控制器100可以同時利用複數個第1低溫泵10a執行脫水順序,並依序利用複數個第1低溫泵10a執行追加脫水順序。脫水順序中,粗抽閥80閉鎖,因此即使複數個第1低溫泵10a同時執行脫水順序,亦不會引起上述問題。追加脫水順序中,粗抽閥80開啓,複數個第1低溫泵10a依序執行追加脫水順序,因此複數個粗抽閥80不會同時開啓。藉此,能夠防止在複數個第1低溫泵10a之間的氣體逆流。
又,控制器100在第1低溫泵10a的脫水中(脫水順序及/或追加脫水順序)接收到關於至少一個其他低溫泵(亦即,第2低溫泵10b)的再生開始指令S7之情況下,可以使至少一個其他低溫泵的再生開始延遲到第1低溫泵10a的脫水完成以後。藉此,能夠防止從第2低溫泵10b向第1低溫泵10a的氣體逆流。
根據實施形態,並使用具體的語句對本發明進行了說明,但實施形態僅表示本發明的原理、應用的一個側面,在實施形態,在不脫離申請專利範圍所規定之本發明的思想之範圍內,容許多種變形例及配置的變更。
10:低溫泵 60:低溫板 64:不燃性吸附材料 70:低溫泵殼體 80:粗抽閥 82:粗抽泵 84:沖洗閥 86:沖洗氣體源 100:控制器
[圖1]係概略地顯示一實施形態之低溫泵之圖。 [圖2]係顯示一實施形態之能夠用作形成吸附區域之不燃性吸附材料之矽膠的代表性物性之表。 [圖3]係顯示基於加熱之矽膠的吸濕率的變化之曲線圖。 [圖4]係顯示基於沖洗氣體流動之矽膠的吸濕率的變化之曲線圖。 [圖5]係顯示低壓乾燥環境下的矽膠的吸濕率的變化之曲線圖。 [圖6]係例示實施形態之低溫泵的運轉開始方法之流程圖。 [圖7]係一實施形態之低溫泵的方塊圖。 [圖8]係顯示一實施形態之低溫泵再生方法的概略之流程圖。 [圖9]係顯示圖8所示之昇華再生順序之流程圖。 [圖10]係顯示圖8所示之脫水順序之流程圖。 [圖11]係顯示圖8所示之再生方法中的溫度及壓力的歷時變化的一例之圖。 [圖12]係概略地顯示一實施形態之低溫泵系統之圖。
10:低溫泵
12:吸氣口
14:內部空間
16:冷凍機
18:第1低溫板單元
20:第2低溫板單元
21:冷凍機結構部
22:第1冷卻台
23:第1缸體
24:第2冷卻台
25:第2缸體
26:室溫部
30:放射屏蔽件
32:入口低溫板
34:屏蔽件主開口
36:屏蔽件前端
38:屏蔽件底部
40:屏蔽件側部
44:屏蔽件側部開口
46:安裝座
60:低溫板
62:板安裝構件
64:不燃性吸附材料
66:凝結區域
70:低溫泵殼體
72:吸氣口凸緣
80:粗抽閥
82:粗抽泵
84:沖洗閥
86:沖洗氣體源
88:排氣閥
90:第1溫度感測器
92:第2溫度感測器
94:壓力感測器
100:控制器
A:中心軸

Claims (14)

  1. 一種低溫泵,其具備:低溫泵殼體;低溫板,係配置於前述低溫泵殼體內且具備不燃性吸附材料;加熱裝置,係對前述不燃性吸附材料及前述低溫板進行加熱;沖洗閥,係安裝於前述低溫泵殼體且將前述低溫泵殼體連接於沖洗氣體源;粗抽閥,係安裝於前述低溫泵殼體且將前述低溫泵殼體連接於粗抽泵;感測器,係生成表示前述不燃性吸附材料的溫度或前述低溫泵殼體的內壓之測量訊號;及控制器,係當接收到再生開始指令時,根據顯示接收該再生開始指令之前的前述低溫泵的狀態之前述測量訊號控制前述加熱裝置、前述沖洗閥、前述粗抽閥中的至少一個,以選擇執行(i)昇華再生順序或(ii)脫水順序中的任一個順序,前述昇華再生順序構成為藉由將前述不燃性吸附材料暴露於真空環境,以使水從前述不燃性吸附材料昇華,前述脫水順序構成為藉由在室溫或比其更高溫下將前述不燃性吸附材料暴露於壓力比前述真空環境高的乾燥環境,以對前述不燃性吸附材料進行脫水。
  2. 如請求項1所述之低溫泵,其中,前述感測器係包括生成表示前述不燃性吸附材料的溫 度之溫度測量訊號之溫度感測器,前述控制器係根據前述溫度測量訊號控制前述加熱裝置、前述沖洗閥、前述粗抽閥中的至少一個,以在可視為前述不燃性吸附材料處於室溫之情況下執行前述脫水順序。
  3. 如請求項1或請求項2所述之低溫泵,其中,前述控制器係代替前述測量訊號而根據接收再生開始指令之前的低溫泵的狀態,控制前述加熱裝置、前述沖洗閥、前述粗抽閥中的至少一個,以執行前述昇華再生順序或前述脫水順序中的任一個順序。
  4. 一種低溫泵,其具備:低溫泵殼體;低溫板,係配置於前述低溫泵殼體內且具備不燃性吸附材料;加熱裝置,係對前述不燃性吸附材料及前述低溫板進行加熱;沖洗閥,係安裝於前述低溫泵殼體且將前述低溫泵殼體連接於沖洗氣體源;粗抽閥,係安裝於前述低溫泵殼體且將前述低溫泵殼體連接於粗抽泵;及控制器,係按照脫水順序控制前述加熱裝置、前述沖洗閥、前述粗抽閥中的至少一個,並控制前述粗抽閥以在前述脫水順序之後在前述低溫泵殼體生成真空環境,且從 前述不燃性吸附材料,使水藉由昇華,不經過液體水而氣化為水蒸氣,前述脫水順序係構成為在室溫或比其更高溫下將前述不燃性吸附材料暴露於壓力比前述真空環境高的乾燥環境,以對前述不燃性吸附材料進行脫水。
  5. 如請求項1、2或請求項4所述之低溫泵,其中,前述控制器係在前述脫水順序中控制前述加熱裝置,以將前述不燃性吸附材料及前述低溫板加熱為50℃以上。
  6. 如請求項1、2或請求項4所述之低溫泵,其中,前述控制器係在前述脫水順序中開啟前述沖洗閥以向前述低溫泵殼體供給沖洗氣體。
  7. 如請求項1、2或請求項4所述之低溫泵,其中,前述控制器在前述脫水順序期間,保持關閉前述粗抽閥。
  8. 如請求項1、2或請求項4所述之低溫泵,其中,前述乾燥環境的壓力係至少1氣壓。
  9. 如請求項1、2或請求項4所述之低溫泵,其中,前述不燃性吸附材料係含有矽膠作為主成分。
  10. 如請求項1、2或請求項4所述之低溫 泵,其中,前述低溫泵係不具有活性碳。
  11. 如請求項1、2或請求項4所述之低溫泵,其中,前述控制器係控制前述加熱裝置、前述沖洗閥、前述粗抽閥中的至少一個,以在前述脫水順序之後執行追加脫水順序,前述追加脫水順序係構成為藉由通過前述粗抽閥之前述低溫泵殼體的真空排氣、或藉由交替反覆進行前述真空排氣和通過前述沖洗閥之對前述低溫泵殼體的沖洗氣體供給之粗抽及沖洗,以減少殘留於前述不燃性吸附材料之水。
  12. 一種低溫泵系統,其具備:請求項11所示之低溫泵;及至少一個其他低溫泵,前述粗抽泵係在前述低溫泵和前述至少一個其他低溫泵中共用,前述控制器係同時利用前述低溫泵和前述至少一個其他低溫泵執行前述脫水順序,並依序利用前述低溫泵和前述至少一個其他低溫泵執行前述追加脫水順序。
  13. 一種低溫泵,其具備:不燃性吸附材料;及控制器,係為了開始低溫泵的真空排氣運轉而依序執行如下步驟: 藉由在室溫或比其更高溫下將不燃性吸附材料暴露於乾燥環境,以對前述不燃性吸附材料進行脫水;進行前述不燃性吸附材料的脫水之後,藉由將前述不燃性吸附材料的周圍環境曝露於真空環境,從前述不燃性吸附材料,使水藉由昇華,不經過液體水而氣化為水蒸氣;進行前述水的昇華之後,對前述不燃性吸附材料的周圍環境進行真空排氣;及在真空環境中將前述不燃性吸附材料冷卻至極低溫。
  14. 一種低溫泵的運轉開始方法,前述低溫泵係具有不燃性吸附材料,前述運轉開始方法係,藉由在室溫或比其更高溫下將不燃性吸附材料暴露於乾燥環境,以對前述不燃性吸附材料進行脫水;進行前述不燃性吸附材料的脫水之後,藉由將前述不燃性吸附材料的周圍環境曝露於真空環境,從前述不燃性吸附材料,使水藉由昇華,不經過液體水而氣化為水蒸氣;進行前述水的昇華之後,對前述不燃性吸附材料的周圍環境進行真空排氣;及在真空環境中將前述不燃性吸附材料冷卻至極低溫。
TW109134878A 2019-10-29 2020-10-08 低溫泵、低溫泵系統及低溫泵的運轉開始方法 TWI796604B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196122 2019-10-29
JP2019-196122 2019-10-29

Publications (2)

Publication Number Publication Date
TW202117185A TW202117185A (zh) 2021-05-01
TWI796604B true TWI796604B (zh) 2023-03-21

Family

ID=75715929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134878A TWI796604B (zh) 2019-10-29 2020-10-08 低溫泵、低溫泵系統及低溫泵的運轉開始方法

Country Status (6)

Country Link
US (1) US11885321B2 (zh)
JP (1) JPWO2021085184A1 (zh)
KR (1) KR20220084023A (zh)
CN (1) CN114555943A (zh)
TW (1) TWI796604B (zh)
WO (1) WO2021085184A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580537B1 (ko) * 2022-09-08 2023-09-21 크라이오에이치앤아이(주) 크라이오 펌프의 재생 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541249A (en) * 1984-11-28 1985-09-17 Clint Graves Cryogenic trap and pump system
US5513499A (en) * 1994-04-08 1996-05-07 Ebara Technologies Incorporated Method and apparatus for cryopump regeneration using turbomolecular pump
TW201631260A (zh) * 2015-02-20 2016-09-01 Sumitomo Heavy Industries 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137674A (en) * 1975-05-23 1976-11-27 Hiroshi Nagano Process for separation and s ealing of gas by low temperature adsorption
JPH03258976A (ja) * 1990-03-08 1991-11-19 Mitsubishi Electric Corp 真空装置における真空の再生方法
DE59101463D1 (de) * 1990-11-19 1994-05-26 Leybold Ag Verfahren zur regeneration einer kryopumpe sowie zur durchführung dieses verfahrens geeignete kryopumpe.
AU2675192A (en) * 1991-09-19 1993-04-27 United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Miniature cryosorption vacuum pump
JP3383861B2 (ja) 1992-03-17 2003-03-10 日本酸素株式会社 クライオポンプ及びその運転方法
JP3238099B2 (ja) * 1996-05-23 2001-12-10 株式会社荏原製作所 真空排気システム
US6332925B1 (en) 1996-05-23 2001-12-25 Ebara Corporation Evacuation system
JP5460644B2 (ja) * 2011-05-12 2014-04-02 住友重機械工業株式会社 クライオポンプ
JP5808691B2 (ja) * 2012-02-23 2015-11-10 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法
JP5846966B2 (ja) 2012-03-01 2016-01-20 住友重機械工業株式会社 クライオポンプ及びその再生方法
JP6253464B2 (ja) * 2014-03-18 2017-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541249A (en) * 1984-11-28 1985-09-17 Clint Graves Cryogenic trap and pump system
US5513499A (en) * 1994-04-08 1996-05-07 Ebara Technologies Incorporated Method and apparatus for cryopump regeneration using turbomolecular pump
TW201631260A (zh) * 2015-02-20 2016-09-01 Sumitomo Heavy Industries 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法

Also Published As

Publication number Publication date
WO2021085184A1 (ja) 2021-05-06
US11885321B2 (en) 2024-01-30
US20220397108A1 (en) 2022-12-15
JPWO2021085184A1 (zh) 2021-05-06
CN114555943A (zh) 2022-05-27
KR20220084023A (ko) 2022-06-21
TW202117185A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
TWI752313B (zh) 低溫泵、低溫泵系統、低溫泵的再生方法
JP5846966B2 (ja) クライオポンプ及びその再生方法
US9810208B2 (en) Cryopump and method for regenerating the cryopump using two-stage discharge process
JP5634323B2 (ja) クライオポンプシステム、クライオポンプのための再生方法
JP6253464B2 (ja) クライオポンプ、及びクライオポンプの再生方法
JP5669658B2 (ja) クライオポンプシステム、圧縮機、及びクライオポンプの再生方法
JP5808691B2 (ja) クライオポンプ、及びクライオポンプの再生方法
TWI599722B (zh) Cryogenic pump system, cryogenic pump control device and cryogenic pump regeneration method
TWI796604B (zh) 低溫泵、低溫泵系統及低溫泵的運轉開始方法
TWI838639B (zh) 低溫泵、低溫泵的再生方法
TW202223236A (zh) 低溫泵及低溫泵之再生方法