TWI795939B - Synchronization circuit, semiconductor device and synchronization method - Google Patents

Synchronization circuit, semiconductor device and synchronization method Download PDF

Info

Publication number
TWI795939B
TWI795939B TW110137285A TW110137285A TWI795939B TW I795939 B TWI795939 B TW I795939B TW 110137285 A TW110137285 A TW 110137285A TW 110137285 A TW110137285 A TW 110137285A TW I795939 B TWI795939 B TW I795939B
Authority
TW
Taiwan
Prior art keywords
data
circuit
aforementioned
input
output
Prior art date
Application number
TW110137285A
Other languages
Chinese (zh)
Other versions
TW202316799A (en
Inventor
紫藤泰平
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110137285A priority Critical patent/TWI795939B/en
Application granted granted Critical
Publication of TWI795939B publication Critical patent/TWI795939B/en
Publication of TW202316799A publication Critical patent/TW202316799A/en

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Dram (AREA)

Abstract

Providing a synchronization circuit, a semiconductor storage device, and a synchronization method capable of performing synchronization on a small circuit scale, including: a first delay circuit, generating a first delay synchronization signal by delaying a input synchronization signal by a first predetermined time; a second delay circuit, generating a second delay synchronization signal by delaying the first delay synchronization signal by a second predetermined time; a first synchronization circuit, outputting a first output data that synchronizes the input data with the input synchronization signal; a second synchronization circuit, outputting a second output data in which the input data is synchronized with the first delay synchronization signal; a resynchronization circuit, updating the first output data by resynchronizing the input data with the second delay synchronization signal to the first synchronization circuit if the first output data and the second output data are inconsistent.

Description

同步電路、半導體裝置以及同步方法Synchronization circuit, semiconductor device and synchronization method

本發明係有關同步電路、半導體記憶裝置以及同步方法。The invention relates to a synchronous circuit, a semiconductor memory device and a synchronous method.

在CMOS電路的邏輯設計中,電源維持電壓VDD以及電壓VSS。然而,若輸入到正反器電路的輸入資料沒有對時脈保持足夠的設定邊界(setup margin)/維持邊界(hold margin),正反器電路的輸出訊號有進入介穩狀態(metastable)的情況。也就是說,若輸入資料的時序與輸入時脈的時序相近,且未保持設定邊界或維持邊界的話,有輸出資料的電壓不成為電壓VDD,也不成為電壓VSS,成為中間電壓的情況。In the logic design of the CMOS circuit, the power supply maintains the voltage VDD and the voltage VSS. However, if the input data input to the flip-flop circuit does not maintain enough setup margin/hold margin for the clock, the output signal of the flip-flop circuit may enter a metastable state (metastable) . That is to say, if the timing of the input data is close to the timing of the input clock and the boundary is not set or maintained, the voltage of the output data may not be VDD or VSS, but may be an intermediate voltage.

在此情況下,輸入這種成為中間電壓之訊號的一部分之邏輯電路,將輸出訊號之中間電壓作為電壓VDD處理,此介穩狀態可能會破壞系統。In this case, the input logic circuit that becomes part of the signal of the intermediate voltage treats the intermediate voltage of the output signal as the voltage VDD, and this metastable state may destroy the system.

在不同的時脈領域之間傳送接收資料時,雖然有利用同步電路,在同步電路中會有發生這種介穩狀態之問題的情況。已知一種利用與資料同步之資料選通訊號的同步電路,用以在不同時脈領域之間傳送接收資料時抑制介穩狀態之發生(例如:專利文獻: 特開10-135938號公報)。When transmitting and receiving data between different clock domains, although a synchronous circuit is used, the problem of metastable state may occur in the synchronous circuit. There is known a synchronization circuit using a data strobe signal synchronized with data to suppress the occurrence of a metastable state when transmitting and receiving data between different clock domains (for example: Patent Document: Japanese Patent Laid-Open No. 10-135938).

像這樣的同步電路需要與資料選通訊號關連之附加電路,由於電路規模大,需要能以較小的電路規模與輸入資料之接收側之時脈同步的同步電路、半導體記憶裝置以及同步方法。A synchronous circuit like this requires an additional circuit associated with the data strobe signal. Since the circuit scale is large, a synchronous circuit, a semiconductor memory device, and a synchronous method capable of synchronizing with the clock of the receiving side of the input data with a small circuit scale are required.

本發明提供一種同步電路,包括:第一延遲電路,將輸入同步訊號延遲第一特定時間,生成第一延遲同步訊號;第二延遲電路,將前述第一延遲同步訊號延遲第二特定時間,生成第二延遲同步訊號;第一同步電路,輸出將輸入資料與前述輸入同步訊號同步的第一輸出資料;第二同步電路,輸出將前述輸入資料與前述第一延遲同步訊號同步的第二輸出資料;再同步電路,若前述第一輸出資料與前述第二輸出資料不一致,依據前述第二延遲同步訊號將前述輸入資料再同步,對前述第一同步電路更新前述第一輸出資料。The present invention provides a synchronous circuit, comprising: a first delay circuit that delays an input synchronous signal for a first specific time to generate a first delayed synchronous signal; a second delay circuit that delays the aforementioned first delayed synchronous signal by a second specific time to generate The second delay synchronization signal; the first synchronization circuit, which outputs the first output data which synchronizes the input data with the aforementioned input synchronization signal; the second synchronization circuit, which outputs the second output data which synchronizes the aforementioned input data with the aforementioned first delay synchronization signal ; A resynchronization circuit, if the first output data is inconsistent with the second output data, resynchronize the input data according to the second delayed synchronization signal, and update the first output data to the first synchronization circuit.

本發明提供一種同步方法,包括:比較由同步訊號將輸入資料同步之第一資料,以及依據延遲前述同步訊號之訊號將前述輸入資料同步之第二資料;若前述第一資料以及前述第二資料相異,輸出依據延遲前述同步訊號更多之訊號將前述輸入資料同步的資料,否則,輸出前述第一資料。The present invention provides a synchronization method, comprising: comparing the first data which is synchronized with the input data by a synchronization signal, and the second data which is synchronized with the input data according to a signal delaying the synchronization signal; if the first data and the second data Differently, output the data that synchronizes the aforementioned input data according to the signal that delays the aforementioned synchronous signal more, otherwise, output the aforementioned first data.

本發明提供一種同步方法,包括:比較由同步訊號將包含複數個位元之輸入資料同步之第一資料,以及由延遲前述同步訊號之訊號將前述輸入資料同步之第二資料的每個位元;若前述第一資料以及前述第二資料有至少一個位元相異,輸出依據延遲前述同步訊號更多之訊號將前述輸入資料同步的資料,否則,輸出前述第一資料。The present invention provides a synchronization method, including: comparing the first data which is synchronized by the synchronization signal to the input data comprising a plurality of bits, and each bit of the second data which is the synchronization of the input data by a signal delaying the synchronization signal ; If the aforementioned first data and the aforementioned second data have at least one bit difference, output the data that synchronizes the aforementioned input data according to the signal that delays the aforementioned synchronization signal more, otherwise, output the aforementioned first data.

基於上述,可以實現能以小電路規模進行同步的同步電路、半導體記憶裝置以及同步方法。Based on the above, a synchronization circuit, a semiconductor memory device, and a synchronization method capable of synchronization at a small circuit scale can be realized.

基於第1圖所示之實施型態的同步電路201,將輸入資料DATA與輸入時脈Clk同步,作為輸出資料Q3輸出。同步電路201也可以被設置於半導體裝置中。半導體裝置也可以是動態隨機存取記憶體等之半導體記憶裝置。另外,在同步電路201被設置於動態隨機存取記憶體的情況下,同步電路201也可以處理在調整記憶胞之更新間隔時參照之有關溫度的資料。The synchronization circuit 201 based on the embodiment shown in FIG. 1 synchronizes the input data DATA with the input clock Clk and outputs it as output data Q3. The synchronization circuit 201 may also be provided in a semiconductor device. The semiconductor device may also be a semiconductor memory device such as a dynamic random access memory. In addition, in the case that the synchronization circuit 201 is disposed in a dynamic random access memory, the synchronization circuit 201 can also process temperature-related data referred to when adjusting the refresh interval of memory cells.

舉例而言,輸入資料DATA與第一系列之時脈同步,時脈Clk與第二系列之時脈同步。所以,同步電路201可以將資料從第一系列之時脈轉移到第二系列之時脈。For example, the input data DATA is synchronized with the first series of clocks, and the clock Clk is synchronized with the second series of clocks. Therefore, the synchronization circuit 201 can transfer data from the first series of clocks to the second series of clocks.

同步電路201包括:第一D型正反器電路211;第二D型正反器電路213;以及第三D型正反器電路215。此處,第一D型正反器電路211、第二D型正反器電路213以及第三D型正反器電路215分別為本發明之第一同步電路、第二同步電路以及第三同步電路之一例。另外,同步電路201包括:兩個延遲電路221、223;二輸入邏輯互斥或閘225;二輸入邏輯及閘227;以及二輸入邏輯或閘229。The synchronization circuit 201 includes: a first D-type flip-flop circuit 211 ; a second D-type flip-flop circuit 213 ; and a third D-type flip-flop circuit 215 . Here, the first D-type flip-flop circuit 211, the second D-type flip-flop circuit 213, and the third D-type flip-flop circuit 215 are respectively the first synchronous circuit, the second synchronous circuit, and the third synchronous circuit of the present invention. An example of a circuit. In addition, the synchronous circuit 201 includes: two delay circuits 221 , 223 ; a two-input logic exclusive OR gate 225 ; a two-input logic AND gate 227 ; and a two-input logic OR gate 229 .

對第一D型正反器電路211之輸入端子D以及第二D型正反器電路213之輸入端子D供給1位元之輸入資料DATA。對第三型正反器電路215之輸入端子D供給來自第一D型正反器電路211之輸出端子Q的輸出資料Q1。1-bit input data DATA is supplied to the input terminal D of the first D-type flip-flop circuit 211 and the input terminal D of the second D-type flip-flop circuit 213 . The output data Q1 from the output terminal Q of the first D-type flip-flop circuit 211 is supplied to the input terminal D of the third-type flip-flop circuit 215 .

延遲電路221將輸入時脈Clk延遲第一特定延遲時間,作為第一延遲時脈Clk_d1輸出。延遲電路223將第一延遲時脈Clk_d1延遲第二特定延遲時間,作為第二延遲時脈Clk_d2輸出。此處,延遲電路221以及延遲電路223分別為本發明之第一延遲電路以及第二延遲電路之一例。此處,輸入時脈Clk、第一延遲時脈Clk_d1以及第二延遲時脈Clk_d2分別為本發明之第一同步訊號、第二同步訊號以及第三同步訊號之一例。The delay circuit 221 delays the input clock Clk by a first specific delay time, and outputs it as a first delayed clock Clk_d1. The delay circuit 223 delays the first delayed clock Clk_d1 for a second specific delay time, and outputs it as a second delayed clock Clk_d2. Here, the delay circuit 221 and the delay circuit 223 are examples of the first delay circuit and the second delay circuit of the present invention, respectively. Here, the input clock Clk, the first delayed clock Clk_d1 and the second delayed clock Clk_d2 are respectively examples of the first synchronization signal, the second synchronization signal and the third synchronization signal of the present invention.

二輸入邏輯互斥或閘225取來自第一D型正反器電路211之輸出端子Q之輸出資料Q1,以及來自第二D型正反器電路213之輸出端子Q之輸出資料Q2的邏輯互斥或,輸出顯示該結果之控制訊號qchk。所以,若來自第一D型正反器電路211之輸出端子Q之輸出資料Q1的邏輯位準與來自第二D型正反器電路213之輸出端子Q之輸出資料Q2的邏輯位準一致,控制訊號qchk之邏輯位準為LOW,若不一致則為HIGH。The two-input logic exclusive OR gate 225 takes the output data Q1 from the output terminal Q of the first D-type flip-flop circuit 211 and the logic mutual of the output data Q2 from the output terminal Q of the second D-type flip-flop circuit 213. Negate or, output the control signal qchk showing the result. Therefore, if the logic level of the output data Q1 from the output terminal Q of the first D-type flip-flop circuit 211 is consistent with the logic level of the output data Q2 from the output terminal Q of the second D-type flip-flop circuit 213, The logic level of the control signal qchk is LOW, and if not consistent, it is HIGH.

二輸入邏輯及閘227取控制訊號qchk與第二延遲時脈Clk_d2之邏輯及,將該結果作為適應性第二延遲時脈cclk輸出。所以,若控制訊號qchk之邏輯位準為HIGH,生成對應第二延遲時脈Clk_d2之適應性第二延遲時脈cclk,然而,若控制訊號qchk之邏輯位準為為LOW,則不會生成對應第二延遲時脈Clk_d2之適應性第二延遲時脈cclk。The two-input logical AND gate 227 takes the logical AND of the control signal qchk and the second delayed clock Clk_d2, and outputs the result as the adaptive second delayed clock cclk. Therefore, if the logic level of the control signal qchk is HIGH, the adaptive second delayed clock cclk corresponding to the second delayed clock Clk_d2 is generated; however, if the logic level of the control signal qchk is LOW, the corresponding adaptive second delayed clock Clk_d2 is not generated. The adaptive second delayed clock cclk of the second delayed clock Clk_d2.

二輸入邏輯或閘229取輸入時脈Clk與適應性第二延遲時脈cclk之邏輯或,將該結果作為主時脈lclk輸出。The two-input logical OR gate 229 takes the logical OR of the input clock Clk and the adaptive second delayed clock cclk, and outputs the result as the main clock lclk.

對第一D型正反器電路211之時脈端子CK,供給從二輸入邏輯或閘229輸出之主時脈lclk。對第二D型正反器電路213之時脈端子CK供給來自第一延遲電路221之第一延遲時脈Clk_d1。對第三D型正反器電路215之時脈端子CK供給來自第二延遲電路223之第二延遲時脈Clk_d2。The main clock lclk output from the two-input logical OR gate 229 is supplied to the clock terminal CK of the first D-type flip-flop circuit 211 . The first delayed clock Clk_d1 from the first delay circuit 221 is supplied to the clock terminal CK of the second D-type flip-flop circuit 213 . The second delayed clock Clk_d2 from the second delay circuit 223 is supplied to the clock terminal CK of the third D-type flip-flop circuit 215 .

第一D型正反器電路211將輸出資料Q1從輸出端子Q輸出,該輸出資料Q1係將供給到輸入端子D的輸入資料DATA與供給到時脈端子CK的主時脈lclk從LOW到HIGH之上升同步之輸出資料Q1。第二D型正反器電路213將輸出資料Q2從輸出端子Q輸出,該輸出資料Q2係將供給到輸入端子D的輸入資料DATA與供給到時脈端子CK的第一延遲時脈Clk_d1從LOW到HIGH之上升同步之輸出資料Q2。第三D型正反器電路215將輸出資料Q3從輸出端子Q輸出,該輸出資料Q3係將供給到輸入端子D的資料Q1與供給到時脈端子CK的第二延遲時脈Clk_d2從LOW到HIGH之上升同步之輸出資料Q3。The first D-type flip-flop circuit 211 outputs the output data Q1 from the output terminal Q. The output data Q1 is the input data DATA supplied to the input terminal D and the main clock lclk supplied to the clock terminal CK from LOW to HIGH. The rising synchronous output data Q1. The second D-type flip-flop circuit 213 outputs the output data Q2 from the output terminal Q. The output data Q2 is the input data DATA supplied to the input terminal D and the first delayed clock Clk_d1 supplied to the clock terminal CK from LOW Output data Q2 for rising synchronization to HIGH. The third D-type flip-flop circuit 215 outputs the output data Q3 from the output terminal Q. The output data Q3 is the data Q1 supplied to the input terminal D and the second delayed clock Clk_d2 supplied to the clock terminal CK from LOW to The output data Q3 of rising synchronization of HIGH.

首先,輸入資料DATA與主時脈lclk在第一D型正反器電路211中同步,該主時脈lclk係藉由二輸入邏輯或閘229稍微延遲輸入時脈Clk而得。與主時脈lclk同步的輸入資料DATA,作為資料Q1從第一D型正反器電路211之輸出端子Q輸出。接著,輸入資料DATA與第一延遲時脈Clk_d1在第二D型正反器電路213中同步,該第一延遲時脈Clk_d1係藉由延遲電路221延遲輸入時脈Clk而得。與第一延遲時脈Clk_d1同步之輸入資料DATA,作為資料Q2從第二D型正反器電路213之輸出端子Q輸出。First, the input data DATA is synchronized with the main clock lclk in the first D-type flip-flop circuit 211 , and the main clock lclk is obtained by slightly delaying the input clock Clk through two input logical OR gates 229 . The input data DATA synchronized with the main clock lclk is output from the output terminal Q of the first D-type flip-flop circuit 211 as data Q1. Next, the input data DATA is synchronized with the first delayed clock Clk_d1 in the second D-type flip-flop circuit 213 , and the first delayed clock Clk_d1 is obtained by delaying the input clock Clk by the delay circuit 221 . The input data DATA synchronized with the first delayed clock Clk_d1 is output from the output terminal Q of the second D-type flip-flop circuit 213 as data Q2.

若輸入資料DATA之邏輯位準變化的時序與輸入時脈Clk從LOW到HIGH之上升的時序相近(意即:沒有確保對輸入時脈Clk之輸入資料DATA需要的設定邊界/維持邊界時),會產生在第一D型正反器電路211之輸出資料Q1發生介穩狀態的可能性。輸入資料DATA之邏輯位準變化的時序與第一延遲時脈Clk_d1之上升的時序相近相近(意即:沒有確保對第一延遲時脈Clk_d1之輸入資料DATA需要的設定邊界/維持邊界時),會產生在第二D型正反器電路213之輸出資料Q2發生介穩狀態的可能性。If the timing of the change of the logic level of the input data DATA is similar to the timing of the rise of the input clock Clk from LOW to HIGH (that is, when there is no guarantee of setting boundaries/maintaining boundaries required for the input data DATA of the input clock Clk), There is a possibility that a metastable state will occur in the output data Q1 of the first D-type flip-flop circuit 211 . The timing of the change of the logic level of the input data DATA is similar to the rising timing of the first delayed clock Clk_d1 (that is, when the setting boundary/maintaining boundary required for the input data DATA of the first delayed clock Clk_d1 is not guaranteed), There is a possibility that a metastable state will occur in the output data Q2 of the second D-type flip-flop circuit 213 .

在輸入資料DATA維持相同邏輯位準時,在第一D型正反器電路211中,依據對應輸入時脈Clk之上升的主時脈lclk之上升,同步輸入資料DATA。接著,在第二D型正反器電路213中,若藉第一延遲時脈Clk_d1同步輸入資料DATA,在輸入資料DATA在第二D型正反器電路213中由第一延遲時脈Clk_d1同步後,從二輸入邏輯互斥或閘225輸出之控制訊號qchk的邏輯位準為LOW。所以,之後第二延遲時脈Clk_d2上升時,從二輸入邏輯及閘227之輸出端子供給到二輸入邏輯或閘229的適應性第二延遲時脈cclk的邏輯位準維持LOW,主時脈lclk之邏輯位準亦維持LOW,輸入資料DATA沒有在第一D型正反器電路211中再同步。因此,藉由對應輸入時脈Clk之上升的主時脈lclk之上升而同步更新之第一D型正反器電路211的輸出資料Q1的邏輯位準被維持。When the input data DATA maintains the same logic level, in the first D-type flip-flop circuit 211, the input data DATA is synchronized according to the rise of the main clock lclk corresponding to the rise of the input clock Clk. Next, in the second D-type flip-flop circuit 213, if the input data DATA is synchronized by the first delayed clock Clk_d1, the input data DATA is synchronized by the first delayed clock Clk_d1 in the second D-type flip-flop circuit 213 Afterwards, the logic level of the control signal qchk output from the two-input logical exclusive OR gate 225 is LOW. Therefore, when the second delayed clock Clk_d2 rises later, the logic level of the adaptive second delayed clock cclk supplied from the output terminal of the two-input logic AND gate 227 to the two-input logic OR gate 229 remains LOW, and the main clock lclk The logic level of DATA also remains LOW, and the input data DATA is not resynchronized in the first D-type flip-flop circuit 211 . Therefore, the logic level of the output data Q1 of the first D-type flip-flop circuit 211 that is synchronously updated by the rise of the main clock lclk corresponding to the rise of the input clock Clk is maintained.

另一方面,輸入資料DATA之邏輯位準為某邏輯位準(HIGH或LOW)時,在第一D型正反器電路211中,輸入資料DATA由對應輸入時脈Clk之上升的主時脈lclk之上升同步,接著,由於輸入資料DATA之邏輯位準變化為另一個邏輯位準(LOW或HIGH),若輸入資料DATA在第二D型正反器電路213中與第一延遲時脈Clk_d1同步,從二輸入邏輯互斥或閘225輸出之控制訊號qchk之邏輯位準為HIGH。On the other hand, when the logic level of the input data DATA is a certain logic level (HIGH or LOW), in the first D-type flip-flop circuit 211, the input data DATA is generated by the main clock corresponding to the rise of the input clock Clk. The rising synchronization of lclk, then, because the logic level of the input data DATA changes to another logic level (LOW or HIGH), if the input data DATA is in the second D-type flip-flop circuit 213 and the first delayed clock Clk_d1 Synchronously, the logic level of the control signal qchk output from the two-input logic exclusive OR gate 225 is HIGH.

因此,即使在第一D型正反器電路211之輸出資料Q1或第二D型正反器電路213之輸出資料Q2發生介穩狀態,之後第二延遲時脈Clk_d2上升時,控制訊號qchk之邏輯位準維持HIGH,從二輸入邏輯及閘227輸出之適應性第二延遲時脈cclk亦上升。由於適應性第二延遲時脈cclk輸入到二輸入邏輯或閘229之輸入端子之一者,輸入端子之另一者的邏輯位準維持LOW,從二輸入邏輯或閘229輸出之主時脈lclk藉由二輸入邏輯及閘227以及二輸入邏輯或閘229,對第二延遲時脈Clk_d2延遲延遲時間,然後上升。所以,該主時脈lclk對應第二延遲時脈Clk_d2 之上升,輸入資料DATA依據主時脈lclk之上升在第一D型正反器電路211中再同步。Therefore, even if the output data Q1 of the first D-type flip-flop circuit 211 or the output data Q2 of the second D-type flip-flop circuit 213 is in a metastable state, and then the second delayed clock Clk_d2 rises, the control signal qchk The logic level remains HIGH, and the adaptive second delayed clock cclk output from the two-input logic AND gate 227 also rises. Since the adaptive second delayed clock cclk is input to one of the input terminals of the two input logic OR gates 229, the logic level of the other input terminal remains LOW, and the main clock lclk output from the two input logic OR gates 229 Through the two-input logical AND gate 227 and the two-input logical OR gate 229 , the second delayed clock Clk_d2 is delayed by a delay time, and then rises. Therefore, the main clock lclk corresponds to the rise of the second delayed clock Clk_d2, and the input data DATA is resynchronized in the first D-type flip-flop circuit 211 according to the rise of the main clock lclk.

依據對應輸入時脈Clk之上升的主時脈lclk之上升同步更新之第一D型正反器電路211的輸出資料Q1的邏輯位準,變成依據對應第二延遲時脈Clk_d2之上升的主時脈lclk之上升更新。另外,在本實施型態中,二輸入邏輯互斥或閘225、二輸入邏輯及閘227、二輸入邏輯或閘229以及第一D型正反器電路211為本發明之再同步電路之一例。The logic level of the output data Q1 of the first D-type flip-flop circuit 211, which is updated synchronously according to the rise of the main clock lclk corresponding to the rise of the input clock Clk, becomes the master clock corresponding to the rise of the second delayed clock Clk_d2. Updating update of pulse lclk. In addition, in this embodiment, the two-input logic exclusive OR gate 225, the two-input logic AND gate 227, the two-input logic OR gate 229, and the first D-type flip-flop circuit 211 are examples of the resynchronization circuit of the present invention. .

參照第2圖說明輸入資料DATA在第一D型正反器電路211中沒有再同步的情況之例子。An example of the case where the input data DATA is not resynchronized in the first D-type flip-flop circuit 211 will be described with reference to FIG. 2 .

在時刻t11,輸入資料DATA之邏輯位準從LOW變化為HIGH。在時刻tc1,邏輯位準為HIGH之輸入資料依據對應輸入時脈Clk之上升的主時脈lclk之上升,在第一D型正反器電路211中同步。第一D型正反器電路211之輸出資料Q1之邏輯位準,在從輸入時脈Clk上升之時刻tc1開始稍微延遲之時刻t12之後成為HIGH。在時刻tc2,邏輯位準為HIGH之輸入資料DATA依據第一延遲時脈Clk_d1之上升,在第二D型正反器電路213中同步。第二D型正反器電路213之輸出資料Q2之邏輯位準,在從第一延遲時脈Clk_d1上升之時刻tc2開始稍微延遲之時刻t13之後成為HIGH。At time t11, the logic level of the input data DATA changes from LOW to HIGH. At time tc1, the input data whose logic level is HIGH is synchronized in the first D-type flip-flop circuit 211 according to the rise of the main clock lclk corresponding to the rise of the input clock Clk. The logic level of the output data Q1 of the first D-type flip-flop circuit 211 becomes HIGH after a time t12 slightly delayed from the time tc1 when the input clock Clk rises. At time tc2, the input data DATA whose logic level is HIGH is synchronized in the second D-type flip-flop circuit 213 according to the rise of the first delayed clock Clk_d1. The logic level of the output data Q2 of the second D-type flip-flop circuit 213 becomes HIGH after a time t13 slightly delayed from the time tc2 when the first delayed clock Clk_d1 rises.

控制訊號qchk之邏輯位準,雖然在從時刻t12到時刻t13中成為HIGH,在時刻t13之後則成為LOW。在第二延遲時脈Clk_d2上升之時刻tc3,由於輸出資料Q1與Q2的邏輯位準相同,控制訊號qchk之邏輯位準為LOW,沒有產生適應性第二延遲時脈cclk。因此,依據對應第二延遲時脈Clk_d2之上升的主時脈lclk之上升在第一D型正反器電路211中之再同步不會發生。藉由與對應輸入時脈Clk之上升的主時脈lclk之上升同步,在時刻t12更新之第一D型正反器電路211之輸出資料Q1的邏輯位準被維持。在第一D型正反器電路211中,僅被同步1次之輸出資料Q1,之後在第二延遲時脈Clk_d2上升的時刻中,在第三D型正反器電路215中被同步,作為輸出資料Q3從第三D型正反器電路215之輸出端子Q被輸出。Although the logic level of the control signal qchk is HIGH from time t12 to time t13, it becomes LOW after time t13. At the time tc3 when the second delayed clock Clk_d2 rises, since the logic levels of the output data Q1 and Q2 are the same, the logic level of the control signal qchk is LOW, and the adaptive second delayed clock cclk is not generated. Therefore, resynchronization in the first D-type flip-flop circuit 211 does not occur according to the rise of the main clock lclk corresponding to the rise of the second delayed clock Clk_d2. By synchronizing with the rise of the main clock lclk corresponding to the rise of the input clock Clk, the logic level of the output data Q1 of the first D-type flip-flop circuit 211 updated at time t12 is maintained. In the first D-type flip-flop circuit 211, the output data Q1 that is only synchronized once is then synchronized in the third D-type flip-flop circuit 215 at the moment when the second delayed clock Clk_d2 rises, as The output data Q3 is output from the output terminal Q of the third D-type flip-flop circuit 215 .

參照第3圖說明第一D型正反器電路211之輸出資料Q1成為介穩狀態,因此輸入資料DATA依據對應第二延遲時脈Clk_d2之上升的主時脈lclk之上升,在第一D型正反器電路211中再同步之情況的例子。Referring to FIG. 3, the output data Q1 of the first D-type flip-flop circuit 211 becomes a metastable state. Therefore, the input data DATA is generated in the first D-type according to the rise of the main clock lclk corresponding to the rise of the second delayed clock Clk_d2. An example of the case of resynchronization in the flip-flop circuit 211.

在時刻tc1,邏輯位準從LOW變化為HIGH之輸入資料DATA依據對應輸入時脈Clk之上升的主時脈lclk之上升,在第一D型正反器電路211中同步。然而,因為沒有確保對輸入時脈Clk之輸入資料DATA之必要的設定邊界/維持邊界,在時刻tc1之後,第一D型正反器電路211之輸出資料Q1成為介穩狀態。另外,藉由後述之再同步,在時刻t22之後,第一D型正反器電路211之輸出資料Q1之邏輯位準穩定為HIGH。在時刻tc2,邏輯位準為HIGH之輸入資料DATA依據第一延遲時脈Clk_d1之上升,在第二D型正反器電路213中同步。第二D型正反器電路213之輸出資料Q2之邏輯位準,在從第一延遲時脈Clk_d1上升之時刻tc2開始稍微延遲之時刻t21之後成為HIGH。At time tc1, the input data DATA whose logic level changes from LOW to HIGH is synchronized in the first D-type flip-flop circuit 211 according to the rise of the main clock lclk corresponding to the rise of the input clock Clk. However, the output data Q1 of the first D-type flip-flop circuit 211 becomes a metastable state after time tc1 because there is no necessary setting boundary/sustaining boundary for the input data DATA of the input clock Clk. In addition, through the resynchronization described later, after the time t22, the logic level of the output data Q1 of the first D-type flip-flop circuit 211 is stable at HIGH. At time tc2, the input data DATA whose logic level is HIGH is synchronized in the second D-type flip-flop circuit 213 according to the rise of the first delayed clock Clk_d1. The logic level of the output data Q2 of the second D-type flip-flop circuit 213 becomes HIGH after a time t21 slightly delayed from the time tc2 when the first delayed clock Clk_d1 rises.

如上所述,第一D型正反器電路211之輸出資料Q1在從時刻tc1開始到時刻t22為止的期間為介穩狀態,然而在二輸入邏輯互斥或閘225中,邏輯位準被判斷為LOW。若輸出資料Q1及Q2的邏輯位準不同,從二輸入邏輯互斥或閘225輸出之控制訊號qchk之邏輯位準會成為HIGH。因此,控制訊號qchk之邏輯位準,從時刻t21開始為HIGH。As mentioned above, the output data Q1 of the first D-type flip-flop circuit 211 is in a metastable state during the period from time tc1 to time t22. However, in the two-input logical exclusive OR gate 225, the logic level is judged is LOW. If the logic levels of the output data Q1 and Q2 are different, the logic level of the control signal qchk output from the two-input logic exclusive OR gate 225 will become HIGH. Therefore, the logic level of the control signal qchk becomes HIGH from time t21.

在第二延遲時脈Clk_d2上升之時刻tc3,控制訊號qchk之邏輯位準為HIGH,適應性第二延遲時脈cclk亦上升。雖然圖示未顯示,在時刻tc3前後,輸入時脈Clk之邏輯位準為LOW,對應適應性第二延遲時脈cclk也上升的主時脈lclk亦上升。At the moment tc3 when the second delayed clock Clk_d2 rises, the logic level of the control signal qchk is HIGH, and the adaptive second delayed clock cclk also rises. Although not shown in the figure, around the time tc3, the logic level of the input clock Clk is LOW, and the main clock lclk corresponding to the rising of the adaptive second delayed clock cclk also rises.

因此,依據對應第二延遲時脈Clk_d2上升的主時脈lclk之上升,在第一D型正反器電路211中執行再同步。在時刻t22,第一D型正反器電路211之輸出資料Q1之邏輯位準與輸入資料DATA之邏輯位準被更新為相同的HIGH,控制訊號qchk之邏輯位準成為LOW。在第一D型正反器電路211中再同步之輸出資料Q1,之後在第二延遲時脈Clk_d2上升之時刻,在第三D型正反器電路215中被同步,作為輸出資料Q3從第三D型正反器電路215之輸出端子Q被輸出。Therefore, resynchronization is performed in the first D-type flip-flop circuit 211 according to the rising of the main clock lclk corresponding to the rising of the second delayed clock Clk_d2. At time t22, the logic level of the output data Q1 of the first D-type flip-flop circuit 211 and the logic level of the input data DATA are updated to the same HIGH, and the logic level of the control signal qchk becomes LOW. The output data Q1 resynchronized in the first D-type flip-flop circuit 211 is then synchronized in the third D-type flip-flop circuit 215 at the rising moment of the second delay clock Clk_d2, as the output data Q3 from the first D-type flip-flop circuit The output terminal Q of the triple-D flip-flop circuit 215 is output.

參照第4圖,說明第二D型正反器電路213之輸出資料Q2成為介穩狀態,因此輸入資料DATA依據對應第二延遲時脈Clk_d2上升的主時脈lclk之上升,在第一D型正反器電路211中再同步之情況的例子。Referring to FIG. 4, it is illustrated that the output data Q2 of the second D-type flip-flop circuit 213 is in a metastable state, so the input data DATA is generated in the first D-type according to the rise of the main clock lclk corresponding to the rise of the second delayed clock Clk_d2. An example of the case of resynchronization in the flip-flop circuit 211.

在時刻tc1,邏輯位準為LOW之輸入資料DATA,依據對應輸入時脈Clk之上升的主時脈lclk之上升,在第一D型正反器電路211中同步。第一D型正反器電路211之輸出資料Q1之邏輯位準,在從輸入時脈Clk上升之時刻tc1開始稍微延遲之時刻t31之後成為LOW。另外,在第4圖之例子中,第一D型正反器電路211之輸出資料Q1之邏輯位準,在時刻t31之前亦為LOW。在時刻tc2,邏輯位準從LOW變化到HIGH之輸入資料DATA依據第一延遲時脈Clk_d1之上升,在第二D型正反器電路213中同步。然而,因為沒有確保對第一延遲時脈Clk_d1之輸入資料DATA之必要的設定邊界/維持邊界,在時刻tc2之後,第二D型正反器電路213之輸出資料Q2成為介穩狀態。另外,在時刻tc3之後,第二D型正反器電路213之輸出資料Q2之邏輯位準穩定為HIGH。At time tc1, the input data DATA whose logic level is LOW is synchronized in the first D-type flip-flop circuit 211 according to the rise of the main clock lclk corresponding to the rise of the input clock Clk. The logic level of the output data Q1 of the first D-type flip-flop circuit 211 becomes LOW after a time t31 slightly delayed from the time tc1 when the input clock Clk rises. In addition, in the example shown in FIG. 4, the logic level of the output data Q1 of the first D-type flip-flop circuit 211 is also LOW before time t31. At time tc2, the input data DATA whose logic level changes from LOW to HIGH is synchronized in the second D-type flip-flop circuit 213 according to the rise of the first delayed clock Clk_d1. However, the output data Q2 of the second D-type flip-flop circuit 213 becomes a metastable state after the time tc2 because the necessary setting boundary/sustaining boundary for the input data DATA of the first delayed clock Clk_d1 is not ensured. In addition, after the time tc3, the logic level of the output data Q2 of the second D-type flip-flop circuit 213 is stable at HIGH.

因此,從時刻tc2開始到時刻tc3為止的期間,雖然第二D型正反器電路213之輸出資料Q2為介穩狀態,在二輸入邏輯互斥或閘225中,邏輯位準被判斷為HIGH。由於輸出資料Q1與Q2的邏輯位準不同,時刻tc2之後,從二輸入邏輯互斥或閘225輸出之控制訊號qchk之邏輯位準為HIGH。在對應第二延遲時脈Clk_d2上升之時刻tc3,控制訊號qchk之邏輯位準為HIGH,應適應性第二延遲時脈cclk亦上升。雖然圖示未顯示,在時刻tc3前後,輸入時脈Clk之邏輯位準為LOW,對應適應性第二延遲時脈cclk之上升的主時脈lclk亦上升。Therefore, during the period from time tc2 to time tc3, although the output data Q2 of the second D-type flip-flop circuit 213 is in a metastable state, in the two-input logic exclusive OR gate 225, the logic level is judged to be HIGH . Since the logic levels of the output data Q1 and Q2 are different, after time tc2, the logic level of the control signal qchk output from the two-input logic exclusive OR gate 225 is HIGH. At the time tc3 when the second delayed clock Clk_d2 rises, the logic level of the control signal qchk is HIGH, and the adaptive second delayed clock cclk also rises. Although not shown in the figure, around the time tc3, the logic level of the input clock Clk is LOW, and the main clock lclk corresponding to the rise of the adaptive second delayed clock cclk also rises.

因此,依據對應第二延遲時脈Clk_d2上升的主時脈lclk之上升,在第一D型正反器電路211中執行再同步,在時刻t32,第一D型正反器電路211之輸出資料Q1之邏輯位準與輸入資料DATA之邏輯位準被更新為相同的HIGH。在第一D型正反器電路211中再同步之輸出資料Q1,之後在第二延遲時脈Clk_d2上升之時刻,在第三D型正反器電路215中被同步,作為輸出資料Q3從第三D型正反器電路215之輸出端子Q被輸出。Therefore, according to the rise of the main clock lclk corresponding to the rise of the second delayed clock Clk_d2, resynchronization is performed in the first D-type flip-flop circuit 211. At time t32, the output data of the first D-type flip-flop circuit 211 The logic level of Q1 and the logic level of the input data DATA are updated to the same HIGH. The output data Q1 resynchronized in the first D-type flip-flop circuit 211 is then synchronized in the third D-type flip-flop circuit 215 at the rising moment of the second delay clock Clk_d2, as the output data Q3 from the first D-type flip-flop circuit The output terminal Q of the triple-D flip-flop circuit 215 is output.

另外,若將經由延遲電路221之第一特定延遲時間以及經由延遲電路223之第二特定延遲時間加起來的時間,比輸入資料DATA維持同一邏輯位準的期間(例如:輸入資料DATA之時脈期間)更短,可以從同步電路201穩定輸出輸出資料Q3,且即使輸出資料Q1經由最初的同步成為介穩狀態,也可以藉由再同步得到穩定的輸出資料Q1。In addition, if the sum of the first specific delay time through the delay circuit 221 and the second specific delay time through the delay circuit 223 is longer than the period during which the input data DATA maintains the same logic level (for example: the clock pulse of the input data DATA period) is shorter, the output data Q3 can be stably output from the synchronization circuit 201, and even if the output data Q1 becomes a metastable state through the initial synchronization, the stable output data Q1 can be obtained through resynchronization.

第5圖顯示基於第二實施型態之同步電路203。同步電路203與基於第一實施型態之同步電路201比較時,有以下幾點相異:第一D型正反器電路211以及第二D型正反器電路213分別置換為第一鎖存電路241以及第二鎖存電路243;第三D型正反器電路215被省略。Fig. 5 shows the synchronization circuit 203 based on the second embodiment. When the synchronous circuit 203 is compared with the synchronous circuit 201 based on the first implementation type, there are the following differences: the first D-type flip-flop circuit 211 and the second D-type flip-flop circuit 213 are respectively replaced by the first latch The circuit 241 and the second latch circuit 243; the third D-type flip-flop circuit 215 are omitted.

另外,參照第1圖以及第5圖時,同步電路203與基於第一實施型態之同步電路201比較時,有以下幾點相異:輸入時脈Clk、第一延遲時脈Clk_d1以及第二延遲時脈Clk_d2分別置換為輸入選通訊號Str、第一延遲選通訊號str_d1以及第二延遲選通訊號str_d2。輸入選通訊號Str、第一延遲選通訊號str_d1以及第二延遲選通訊號str_d2分別為本發明之第一同步訊號、第二同步訊號以及第三同步訊號之其他的一例。再者,適應性第二延遲時脈cclk以及主時脈lclk分別置換為適應性第二延遲選通訊號sstr以及主選通訊號lstr這一點相異。In addition, when referring to Fig. 1 and Fig. 5, when the synchronous circuit 203 is compared with the synchronous circuit 201 based on the first embodiment, there are the following differences: the input clock Clk, the first delayed clock Clk_d1 and the second The delayed clock Clk_d2 is respectively replaced by the input strobe signal Str, the first delayed strobe signal str_d1 and the second delayed strobe signal str_d2. The input strobe signal Str, the first delayed strobe signal str_d1, and the second delayed strobe signal str_d2 are other examples of the first synchronization signal, the second synchronization signal, and the third synchronization signal of the present invention, respectively. Furthermore, there is a difference in that the adaptive second delayed clock cclk and the main clock lclk are respectively replaced by the adaptive second delayed strobe signal sstr and the main strobe signal lstr.

如第9圖所示,在輸入時脈Clk之上升時刻tc1,輸入選通訊號Str下降。在第一延遲時脈Clk_d1之上升時刻tc2,第一延遲選通訊號str_d1下降。在第二延遲時脈Clk_d2之上升時刻tc3,第二延遲選通訊號str_d2下降。As shown in FIG. 9, at the rising time tc1 of the input clock Clk, the input strobe signal Str falls. At the rising time tc2 of the first delayed clock Clk_d1, the first delayed strobe signal str_d1 falls. At the rising time tc3 of the second delayed clock Clk_d2, the second delayed strobe signal str_d2 falls.

另外,適應性第二延遲選通訊號sstr與適應性第二延遲時脈cclk同樣地,在控制訊號qchk之邏輯位準為HIGH時會產生,反之則不產生。在適應性第二延遲選通訊號sstr產生時,適應性第二延遲選通訊號sstr在與適應性第二延遲時脈cclk上升之時刻的相同時刻下降。用於第一次同步的主選通訊號lstr,在和用於第一次同步的主時脈lclk上升之時刻的相同時刻下降。另外,用於再同步之主選通訊號lstr,在和用於再同步之主時脈lclk上升之時刻的相同時刻下降。In addition, the adaptive second delayed strobe signal sstr is similar to the adaptive second delayed clock cclk, and is generated when the logic level of the control signal qchk is HIGH, otherwise it is not generated. When the adaptive second delayed strobe signal sstr is generated, the adaptive second delayed strobe signal sstr falls at the same timing as when the adaptive second delayed clock cclk rises. The main strobe signal lstr for the first synchronization falls at the same timing as the main clock lclk for the first synchronization rises. In addition, the main strobe signal lstr for resynchronization falls at the same timing as the main clock lclk for resynchronization rises.

一般而言,D型正反器電路,設定為將輸入資料與輸入時脈之上升同步而輸出資料。相反地,鎖存電路在選通訊號之邏輯位準為HIGH的期間,將輸入資料維持原狀作為輸出資料輸出,卻維持具有選通訊號下降時之輸入資料之邏輯位準的輸出資料。因此,基於第二實施型態之第一鎖存電路241以及第二鎖存電路243分別與基於第一實施型態之第一D型正反器電路211以及第二D型正反器電路213同樣地動作。因為將D型正反器電路置換為鎖存電路,可以縮小電路規模。Generally speaking, the D-type flip-flop circuit is set to output data synchronously with the rising of the input data and the input clock. On the contrary, the latch circuit outputs the input data as output data while the logic level of the strobe signal is HIGH, but maintains the output data having the logic level of the input data when the strobe signal falls. Therefore, the first latch circuit 241 and the second latch circuit 243 based on the second implementation mode are respectively connected with the first D-type flip-flop circuit 211 and the second D-type flip-flop circuit 213 based on the first implementation mode. Do the same. Because the D-type flip-flop circuit is replaced by a latch circuit, the circuit scale can be reduced.

在第二實施型態中,沒有對應第一實施型態中之第三D型正反器電路215的第三鎖存電路。然而,也可以設置對應第三D型正反器電路215之第三鎖存電路。In the second embodiment, there is no third latch circuit corresponding to the third D-type flip-flop circuit 215 in the first embodiment. However, a third latch circuit corresponding to the third D-type flip-flop circuit 215 may also be provided.

在動態隨機存取記憶體中,設有用以再充電緩緩減少累積電荷之記憶胞的更新電路。在更新電路中,也有用於更新率控制所參照之溫度資料係由複數個位元構成的情況。將由複數個位元構成之溫度資料作為給同步電路的輸入資料,發生時脈轉移之需要的情況。基於第一實施型態之同步電路以及基於第二實施型態之同步電路,處理僅由1位元構成之輸入資料,然而,舉例而言,若只將處理僅1位元的同步電路複數個並聯排列,在位元之間會發生同步電路之動作不同的情況,無法正確地進行時脈轉換。也就是說,會發生雖然對應某位元之同步電路中發生再同步,對應其他位元之同步電路中卻沒有發生再同步的情況,像這樣的情況下,無法進行正確的時脈轉換。基於第三實施型態之同步電路,是為了不發生像這樣的問題而產生。In DRAM, there is a refresh circuit for recharging the memory cells which slowly reduces the accumulated charge. In the update circuit, there are cases where the temperature data referred to in the update rate control is composed of a plurality of bits. The temperature data composed of multiple bits is used as the input data to the synchronous circuit, and the need for clock transfer occurs. The synchronous circuit based on the first embodiment and the synchronous circuit based on the second embodiment process input data consisting of only 1 bit, however, for example, if only a plurality of synchronous circuits that process only 1 bit In the parallel arrangement, the operation of the synchronous circuit will be different between the bits, and the clock conversion cannot be performed correctly. In other words, although resynchronization occurs in the synchronous circuit corresponding to a certain bit, resynchronization does not occur in the synchronous circuit corresponding to other bits. In such a case, correct clock conversion cannot be performed. The synchronous circuit based on the third embodiment is created in order not to cause such a problem.

第6圖顯示基於第三實施型態之同步電路205。在基於第二實施型態之同步電路203中,輸入資料DATA之位元數為1,在基於第三實施型態之同步電路205中輸入資料DATA之位元數為複數n(n為2以上的整數)。FIG. 6 shows a synchronization circuit 205 based on the third embodiment. In the synchronization circuit 203 based on the second embodiment, the number of bits of the input data DATA is 1, and in the synchronization circuit 205 based on the third embodiment, the number of bits of the input data DATA is a complex number n (n is more than 2 integer).

基於第三實施型態之同步電路205與基於第二實施型態之同步電路203比較時,有以下幾點相異:第一鎖存電路241、第二鎖存電路243以及二輸入邏輯互斥或閘225,分別被置換為複數(在此處為n個)之第一鎖存電路241-1~241-n、複數(在此處為n個)之第二鎖存電路243-1~243-n以及複數(在此處為n個)之二輸入邏輯互斥或閘225-1~225-n;以及追加n輸入邏輯或閘231。When comparing the synchronization circuit 205 based on the third implementation type with the synchronization circuit 203 based on the second implementation type, the following points are different: the first latch circuit 241, the second latch circuit 243, and the two input logic mutual exclusion The OR gate 225 is replaced by a plurality (n here) of first latch circuits 241-1~241-n, and a plurality (n here) of second latch circuits 243-1~241-n, respectively. 243-n and two input logic exclusive OR gates 225-1~225-n of a plurality (n in this case); and n input logic OR gates 231 are added.

複數個第一鎖存電路241-1~241-n藉由主選通訊號lstr鎖存n位元之輸入資料DATA<n:1>,作為n位元之輸出資料Q1<n:1>輸出。複數個第二鎖存電路243-1~243-n藉由第一延遲選通訊號str_d1鎖存n位元之輸入資料DATA<n:1>,作為n位元之輸出資料Q2<n:1>輸出。複數之二輸入邏輯互斥或閘225-1~225-n之中第i個之二輸入邏輯互斥或閘225-i (i=1,2,…,n)計算輸出資料Q1<n:1>之第i位元以及輸出資料Q2<n:1>之第i位元的邏輯互斥或,將該結果作為預備控制訊號Qchk<n:1>之第i位元輸出。n輸入邏輯或閘231進行預備控制訊號Qchk<n:1>之邏輯或計算,將顯示該結果之控制訊號QchkN從輸出端子供給到二輸入邏輯及閘227之一側的輸入端子。二輸入邏輯及閘227以及二輸入邏輯或閘229與第二實施型態的相同。A plurality of first latch circuits 241-1~241-n latch n-bit input data DATA<n:1> through the main selection signal lstr, and output it as n-bit output data Q1<n:1> . The plurality of second latch circuits 243-1~243-n latch the n-bit input data DATA<n:1> through the first delay strobe signal str_d1 as the n-bit output data Q2<n:1 > output. The i-th input logic mutual exclusion OR gate 225-i (i=1,2,...,n) of the i-th input logic mutual exclusion OR gate 225-i (i=1,2,...,n) of the complex number 225-1~225-n calculates the output data Q1<n: The logical exclusive OR of the i-th bit of 1> and the i-th bit of the output data Q2<n:1> is output as the i-th bit of the preliminary control signal Qchk<n:1>. The n-input OR gate 231 performs OR calculation of the preliminary control signal Qchk<n:1>, and supplies the control signal QchkN indicating the result to the input terminal on one side of the two-input OR gate 227 from the output terminal. The two-input logic AND gate 227 and the two-input logic OR gate 229 are the same as those of the second embodiment.

接著,輸出資料Q1<n:1>以及輸出資料Q2<n:1>藉由複數個二輸入邏輯互斥或閘225-1~225-n比較每個位元。若複數個二輸入邏輯互斥或閘225-1~225-n於輸出的預備控制訊號Qchk<n:1>顯示輸出資料Q1<n:1>以及輸出資料Q2<n:1>在至少1個位元中不同,在對應適應性第二延遲選通訊號sstr之下降的主選通訊號lstr之下降時,輸入資料DATA<n:1>在複數個第一鎖存電路241-1~241-n中再鎖存。Then, the output data Q1<n:1> and the output data Q2<n:1> are compared for each bit by a plurality of two-input logic exclusive OR gates 225-1˜225-n. If a plurality of two-input logic exclusive OR gates 225-1~225-n are outputting the preparation control signal Qchk<n:1>, the output data Q1<n:1> and the output data Q2<n:1> are at least 1 The bit is different, when the main strobe signal lstr corresponding to the fall of the adaptive second delay strobe signal sstr falls, the input data DATA<n:1> is in the plurality of first latch circuits 241-1~241 -n and then latched.

參照第7圖說明n位元輸入資料DATA<n:1>沒有在複數個第一鎖存電路241-1~241-n中再鎖存的情況的例子。An example of the case where the n-bit input data DATA<n:1> is not re-latched in the plurality of first latch circuits 241-1˜241-n is described with reference to FIG. 7 .

在對應輸入選通訊號Str之下降的主選通訊號lstr之下降時,n位元輸入資料DATA<n:1>在複數個第一鎖存電路241-1~241-n中被鎖存。因此,複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>在從輸入選通訊號Str下降之時刻tc1稍微延遲之時刻t41中變化。When the main strobe signal lstr falls corresponding to the fall of the input strobe signal Str, the n-bit input data DATA<n:1> is latched in a plurality of first latch circuits 241-1˜241-n. Therefore, the output data Q1<n:1> of the plurality of first latch circuits 241-1~241-n changes at a time t41 slightly delayed from the time tc1 when the input strobe signal Str falls.

在第一延遲選通訊號str_d1之下降時,n位元輸入資料DATA<n:1>在第二鎖存電路243-1~243-n中被鎖存。因此,複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>,在從第一延遲選通訊號str_d1下降之時刻tc2稍微延遲之時刻t42中變化。When the first delayed strobe signal str_d1 falls, the n-bit input data DATA<n:1> is latched in the second latch circuits 243-1˜243-n. Therefore, the output data Q2<n:1> of the plurality of second latch circuits 243-1~243-n changes at the time t42 slightly delayed from the time tc2 when the first delayed strobe signal str_d1 falls.

從時刻t41到時刻t42為止的期間,複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>之至少一部份的位元的邏輯位準,變得與複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>之對應的位元不一致。因此,複數個二輸入邏輯互斥或閘225-1~225-n輸出之預備控制訊號Qchk<n:1>之至少一個邏輯位準成為HIGH, n輸入邏輯或閘231輸出之控制訊號QchkN之邏輯位準成為HIGH。During the period from time t41 to time t42, the logic levels of at least a part of the output data Q2<n:1> of the plurality of second latch circuits 243-1˜243-n become the same as the complex number The corresponding bits of the output data Q1<n:1> of the first latch circuits 241-1~241-n are inconsistent. Therefore, at least one logic level of the preparation control signal Qchk<n:1> output by the plurality of two-input logic exclusive OR gates 225-1~225-n becomes HIGH, and the control signal QchkN output by the n-input logic OR gate 231 becomes HIGH. The logic level becomes HIGH.

在時刻t42之後,複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>的邏輯位準,與複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>的邏輯位準在所有位元中一致。因此,複數個二輸入邏輯互斥或閘225-1~225-n輸出之所有預備控制訊號Qchk<n:1>之邏輯位準成為LOW, n輸入邏輯或閘231輸出之控制訊號QchkN之邏輯位準成為LOW。After time t42, the logic level of the output data Q2<n:1> of the plurality of second latch circuits 243-1~243-n is the same as the output of the plurality of first latch circuits 241-1~241-n The logic levels of the data Q1<n:1> are consistent in all bits. Therefore, the logic levels of all the preliminary control signals Qchk<n:1> output by the plurality of two-input logic exclusive OR gates 225-1~225-n become LOW, and the logic levels of the control signal QchkN output by the n-input logic OR gate 231 The level becomes LOW.

在第二延遲選通訊號str_d2下降之時刻tc3,控制訊號QchkN之邏輯位準成為LOW,因此,不發生適應性第二延遲選通訊號sstr以及主選通訊號lstr之下降,不發生在複數個第一鎖存電路241-1~241-n中的再鎖存,被鎖存之複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>的邏輯位準不藉由再鎖存而更新,維持原狀。At the moment tc3 when the second delayed strobe signal str_d2 falls, the logic level of the control signal QchkN becomes LOW, therefore, the adaptive second delayed strobe signal sstr and the main strobe signal lstr do not fall, and do not occur in multiple In the re-latching in the first latch circuits 241-1~241-n, the logic levels of the output data Q1<n:1> of the latched plural first latch circuits 241-1~241-n are different. Update by re-latch, maintain the original state.

另外,從時刻tc3到時刻t43為止,長度為tTRAN的期間中,即使n位元輸入資料DATA<n:1>變化了,複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>的邏輯位準維持原狀。n位元輸入資料DATA<n:1>從時刻tc3到時刻t43為止之間,隨著位元間之偏移而變化。In addition, from the time tc3 to the time t43, during the period of tTRAN, even if the n-bit input data DATA<n:1> changes, the output data Q1 of the plurality of first latch circuits 241-1~241-n The logic level of <n:1> remains the same. The n-bit input data DATA<n:1> changes with bit shift between time tc3 and time t43.

參照第8圖說明在對應第二延遲選通訊號str_d2之下降的主選通訊號lstr之下降時,n位元輸入資料DATA<n:1>在複數個第一鎖存電路241-1~241-n中再鎖存的情況的例子。Referring to FIG. 8, when the main strobe signal lstr falls corresponding to the fall of the second delayed strobe signal str_d2, n-bit input data DATA<n:1> is displayed in the plurality of first latch circuits 241-1~241. An example of the case of re-latch in -n.

n位元輸入資料DATA<n:1>依據對應輸入選通訊號Str之下降的主選通訊號lstr之下降,在複數個第一鎖存電路241-1~241-n中被鎖存。因此,複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>,在從輸入訊號下降之時刻tc1稍微延遲之時刻t51中變化。The n-bit input data DATA<n:1> is latched in a plurality of first latch circuits 241-1˜241-n according to the fall of the main strobe signal lstr corresponding to the fall of the input strobe signal Str. Therefore, the output data Q1<n:1> of the plurality of first latch circuits 241-1~241-n changes at the time t51 slightly delayed from the time tc1 when the input signal falls.

與第7圖的情況相同地,從時刻t51開始,複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>的至少一部分之位元的邏輯位準,變得與複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>之對應的位元不一致。因此,從時刻t51開始,複數個二輸入邏輯互斥或閘225-1~225-n輸出之預備控制訊號Qchk<n:1>之至少一個邏輯位準成為HIGH,n輸入邏輯或閘231輸出之控制訊號QchkN之邏輯位準成為HIGH。Similar to the situation in FIG. 7, starting from time t51, the logic levels of at least a part of the bits of the output data Q1<n:1> of the plurality of first latch circuits 241-1~241-n become It is inconsistent with the corresponding bits of the output data Q2<n:1> of the plurality of second latch circuits 243-1˜243-n. Therefore, starting from time t51, at least one logic level of the preliminary control signal Qchk<n:1> output by the plurality of two-input logic exclusive OR gates 225-1~225-n becomes HIGH, and the n-input logic OR gate 231 outputs The logic level of the control signal QchkN becomes HIGH.

與第7圖的例子不同,第一延遲選通訊號str_d1下降之時刻tc2前後,n位元輸入資料DATA<n:1>之邏輯位準有變化。設定n位元輸入資料DATA<n:1>依據第一延遲選通訊號str_d1之下降,在複數個第二鎖存電路243-1~243-n中被鎖存。Different from the example in FIG. 7 , the logic level of the n-bit input data DATA<n:1> changes around the time tc2 when the first delayed strobe signal str_d1 falls. The n-bit input data DATA<n:1> is set to be latched in a plurality of second latch circuits 243 - 1 - 243 -n according to the fall of the first delayed strobe signal str_d1 .

假設在時刻tc2,n位元輸入資料DATA<n:1>之各位元的邏輯位準,與在時刻tc1之n位元輸入資料DATA<n:1>對應之位元的邏輯位準相同,在對應第7圖之時刻t42的時刻t52之後,控制訊號QchkN之邏輯位準成為LOW。另外,在第8圖中未圖示針對時刻t52之後控制訊號QchkN之邏輯位準成為LOW的案例。Assuming that at time tc2, the logic level of each bit of the n-bit input data DATA<n:1> is the same as the logic level of the bit corresponding to the n-bit input data DATA<n:1> at time tc1, After the time t52 corresponding to the time t42 in FIG. 7 , the logic level of the control signal QchkN becomes LOW. In addition, the case where the logic level of the control signal QchkN becomes LOW after time t52 is not shown in FIG. 8 .

如上所述,時刻tc2前後,由於n位元輸入資料DATA<n:1>之邏輯位準變化,沒有確保輸入資料DATA對第一延遲選通訊號str_d1之下降需要的設定邊界/維持邊界。因此,複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>的至少一部份位元成為介穩狀態。或者,複數個第二鎖存電路243-1~243-n之輸出資料Q2<n:1>的至少一部份位元之邏輯位準,與複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>之對應的位元的邏輯位準維持不一致。因此,時刻t51之後,包含於邏輯位準成為HIGH之複數個二輸入邏輯互斥或閘225-1~225-n的至少一部分的閘的輸出之邏輯位準,在對應第7圖之時刻t42的時刻t52之後亦維持HIGH。因此,如第8圖所示,控制訊號QchkN之邏輯位準在時刻t52之後仍然維持HIGH。As mentioned above, before and after the time tc2, due to the change of the logic level of the n-bit input data DATA<n:1>, there is no set boundary/maintain boundary required for the falling of the first delay strobe signal str_d1 by the input data DATA. Therefore, at least some bits of the output data Q2<n:1> of the plurality of second latch circuits 243-1~243-n become metastable. Or, the logic levels of at least some bits of the output data Q2<n:1> of the plurality of second latch circuits 243-1~243-n are the same as those of the plurality of first latch circuits 241-1~241 The logical level of the corresponding bit of the output data Q1<n:1> of -n remains inconsistent. Therefore, after the time t51, the logic level of the output of at least a part of the gates included in the plurality of two-input logic exclusive OR gates 225-1~225-n whose logic level becomes HIGH corresponds to the time t42 in FIG. 7 HIGH is also maintained after time t52. Therefore, as shown in FIG. 8, the logic level of the control signal QchkN remains HIGH after the time t52.

在第二延遲選通訊號str_d2下降之時刻tc3,控制訊號QchkN之邏輯位準為HIGH,適應性第二延遲選通訊號sstr亦下降。在對應適應性第二延遲選通訊號sstr之下降的主選通訊號lstr之下降時,輸入資料DATA<n:1>在複數個第一鎖存電路241-1~241-n中再鎖存。因此,在時刻t53,複數個第一鎖存電路241-1~241-n之輸出資料Q1<n:1>之邏輯位準被更新。At the moment tc3 when the second delay strobe signal str_d2 falls, the logic level of the control signal QchkN is HIGH, and the adaptive second delay strobe signal sstr also falls. When the main strobe signal lstr falls corresponding to the fall of the adaptive second delay strobe signal sstr, the input data DATA<n:1> is re-latched in a plurality of first latch circuits 241-1~241-n . Therefore, at time t53, the logic levels of the output data Q1<n:1> of the plurality of first latch circuits 241-1~241-n are updated.

另外,若將經由延遲電路221之第一特定延遲時間以及經由延遲電路223之第二特定延遲時間加起來的時間,設定得比從輸入資料DATA維持同一邏輯位準的期間(例如:輸入資料DATA之時脈期間)減掉最大偏移時間所得到的時間更短,可以從同步電路205穩定輸出輸出資料Q3,且即使輸出資料Q1經由最初的同步成為介穩狀態,也可以藉由再同步得到穩定的輸出資料Q1。In addition, if the sum of the first specific delay time via the delay circuit 221 and the second specific delay time via the delay circuit 223 is set to be longer than the period during which the input data DATA maintains the same logic level (for example: input data DATA The time obtained by subtracting the maximum offset time is shorter, the output data Q3 can be stably output from the synchronization circuit 205, and even if the output data Q1 becomes metastable after the initial synchronization, it can be obtained by resynchronization Stable output data Q1.

201、203、205:同步電路201, 203, 205: synchronous circuit

211:第一D型正反器電路211: The first D-type flip-flop circuit

213:第二D型正反器電路213: The second D-type flip-flop circuit

215:第三D型正反器電路215: The third D-type flip-flop circuit

221、223:延遲電路221, 223: delay circuit

225:二輸入邏輯互斥或閘225: Two-input logic exclusive OR gate

227:二輸入邏輯及閘227: Two-input logic AND gate

229:二輸入邏輯或閘229: two-input logic OR gate

241:第一鎖存電路241: The first latch circuit

243:第二鎖存電路243: The second latch circuit

225-1~225-n:複數個二輸入邏輯互斥或閘225-1~225-n: Multiple two-input logic exclusive OR gates

241-1~241-n:複數個第一鎖存電路241-1~241-n: a plurality of first latch circuits

243-1~243-n:複數個第二鎖存電路243-1~243-n: a plurality of second latch circuits

cclk:適應性第二延遲時脈cclk: adaptive second delay clock

CK:時脈端子CK: clock terminal

Clk:輸入時脈Clk: input clock

Clk_d1:第一延遲時脈Clk_d1: the first delay clock

Clk_d2:第二延遲時脈Clk_d2: second delay clock

D:輸入端子D: input terminal

DATA:輸入資料DATA: input data

DATA<n:1>:n位元輸入資料DATA<n:1>: n-bit input data

lclk:主時脈lclk: main clock

lstr:主選通訊號lstr: master selection signal

qchk:控制訊號qchk: control signal

QchkN:控制訊號QchkN: control signal

Qchk<n:1>:預備控制訊號Qchk<n:1>: ready control signal

sstr:適應性第二延遲選通訊號sstr: adaptive second delay strobe signal

Q:輸出端子Q: output terminal

Q1、Q2、Q3:輸出資料Q1, Q2, Q3: output data

Q1<n:1>、Q2<n:1>:輸出資料Q1<n:1>, Q2<n:1>: output data

Str:輸入選通訊號Str: input strobe signal

str_d1:第一延遲選通訊號str_d1: first delay strobe signal

str_d2:第二延遲選通訊號str_d2: second delay strobe signal

t11、t12、t13:時刻t11, t12, t13: time

t21、t22:時刻t21, t22: time

t31、t32:時刻t31, t32: time

t41、t42、t43:時刻t41, t42, t43: time

t51、t52、t53:時刻t51, t52, t53: time

tc1、tc2、tc3:時刻tc1, tc2, tc3: time

[第1圖] 為顯示基於本發明之第一實施型態之同步電路之構成的電路圖。 [第2圖] 為顯示第1圖所示之同步電路沒有執行再同步的情況之動作例的時序圖。 [第3圖] 為顯示第1圖所示之同步電路執行再同步的情況之第一動作例的時序圖。 [第4圖] 為顯示第1圖所示之同步電路執行再同步的情況之第二動作例的時序圖。 [第5圖] 為顯示基於本發明之第二實施型態之同步電路之構成的電路圖。 [第6圖] 為顯示基於本發明之第三實施型態之同步電路之構成的電路圖。 [第7圖] 為顯示第6圖所示之同步電路沒有執行再同步的情況之動作例的時序圖。 [第8圖] 為顯示第6圖所示之同步電路執行再同步的情況之動作例的時序圖。 [第9圖] 為顯示基於第一實施型態之同步電路中的時脈與基於第5圖所示之第二實施型態之同步電路中的資料選通訊號之間的對應關係的時序圖。 [FIG. 1] is a circuit diagram showing the configuration of a synchronous circuit according to the first embodiment of the present invention. [FIG. 2] It is a timing chart showing an example of operation when the synchronization circuit shown in FIG. 1 does not perform resynchronization. [FIG. 3] is a timing chart showing a first example of operation when the synchronization circuit shown in FIG. 1 executes resynchronization. [FIG. 4] is a timing chart showing a second example of operation in the case where the synchronization circuit shown in FIG. 1 executes resynchronization. [FIG. 5] is a circuit diagram showing the configuration of a synchronous circuit according to the second embodiment of the present invention. [FIG. 6] is a circuit diagram showing the constitution of a synchronous circuit according to the third embodiment of the present invention. [FIG. 7] It is a timing chart showing an operation example in the case where the synchronization circuit shown in FIG. 6 does not perform resynchronization. [FIG. 8] It is a timing chart showing an operation example in the case where the synchronization circuit shown in FIG. 6 executes resynchronization. [Fig. 9] is a timing diagram showing the corresponding relationship between the clock in the synchronous circuit based on the first embodiment and the data strobe signal in the synchronous circuit based on the second embodiment shown in Fig. 5 .

201:同步電路 201: Synchronous circuit

211:第一D型正反器電路 211: The first D-type flip-flop circuit

213:第二D型正反器電路 213: The second D-type flip-flop circuit

215:第三D型正反器電路 215: The third D-type flip-flop circuit

221、223:延遲電路 221, 223: delay circuit

225:二輸入邏輯互斥或閘 225: Two-input logic exclusive OR gate

227:二輸入邏輯及閘 227: Two-input logic AND gate

229:二輸入邏輯或閘 229: two-input logic OR gate

cclk:適應性第二延遲時脈 cclk: adaptive second delay clock

CK:時脈端子 CK: clock terminal

Clk:輸入時脈 Clk: input clock

Clk_d1:第一延遲時脈 Clk_d1: the first delay clock

Clk_d2:第二延遲時脈 Clk_d2: second delay clock

D:輸入端子 D: input terminal

DATA:輸入資料 DATA: input data

1clk:主時脈 1clk: main clock

qchk:控制訊號 qchk: control signal

Q:輸出端子 Q: output terminal

Q1、Q2、Q3:輸出資料 Q1, Q2, Q3: output data

Claims (13)

一種同步電路,包括:第一延遲電路,將輸入同步訊號延遲第一特定時間,生成第一延遲同步訊號;第二延遲電路,將前述第一延遲同步訊號延遲第二特定時間,生成第二延遲同步訊號;第一同步電路,輸出將輸入資料與前述輸入同步訊號同步的第一輸出資料;第二同步電路,輸出將前述輸入資料與前述第一延遲同步訊號同步的第二輸出資料;再同步電路,若前述第一輸出資料與前述第二輸出資料不一致,依據前述第二延遲同步訊號將前述輸入資料再同步,對前述第一同步電路更新前述第一輸出資料。 A synchronous circuit, comprising: a first delay circuit, which delays an input synchronous signal by a first specific time to generate a first delayed synchronous signal; a second delay circuit, which delays the aforementioned first delayed synchronous signal by a second specific time, to generate a second delay Synchronization signal; the first synchronization circuit, outputting the first output data synchronizing the input data with the aforementioned input synchronizing signal; the second synchronizing circuit, outputting the second output data synchronizing the aforementioned input data with the aforementioned first delayed synchronizing signal; resynchronization The circuit, if the first output data is inconsistent with the second output data, resynchronizes the input data according to the second delayed synchronization signal, and updates the first output data to the first synchronization circuit. 如請求項1之同步電路,更包括:第三同步電路,輸出將前述第一輸出資料與前述第二延遲同步訊號同步的第三輸出資料。 The synchronous circuit according to claim 1 further includes: a third synchronous circuit, outputting third output data synchronizing the first output data with the second delayed synchronous signal. 如請求項1或2之同步電路,其中,前述第一特定時間與前述第二特定時間之總和,比前述輸入資料之最短維持時間更短。 The synchronous circuit according to claim 1 or 2, wherein the sum of the first specified time and the second specified time is shorter than the minimum holding time of the input data. 如請求項1之同步電路,其中:前述輸入資料、前述第一輸出資料以及前述第二輸出資料分別包含複數個位元; 若前述第一輸出資料與前述第二輸出資料有至少一個位元不一致,前述再同步電路依據前述第二延遲同步訊號將前述輸入資料再同步,對前述第一同步電路更新前述第一輸出資料。 The synchronous circuit as claimed in claim 1, wherein: the aforementioned input data, the aforementioned first output data, and the aforementioned second output data respectively include a plurality of bits; If at least one bit of the first output data is inconsistent with the second output data, the resynchronization circuit resynchronizes the input data according to the second delayed synchronization signal, and updates the first output data to the first synchronization circuit. 如請求項1之同步電路,其中前述第一同步電路為第一D型正反器電路,前述第二同步電路為第二D型正反器電路。 The synchronous circuit according to claim 1, wherein the first synchronous circuit is a first D-type flip-flop circuit, and the second synchronous circuit is a second D-type flip-flop circuit. 如請求項1之同步電路,其中前述第一同步電路為第一鎖存電路,前述第二同步電路為第二鎖存電路。 The synchronous circuit according to claim 1, wherein the first synchronous circuit is a first latch circuit, and the second synchronous circuit is a second latch circuit. 如請求項5之同步電路,其中前述再同步電路包含二輸入邏輯互斥或閘,取來自前述第一D型正反器電路之輸出端子之輸出資料,以及來自前述第二D型正反器電路之輸出端子之輸出資料的邏輯互斥或,輸出顯示結果之控制訊號,若來自前述第一D型正反器電路之輸出端子之輸出資料的邏輯位準與來自前述第二D型正反器電路之輸出端子之輸出資料的邏輯位準一致,前述控制訊號之邏輯位準為低位準,若不一致則為高位準。 Such as the synchronous circuit of claim item 5, wherein the aforementioned resynchronization circuit includes two input logic mutual exclusive OR gates, which take the output data from the output terminal of the aforementioned first D-type flip-flop circuit, and the output data from the aforementioned second D-type flip-flop circuit The logical exclusive OR of the output data of the output terminal of the circuit, output the control signal of the display result, if the logic level of the output data from the output terminal of the aforementioned first D-type flip-flop circuit is the same as that from the aforementioned second D-type flip-flop The logic level of the output data of the output terminal of the circuit is consistent, the logic level of the aforementioned control signal is a low level, and if not consistent, it is a high level. 如請求項7之同步電路,其中前述再同步電路更包含二輸入邏輯及閘,取前述控制訊號與第二延遲時脈之邏輯及,將結果作為適應性第二延遲時脈輸出,若控制訊號之邏輯位準為高位準,生成對應第二延遲時脈之適應性第二延遲時脈。 Such as the synchronous circuit of claim item 7, wherein the aforementioned resynchronization circuit further includes two input logic AND gates, which take the logical AND of the aforementioned control signal and the second delayed clock, and output the result as an adaptive second delayed clock, if the control signal The logic level is high, and an adaptive second delayed clock corresponding to the second delayed clock is generated. 如請求項8之同步電路,其中前述再同步電路更包含二輸入邏輯或閘,取輸入時脈與適應性第二延遲時脈之邏輯或,將結果作為主時脈輸出,並對前述第一D型正反器電路之時脈端子供給從前述二輸入邏輯或閘輸出之前述主時脈。 Such as the synchronous circuit of claim item 8, wherein the aforementioned resynchronization circuit further comprises two input logical OR gates, which take the logical OR of the input clock and the adaptive second delayed clock, output the result as the main clock, and control the aforementioned first The clock terminal of the D-type flip-flop circuit supplies the aforementioned main clock output from the aforementioned two input logic OR gates. 如請求項1之同步電路,其中前述再同步電路包括:二輸入邏輯互斥或閘,計算前述第一輸出資料之第i位元以及前述第二輸出資料之第i位元的邏輯互斥或,將結果作為預備控制訊號之第i位元輸出;以及n輸入邏輯或閘,進行前述預備控制訊號之邏輯或計算,將顯示結果之控制訊號從輸出端子供給到二輸入邏輯及閘之一側的輸入端子。 Such as the synchronization circuit of claim 1, wherein the aforementioned resynchronization circuit includes: two input logical exclusive OR gates, calculating the logical exclusive OR of the i-th bit of the aforementioned first output data and the i-th bit of the aforementioned second output data , the result is output as the i-th bit of the preliminary control signal; and the n-input logic OR gate performs the logical OR calculation of the aforementioned preliminary control signal, and the control signal for displaying the result is supplied from the output terminal to one side of the two input logic-AND gates input terminal. 一種半導體裝置,包括請求項1之同步電路。 A semiconductor device, including the synchronous circuit of claim 1. 一種同步方法,包括:比較步驟,比較由同步訊號將輸入資料同步之第一資料,以及依據延遲前述同步訊號之訊號將前述輸入資料同步之第二資料;輸出步驟,若前述第一資料以及前述第二資料相異,輸出依據延遲前述同步訊號更多之訊號將前述輸入資料同步的資料,否則,輸出前述第一資料。 A synchronization method, comprising: a comparison step, comparing the first data that is synchronized with the input data by a synchronization signal, and the second data that synchronizes the aforementioned input data with a signal that delays the aforementioned synchronization signal; an output step, if the aforementioned first data and the aforementioned If the second data is different, output the data that synchronizes the aforementioned input data according to a signal that delays the aforementioned sync signal more; otherwise, output the aforementioned first data. 如請求項12之同步方法,其中:前述輸入資料包含複數個位元;前述比較步驟比較前述第一資料以及前述第二資料的每個位元;前述輸出步驟在前述第一資料以及前述第二資料有至少一個位元相異時,輸出依據延遲前述同步訊號更多之訊號將前述輸入資料同步的前述資料,否則,輸出前述第一資料。 Such as the synchronization method of claim 12, wherein: the aforementioned input data includes a plurality of bits; the aforementioned comparison step compares each bit of the aforementioned first data and the aforementioned second data; the aforementioned output step is between the aforementioned first data and the aforementioned second When the data has at least one bit difference, output the aforementioned data that synchronizes the aforementioned input data according to a signal that delays the aforementioned synchronous signal more; otherwise, output the aforementioned first data.
TW110137285A 2021-10-07 2021-10-07 Synchronization circuit, semiconductor device and synchronization method TWI795939B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110137285A TWI795939B (en) 2021-10-07 2021-10-07 Synchronization circuit, semiconductor device and synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110137285A TWI795939B (en) 2021-10-07 2021-10-07 Synchronization circuit, semiconductor device and synchronization method

Publications (2)

Publication Number Publication Date
TWI795939B true TWI795939B (en) 2023-03-11
TW202316799A TW202316799A (en) 2023-04-16

Family

ID=86692135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137285A TWI795939B (en) 2021-10-07 2021-10-07 Synchronization circuit, semiconductor device and synchronization method

Country Status (1)

Country Link
TW (1) TWI795939B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114845A2 (en) * 2004-05-13 2005-12-01 Thomson Licensing Method and apparatus for synchronizing a clock generator in the presence of jittery clock sources
US20090079483A1 (en) * 2007-09-24 2009-03-26 Qualcomm Incorporated Delay circuits matching delays of synchronous circuits
US20170230038A1 (en) * 2016-02-05 2017-08-10 Samsung Electronics Co., Ltd. Low-power clock-gated synchronizer, a data processing system that incorporates the same and a synchronization method
US10237053B2 (en) * 2017-02-23 2019-03-19 Lapis Semiconductor Co., Ltd. Semiconductor device and data synchronization method
US10313099B1 (en) * 2018-06-04 2019-06-04 MACOM Technology Solutions Holding, Inc. Multi-lane coherent transceiver with synchronized lane reset signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114845A2 (en) * 2004-05-13 2005-12-01 Thomson Licensing Method and apparatus for synchronizing a clock generator in the presence of jittery clock sources
US20090079483A1 (en) * 2007-09-24 2009-03-26 Qualcomm Incorporated Delay circuits matching delays of synchronous circuits
US20170230038A1 (en) * 2016-02-05 2017-08-10 Samsung Electronics Co., Ltd. Low-power clock-gated synchronizer, a data processing system that incorporates the same and a synchronization method
US10237053B2 (en) * 2017-02-23 2019-03-19 Lapis Semiconductor Co., Ltd. Semiconductor device and data synchronization method
US10313099B1 (en) * 2018-06-04 2019-06-04 MACOM Technology Solutions Holding, Inc. Multi-lane coherent transceiver with synchronized lane reset signals

Also Published As

Publication number Publication date
TW202316799A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
JP5231045B2 (en) Clock skew controller and integrated circuit having the same
US7501866B2 (en) Delay locked loop circuit
KR100801741B1 (en) Delay Locked Loop
KR20030025181A (en) Semiconductor integrated circuit device and delay-locked loop device
JPH09304484A (en) Semiconductor memory apparatus
JP2007097181A (en) Delay fixed loop for increasing operating frequency of dram
JP2001332086A (en) Synchronous signal generating circuit
US10715119B2 (en) Low power flip-flop circuit
US6603687B2 (en) Semiconductor devices, circuits and methods for synchronizing the inputting and outputting data by internal clock signals derived from single feedback loop
US6765423B2 (en) Semiconductor circuit having clock synchronous receiver circuit
TWI795939B (en) Synchronization circuit, semiconductor device and synchronization method
KR100616490B1 (en) A register-controlled digital delay locked loop
KR100408406B1 (en) SDRAM having a data latch circuit for outputting input data in synchronization with a plurality of control signals
US7558151B1 (en) Methods and circuits for DDR-2 memory device read data resynchronization
JP7206347B1 (en) Synchronization circuit, semiconductor memory device and synchronization method
CN116070559A (en) Synchronization circuit, semiconductor device, and synchronization method
US8295121B2 (en) Clock buffer and a semiconductor memory apparatus using the same
KR20230067398A (en) Synchronization circuit, semiconductor memory device and synchronization method
US10892764B1 (en) Delay locked loop device and update method thereof
US6636978B1 (en) Rescheduling data input and output commands for bus synchronization by using digital latency shift detection
US7177229B2 (en) Apparatus for tuning a RAS active time in a memory device
WO2020247005A1 (en) Low power flip-flop circuit
JP3831142B2 (en) Semiconductor integrated circuit
KR100232018B1 (en) Clock phase correction circuit
CN113808634B (en) Delay phase-locked loop device and updating method thereof