TWI794851B - 離子束處理系統及其電漿板組合件和阻斷器組合件的製造方法 - Google Patents

離子束處理系統及其電漿板組合件和阻斷器組合件的製造方法 Download PDF

Info

Publication number
TWI794851B
TWI794851B TW110123247A TW110123247A TWI794851B TW I794851 B TWI794851 B TW I794851B TW 110123247 A TW110123247 A TW 110123247A TW 110123247 A TW110123247 A TW 110123247A TW I794851 B TWI794851 B TW I794851B
Authority
TW
Taiwan
Prior art keywords
plasma
blanker
electrode
extraction
processing system
Prior art date
Application number
TW110123247A
Other languages
English (en)
Other versions
TW202205344A (zh
Inventor
傑伊 R 沃利斯
科斯特爾 拜洛
凱文 M 丹尼爾斯
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202205344A publication Critical patent/TW202205344A/zh
Application granted granted Critical
Publication of TWI794851B publication Critical patent/TWI794851B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3151Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)

Abstract

本發明提供一種離子束處理系統及其電漿板組合件和阻 斷器組合件的製造方法。離子束處理系統,包含:電漿腔室;電漿板,安置在電漿腔室旁邊,電漿板界定第一提取孔;射束阻斷器,安置在電漿腔室內且面向提取孔;阻斷器電極,安置在電漿腔室外部的射束阻斷器的表面上;以及提取電極,安置在電漿腔室外部的電漿板的表面上。

Description

離子束處理系統及其電漿板組合件和阻斷器組 合件的製造方法
本實施例涉及一種電漿處理設備,且更確切地說,涉及使用新穎離子提取組合件從電漿源提取的成角度的離子束。
製造複雜3D半導體結構常常採用離子輔助電漿工藝。許多這種工藝使用相對於基底平面的法線具有零入射角度或較小入射角度的離子束。存在例如溝槽側壁的受控制的蝕刻的工藝,其中要求具有相對於法線表徵為高平均角度(>50°)的離子角分布(ion angular distributions;IAD)的離子束。這種高入射角度可通過在零度(當在預設「水平」定向處定向晶片時,相對於晶片法線)下提取射束和在所需角度下傾斜晶片來獲得。舉例來說,可引導具有比待處理的基底的區域更小的橫截面的離子束以大體上沿著水平面的法線定向衝擊,同時沿著水平方向掃描傾斜基底(相對於水平面)以順序方式將整個基底暴露到離子束。這一方 法的缺點為工藝未均一性地跨越晶片表面:考慮到固有射束發散,隨著在射束的前方掃描晶片(基底),離子束劑量將存在變化。
關於這些和其它考慮因素來提供本公開。
提供此發明內容以按簡化形式引入下文在具體實施方式中進一步描述的概念選擇。此發明內容並不意圖識別所主張主題的關鍵特徵或基本特徵,且發明內容也不意圖用於輔助確定所主張主題的範圍。
根據本公開的非限制性實施例的一種離子束處理系統可包含:電漿腔室;電漿板,安置在電漿腔室旁邊,電漿板界定第一提取孔;射束阻斷器,安置在電漿腔室內且面向提取孔;阻斷器電極,安置在電漿腔室外部的射束阻斷器的表面上;以及萃取電極,安置在電漿腔室外部的電漿板的表面上。
根據本公開的另一非限制性實施例的一種離子束處理系統可包含:電漿腔室;電漿板,由電絕緣材料形成,安置在電漿腔室旁邊,電漿板界定第一提取孔;射束阻斷器,由電絕緣材料形成,安置在電漿腔室內且面向提取孔;阻斷器電極,由導電材料形成且由第一介電塗層覆蓋,安置在電漿腔室外部的射束阻斷器的表面上,其中阻斷器電極為平面的且具有在垂直於射束阻斷器的前表面的方向上測量的厚度,其中阻斷器電極的厚度小於1毫米;提取電極,由導電材料形成且由第二介電塗層覆蓋,安置 在電漿腔室外部的電漿板的表面上,其中提取電極為平面的且具有在垂直於電漿板的前表面的方向上測量的厚度,其中提取電極的厚度小於1毫米;以及脈衝式電壓電源,電耦接到電漿腔室和提取電極以在提取電極與電漿腔室之間產生偏壓。
根據本公開的非限制性實施例的一種製造離子束處理系統的電漿板組合件的方法可包含:提供由電絕緣材料形成的電漿板,電漿板界定伸長的提取孔;將導電材料施加到包圍提取孔的電漿板的前表面以形成提取電極,提取電極為平面的且具有在垂直於電漿板的前表面的方向上測量的小於1毫米的厚度;以及將介電塗層施加到電漿板和提取電極,介電塗層覆蓋電漿板的前表面和提取電極。
根據本公開的非限制性實施例的一種製造離子束處理系統的阻斷器組合件的方法可包含:提供由電絕緣材料形成的射束阻斷器;將導電材料施加到射束阻斷器的前表面以形成阻斷器電極,阻斷器電極為平面的且具有在垂直於射束阻斷器的前表面的方向上測量的小於1毫米的厚度;以及將介電塗層施加到射束阻斷器和阻斷器電極,介電塗層覆蓋射束阻斷器的前表面和阻斷器電極。
100:處理系統
102:電漿腔室
103:處理腔室
104:介電窗
106:電漿板
108:射束阻斷器
110:阻斷器電極
112:離子細束
114:提取電極
115:第一介電塗層
117:第二介電圖層
120、122:基底
124:第一脈衝式電壓電源
130:提取組合件
132:電漿
134:導電壁
136:rf天線
138:提取孔
140:靜電場點位
142、144:未覆蓋部分
150:第二脈衝式電壓電源
152:相位控制器
160a、160b、162a、162b、164a、164b、166a、166b:安裝孔
170:凹口
172、174:連接器區域
200、210、220、300、310、320:框
r:高度
s:開口
H、h:高度
θ:角度
圖1呈現與本公開的實施例一致的處理設備的垂直橫截面。
圖2A到圖2D共同地描繪根據本公開的實施例的隨時間而變的電子和離子分布的演進。
圖3A到圖3C描繪根據圖1布置的處理設備的操作情境,且示出提取區域中的細束、形狀以及靜電位分布。
圖4A到圖4C描繪示出圖3A到圖3C中所描繪的情境的離子角分布的曲線。
圖5呈現與本公開的另一實施例一致的處理設備的垂直橫截面。
圖6A到圖6F描繪根據圖5布置的處理設備的操作情境,且示出提取區域中的細束、形狀以及靜電位分布。
圖7A到圖7F描繪示出圖6A到圖6F中所描繪的情境的離子角分布的曲線。
圖8A和8B為示出與本公開的實施例一致的處理設備的電漿腔室和提取組合件的透視圖和分解圖。
圖9A到圖9C為示出與本公開的實施例一致的製造處理設備的電漿板、提取電極以及第一介電塗層的方法的一系列透視圖。
圖10為示出圖9A到圖9C中所闡述的方法的流程圖。
圖11A到圖11C為示出與本公開的實施例一致的製造處理設備的射束阻斷器、阻斷器電極以及第二介電塗層的方法的一系列透視圖。
圖12為示出圖11A到圖11C中所闡述的方法的流程圖。
現將在下文參考隨附圖式更充分地描述本實施例,隨附圖式中繪示了一些實施例。本公開的主題可以許多不同形式實施且不應解釋為限於本文中所闡述的實施例。提供這些實施例以使得本公開將透徹且完整,並且將向所屬領域的技術人員充分傳達主題的範圍。在圖式中,相同標號始終指代相同元件。
本文描述的實施例提供用於使用隱藏偏轉電極控制引導到基底的離子角分布的系統和方法。在一些實施例中,公開一種設備,所述設備促進在小型的離子束源中產生具有較大晶片上入射角度的離子束。除提取具有高入射角度的離子束之外,本實施例可在化學反應性電漿(原料氣體:CxFy、CxHyFz、SF6、H2、O2、Cl2、I2、Br2、和/或其混合物)的情況下使用以產生離子基團和高反應性基團。確切地說,可提取具有高晶片上入射角度(例如高達45°)的在幾百電子伏特到幾千電子伏特範圍內的離子束和幾十毫安的束流。作為裝置處理的實例,由本實施例提供的對稱帶狀細束提取的使用允許在平行於提取組合件掃描基底時在複雜半導體結構中同步處理垂直溝渠壁。
在以下實施例中,離子束處理系統可包含電漿腔室和提取組合件。提取組合件可包含沿著電漿腔室的一側安置的電漿板,其中電漿板包含提取孔。根據本公開的各種實施例的,電漿板可由電絕緣材料形成。提取組合件可包含射束阻斷器,所述射束阻斷器還由電絕緣材料形成,安置在電漿腔室內同時面向提取 孔。因此,射束阻斷器可用以將提取孔劃分成兩個單獨子孔。提取組合件可包含阻斷器電極,所述阻斷器電極包含安置在電漿腔室外部的射束阻斷器的面上的導電薄膜,以及提取電極,所述提取電極包含安置在電漿腔室外部的電漿板的面上的導電薄膜。在具體實施例中,阻斷器電極可由覆蓋阻斷器電極和射束阻斷器的面的第一介電塗層覆蓋,且提取電極可由覆蓋提取電極和電漿板的面的第二介電塗層覆蓋。如以下實施例中所描述,這一布置促進產生高角度離子束穿過子孔,其中高角度離子束界定相對於垂直於電漿板的平面的較大入射角度,例如30度或更大。
電漿板的提取孔可具有延長形狀,從而促進提取一對帶狀離子束或帶狀離子細束,且將寬角度下的帶狀離子細束引導到基底,例如所述基底平行於電漿板的平面對準。如本文所使用的術語「基底的廣角度」可相對於基底的平面的法線(垂直)大於30度。
現轉到圖1,繪示與本公開的實施例一致的處理系統的垂直橫截面。處理系統100包含下文更詳細地描述的電漿腔室102、處理腔室103以及提取組合件130。處理系統100進一步包含脈衝式電壓電源124,所述脈衝式電壓電源124電耦接以在提取電極114與電漿腔室102之間產生偏壓。因此,處理系統100充當離子束處理系統以產生用於處理基底122的離子束,所述基底122布置成接近於提取電極114。電漿腔室102可充當電漿源,以通過任何合適的方法來在電漿腔室102中產生電漿132。舉例來說,電漿 腔室102可通過導電壁134參考接地電位。可通過經由介電窗104將由rf功率源(未單獨地繪示)產生的rf功率從rf天線136電感耦接到工作氣體而在電漿132中產生所關注的離子(Ionic)(離子(ion))種類。產生電漿的其它已知方法是可能的。
如圖1中所繪示,提取組合件130可包含沿著電漿腔室102的一側安置的電漿板106,其中電漿板106可由電絕緣體形成,例如Al2O3(氧化鋁)、石英、AlN或其它合適的電絕緣材料。電漿板106可界定沿著所繪示的笛卡爾坐標系(Cartesian coordinate system)的X軸延長的提取孔138(注意,X軸大體上垂直延伸到頁面的平面中)。因此,提取孔138可界定其中可傳送來自電漿腔室102離子的空間。提取組合件130可進一步包含提取電極114,所述提取電極114由安置在電漿腔室102外部的電漿板106的面上的導電材料的薄膜(例如高達1毫米厚)形成。提取電極114可由形成化學惰性的介電材料層的第一介電塗層115覆蓋,從而覆蓋提取電極114和電漿板106的面。共同地,電漿板106、提取電極114以及第一介電塗層115可稱為「電漿板組合件」。
提取組合件130還可包含由例如絕緣材料形成的射束阻斷器108。在圖1的布置中,當在電漿132的存在下負電壓相對於電漿腔室102施加到基底122(或基底板120)時,電漿半月板形成於縫隙(子孔)中,所述縫隙形成於提取孔138與射束阻斷器108之間。在各種實施例中,射束阻斷器108可對稱地布置在提取 孔138上方以允許形成和提取兩個對稱離子細束112。通過在y方向上掃描基底122來進行基底122的離子束處理,且還可包含通過圍繞Z軸旋轉基底來進行。在各種非限制性實施例中,取決於基底122的導電性(厚或薄氧化物),可提取離子細束112作為脈衝式離子束,其中脈衝頻率和工作週期(duty cycle)可分別地調整到10千赫茲到50千赫茲範圍內,和10%到100%範圍內的目標值,因此基底不充電。有利的是,提取電極114和射束阻斷器108使用介電材料促進在用以產生離子和基團種類的高反應性電漿中使用。
提取組合件130還可包含可偏置阻斷器電極110。如圖1中所示出,阻斷器電極110由安置在電漿腔室102外部的射束阻斷器108的面上的導電材料的薄膜(例如高達1毫米厚)形成。阻斷器電極110可由形成化學惰性的介電材料層的第二介電塗層117覆蓋,從而覆蓋阻斷器電極110和射束阻斷器108的面。共同地,射束阻斷器108、阻斷器電極110以及第二介電塗層117可稱為「阻斷器組合件」。如圖1中大體上示出,射束阻斷器108和電漿板106(雖然非共面的)可視為界定電漿腔室102的內部與電漿腔室102的外部之間在下側上的邊界。因此,是否安置在電漿板106上方的阻斷器電極110可視為放置在電漿腔室102的外部上。
在一些非限制性實施例中,沿著y方向的提取孔138的高度可變化。在本公開的在各種實施例中,電漿板106、提取電極114以及基底122可彼此相互平行且可平行於X-Y平面放置。因 此,電漿板106的平面可視為平行於X-Y平面且大體上平行於基底122的掃描方向(y方向)的平面。
提取孔138可相對於阻斷器電極110和射束阻斷器108以對稱方式對準,因此建立從射束阻斷器108與電漿板106之間的縫隙提取的兩個離子細束112的對稱性。在一些實施例中,射束阻斷器108、阻斷器電極110以及提取孔138可延長,以便在x方向上延伸350毫米到400毫米,因此可提取300毫米寬度(在x方向上)的均一帶狀細束。
根據各種非限制性實施例,提取組合件130的可偏置元件(例如阻斷器電極110和提取電極114)可設置於與基底122相同的電位處。配置意味著基底122有利地不是提取組合件130的部分。確切地說,因為基底122處於與阻斷器電極110和提取電極114相同的電位處,所以基底122與提取電極114或阻斷器電極110之間不存在電位差且因此無電場。
因此,基底122相對於提取組合件130(例如提取電極114和電漿板106)的相對位置不影響經由提取組合件130提取的離子束的離子角度分布。在這一條件下,基底位置可沿著Z軸從5毫米變化到大於20毫米,因此可相當大地減弱從基底濺鍍和/或化學蝕刻的材料對電漿腔室的污染。換句話說,當需要時,基底可沿著Z軸位於距提取組合件較大分離處以減小污染,由於污染隨著立體角度增加而減小,所以提取孔「看見」晶片隨著分離增加變得更小。
為了電學上可偏置,如上所述,阻斷器電極110和提取電極114可由導電材料(例如金屬,例如鋁、鈦、銅、鉬、鎢,在一些非限制性實施例中摻雜矽可用於這些組分)的薄膜(例如在z方向上高達1毫米厚)構成。因為這些部分未暴露於離子束轟擊,如下文所詳述,所以金屬污染減少。根據一些實施例,為了更全面防止污染,電學上可偏置部分可用包圍由導電材料形成的內部主體或部分的薄介電膜塗布。在一個非限制性實施例中,合適的介電塗層由釔、鋁以及氧化鋯的混合物製成,且具有100微米的厚度。已知這種介電材料提供耐蝕刻性。在其它實施例中,Al2O3、AlFO、氧化釔(Y2O3)或氧化鋯(ZrO2)或其組合可用作介電塗層。
如已知,電漿半月板的形狀和位置和離子束提取的機制取決於電漿(例如電漿132)中電漿密度的相對值,且進一步取決於提取電場。當非導電材料(例如介電質)用以製作離子提取組合件的組分時,離子束提取的物理性相當大地改變。這一改變發生是因為電漿護套為壁的性質的功能:絕緣或傳導,所述護套為電漿132與離子提取組合件(在本實施例中,射束阻斷器108和電漿板106)的壁之間的界面。對於脈衝式電漿,其中脈衝頻率(f)高於離子電漿頻率(fpi)
Figure 110123247-A0305-02-0012-1
其中n、e、ε0以及mi分別為電漿密度、元電荷、真空的 介電常數以及離子質量,我們具有所謂的矩陣護套,其中離子為不能移動的且電子被推送遠離壁。在這一情況下,護套厚度通過下式給出:
Figure 110123247-A0305-02-0013-2
其中,V0、kB以及Te分別代表跨越護套的電壓降、玻爾茲曼常數(Boltzmann constant)以及電子溫度。由λD指示的數量為通過下式給出的德拜長度(Debye length)
Figure 110123247-A0305-02-0013-3
取決於壁上的電壓的值,在矩陣護套的情況下,護套厚度可在德拜長度的數十到百分之一的範圍內。對於5×109立方厘米與5×1011立方厘米之間的常見電漿密度,電漿頻率在2兆赫茲與25兆赫茲之間比提取電壓的脈衝頻率(10千赫茲到50千赫茲)高得多。在這一情況下,離子具有足夠時間以通過護套中的電場加速且假定其運動無碰撞,護套厚度通過柴爾德定律(Child'slaw)給出:
Figure 110123247-A0305-02-0013-4
假定電子溫度為3.5電子伏特,護套厚度隨著電壓和隨著電漿密度的反相而增加,且對於所關注的範圍從幾分之一毫米變化到大約20毫米。
根據各種實施例,如上所述,可提取本實施例的離子束 作為脈衝式離子束。提取電壓系統可例如包含脈衝組件,例如根據目標脈衝期間和工作週期接通和斷開提取電壓脈衝的電路系統。在較小離子束電流的情況下,脈衝工作週期可為100%,即,連續離子提取。確切地說,脈衝期間和工作週期可布置成促進如下文所論述的成角度的離子束的提取。因為射束阻斷器108和電漿板106組件可由介電材料形成,所以離子束的脈衝可布置成考慮電漿護套的時間依賴性演進。
轉向圖2A到圖2D,根據本公開的實施例,在Z-Y空間中繪示隨時間而變的電子和離子分布的演進。在所繪示的模擬中,基底上的電壓(其中位置由z=2.5厘米處的垂直線表示)在-1千伏電壓下以20千赫茲脈衝頻率和50%工作週期脈衝。射束阻斷器和電漿板組件示意性地繪示為明亮的垂直延長矩形。射束阻斷器和電漿板建模為由介電材料(石英)製成,其中所述材料允許靜電地充電。圖2A和圖2B分別繪示在施加的負電壓脈衝開始之後1微秒處的電子和離子分布。因為石英允許電場線的傳輸,所以在脈衝開始(1微秒)處,在護套上發生高電壓降,因此產生相當大厚度(~6毫米)的護套。在提取縫隙附近的電場垂直於電漿板和射束阻斷器(沿著z方向)定向,且因此提取極少離子(如果存在)(參見圖2B中的離子分布)。
現轉到圖2C和圖2D,當電漿護套隨時間演進時,離子持續抵達電漿板和電漿阻斷器的內壁。在無到接地的路徑的存在下,離子將在電漿密度中產生不平衡,此狀況將引起兩極電場的 形成。在這一情況下,電子和離子的相等通量將引導朝向內壁。
Figure 110123247-A0305-02-0015-5
其中
Figure 110123247-A0305-02-0015-9
為在垂直於面板和阻斷器壁(z方向)的方向上電漿密度的梯度,且Da為雙級擴散係數。
Figure 110123247-A0305-02-0015-6
其中μe,i和De,i分別為電子和離子的遷移率和擴散係數。由於雙級擴散,護套厚度減小(收縮)直到其中電漿半月板形成於提取縫隙中且開始提取離子細束的點。護套厚度的這一降低可見於圖2C和圖2D,其中繪示在開始負電壓脈衝之後4微秒處電子和離子的z-y相空間。在這一實例下,如圖2D中所繪示,離子細束輕易地形成、提取以及引導到基底位置。
因此,根據各種實施例,電壓脈衝的工作週期和頻率可設置成提供給定脈衝的持續時間,所述持續時間超出電漿護套收縮(電漿護套收縮期間)和離子束提取的開始所需的時間。在以上實例中,假定4微秒的最小電漿護套收縮期間,10微秒或更大的脈衝持續時間可適合於確保離子束的恰當提取。在50%工作週期下,這一脈衝持續時間等於20微妙或更大的脈衝期間,意味著電壓脈衝頻率可設置為50kHz或更低以在圖2A到圖2D的情境中有效地提取離子。
圖3A到圖3C描繪上文所描述的且圖1中所繪示的處理系統100的操作情境,且示出提取區域(即阻斷器電極110與基 底122之間的區域)中的細束、形狀以及靜電位分布。更確切地說,圖3A到圖3C描繪繪示電漿腔室102的導電壁134、電漿板106、提取電極114、射束阻斷器108、阻斷器電極110以及基底122的OPERA模型化的結果。在所展示的系列視圖中,電漿密度和偏壓保持相同(600瓦rf功率和-1.5千伏),且在z方向上提取電極114與基底122之間的距離從圖3A中的6毫米增加到圖3B中的10毫米到圖3C中的15毫米。如可見,提取組合件130的介電結構對靜電場電位140是透明的,然而金屬結構不是透明的。因此,如圖3B中所繪示,靜電位線140延伸穿過射束阻斷器108的未由阻斷器電極110覆蓋的最外部分(下文中「未覆蓋部分142」),這未覆蓋部分142在y方向上具有高度(H-h)/2。類似地,如圖3B中所繪示,靜電位線140延伸穿過電漿板106的未由提取電極114覆蓋的部分(下文中「未覆蓋部分144」),這種未覆蓋部分144在y方向上具有高度r。經由開口s(參見圖3B)提取的離子在自然角度(由提取組合件130的幾何形狀給定)下將以通常由未覆蓋部分142、未覆蓋部分144的高度、偏壓以及在較小程度上離子束電流的比率指定的方式發散。因此,且還由於提取組合件的幾何對稱,離子細束112將具有相對於基底122的平面上的法線(即相對於Z軸)表徵為+/-Θ(參見圖3C)的角度的離子角分布。
圖3A到圖3C中所描繪的布置的離子角分布分別在圖4A到圖4C中所繪示的曲線中示出。當阻斷器電極110、提取電極114 以及基底122維持在下相同靜電位處時,離子源與基底122之間的電場幾乎全部集中在提取縫隙區中(參見等位線的分布)。因此,由於較小空間電荷效應,所提取的離子細束112的離子角分布不受z間隙長度影響,且其特性為准一致的,隨著提取電極114與基底122之間在z方向上的距離從6毫米增加到10毫米,且從10毫米增加到15毫米具有相同平均角度(40°)和略微增加的角展度(10°、11°以及12°)。因此,基底122可視需要移動遠離提取組合件,以便最小化從基底122蝕刻的材料對電漿腔室102的污染,同時保持離子細束112相對於基底122的平均角度。
現參考圖5,展示處理系統100的替代性實施例,其中實施第二脈衝式電壓電源150(即除上文所描述的脈衝式電壓電源124之外,下文稱為「第一脈衝式電壓電源124」)。第二脈衝式電壓電源150可耦接到阻斷器電極110以用於相對於提取電極114差分地偏置阻斷器電極110。第二脈衝式電壓電源150可為雙極的以促進相對於提取電極114的負偏置或正偏置。相位控制器152可連接於第一脈衝式電壓電源124與第二脈衝式電壓電源150與之間以確保在其間維持充分相位。
圖6A到圖6F描繪圖5中所繪示的處理系統100的差分地偏置實施例的操作情境,且示出提取區域中的細束、形狀以及靜電位分布。更確切地說,圖6A到圖6F描繪繪示電漿腔室102的導電壁134、電漿板106、提取電極114、射束阻斷器108、阻斷器電極110以及基底122的OPERA模型化的結果。在所展示的 系列視圖中,電漿密度、由第一脈衝式電壓電源124施加的偏壓以及提取電極114與基底122之間在z方向上的距離都保持相同(分別為600瓦rf功率、1.5千伏、以及15毫米),同時由第二脈衝式電壓電源150施加到阻斷器電極110的偏壓減小300伏的增量,從圖6A中1.8千伏減小到圖6D中的300伏。如可見,當相對電壓偏壓增加時,提取縫隙區域中的靜電位線140的分布變得不太密集且更朝向基底平行(即更接近於平行)。因此,細束112的角展度和基底上覆蓋面縮小。
圖6A到圖6F中所描繪的布置的離子角分布分別以圖7A到圖7F中所繪示的曲線示出。由於施加到阻斷器電極110的差分偏置,離子細束112相對於基底122的平面上的法線(即相對於Z軸)的平均角度可從圖7A中的52°降低到圖7E中的8°,然後平均角度可通過法線到圖7F中的-6°。因此,所公開的布置促進幾乎60°的可調諧性範圍。另外,細束112的角展度可從△V=-300伏下的15°(圖6A和圖7A)降低到△V=1200伏下的2.8°(圖6F和圖7F)。
圖8A和8B示出處理系統100的部分,所述處理系統100分別包含上文所描述的電漿腔室102和提取組合件130的透視圖和分解視圖。提取組合件130可包含電漿板106和射束阻斷器108,其中射束阻斷器108可延伸跨越提取孔138的後部且可緊固到電漿板106的後表面,例如通過延伸穿過形成於射束阻斷器108和電漿板106中的相應安裝孔160a、安裝孔160b以及安裝孔 162a、安裝孔162b的機械緊固件(未繪示)來進行。電漿板106可覆蓋電漿腔室102的打開前部且可緊固到電漿腔室102的前表面,例如通過延伸穿過形成於電漿板106和電漿腔室102中的相應安裝孔164a、安裝孔164b以及安裝孔166a、安裝孔166b的機械緊固件(未繪示)來進行。安置在電漿板106的前表面上且包圍提取孔138的提取電極114可由第一介電塗層115覆蓋且因此由圖8B中的虛線輪廓指示。安置在射束阻斷器108的前表面上的阻斷器電極110由第二介電塗層117覆蓋且因此由圖8B中的虛線輪廓指示。
圖9A到圖9C為示出製造提取組合件130的電漿板組合件的方法的一系列透視圖。圖10為示出相同方法的流程圖。參考圖9A且到圖10中的框200,可製造且提供電漿板106。在各種實例中,可從電絕緣材料的板(例如Al2O3(氧化鋁)、石英、AlN或其它合適的電絕緣體)的板機械加工電漿板106。本公開在此方面不受限制。電漿板106可界定沿著所繪示的笛卡爾坐標系的X軸延長的提取孔138。可選地,凹口或凹部170可形成(例如機械加工)於電漿板106的前表面中,凹口170具有適於容納下文進一步所描述的提取電極114的大小和形狀。在非限制性實例中,如沿著Z軸所測量,凹口170可具有在0.2毫米到0.3毫米的範圍內的深度。
參考圖9B且到圖10中的框210,提取電極114可形成或安置在包圍提取孔138的電漿板106的前表面上。在各種實例 中,提取電極114可由導電材料(例如鋁、鎳、鈦、銅、鉬、鎢或摻雜矽)形成,且可印刷、噴塗或粘附到電漿板106的前表面上。在非限制性實例中,如沿著Z軸所測量,提取電極114可具有在0.2毫米到0.3毫米的範圍內的厚度。如果凹口170形成於如上文所描述的電漿板106的前表面中(參見圖9A),那麼凹口170可填充有導電材料,例如通過將材料噴塗到凹口170中以形成提取電極114。
參考圖9C且到圖10中的框220,第一介電塗層115可施加到電漿板106和提取電極114。第一介電塗層115可覆蓋電漿板106的前表面和提取電極114。在各種實施例中,第一介電塗層115可由化學惰性的介電材料(例如Al2O3、Y2O3、ZrO2或其組合)形成,且可使用電漿噴塗工藝施加。本公開在此方面不受限制。可在施加第一介電塗層115期間遮罩提取電極114的小部分以提供未由第一介電塗層115覆蓋的暴露的連接器區域172,例如用於促進提取電極114到上文所描述的第一脈衝式電壓電源124的電連接。
圖11A到圖11C為示出製造提取組合件130的阻斷器組合件的方法的一系列透視圖。圖12為示出相同方法的流程圖。參考圖11A且到圖12中的框300,可製造和提供射束阻斷器108。在各種實例中,可從電絕緣材料(例如Al2O3(氧化鋁)、石英、AlN或其它合適的電絕緣體)的板機械加工射束阻斷器108。本公開在此方面不受限制。射束阻斷器108可沿著所繪示的笛卡爾坐 標系的X軸延長。
參考圖11B且到圖10中的框310,阻斷器電極110可形成或安置在射束阻斷器108的前表面上。在各種實例中,阻斷器電極110可由導電材料(例如鋁、鎳、鈦、銅、鉬、鎢或摻雜矽)形成,且可印刷、噴塗或粘附到射束阻斷器108的前表面上。在非限制性實例中,如沿著Z軸所測量,阻斷器電極110可具有在0.2毫米到0.3毫米的範圍內的厚度。
參考圖11C且到圖12中的框320,第二介電塗層117可施加到射束阻斷器108和阻斷器電極110。第二介電塗層117可覆蓋射束阻斷器108的前表面和阻斷器電極110。在各種實施例中,第二介電塗層117可由化學惰性的介電材料(例如Al2O3、Y2O3、ZrO2或其組合)形成,且可使用電漿噴射工藝施加。本公開在此方面不受限制。可在施加第二介電塗層117期間遮罩阻斷器電極110的小部分以提供未由第二介電塗層117覆蓋的暴露的連接器區域174,例如用於促進阻斷器電極110到上文所描述的脈衝式電壓電源124(或第二脈衝式電壓電源150)的電連接。
本實施例在本領域中提供大量優勢。在具有完全由介電材料覆蓋的低剖面的導電電極的新穎組合的提取組合件中發現第一優勢,因此促進具有高晶片上入射角度(>30°的平均角度)的離子細束的提取同時緩和金屬污染。另一優勢為能夠即時控制離子角度分布。另一優勢為能夠減少通過允許基底遠離電漿腔室同時保持離子細束的晶片上入射角度,來從基底濺鍍和/或化學蝕刻 的材料對電漿腔室的污染。此外,對於小型的離子束系統,從提取組合件配置去除基底,同時維持簡單二極體靜電提取工藝。另一優勢為使用相同電源以同時偏置基底和可偏置電極,從而簡化成本和設計複雜度。本實施例的優勢的另一實例為能夠使用浮動在高電壓電源上的簡單弱電壓電源以相對於萃取電極和基底將差分偏置提供到阻斷器電極。
本公開的範圍不受本文所描述的具體實施例的限制。實際上,除本文所描述的那些實施例和修改之外,所屬領域的一般技術人員根據以上描述和隨附圖式將顯而易見本公開的其它各種實施例和對本公開的修改。因此,這種其它實施例和修改傾向於屬於本公開的範圍。此外,儘管已出於特定目的在特定環境下在特定實施方案的上下文中描述了本公開,但本領域的一般技術人員將認識到其有用性並不限於此,並且出於任何數目的目的,本公開可以有利地在任何數目的環境中實施。因此,下文闡述的申請專利範圍應考慮如本文所述的本公開的全部範圍和精神來解釋。
100:處理系統
102:電漿腔室
103:處理腔室
104:介電窗
106:電漿板
108:射束阻斷器
110:阻斷器電極
112:離子細束
114:提取電極
115:第一介電塗層
117:第二介電圖層
120、122:基底
124:第一脈衝式電壓電源
130:提取組合件
132:電漿
134:導電壁
136:rf天線
138:提取孔

Claims (19)

  1. 一種離子束處理系統,包括:電漿腔室;電漿板,安置在所述電漿腔室旁邊,所述電漿板界定提取孔;射束阻斷器,安置在所述電漿腔室內且面向所述提取孔;阻斷器電極,安置在所述電漿腔室外部的所述射束阻斷器的表面上;以及提取電極,安置在所述電漿腔室外部的所述電漿板的表面上,其中所述電漿板由電絕緣材料形成,且所述射束阻斷器由電絕緣材料形成。
  2. 如請求項1所述的離子束處理系統,其中所述阻斷器電極由導電材料形成且被第一介電塗層覆蓋,且其中所述提取電極由導電材料形成且被第二介電塗層覆蓋。
  3. 如請求項2所述的離子束處理系統,其中所述阻斷器電極的部分未被所述第一介電塗層覆蓋,以用於促進所述阻斷器電極到脈衝式電壓電源的電連接。
  4. 如請求項2所述的離子束處理系統,其中所述提取電極的部分未被所述第二介電塗層覆蓋,以用於促進所述提取電極到脈衝式電壓電源的電連接。
  5. 如請求項1所述的離子束處理系統,其中所述阻斷器電極為平面的且具有在垂直於所述射束阻斷器的前表面的方向上測量的厚度,其中所述厚度小於1毫米。
  6. 如請求項1所述的離子束處理系統,其中所述提取電極為平面的且具有在垂直於所述電漿板的前表面的方向上測量的厚度,其中所述厚度小於1毫米。
  7. 如請求項1所述的離子束處理系統,其中所述阻斷器電極的最外邊緣在平行於所述射束阻斷器的前表面的方向上相對於所述射束阻斷器的最外邊緣凹入。
  8. 如請求項1所述的離子束處理系統,其中所述提取電極的最外邊緣在平行於所述電漿板的前表面的方向上相對於界限所述提取孔的所述電漿板的邊緣凹入。
  9. 如請求項1所述的離子束處理系統,更包括:脈衝式電壓電源,電耦接到所述電漿腔室和所述提取電極以在所述提取電極與所述電漿腔室之間產生偏壓。
  10. 如請求項9所述的離子束處理系統,所述脈衝式電壓電源具有脈衝組件以在所述提取電極與所述電漿腔室之間產生脈衝式偏壓。
  11. 如請求項9所述的離子束處理系統,更包括容納基底的處理腔室,所述脈衝式電壓電源在第一側上電耦接到所述電漿腔室且在第二側上電耦接到所述提取電極、所述阻斷器電極以及所述基底。
  12. 如請求項9所述的離子束處理系統,其中所述脈衝式電壓電源為第一脈衝式電壓電源,所述離子束處理系統更包括第二脈衝式電壓電源,所述第二脈衝式電壓電源電耦接到所述 阻斷器電極以用於相對於所述提取電極差分地偏置所述阻斷器電極。
  13. 一種離子束處理系統,包括:電漿腔室;電漿板,由電絕緣材料形成,安置在所述電漿腔室旁邊,所述電漿板界定提取孔;射束阻斷器,由電絕緣材料形成,安置在所述電漿腔室內且面向所述提取孔;阻斷器電極,由導電材料形成且被第一介電塗層覆蓋,安置在所述電漿腔室外部的所述射束阻斷器的表面上,其中所述阻斷器電極為平面的且具有在垂直於所述射束阻斷器的前表面的方向上測量的厚度,其中所述阻斷器電極的所述厚度小於1毫米;提取電極,由導電材料形成且被第二介電塗層覆蓋,安置在所述電漿腔室外部的所述電漿板的表面上,其中所述提取電極為平面的且具有在垂直於所述電漿板的前表面的方向上測量的厚度,其中所述提取電極的所述厚度小於1毫米;以及脈衝式電壓電源,電耦接到所述電漿腔室和所述提取電極以在所述提取電極與所述電漿腔室之間產生偏壓,其中所述提取電極的最外邊緣在平行於所述電漿板的前表面的方向上相對於界限所述提取孔的所述電漿板的邊緣凹入。
  14. 一種製造離子束處理系統的電漿板組合件的方法,所述方法包括: 提供由電絕緣材料形成的電漿板,所述電漿板界定伸長的提取孔;將導電材料施加到包圍所述提取孔的所述電漿板的前表面以形成提取電極,所述提取電極為平面的且具有在垂直於所述電漿板的所述前表面的方向上測量的小於1毫米的厚度;以及將介電塗層施加到所述電漿板和所述提取電極,所述介電塗層覆蓋所述電漿板的所述前表面和所述提取電極,其中所述提取電極的最外邊緣在平行於所述電漿板的前表面的方向上相對於界限所述提取孔的所述電漿板的邊緣凹入。
  15. 如請求項14所述的製造離子束處理系統的電漿板組合件的方法,其中將介電塗層施加到所述電漿板和所述提取電極包括遮罩所述提取電極的部分以提供不被所述介電塗層覆蓋的暴露的連接器區域,以用於促進所述提取電極到脈衝式電壓電源的電連接。
  16. 如請求項14所述的製造離子束處理系統的電漿板組合件的方法,更包括在將所述導電材料施加到所述電漿板的所述前表面之前,在所述電漿板的所述前表面中形成凹口以用於容納所述提取電極。
  17. 一種製造離子束處理系統的阻斷器組合件的方法,所述方法包括:在電漿腔室內提供由電絕緣材料形成的射束阻斷器;將導電材料施加到所述射束阻斷器的前表面以在所述電漿腔 室外部形成阻斷器電極,所述阻斷器電極為平面的且具有在垂直於所述射束阻斷器的所述前表面的方向上測量的小於1毫米的厚度;以及將介電塗層施加到所述射束阻斷器和所述阻斷器電極,所述介電塗層覆蓋所述射束阻斷器的所述前表面和所述阻斷器電極。
  18. 如請求項17所述的製造離子束處理系統的阻斷器組合件的方法,其中將所述介電塗層施加到所述射束阻斷器和所述阻斷器電極包括遮罩所述阻斷器電極的部分以提供未被所述介電塗層覆蓋的暴露的連接器區域,以用於促進所述阻斷器電極到脈衝式電壓電源的電連接。
  19. 如請求項17所述的製造離子束處理系統的阻斷器組合件的方法,其中所述阻斷器電極的最外邊緣在平行於所述射束阻斷器的所述前表面的方向上相對於所述射束阻斷器的最外邊緣凹入。
TW110123247A 2020-07-15 2021-06-25 離子束處理系統及其電漿板組合件和阻斷器組合件的製造方法 TWI794851B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/929,626 US11495430B2 (en) 2020-07-15 2020-07-15 Tunable extraction assembly for wide angle ion beam
US16/929,626 2020-07-15

Publications (2)

Publication Number Publication Date
TW202205344A TW202205344A (zh) 2022-02-01
TWI794851B true TWI794851B (zh) 2023-03-01

Family

ID=79292843

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110123247A TWI794851B (zh) 2020-07-15 2021-06-25 離子束處理系統及其電漿板組合件和阻斷器組合件的製造方法

Country Status (6)

Country Link
US (1) US11495430B2 (zh)
JP (1) JP2023534240A (zh)
KR (1) KR20230029980A (zh)
CN (1) CN115917697A (zh)
TW (1) TWI794851B (zh)
WO (1) WO2022015432A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171335A1 (en) * 2014-05-06 2015-11-12 Applied Materials, Inc. Directional treatment for multi-dimensional device processing
US9230773B1 (en) * 2014-10-16 2016-01-05 Varian Semiconductor Equipment Associates, Inc. Ion beam uniformity control
TW201611083A (zh) * 2014-09-10 2016-03-16 瓦里安半導體設備公司 電漿處理裝置、系統及以隱藏偏向電極控制離子束的方法
US20160189935A1 (en) * 2013-12-23 2016-06-30 Varian Semiconductor Equipment Associates, Inc. In situ control of ion angular distribution in a processing apparatus
US20170178866A1 (en) * 2015-12-22 2017-06-22 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for time modulated extraction of an ion beam
TW201740441A (zh) * 2014-04-10 2017-11-16 應用材料股份有限公司 3d結構半導體應用之利用圖案化自組裝單層的選擇性原子層沉積製程

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132046A1 (en) 2006-12-04 2008-06-05 Varian Semiconductor Equipment Associates, Inc. Plasma Doping With Electronically Controllable Implant Angle
US8101510B2 (en) 2009-04-03 2012-01-24 Varian Semiconductor Equipment Associates, Inc. Plasma processing apparatus
US7767977B1 (en) 2009-04-03 2010-08-03 Varian Semiconductor Equipment Associates, Inc. Ion source
JP5216918B2 (ja) 2009-07-16 2013-06-19 キヤノンアネルバ株式会社 イオンビーム発生装置、基板処理装置及び電子デバイスの製造方法
US8513619B1 (en) 2012-05-10 2013-08-20 Kla-Tencor Corporation Non-planar extractor structure for electron source
US9520267B2 (en) 2014-06-20 2016-12-13 Applied Mateirals, Inc. Bias voltage frequency controlled angular ion distribution in plasma processing
US9514918B2 (en) 2014-09-30 2016-12-06 Applied Materials, Inc. Guard aperture to control ion angular distribution in plasma processing
US9706634B2 (en) 2015-08-07 2017-07-11 Varian Semiconductor Equipment Associates, Inc Apparatus and techniques to treat substrates using directional plasma and reactive gas
US10224181B2 (en) 2016-04-20 2019-03-05 Varian Semiconductor Equipment Associates, Inc. Radio frequency extraction system for charge neutralized ion beam
US10141161B2 (en) 2016-09-12 2018-11-27 Varian Semiconductor Equipment Associates, Inc. Angle control for radicals and reactive neutral ion beams
US10553448B2 (en) * 2016-10-31 2020-02-04 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a polycrystalline layer using an angled ion beam
US10002764B1 (en) 2016-12-16 2018-06-19 Varian Semiconductor Equipment Associates, Inc. Sputter etch material selectivity
US10276340B1 (en) * 2017-12-20 2019-04-30 Varian Semiconductor Equipment Associates, Inc. Low particle capacitively coupled components for workpiece processing
US10325752B1 (en) * 2018-03-27 2019-06-18 Varian Semiconductor Equipment Associates, Inc. Performance extraction set
US11127593B2 (en) * 2018-05-18 2021-09-21 Varian Semiconductor Equipment Associates, Inc. Techniques and apparatus for elongation patterning using angled ion beams
US10468226B1 (en) * 2018-09-21 2019-11-05 Varian Semiconductor Equipment Associates, Inc. Extraction apparatus and system for high throughput ion beam processing
US11195703B2 (en) * 2018-12-07 2021-12-07 Applied Materials, Inc. Apparatus and techniques for angled etching using multielectrode extraction source
US11056319B2 (en) 2019-07-29 2021-07-06 Applied Materials, Inc. Apparatus and system having extraction assembly for wide angle ion beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160189935A1 (en) * 2013-12-23 2016-06-30 Varian Semiconductor Equipment Associates, Inc. In situ control of ion angular distribution in a processing apparatus
TW201740441A (zh) * 2014-04-10 2017-11-16 應用材料股份有限公司 3d結構半導體應用之利用圖案化自組裝單層的選擇性原子層沉積製程
WO2015171335A1 (en) * 2014-05-06 2015-11-12 Applied Materials, Inc. Directional treatment for multi-dimensional device processing
TW201611083A (zh) * 2014-09-10 2016-03-16 瓦里安半導體設備公司 電漿處理裝置、系統及以隱藏偏向電極控制離子束的方法
US9230773B1 (en) * 2014-10-16 2016-01-05 Varian Semiconductor Equipment Associates, Inc. Ion beam uniformity control
US20170178866A1 (en) * 2015-12-22 2017-06-22 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for time modulated extraction of an ion beam

Also Published As

Publication number Publication date
TW202205344A (zh) 2022-02-01
KR20230029980A (ko) 2023-03-03
US11495430B2 (en) 2022-11-08
WO2022015432A1 (en) 2022-01-20
CN115917697A (zh) 2023-04-04
US20220020557A1 (en) 2022-01-20
JP2023534240A (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
KR102213821B1 (ko) 기판으로 제공되는 이온 빔을 제어하는 프로세싱 장치 및 방법
JP7330361B2 (ja) 広角イオンビームのための抽出アセンブリを備えた装置およびシステム
US7507959B2 (en) Method for charging substrate to a potential
CN109417012B (zh) 处理设备及处理衬底的方法
US11361935B2 (en) Apparatus and system including high angle extraction optics
KR20110057295A (ko) 플라즈마 잠입 이온을 이용한 가공 장치 및 방법
US20200098540A1 (en) Extraction Apparatus and System for High Throughput Ion Beam Processing
TWI794851B (zh) 離子束處理系統及其電漿板組合件和阻斷器組合件的製造方法
US11948781B2 (en) Apparatus and system including high angle extraction optics
KR20240073994A (ko) 콤팩트한 낮은 각도 이온 빔 추출 조립체 및 처리 장치
WO2023064048A1 (en) Compact low angle ion beam extraction assembly and processing apparatus
KR100795963B1 (ko) 이온유도 이차전자방출계수를 위한 전류변화현상을측정하기 위한 γ-집속이온빔장치 및 방법