TWI794787B - Method for predicting life of battery online - Google Patents

Method for predicting life of battery online Download PDF

Info

Publication number
TWI794787B
TWI794787B TW110113159A TW110113159A TWI794787B TW I794787 B TWI794787 B TW I794787B TW 110113159 A TW110113159 A TW 110113159A TW 110113159 A TW110113159 A TW 110113159A TW I794787 B TWI794787 B TW I794787B
Authority
TW
Taiwan
Prior art keywords
prediction
starting point
learning model
life
point
Prior art date
Application number
TW110113159A
Other languages
Chinese (zh)
Other versions
TW202240477A (en
Inventor
王福琨
周家弘
曾誠
簡柏旻
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW110113159A priority Critical patent/TWI794787B/en
Publication of TW202240477A publication Critical patent/TW202240477A/en
Application granted granted Critical
Publication of TWI794787B publication Critical patent/TWI794787B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Secondary Cells (AREA)

Abstract

An online battery life prediction method is provided and includes the following steps. The health status of the battery is detected to obtain historical data. A backtracking training point and a prediction starting point are set, and the historical data between the backtracking training point and the predicted starting point is used as the training set. The training set is input to the machine learning model to obtain multiple prediction parameters at multiple time points in the future after the prediction starting point. The prediction parameters are input to the deep learning model, thereby calculating the residual life.

Description

線上電池壽命預測方法Online Battery Life Prediction Method

本發明是有關於一種使用壽命的預測方法,且特別是有關於一種線上(Online)電池壽命預測方法。The present invention relates to a service life prediction method, and in particular to an online (Online) battery life prediction method.

目前燃料電池發的應用產品包括定置型發電機、運輸工具電源系統、可攜式電源系統等。燃料電池在使用後,會因充電放電導致電容量逐漸下降,因此需要適時地更換。倘若無法提前得知更換燃料電池的確切時間,將會使消費者蒙受損失風險。因此需要透過預測方法來預測電池之剩餘壽命,以便消費者提前做預防保養的動作。At present, the application products of fuel cells include stationary generators, transportation power systems, and portable power systems. After the fuel cell is used, its capacity will gradually decrease due to charging and discharging, so it needs to be replaced in a timely manner. Failure to know in advance when the exact timing of fuel cell replacement will expose consumers to the risk of loss. Therefore, it is necessary to predict the remaining life of the battery through prediction methods, so that consumers can take preventive maintenance actions in advance.

目前市面上針對燃料電池的可使用壽命的預測方法,主要只是做模型的適配度分析。然,此種方法僅適用於已知資料,即,需要利用已知的未來資料的因變數來進行預測,判斷模型是否適合來對電池的可使用壽命進行預測。目前現有的預測方法都需要等待未來資料全部收集完成後才開始進行預測,故,這些方法並非適用於真實世界中,只是適用於模型研究或者針對具有一模一樣壽命週期的產品。At present, the prediction methods for the service life of fuel cells on the market are mainly to analyze the fitness of the model. However, this method is only applicable to known data, that is, it needs to use the dependent variables of known future data to make predictions, and judge whether the model is suitable for predicting the service life of the battery. At present, the existing forecasting methods need to wait for all future data to be collected before starting to forecast. Therefore, these methods are not suitable for the real world, but only for model research or for products with exactly the same life cycle.

現有的預測方法,皆是以單次預測做預測分析,所謂單次預測是指只利用單一模型做預測分析,未來因變數已知所以不需預測因變數。然,現有利用已知未來因變數的技術中存在下述問題。第一,模型利用已知資料準確度高但並未代表模型是真正合適。第二、必須等待到未來資料全部收集完成才可做預測,不符合真正可使用壽命預測的邏輯。在實務運作上,並無法取得未來資料,真實的已知資料應該只有時間資料而已。Existing forecasting methods all use single forecasting for predictive analysis. The so-called single forecasting refers to the use of only a single model for forecasting analysis. The future dependent variable is known, so there is no need to predict the dependent variable. However, existing techniques using known future dependent variables have the following problems. First, the high accuracy of the model using known data does not mean that the model is really suitable. Second, it is necessary to wait until all future data are collected before making predictions, which does not conform to the logic of true service life prediction. In practice, it is impossible to obtain future data, and the real known data should only be time data.

本發明提供一種線上電池壽命預測方法,將深度學習模型與機器學習模型互相搭配,藉此預測電池壽命失效點,以提供企業能在電池壽命失效前提早實施預防、保養等措施。The invention provides an online battery life prediction method, which combines a deep learning model and a machine learning model to predict the failure point of the battery life, so as to provide enterprises with early implementation of preventive and maintenance measures before the battery life fails.

本發明的線上電池壽命預測方法,包括:偵測電池的健康狀態而獲得歷史資料;設定回朔訓練點以及預測起始點,並以回朔訓練點與預測起始點之間的歷史資料作為訓練集;將訓練集輸入至機器學習模型,以獲得在預測起始點之後未來的多個時間點上的多個預測參數;以及將所述預測參數輸入至深度學習模型,藉此計算殘餘壽命。The online battery life prediction method of the present invention includes: detecting the state of health of the battery to obtain historical data; setting the retrospective training point and the starting point of prediction, and using the historical data between the retrospective training point and the starting point of prediction as the training set; inputting the training set into the machine learning model to obtain a plurality of prediction parameters at multiple time points in the future after the starting point of prediction; and inputting the prediction parameters into the deep learning model, thereby calculating the remaining life .

在本發明的一實施例中,上述將所述預測參數輸入至深度學習模型,藉此計算殘餘壽命的步驟包括:將所述預測參數輸入至深度學習模型以獲得在所述時間點上的多個能量預測值;判斷所述能量預測值是否小於閾值;在所述能量預測值中取出小於閾值且最接近閾值的其中一個能量預測值,將其對應的時間點作為最終壽命時間;以及以最終壽命時間與預測起始點之間的差作為殘餘壽命。In an embodiment of the present invention, the step of inputting the prediction parameters into the deep learning model to calculate the remaining life includes: inputting the prediction parameters into the deep learning model to obtain multiple energy prediction values; judge whether the energy prediction value is less than the threshold value; take one of the energy prediction values that is less than the threshold value and closest to the threshold value among the energy prediction values, and use its corresponding time point as the final life time; and finally The difference between the lifetime time and the predicted onset point is taken as the residual lifetime.

在本發明的一實施例中,上述線上電池壽命預測方法,更包括:設定預測步數為N,並設定每一步為O小時;以及設定在預測起始點之後未來的N個時間點。在判斷所述能量預測值是否小於閾值之後,更包括:倘若所述能量預測值皆未小於閾值,重新設定自預測起始點經過N×O小時後的未來N個時間點,以透過機器學習模型與深度學習模型來重新計算殘餘壽命。In an embodiment of the present invention, the above online battery life prediction method further includes: setting the number of prediction steps as N, and setting each step as 0 hours; and setting N future time points after the starting point of prediction. After judging whether the energy prediction value is less than the threshold, it further includes: if none of the energy prediction values is less than the threshold, resetting the future N time points after N×O hours from the prediction starting point, so as to use machine learning model with a deep learning model to recalculate the residual life.

在本發明的一實施例中,上述在獲得所述預測參數之後,更包括:將所述預測參數回傳至訓練集。In an embodiment of the present invention, after obtaining the prediction parameters, the method further includes: returning the prediction parameters to the training set.

在本發明的一實施例中,上述機器學習模型採用支持向量迴歸演算法、迴歸演算法以及隨機森林演算法其中一個,該深度學習演算法採用卷積神經網路以及稀疏自動編碼器(Sparse autoencoder)結合深度神經網路其中一個。In an embodiment of the present invention, the above-mentioned machine learning model adopts one of support vector regression algorithm, regression algorithm and random forest algorithm, and the deep learning algorithm adopts convolutional neural network and sparse autoencoder (Sparse autoencoder) ) combined with one of the deep neural networks.

在本發明的一實施例中,上述預測參數包括在每一時間點上的預測電壓值以及預測電流值。In an embodiment of the present invention, the prediction parameters include a predicted voltage value and a predicted current value at each time point.

在本發明的一實施例中,上述電池壽命預測方法,更包括:透過蒙地卡羅隨機關閉神經元方法(Monte Carlo (MC) dropout approach)來獲得預測區間。In an embodiment of the present invention, the above battery life prediction method further includes: obtaining a prediction interval through a Monte Carlo (MC) dropout approach.

基於上述,本揭示提出一種線上電池壽命預測方法,可以利用深度學習模型以及機器學習模型,搭配滾動式多步數的預測方式,預測電池壽命的失效點,藉此可提供企業在電池壽命失效前提早實施預防保養。Based on the above, this disclosure proposes an online battery life prediction method, which can use deep learning models and machine learning models, combined with a rolling multi-step prediction method, to predict the failure point of battery life, thereby providing enterprises with the premise of battery life failure. Implement preventive maintenance early.

當一顆完整未使用的電池在使用一段時間後,電池會產生退化等狀況,而從電池中收集到的參數及參數在衰弱時的狀況等數據並無法直接提供消費者幫助,因此需要透過一個預測方法來預測電池之殘餘壽命,以便消費者提前做預防保養的動作。據此,本揭示提供一種線上電池壽命預測方法,可實現線上壽命預測。When a completely unused battery is used for a period of time, the battery will degrade and other conditions, and the data collected from the battery and the state of the parameters at the time of weakening cannot directly provide consumers with help. Therefore, it is necessary to use a The prediction method is used to predict the remaining life of the battery, so that consumers can take preventive maintenance actions in advance. Accordingly, the present disclosure provides an online battery life prediction method, which can realize online life prediction.

在底下實施例中,線上電池壽命預測方法可由具有運算功能的電子裝置來實現。此電子裝置包括處理器以及儲存器。處理器可以是具備運算處理能力的硬體(例如晶片組、處理器等)、軟體元件(例如作業系統、應用程式等),或硬體及軟體元件的組合。影像處理器110例如是中央處理單元(Central processing unit,CPU)、圖形處理單元(Graphics processing unit,GPU),或是其他可程式化之微處理器(Microprocessor)、數位訊號處理器(Digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(Application specific integrated circuits,ASIC)、程式化邏輯裝置(Programmable logic device,PLD)或其他類似裝置。In the following embodiments, the online battery life prediction method can be implemented by an electronic device with a computing function. The electronic device includes a processor and a memory. A processor can be hardware (such as chipsets, processors, etc.), software components (such as operating systems, application programs, etc.), or a combination of hardware and software components with computing capabilities. The image processor 110 is, for example, a central processing unit (Central processing unit, CPU), a graphics processing unit (Graphics processing unit, GPU), or other programmable microprocessor (Microprocessor), digital signal processor (Digital signal processor) , DSP), programmable controller, application specific integrated circuits (Application specific integrated circuits, ASIC), programmable logic device (Programmable logic device, PLD) or other similar devices.

儲存器例如是任意型式的固定式或可移動式隨機存取記憶體、唯讀記憶體、快閃記憶體、安全數位卡、硬碟或其他類似裝置或這些裝置的組合。儲存器中儲存有至少一程式碼片段,而上述程式碼片段在被安裝後,由處理器來執行以實現線上電池壽命預測方法。在底下實施例中所提及的「電池」包括燃料電池。The storage is, for example, any type of fixed or removable random access memory, read only memory, flash memory, secure digital card, hard disk, or other similar devices or combinations thereof. At least one program code segment is stored in the memory, and the above program code segment is executed by the processor to realize the online battery life prediction method after being installed. The "battery" mentioned in the following examples includes fuel cells.

圖1是依照本發明一實施例的線上電池壽命預測方法的流程圖。請參照圖1,在步驟S105中,偵測電池的健康狀態而獲得歷史資料。在此,透過電池的充、放電實驗來偵測電池的健康狀態,藉此來收集電壓值、電流值、能量(電壓值×電流值)等歷史資料。例如,以預診斷與健康管理(Prognostic and health management,PHM)工具來收集電池的歷史資料。假設原始收集的歷史資料共127340筆,之後透過取平均的方式將資料轉換為以小時為單位,轉換後測試資料從0小時到1021小時。接著,執行資料前處理,例如利用局部預估散點平滑(Locally estimated scatterplot smoothly,LOESS)將原始資料平滑化。FIG. 1 is a flowchart of an online battery life prediction method according to an embodiment of the present invention. Referring to FIG. 1 , in step S105 , the state of health of the battery is detected to obtain historical data. Here, the state of health of the battery is detected through the charging and discharging experiments of the battery, so as to collect historical data such as voltage value, current value, and energy (voltage value × current value). For example, a Prognostic and health management (PHM) tool is used to collect historical data on batteries. Assume that there are 127,340 pieces of historical data collected originally, and then convert the data into hours by taking the average. After conversion, the test data ranges from 0 hours to 1021 hours. Next, perform data preprocessing, such as using Locally estimated scatterplot smoothing (LOESS) to smooth the original data.

在步驟S110中,設定回朔訓練點以及預測起始點,並以回朔訓練點與預測起始點之間的歷史資料作為訓練集。在此步驟中,設定第一階段預測的自變數,即預測起始點與回朔訓練點。以預測起始點與回朔訓練點這兩點之間作為預測模型的訓練長度(Training length),將回朔訓練點與預測起始點之間的歷史資料作為訓練集。在此,回朔訓練點早於預測起始點,在預測起始點後便無記載電池的歷史資料。In step S110 , set the retrospective training point and the forecast starting point, and use the historical data between the retrospective training point and the forecast starting point as a training set. In this step, set the independent variables of the first stage prediction, that is, the starting point of prediction and the backtracking training point. The training length between the prediction starting point and the retrospective training point is used as the training length of the prediction model, and the historical data between the retrospective training point and the predicted starting point is used as the training set. Here, the retrospective training point is earlier than the forecast start point, and there is no historical data of the battery recorded after the forecast start point.

圖2A是本發明一實施例的電壓資料的曲線圖。圖2B是本發明一實施例的電流資料的曲線圖。請參照圖2A及圖2B,在本實施例中僅偵測0~550小時的歷史資料。故,將550小時設定為預測起始點(Starting point, SP),在預測起始點SP之後的未來時間T2並不包括任何已知資料。並且,在0~550之間再設定一回朔訓練點(Backtracking point, BP)。例如,使用者可根據其經驗以及電池種類來設定回朔訓練點BP。或者,可根據所需的歷史資料的數量來設定回朔訓練點BP。以預測起始點SP與回朔訓練點BP這兩點之間的訓練時間長度T1所包括的歷史資料作為訓練集。FIG. 2A is a graph of voltage data according to an embodiment of the present invention. FIG. 2B is a graph of current data according to an embodiment of the present invention. Please refer to FIG. 2A and FIG. 2B , in this embodiment, only the historical data of 0-550 hours are detected. Therefore, 550 hours is set as the forecast starting point (Starting point, SP), and the future time T2 after the forecast starting point SP does not include any known data. And, set a backtracking point (Backtracking point, BP) between 0-550. For example, the user can set the backtracking training point BP according to his experience and battery type. Alternatively, the retrospective training point BP can be set according to the amount of required historical data. The historical data included in the training time length T1 between the prediction starting point SP and the backtracking training point BP are used as the training set.

接著,在步驟S115中,將訓練集輸入至機器學習模型,以獲得在預測起始點SP之後未來的多個時間點上的多個預測參數。所述機器學習模型採用支持向量迴歸(Support vector regression,SVR)演算法。Next, in step S115, the training set is input into the machine learning model to obtain multiple prediction parameters at multiple time points in the future after the prediction starting point SP. The machine learning model adopts a support vector regression (Support vector regression, SVR) algorithm.

具體而言,在決定訓練時間長度T1之後,利用訓練時間長度T1中的訓練集來預測未來時間T2的預測電壓值以及預測電流值。在本實施例中,使用基於SVR演算法的機器學習模型。SVR模型訓練速度快,時間成本低、短期預測效果佳。Specifically, after the training time length T1 is determined, the predicted voltage value and the predicted current value at the future time T2 are predicted using the training set in the training time length T1. In this embodiment, a machine learning model based on the SVR algorithm is used. SVR model training speed is fast, the time cost is low, and the short-term prediction effect is good.

第一階段預測以時間為自變數,SVR模型的演算法如下公式(1)、(2)所示:

Figure 02_image001
(1)
Figure 02_image003
(2) The first stage forecast takes time as an independent variable, and the algorithm of the SVR model is shown in the following formulas (1) and (2):
Figure 02_image001
(1)
Figure 02_image003
(2)

其中,w為SVR模型的係數矩陣,C是L2正規化(L2 Regularization)的正規因子,且C>0,x i是輸入值,y i是輸出值,ε是超平面(Hyperplane)與邊際(Margin)線的距離,

Figure 02_image005
Figure 02_image007
是邊際線外的點與邊際的距離。即,將訓練時間長度T1中的訓練集作為輸入值x i,來獲得輸出值y i(即,預測參數)。 Among them, w is the coefficient matrix of the SVR model, C is the regular factor of L2 regularization (L2 Regularization), and C>0, x i is the input value, y i is the output value, ε is the hyperplane (Hyperplane) and the margin ( Margin) line distance,
Figure 02_image005
and
Figure 02_image007
is the distance from the point outside the boundary line to the boundary. That is, the training set in the training time length T1 is used as the input value xi to obtain the output value y i (ie, the prediction parameter).

在獲得在預測起始點SP之後未來的多個時間點上的多個預測參數之後,在步驟S120中,將所述預測參數輸入至深度學習模型,藉此計算殘餘壽命。深度學習演算法採用卷積神經網路(Convolutional neural network,CNN)以及稀疏自動編碼器(Sparse autoencoder,SAE)結合深度神經網路(Deep neural network,DNN)其中一個。在此,採用SAE結合DNN的演算法。After obtaining a plurality of prediction parameters at a plurality of time points in the future after the prediction start point SP, in step S120, the prediction parameters are input into the deep learning model, thereby calculating the remaining lifespan. The deep learning algorithm uses one of the convolutional neural network (CNN) and the sparse autoencoder (SAE) combined with the deep neural network (DNN). Here, an algorithm combining SAE with DNN is adopted.

SAE演算法公式如公式(3)、(4)所示:

Figure 02_image009
(3)
Figure 02_image011
(4) SAE algorithm formulas are shown in formulas (3) and (4):
Figure 02_image009
(3)
Figure 02_image011
(4)

其中,h(∙)是隱藏層、x' i是輸入值、

Figure 02_image013
是估計的輸出值、W是在SAE演算法使用的係數矩陣、b是誤差項、σ是非線性激活函數(Rectified linear unit,ReLU),SAE演算法中的損失函數F使用均方誤差(Mean square error,MSE)MSELoss(∙)加上L1正規化,藉此讓SAE演算法具有稀疏的特性。 where h(∙) is the hidden layer, x' i is the input value,
Figure 02_image013
is the estimated output value, W is the coefficient matrix used in the SAE algorithm, b is the error term, σ is the nonlinear activation function (Rectified linear unit, ReLU), and the loss function F in the SAE algorithm uses the mean square error (Mean square error, MSE) MSELoss(∙) plus L1 regularization, so that the SAE algorithm has sparse characteristics.

DNN演算法如公式(5)、(6)所示:

Figure 02_image015
(5)
Figure 02_image017
(6) The DNN algorithm is shown in formulas (5) and (6):
Figure 02_image015
(5)
Figure 02_image017
(6)

其中h'(∙)是隱藏層、x" i是輸入值、

Figure 02_image019
是估計的輸出值、W'是在DNN演算法使用的係數矩陣、b'是誤差項、σ'是非線性激活函數,DNN演算法中的損失函數F'使用均方誤差MSELoss(∙)。 where h'(∙) is the hidden layer, x" i is the input value,
Figure 02_image019
is the estimated output value, W' is the coefficient matrix used in the DNN algorithm, b' is the error term, σ' is the nonlinear activation function, and the loss function F' in the DNN algorithm uses the mean square error MSELoss(∙).

即,將步驟S115獲得的預測參數作為SAE的輸入值x' i,進而獲得估計的輸出值

Figure 02_image013
。之後,將SAE的輸出值
Figure 02_image013
作為DNN的輸入值x" i,進而獲得估計的輸出值
Figure 02_image019
。輸出值
Figure 02_image019
為能量預測值。 That is, the prediction parameters obtained in step S115 are used as the input value x' i of SAE, and then the estimated output value is obtained
Figure 02_image013
. After that, the output value of SAE
Figure 02_image013
As the input value x" i of DNN, and then obtain the estimated output value
Figure 02_image019
. output value
Figure 02_image019
is the predicted energy value.

進一步地說,計算殘餘壽命的步驟如下所述。將步驟S115所獲得的預測參數輸入至深度學習模型以獲得在預測起始點SP之後未來的多個時間點上的多個能量預測值。之後,判斷所述能量預測值是否小於閾值。在所述多個能量預測值中取出小於閾值且最接近閾值的其中一個能量預測值,將其對應的時間點作為最終壽命時間。接著,以最終壽命時間與預測起始點之間的差作為殘餘壽命。Further, the steps for calculating the remaining lifetime are as follows. The prediction parameters obtained in step S115 are input into the deep learning model to obtain multiple energy prediction values at multiple time points in the future after the prediction starting point SP. Afterwards, it is judged whether the predicted energy value is smaller than a threshold. One of the predicted energy values that is smaller than the threshold and closest to the threshold is taken from the plurality of predicted energy values, and the corresponding time point is used as the final life time. Then, the difference between the final life time and the predicted starting point is taken as the residual life.

圖3是依照本發明一實施例的能量預測值的曲線圖。請參照圖3,0~550小時是由歷史資料所獲得的真實能量值,第550小時之後則是利用深度學習模型與深度神經網路模型所獲得的能量預測值。設定一閾值(Threshold, TH)來找出小於閾值且最接近閾值的能量預測值。FIG. 3 is a graph of energy prediction values according to an embodiment of the invention. Please refer to Figure 3. Hours 0 to 550 are the real energy values obtained from historical data, and hours after the 550th hour are energy prediction values obtained using deep learning models and deep neural network models. A threshold (Threshold, TH) is set to find an energy prediction value that is smaller than the threshold and closest to the threshold.

此外,還可進一步加入滾動式預測(Rolling forecast),以提高預測的準確度。圖4是依照本發明一實施例的線上電池壽命預測方法的流程圖。請參照圖4,在步驟S405中,獲得歷史資料。接著,在步驟S410,設定參數。即,設定回朔訓練點、預測起始點,並且設定預測步數(Prediction step)為N,並設定每一步為O小時。In addition, a rolling forecast can be further added to improve the accuracy of the forecast. FIG. 4 is a flowchart of an online battery life prediction method according to an embodiment of the present invention. Please refer to FIG. 4, in step S405, historical data is obtained. Next, in step S410, parameters are set. That is, set the backtracking training point and prediction starting point, and set the number of prediction steps (Prediction step) as N, and set each step as O hours.

接著,在步驟S410中,執行SVR模型。在此,以時間為自變數(Independent variable)來預測出未來資料的因變數(Controlled variable),即,預測參數。以N=3、O=1且預測起始點SP為550小時來說明,預測在預測起始點SP之後未來的3個時間點上的預測參數,即,551、552、553小時的預測參數。Next, in step S410, execute the SVR model. Here, time is used as an independent variable (Independent variable) to predict the dependent variable (Controlled variable) of future data, that is, the prediction parameter. Take N=3, O=1 and the prediction start point SP is 550 hours to illustrate, predict the prediction parameters at three future time points after the prediction start point SP, that is, the prediction parameters of 551, 552, and 553 hours .

並且,在步驟S415中,更新訓練集。即,將SVR模型每一次所獲得的預測參數回傳至訓練集中,並且記錄每一次SVR模型的參數,例如,伽瑪(Gamma)參數、懲罰係數(Cost)等。And, in step S415, the training set is updated. That is, return the prediction parameters obtained by the SVR model each time to the training set, and record the parameters of each SVR model, such as Gamma (Gamma) parameters, penalty coefficient (Cost), etc.

之後,在步驟S420中,執行SAE-DNN模型。SAE-DNN模型對於變數少的資料而言,運算速度快、學習趨勢佳。利用步驟S410所預測出來的預測參數(預測電壓值以及預測電流值)、時間(預測起始點SP與回朔訓練點BP),來獲得能量預測值。例如,以551、552、553小時的預測參數來獲得551、552、553小時的能量預測值。Afterwards, in step S420, the SAE-DNN model is executed. For data with few variables, the SAE-DNN model has fast calculation speed and good learning tendency. The predicted energy value is obtained by using the predicted parameters (predicted voltage value and predicted current value) and time (predicted starting point SP and backtracking training point BP) predicted in step S410. For example, energy prediction values for hours 551, 552, and 553 are obtained by using prediction parameters for hours 551, 552, and 553.

在步驟S425中,判斷能量預測值是否小於閾值。倘若所述能量預測值皆未小於閾值,按照預測步數,繼續滾動式預測,直到能量預測值低於閾值時停止滾動式預測。即,以N=3、O=1且預測起始點SP為550小時來說明,重新設定自預測起始點SP經過3×1小時後的未來3個時間點(即554、555、556小時),重新執行步驟S410~步驟S425。In step S425, it is judged whether the predicted energy value is smaller than a threshold. If none of the predicted energy values is less than the threshold, the rolling prediction is continued according to the number of prediction steps, and the rolling prediction is stopped when the predicted energy value is lower than the threshold. That is, by taking N=3, O=1 and the forecast start point SP as 550 hours, reset the future 3 time points after 3×1 hours from the forecast start point SP (that is, 554, 555, 556 hours ), re-execute steps S410 to S425.

若迴圈停止,即,其中一個能量預測值小於閾值,則在所述能量預測值中取出小於閾值且最接近閾值的其中一個能量預測值,將其能量預測值對應的時間點作為最終壽命時間。以圖3而言,將最終壽命時間(End point, EP)與預測起始點SP之間的差(EP-SP)作為殘餘壽命。If the loop stops, that is, one of the predicted energy values is less than the threshold, then one of the predicted energy values that is smaller than the threshold and closest to the threshold is taken from the predicted energy values, and the time point corresponding to the predicted energy value is taken as the final life time . Taking Figure 3 as an example, the difference (EP-SP) between the final life time (End point, EP) and the predicted starting point SP is regarded as the residual life.

在未進行可靠度預估之前,由於所得到的結果為預測值,因此可能會造成偏差,故,必須提供預測區間(Prediction interval)(例如具有95%的信心水準)來判斷預測結果的偏差。倘若預測結果落於在預測區間中,代表其可靠度高。Before the reliability estimation is performed, the obtained results are predicted values, which may cause deviations. Therefore, a prediction interval (prediction interval) (for example, a 95% confidence level) must be provided to judge the deviation of the prediction results. If the prediction result falls within the prediction interval, it means its reliability is high.

故,在SAE-DNN模型中,還可進一步利用並能利用蒙地卡羅隨機關閉神經元方法(Monte Carlo (MC) dropout approach)建立預測區間,並算出同架構下的神經網路不確定性(預測區間)。MC隨機關閉神經元方法如公式(7)所示:

Figure 02_image021
(7) Therefore, in the SAE-DNN model, the Monte Carlo (MC) dropout approach can be further used to establish a prediction interval and calculate the uncertainty of the neural network under the same architecture (prediction interval). The MC method of randomly closing neurons is shown in formula (7):
Figure 02_image021
(7)

其中f h是隨機關閉神經元(Dropout)函數,t是輸入值,d i是遮罩(Dropout mask),M是預測的次數。利用公式(8)來計算出均值p,利用公式(9)計算出預估值u作為預測變異數,進而得到預測區間。

Figure 02_image023
(8)
Figure 02_image025
(9) Where f h is the random closing neuron (Dropout) function, t is the input value, d i is the mask (Dropout mask), and M is the number of predictions. Use the formula (8) to calculate the mean value p, and use the formula (9) to calculate the estimated value u as the predicted variance, and then get the prediction interval.
Figure 02_image023
(8)
Figure 02_image025
(9)

所述預測區間所指為信賴區間(Confidence interval),其可依照使用者對不同產品可接受的程度而定。例如,在95%的信心水準下,假設為常態分配的Z值為1.96,則預測區間為:[殘餘壽命-

Figure 02_image027
,殘餘壽命+
Figure 02_image029
]。 The prediction interval refers to a confidence interval (Confidence interval), which can be determined according to the user's acceptance of different products. For example, at a confidence level of 95%, assuming a Z-value of 1.96 for the normal distribution, the prediction interval is: [Residual life -
Figure 02_image027
, remaining life +
Figure 02_image029
].

底下表1示例出根據上述實施例來執行一驗證程序的預測結果。Table 1 below illustrates the prediction results of performing a verification procedure according to the above-mentioned embodiment.

表1 預測起始點(Hours) 真實量測的殘餘壽命(Hours) 經由上述實施例所獲得的殘餘壽命 (Hours) 誤差 預測區間 550 385 392.0059 7.01 [390.37,394.37] 600 335 336.8737 1.87 [336.45,337.27] 650 285 286.6364 1.64 [284.43,287.15] 700 235 236.3693 1.36 [236.08,236.69] 750 185 186.2191 1.22 [186.57,185.57] 800 135 135.2503 0.25 [134.44,135.65] 850 85 85.7036 0.70 [85.52,85.74] Table 1 Forecast starting point (Hours) Actual measured residual life (Hours) Remaining life (Hours) obtained through the above examples error prediction interval 550 385 392.0059 7.01 [390.37,394.37] 600 335 336.8737 1.87 [336.45,337.27] 650 285 286.6364 1.64 [284.43,287.15] 700 235 236.3693 1.36 [236.08,236.69] 750 185 186.2191 1.22 [186.57,185.57] 800 135 135.2503 0.25 [134.44,135.65] 850 85 85.7036 0.70 [85.52,85.74]

綜上所述,本發明方法與傳統方法不同之處在於:本發明利用雙次預測的方式,其中第一次預測先利用時間預測出未來資料的因變數,第二次預測是利用第一次預測出的未來因變數來計算殘餘壽命。在實務運作上,未來資料不可能已知,本發明提供滾動式多步數預測,滾動步數的長度可以設定為一小時、一天、一個月,視不同的產品壽命週期而訂定,以多步數預測向未來滾動式預測,較符合實務上之應用。In summary, the difference between the method of the present invention and the traditional method is that the present invention utilizes double forecasting, wherein the first forecast uses time to predict the dependent variable of future data, and the second forecast uses the first The predicted future dependent variables are used to calculate the residual life. In practical operation, future data cannot be known. The present invention provides rolling multi-step forecasting. The length of rolling steps can be set to one hour, one day, one month, depending on different product life cycles. The rolling forecast of the number of steps forward to the future is more in line with practical applications.

透過本發明可得到電池殘餘壽命的預測時間以及預測區間,用以輔助業主評估未來需要準備多少時間來準備新的電池,訂定何時需要提前更換相關準則以防止停機問題,或如何提升裝載的電控系統來增加延長電池壽命殘餘壽命。The prediction time and prediction interval of the remaining battery life can be obtained through the present invention, which can be used to assist the owner in evaluating how much time is needed to prepare a new battery in the future, and to determine when to replace the relevant criteria in advance to prevent shutdown problems, or how to increase the loaded battery. control system to increase and prolong battery life remaining life.

S105~S120:線上電池壽命預測方法的步驟 S405~S430:線上電池壽命預測方法的步驟 BP:回朔訓練點 EP:最終壽命時間 SP:預測起始點 T1:訓練時間長度 T2:未來時間 S105~S120: steps of online battery life prediction method S405~S430: Steps of Online Battery Life Prediction Method BP: backtracking training point EP: end life time SP: prediction starting point T1: training time length T2: future time

圖1是依照本發明一實施例的線上電池壽命預測方法的流程圖。 圖2A是本發明一實施例的電壓資料的曲線圖。 圖2B是本發明一實施例的電流資料的曲線圖。 圖3是依照本發明一實施例的能量預測值的曲線圖。 圖4是依照本發明一實施例的線上電池壽命預測方法的流程圖。 FIG. 1 is a flowchart of an online battery life prediction method according to an embodiment of the present invention. FIG. 2A is a graph of voltage data according to an embodiment of the present invention. FIG. 2B is a graph of current data according to an embodiment of the present invention. FIG. 3 is a graph of energy prediction values according to an embodiment of the invention. FIG. 4 is a flowchart of an online battery life prediction method according to an embodiment of the present invention.

S105~S120:線上電池壽命預測方法的步驟 S105~S120: steps of online battery life prediction method

Claims (6)

一種線上電池壽命預測方法,包括:偵測一電池的健康狀態而獲得一歷史資料;設定一回朔訓練點以及一預測起始點,並以該回朔訓練點與該預測起始點之間的歷史資料作為一訓練集;將該訓練集輸入至一機器學習模型,以獲得在該預測起始點之後未來的多個時間點上的多個預測參數;以及將該些預測參數輸入至一深度學習模型,藉此計算一殘餘壽命,其中將該些預測參數輸入至該深度學習模型,藉此計算該殘餘壽命的步驟包括:將該些預測參數輸入至該深度學習模型以獲得在該些時間點上的多個能量預測值;判斷該些能量預測值是否小於一閾值;在該些能量預測值中取出小於該閾值且最接近該閾值的其中一個能量預測值,將該其中一個能量預測值對應的時間點作為該最終壽命時間;以及以該最終壽命時間與該預測起始點之間的差作為該殘餘壽命。 An online battery life prediction method, comprising: detecting a battery's state of health to obtain a historical data; setting a backtracking training point and a forecast starting point, and using the distance between the backtracking training point and the forecast starting point historical data as a training set; input the training set into a machine learning model to obtain a plurality of forecast parameters at multiple time points in the future after the forecast starting point; and input these forecast parameters into a A deep learning model, whereby a residual life is calculated, wherein the prediction parameters are input into the deep learning model, whereby the step of calculating the residual life includes: inputting the prediction parameters into the deep learning model to obtain the A plurality of energy prediction values at a time point; judging whether these energy prediction values are less than a threshold value; taking one of the energy prediction values that is smaller than the threshold value and closest to the threshold value among the energy prediction values, and predicting one of the energy values The time point corresponding to the value is taken as the final life time; and the difference between the final life time and the predicted starting point is taken as the residual life. 如請求項1所述的線上電池壽命預測方法,更包括:設定一預測步數為N,並設定每一步為O小時;以及設定在該預測起始點之後未來的N個時間點;其中,在判斷該些能量預測值是否小於該閾值之後,更包括: 倘若該些能量預測值皆未小於該閾值,重新設定自該預測起始點經過N×O小時後的未來N個時間點,以透過該機器學習模型與該深度學習模型來重新計算該殘餘壽命。 The online battery life prediction method as described in claim 1 further includes: setting a number of prediction steps to be N, and setting each step to be O hours; and setting N time points in the future after the starting point of the prediction; wherein, After judging whether the predicted energy values are less than the threshold, it further includes: If none of the predicted energy values is less than the threshold, reset N time points in the future after N×O hours from the starting point of the prediction, so as to recalculate the residual life through the machine learning model and the deep learning model . 如請求項1所述的線上電池壽命預測方法,其中在獲得該些預測參數之後,更包括:將該些預測參數回傳至該訓練集。 The online battery life prediction method according to claim 1, after obtaining the prediction parameters, further includes: returning the prediction parameters to the training set. 如請求項1所述的線上電池壽命預測方法,其中該機器學習模型採用支持向量迴歸演算法、迴歸演算法以及隨機森林演算法其中一個,該深度學習演算法採用卷積神經網路以及稀疏自動編碼器(Sparse autoencoder)結合深度神經網路其中一個。 The online battery life prediction method as described in claim item 1, wherein the machine learning model adopts one of support vector regression algorithm, regression algorithm and random forest algorithm, and the deep learning algorithm adopts convolutional neural network and sparse automatic The encoder (Sparse autoencoder) combines one of the deep neural networks. 如請求項1所述的線上電池壽命預測方法,其中該些預測參數包括在每一該些時間點上的一預測電壓值以及一預測電流值。 The online battery life prediction method according to claim 1, wherein the prediction parameters include a predicted voltage value and a predicted current value at each of the time points. 如請求項1所述的線上電池壽命預測方法,更包括:透過一蒙地卡羅隨機關閉神經元方法來獲得一預測區間。 The online battery life prediction method described in Claim 1 further includes: obtaining a prediction interval by a Monte Carlo method of randomly closing neurons.
TW110113159A 2021-04-13 2021-04-13 Method for predicting life of battery online TWI794787B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110113159A TWI794787B (en) 2021-04-13 2021-04-13 Method for predicting life of battery online

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113159A TWI794787B (en) 2021-04-13 2021-04-13 Method for predicting life of battery online

Publications (2)

Publication Number Publication Date
TW202240477A TW202240477A (en) 2022-10-16
TWI794787B true TWI794787B (en) 2023-03-01

Family

ID=85460452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113159A TWI794787B (en) 2021-04-13 2021-04-13 Method for predicting life of battery online

Country Status (1)

Country Link
TW (1) TWI794787B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591359B (en) * 2016-10-21 2017-07-11 聖約翰科技大學 State-of-Health estimator for lithium battery, and training method and estimating method of the estimator
CN108279383A (en) * 2017-11-30 2018-07-13 深圳市科列技术股份有限公司 battery life predicting method, battery data server and battery data processing system
US20190113577A1 (en) * 2017-10-17 2019-04-18 The Board Of Trustees Of The Leland Stanford Junior University Data-driven Model for Lithium-ion Battery Capacity Fade and Lifetime Prediction
CN109934294A (en) * 2019-03-18 2019-06-25 常伟 A method of batteries of electric automobile SOH prediction is carried out based on big data machine learning
US20190257886A1 (en) * 2018-02-21 2019-08-22 Nec Laboratories America, Inc. Deep learning approach for battery aging model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591359B (en) * 2016-10-21 2017-07-11 聖約翰科技大學 State-of-Health estimator for lithium battery, and training method and estimating method of the estimator
US20190113577A1 (en) * 2017-10-17 2019-04-18 The Board Of Trustees Of The Leland Stanford Junior University Data-driven Model for Lithium-ion Battery Capacity Fade and Lifetime Prediction
CN108279383A (en) * 2017-11-30 2018-07-13 深圳市科列技术股份有限公司 battery life predicting method, battery data server and battery data processing system
US20190257886A1 (en) * 2018-02-21 2019-08-22 Nec Laboratories America, Inc. Deep learning approach for battery aging model
CN109934294A (en) * 2019-03-18 2019-06-25 常伟 A method of batteries of electric automobile SOH prediction is carried out based on big data machine learning

Also Published As

Publication number Publication date
TW202240477A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
Xie et al. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure
CN110413227B (en) Method and system for predicting remaining service life of hard disk device on line
CN111680848A (en) Battery life prediction method based on prediction model fusion and storage medium
CN111984513A (en) Predictive maintenance method, device, equipment and storage medium
CN111639783A (en) Line loss prediction method and system based on LSTM neural network
CN109242169B (en) Short-term load prediction method for large power customer
CN112433896B (en) Method, device, equipment and storage medium for predicting server disk faults
CN116683588A (en) Lithium ion battery charge and discharge control method and system
CN108459991B (en) Method for obtaining equipment reliability data
Jin et al. A methodology for equipment condition simulation and maintenance threshold optimization oriented to the influence of multiple events
TWI794787B (en) Method for predicting life of battery online
CN117054892B (en) Evaluation method, device and management method for battery state of energy storage power station
US11402889B2 (en) Storage medium, job power estimation method, and job power estimating device
CN115544803B (en) Transformer residual life prediction method, device, equipment and storage medium
Qian et al. An attention-based GRU encoder decoder for hostload prediction in a data center
Kunlong et al. SOH estimation for lithium-ion batteries: A cointegration and error correction approach
KR102656115B1 (en) Remaining useful life prediction method of fuel cell system and digital twin device performing the same
CN115640542A (en) Intelligent electric energy meter state evaluation method and evaluation device based on Bayesian theory
Singh et al. A preliminary study towards conceptualization and implementation of a load learning model for smart automated demand response
US8812674B2 (en) Controlling state transitions in a system
WO2024057996A1 (en) Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method
CN102096624B (en) Method for predicting running state of cluster and cluster platform management device
Bisi et al. Prediction of software inter-failure times using artificial neural network and particle swarm optimisation models
Wang et al. HARRD: Real-time software rejuvenation decision based on hierarchical analysis under weibull distribution
CN114014120B (en) Elevator brake performance prediction method, device and storage medium