WO2024057996A1 - Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method - Google Patents

Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method Download PDF

Info

Publication number
WO2024057996A1
WO2024057996A1 PCT/JP2023/032309 JP2023032309W WO2024057996A1 WO 2024057996 A1 WO2024057996 A1 WO 2024057996A1 JP 2023032309 W JP2023032309 W JP 2023032309W WO 2024057996 A1 WO2024057996 A1 WO 2024057996A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage element
power storage
measurement data
internal state
unit
Prior art date
Application number
PCT/JP2023/032309
Other languages
French (fr)
Japanese (ja)
Inventor
南 鵜久森
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022146389A external-priority patent/JP2024041523A/en
Priority claimed from JP2022146390A external-priority patent/JP2024041524A/en
Priority claimed from JP2022146388A external-priority patent/JP2024041522A/en
Priority claimed from JP2022146391A external-priority patent/JP2024041525A/en
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024057996A1 publication Critical patent/WO2024057996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a calculation device, a deterioration state calculation method, a program, an estimation device, an estimation method, an abnormality detection device, and an abnormality detection method.
  • Energy storage devices are batteries for uninterruptible power supplies (backup), batteries for movable bodies such as automobiles, trains, and aircraft, or batteries for auxiliary equipment, or batteries for renewable energy power plants that guarantee a stable power supply. etc. are widely used.
  • Patent Document 1 discloses a battery capacity prediction device that can predict battery capacity.
  • the battery capacity at a predetermined point in time is determined by calculating the amount of battery capacity deterioration over a certain period of time based on the state of charge, temperature, and elapsed time of the battery, and subtracting the integrated value of the deterioration amount from the initial battery capacity. Calculate.
  • Patent Document 2 discloses a technique for improving the accuracy of predicting the future deterioration state of lithium ion secondary batteries currently in use.
  • data on past products that match or approximate the current state of the prediction target, extracted from the usage history of the secondary battery registered in a database, are used to determine the current state of the secondary battery to be predicted. predict the lifespan of
  • Power storage elements are widely used in uninterruptible power supplies, DC power supplies, etc.
  • the use of power storage elements in large-scale systems that store electricity generated by renewable energy or existing power generation systems is expanding. Multiple power storage elements are used in large-scale systems.
  • Patent Document 1 proposes separate techniques for calculating the current state of deterioration and the future state of deterioration, but sufficient studies have not yet been conducted on integrating them to calculate the state of deterioration. .
  • Patent Document 1 when calculating the future power storage capacity, historical data of the power storage element up to the present is not taken into account, and the current state of deterioration of the power storage element cannot be appropriately grasped.
  • the storage capacity and the state of deterioration may differ, for example, depending on the usage history such as the operating temperature range and usage conditions (e.g. cycle use, stationary use, etc.), even if the storage capacity is the same, the state of health (SOH) may differ. are often different. In such a case, predicting the future state of deterioration from the current state of deterioration that is not based on historical data will result in poor prediction accuracy.
  • Patent Document 2 cannot predict the lifespan if there is no data on past products that match or approximate the current state of the prediction target. Furthermore, since the predictable period is limited to the period corresponding to the data interval of registered past products, it is difficult to predict the lifespan over a long period from the viewpoint of data accumulation.
  • One aspect of the present invention is to provide a calculation device and the like that can accurately calculate the current and future deterioration states of power storage elements.
  • Measured data such as voltage, current, temperature, etc. of the power storage element depend on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element.
  • SOC state of charge
  • SOH state of health
  • the voltage of the electricity storage element changes.
  • the internal state quantity of the power storage element In order to accurately understand the state of the power storage element, it is important to understand the internal state quantity of the power storage element. Unlike voltage, current, temperature, etc., the internal state quantity of a power storage element cannot be directly measured or cannot be easily measured. In particular, in a large-scale system including a plurality of power storage elements, it is not easy to efficiently grasp the internal state quantity of each power storage element. For this reason, a technology that can efficiently present the internal state quantity of a power storage element is desired.
  • One aspect of the present invention is to provide an estimation device or the like that can efficiently present the internal state quantity of a power storage element.
  • an abnormality of the power storage element is detected based on the magnitude of the difference between the measurement data of the power storage element and the threshold value of the measurement data.
  • the internal state quantity of the power storage element is not taken into consideration.
  • the measurement data of the power storage element depends on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element. , the voltage of the storage element changes. Even if the value of the difference between the measurement data and the threshold value is the same, the influence on the power storage element differs depending on the transition of the internal state quantity of the power storage element.
  • SOC state of charge
  • SOH state of health
  • One aspect of the present invention is to provide an abnormality detection device and the like that can improve the accuracy of abnormality detection of power storage elements.
  • an abnormality of the power storage element is detected based on the magnitude of the difference between the measurement data of the power storage element and the threshold value of the measurement data.
  • the internal state quantity of the power storage element is not taken into account.
  • the measurement data of the power storage element depends on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element. , the voltage of the storage element changes. Even if the value of the difference between the measurement data and the threshold value is the same, the influence on the power storage element differs depending on the transition of the internal state quantity of the power storage element.
  • SOC state of charge
  • SOH state of health
  • One aspect of the present invention is to provide an abnormality detection device and the like that can improve the accuracy of abnormality detection of power storage elements.
  • a calculation device includes an acquisition unit that acquires actual measurement data and virtual measurement data of a power storage element, and calculates a current and future deterioration state of the power storage element based on the measurement data of the power storage element. and a calculating section.
  • the calculation section calculates the deterioration state according to a predetermined calculation algorithm based on the actual measurement data acquired by the acquisition section, and when calculating the future deterioration state, the acquisition section calculates the deterioration state.
  • the deterioration state is calculated based on the acquired virtual measurement data according to the predetermined calculation algorithm.
  • An estimation device uses an acquisition unit that acquires measurement data of a power storage element and a power storage element simulator that estimates measurement data of the power storage element based on an internal state quantity of the power storage element. and an estimation section that estimates an internal state quantity of the electricity storage element so that the measurement data output from the simulator approximates the measurement data acquired by the acquisition section.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a power storage element based on each measurement data acquired by the acquisition unit and an internal state quantity of the power storage element. and a power storage element simulator that estimates the measurement data of the reference power storage element and the target power storage element so that the measurement data output from the power storage element simulator approximates the measurement data acquired by the acquisition unit. and a detection unit that detects an abnormality in the target power storage element based on a comparison between the internal state quantity of the reference power storage element estimated by the estimation part and the internal state quantity of the target power storage element. Be prepared.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a reference power storage element that is estimated from the measurement data of the reference power storage element acquired by the acquisition unit. Setting a detection standard based on measurement data estimated by a power storage element simulator and measurement data of the reference power storage element acquired by the acquisition unit based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of . and a detection unit that detects an abnormality in the target power storage element based on the detection criteria set by the setting unit and the measurement data of the target power storage element acquired by the acquisition unit.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a reference power storage element that is estimated from the measurement data of the reference power storage element acquired by the acquisition unit. Setting a detection standard based on measurement data estimated by a power storage element simulator and measurement data of the reference power storage element acquired by the acquisition unit based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of . It is equipped with a section.
  • the current and future deterioration states of the power storage element can be calculated with high accuracy.
  • the internal state quantity of the power storage element can be efficiently presented.
  • the accuracy of abnormality detection of the power storage element can be improved.
  • the accuracy of abnormality detection of the power storage element can be improved.
  • FIG. 1 is a diagram illustrating a configuration example of a remote monitoring system.
  • FIG. 1 is a block diagram showing a configuration example of a power generation system. It is a block diagram showing an example of composition of a calculation device.
  • FIG. 2 is a functional block diagram showing a configuration example of a calculation device.
  • 12 is a flowchart illustrating an example of a deterioration state calculation process procedure. It is a flowchart which shows an example of the processing procedure which the calculation device of 2nd Embodiment performs. It is a figure showing an example of composition of a remote monitoring system of a 3rd embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a power generation system. It is a block diagram showing an example of composition of an estimation device.
  • FIG. 1 is a block diagram showing a configuration example of a power generation system. It is a block diagram showing an example of composition of an estimation device.
  • FIG. 1 is a block diagram showing a configuration example of a power
  • FIG. 2 is a functional block diagram showing a configuration example of an estimation device. It is a figure explaining the method of estimating an internal state quantity.
  • 3 is a flowchart illustrating an example of a procedure for estimating an internal state quantity. It is a figure showing an example of composition of a remote monitoring system of a 4th embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a power generation system.
  • FIG. 2 is a block diagram showing a configuration example of an abnormality detection device.
  • FIG. 2 is a functional block diagram showing a configuration example of an abnormality detection device. It is a figure explaining the method of estimating an internal state quantity.
  • 3 is a flowchart illustrating an example of an abnormality detection processing procedure.
  • FIG. 12 is a flowchart illustrating an example of a detailed procedure for estimating an internal state quantity. It is a figure showing an example of composition of a remote monitoring system of a 5th embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a power generation system.
  • FIG. 2 is a block diagram showing a configuration example of an abnormality detection device.
  • FIG. 2 is a functional block diagram showing a configuration example of an abnormality detection device. It is a figure explaining the method of estimating an internal state quantity.
  • 3 is a flowchart illustrating an example of an abnormality detection processing procedure.
  • 12 is a flowchart illustrating an example of a detailed procedure for estimating an internal state quantity.
  • a calculation device includes an acquisition unit that acquires actual measurement data and virtual measurement data of a power storage element, and current and future deterioration of the power storage element based on the measurement data of the power storage element. and a calculation unit that calculates the state.
  • the calculation section calculates the deterioration state according to a predetermined calculation algorithm based on the actual measurement data acquired by the acquisition section, and when calculating the future deterioration state, the acquisition section calculates the deterioration state.
  • the deterioration state is calculated based on the acquired virtual measurement data according to the predetermined calculation algorithm.
  • the estimation process for calculating the current state of deterioration and the prediction process for calculating the future state of deterioration can be made common.
  • the calculation algorithms By standardizing the calculation algorithms, not only the number of algorithms to be stored is reduced, but also the processing for selecting calculation algorithms depending on the case becomes unnecessary, and the processing flow can be simplified.
  • different calculation algorithms may have different accuracy, by making them common, there is no difference in accuracy for current and future deterioration states.
  • the calculation unit calculates the current state of deterioration based on the actual measurement data, and then calculates the virtual measurement data generated based on the actual measurement data.
  • the future state of deterioration may be calculated based on the following.
  • the deterioration state calculation algorithm for the current deterioration state estimation process and the future deterioration state prediction process is made common, and the future deterioration state is calculated after calculating the current deterioration state.
  • processing can be switched depending on the input measurement data, and the state of deterioration at any point in time can be efficiently calculated while ensuring data continuity.
  • virtual measurement data is generated based on actual measurement data and future deterioration conditions are predicted, accuracy is improved.
  • the calculation unit may calculate a future deterioration state using the current deterioration state calculated based on the actual measurement data as a reference value.
  • the calculation result of the current state of deterioration can be reflected in the future state of deterioration.
  • the future deterioration state can be continuously calculated using the current deterioration state value as an initial value, the prediction accuracy of the deterioration state can be improved.
  • a load estimating unit that estimates a virtual load of the power storage element based on time-series actual measurement data, and the load estimator. and a generation section that generates the virtual measurement data based on the virtual load estimated by the section.
  • Virtual load is a virtual load and means how a virtual power storage element is used.
  • the virtual load may include information indicating, for example, virtual power, environmental temperature, heat dissipation conditions of the power storage element such as heat transfer coefficient or thermal conductivity, a control method of the power storage element, and the like.
  • the generation unit generates a plurality of virtual measurement data based on a plurality of virtual load patterns, and the calculation unit generates future data corresponding to each virtual measurement data.
  • the state of deterioration may also be calculated.
  • the calculation device described in (5) above it is possible to calculate a wide range of deterioration states assuming various usage modes. Since the future state of deterioration is calculated based on virtual measurement data, the reliability of the calculation result is lower than that of the current state of deterioration that is calculated based on actual measurement data. By calculating the deterioration state with a range, it is possible to improve the reliability of predicting the future deterioration state.
  • the calculation unit calculates an internal state quantity of the electricity storage element based on measurement data of the electricity storage element, and The deterioration state of the power storage element may be calculated based on the internal state quantity.
  • the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, capacity balance shift, etc.
  • SOC State of Charge
  • a shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
  • the deterioration state can be calculated by accurately considering the deterioration state and usage history of the power storage element by converting the measurement data into the history of internal state quantities.
  • the calculation accuracy can be improved.
  • the calculation accuracy of the deterioration state can be improved by correcting the calculation algorithm based on the correction information.
  • the accuracy of the calculation algorithm can be improved while calculating (while operating the calculation device).
  • the built-in calculation algorithm is not immutable, and the calculation device can autonomously evolve the calculation algorithm in a direction that improves accuracy.
  • a method for calculating a state of deterioration according to one aspect of the present disclosure is to obtain actual measurement data and virtual measurement data of a power storage element, and when calculating the current state of deterioration, based on the obtained actual measurement data.
  • the computer executes a process of calculating the deterioration state according to the predetermined calculation algorithm based on the acquired virtual measurement data.
  • the program uses a predetermined calculation algorithm based on the acquired actual measurement data.
  • the computer is caused to execute a process of calculating the state of deterioration according to the predetermined calculation algorithm based on the acquired virtual measurement data.
  • FIG. 1 is a diagram showing a configuration example of a remote monitoring system 100.
  • Remote monitoring system 100 allows remote access to information regarding power storage elements included in power generation system 200.
  • the remote monitoring system 100 includes a power generation system 200 to be remotely monitored, and a calculation device 50 that collects information from the power generation system 200.
  • the calculation device 50 and the power generation system 200 are communicably connected via a network N1 such as the Internet.
  • the number of power generation systems 200 may be one or three or more.
  • the calculation device 50 may be integrated into any of the power generation systems 200.
  • FIG. 2 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted.
  • the power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2.
  • Power storage unit 40 may include a plurality of banks 41.
  • the power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru.
  • a configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system.
  • the power storage system may include a power conditioner (not shown).
  • the power storage unit 40 is not limited to industrial use, and may be used for home use.
  • An operator conducts a business that designs, installs, operates, and maintains a power storage system including a communication device 10, a domain management device 30, and a power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 100.
  • the communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14.
  • the control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory.
  • the storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
  • the first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44.
  • the control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
  • the second communication unit 14 includes a communication interface that realizes communication via the network N2.
  • the control unit 11 can communicate with the server device 20 through the second communication unit 14.
  • the domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface.
  • the storage unit 12 can store operational data acquired via the domain management device 30.
  • the server device 20 can collect actual measured values of measurement data of the power storage system from the communication device 10.
  • the measurement data includes measured values such as the current value, voltage value, and temperature of each power storage element in the power storage system.
  • the server device 20 stores the collected measurement data classified for each power storage element.
  • the server device 20 can transmit measurement data to the calculation device 50 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
  • the server device 20 may function as the calculation device 50.
  • the bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
  • BMU battery management unit
  • CMU Cell Management Unit
  • the power storage module 42 has a plurality of power storage cells connected in series.
  • a “power storage element” may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel.
  • the measurement board 43 acquires power storage element information regarding the state of each power storage cell of the power storage module 42.
  • the power storage element information includes, for example, the voltage, current, temperature, etc. of the power storage cell.
  • the power storage element information can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example.
  • the power storage element information becomes measurement data or a part of the measurement data.
  • the "power storage element” is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
  • the battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire information on the power storage elements detected by the measurement board 43.
  • the battery management device 44 can send and receive information to and from the domain management device 30.
  • the domain management device 30 aggregates power storage element information from the battery management devices 44 of banks belonging to the domain.
  • the domain management device 30 outputs the aggregated power storage element information to the communication device 10.
  • the communication device 10 can acquire measurement data of the power storage unit 40 via the domain management device 30.
  • the communication device 10 transmits the acquired measurement data to the calculation device 50 via the server device 20.
  • FIG. 3 is a block diagram showing a configuration example of the calculation device 50.
  • the calculation device 50 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information.
  • the calculation device 50 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software.
  • the calculation device 50 includes a control section 51, a storage section 52, a communication section 53, a display section 54, an operation section 55, and the like.
  • the control unit 51 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like.
  • the CPU or GPU included in the control unit 51 executes various computer programs stored in the ROM or the storage unit 52, and controls the operations of the hardware units described above.
  • the control unit 51 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
  • the storage unit 52 includes a nonvolatile storage device such as a flash memory or a hard disk drive.
  • the storage unit 52 stores various computer programs, data, etc. that are referenced by the control unit 51.
  • the storage unit 52 stores a program 521 for causing a computer to execute processing related to calculating the deterioration state of the power storage element, and a measurement DB (Data Base) 522 as data necessary for executing the program 521. ing.
  • the measurement DB 522 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200.
  • the measurement DB 522 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using, for example, an ID for identifying measurement data as a key.
  • the measurement DB 522 may further store a deterioration state based on measurement data at each point in time.
  • the measurement DB 522 stores actual measured values of measurement data.
  • the control unit 51 receives the measurement data transmitted from the server device 20, the control unit 51 stores the received measurement data and the like in the measurement DB 522 in chronological order.
  • a computer program (program product) including the program 521 may be provided by a non-temporary recording medium 5A on which the computer program is readably recorded.
  • the recording medium 5A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card.
  • the control unit 51 reads a desired computer program from the recording medium 5A using a reading device (not shown), and stores the read computer program in the storage unit 52.
  • the computer program may be provided via communication.
  • Program 521 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
  • the communication unit 53 includes a communication interface that realizes communication via the network N1.
  • the control unit 51 receives measurement data transmitted from the power generation system 200 through the communication unit 53.
  • the display unit 54 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display section 54 displays various information according to instructions from the control section 51.
  • the operation unit 55 is an interface that accepts user operations.
  • the operation unit 55 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like.
  • the operation unit 55 receives operation input from the user and sends a control signal to the control unit 51 according to the operation content.
  • the calculation device 50 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the calculation device 50 does not need to include the display section 54 and the operation section 55.
  • FIG. 4 is a functional block diagram showing a configuration example of the calculation device 50.
  • the control unit 51 of the calculation device 50 reads and executes the program 521 stored in the storage unit 52, thereby controlling the functions of the acquisition unit 511, the calculation unit 512, the load estimation unit 513, the generation unit 514, and the output unit 515. Realize. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 51.
  • a dedicated hardware circuit for example, FPGA or ASIC
  • the acquisition unit 511 acquires measurement data of the power storage element. When estimating the current (current) state of deterioration, the acquisition unit 511 acquires actual measurement data by reading desired measurement data from the measurement data stored in the measurement DB 522. Actual measurement data means actual measured values of measurement data. Further, when predicting a future state of deterioration, the acquisition unit 511 acquires virtual measurement data by accepting virtual measurement data output from the generation unit 514, which will be described later. Virtual measurement data is measurement data that is virtually generated and means unmeasured measurement data.
  • the acquisition unit 511 may include a first acquisition unit 511 that acquires actual measurement data, and a second acquisition unit 511 that acquires virtual measurement data.
  • the calculation unit 512 calculates the deterioration state of the power storage element based on the actual measurement data or virtual measurement data acquired by the acquisition unit 511.
  • the calculation unit 512 calculates the state of deterioration according to a predetermined calculation algorithm for calculating the storage capacity of the storage element based on the measurement data.
  • the storage capacity (battery capacity) of the storage element is calculated as the deteriorated state.
  • the state of deterioration may be, for example, internal resistance, charge/discharge characteristics, amount of deterioration in storage capacity (e.g. amount of deterioration when energized and amount of deterioration when not energized), SOH, deterioration rate of positive electrode/negative electrode, shift in capacity balance, etc. Good too.
  • an example calculation algorithm will be described in which an internal state quantity of a power storage element is calculated based on measurement data, and a deterioration state is calculated based on the calculated internal state quantity. Not limited.
  • the calculation unit 512 calculates time-series data of internal state quantities including the SOC and temperature of the power storage element based on the measurement data obtained in time-series. Based on the measurement data and the history of the calculated SOC and temperature, the calculation unit 512 sharply distinguishes between energized deterioration, which indicates deterioration due to energization of the power storage element, and non-energized deterioration, which represents deterioration not caused by energization of the power storage element, For example, each amount of deterioration is calculated based on the root rule.
  • the calculation unit 512 calculates the amount of energization deterioration based on the amount of SOC fluctuation (size of fluctuation) specified based on the SOC time series data such that the larger the amount of SOC fluctuation, the larger the amount of energization deterioration. It is preferable to do so.
  • the calculation unit 512 calculates the total amount of deterioration based on the sum of the obtained energized deterioration amount and the non-energized deterioration amount. Calculation unit 512 can obtain the power storage capacity of the power storage element at the time of calculation by subtracting the calculated total amount of deterioration from the previous power storage capacity (the power storage capacity at the time immediately before the time of calculation).
  • the calculation unit 512 receives the actual measurement data acquired by the acquisition unit 511, and calculates the current storage capacity using the above calculation algorithm using the received actual measurement data.
  • the calculation unit 512 may calculate the current storage capacity by sequentially calculating the storage capacity at each point based on the measurement data at each point in the entire period from the beginning of measurement to the present and the initial capacity at the beginning of measurement. .
  • the calculation unit 512 receives the virtual measurement data acquired by the acquisition unit 511, and calculates the future power storage capacity using the above calculation algorithm using the received virtual measurement data. .
  • the calculation unit 512 may calculate the future power storage capacity using the current power storage capacity obtained through the above-described estimation process as a reference value. That is, the calculation unit 512 may calculate the power storage capacity at a future point in time by subtracting the total amount of deterioration calculated by virtual measurement data and a calculation algorithm from the current power storage capacity.
  • the SOC estimated based on the measurement data differs depending on the state of deterioration of the power storage element.
  • the current storage capacity as a reference value when calculating the future storage capacity, it becomes possible to calculate the future storage capacity while maintaining the deterioration state of the storage element represented by the current storage capacity. .
  • the calculation unit 512 may correct the calculated current storage capacity based on the diagnosis result of the current storage capacity of the storage element.
  • the diagnosis result means, for example, a capacitance value (storage capacity) of a power storage element specified based on measurement data of the power storage element in the most recent short period of time.
  • the method of diagnosing the storage capacity is not particularly limited, but, for example, the storage capacity may be calculated by measuring the internal resistance of the storage element, and the storage capacity can be fully charged and discharged from the lower limit voltage value to the upper limit voltage set for the storage element. The actual capacity may be measured by performing the following.
  • the calculation unit 512 compares the acquired diagnosis result with the calculated current storage capacity, and corrects the calculated current storage capacity to match the diagnosis result. Correction using the diagnosis result may be performed every time the power storage capacity at each time point is calculated. The correction using the diagnosis result may not be performed on the future calculation result of the storage capacity.
  • the load estimating unit 513 estimates the virtual load of the power storage element based on actual time-series measurement data.
  • the load estimating unit 513 estimates a future electric power value and environmental temperature as a virtual load, for example, based on the history of measurement data from the initial point to the present time.
  • the power value is determined by predicting how the power storage element will be used in the future, based on the way the power storage element has been used up to the present, which is indicated by the history of measurement data.
  • the electric power value and environmental temperature as a virtual load may be the same as the actual electric power value and environmental temperature specified based on the history of measurement data, and at least one of the actual electric power value and environmental temperature may be determined based on a predetermined rule. It may be an increased or decreased value.
  • the load estimation unit 513 may generate multiple patterns of virtual loads. By generating a plurality of virtual loads in which at least one of the power value and the environmental temperature is different, it is possible to predict a wide range of future deterioration states.
  • the generation unit 514 generates virtual measurement data based on the virtual load estimated by the load estimation unit 513.
  • the generation unit 514 derives measurement data at a future point in time, that is, current, voltage, and temperature, based on the power value and environmental temperature estimated by the load estimation unit 513.
  • the generation section 514 When receiving a plurality of virtual loads from the load estimation section 513, the generation section 514 generates a plurality of measurement data corresponding to each virtual load.
  • the virtual measurement data generated by the generation unit 514 is output to the acquisition unit 511.
  • the output unit 515 outputs information indicating the current and future power storage capacity calculation results calculated by the calculation unit 512 to the display unit 54.
  • the display unit 54 displays information indicating the calculation result of the storage capacity.
  • the control unit 51 may further have a configuration that functions as a modification unit 516 as shown in FIG.
  • the modification unit 516 modifies the calculation algorithm based on the current power storage capacity modification information calculated by the calculation unit 512.
  • the modification unit 516 will be described in detail in other embodiments.
  • FIG. 5 is a flowchart illustrating an example of a deterioration state calculation process procedure.
  • the control unit 51 of the calculation device 50 starts the following process at predetermined or appropriate intervals according to the program 521 stored in the storage unit 52.
  • the control unit 51 receives measurement data transmitted from the server device 20, and stores the received measurement data in the measurement DB 522.
  • the control unit 51 of the calculation device 50 determines whether to perform estimation processing to calculate the current state of deterioration (step S11).
  • the control unit 51 may determine whether to perform the estimation process, for example, by determining whether the current state of deterioration has been stored in the measurement DB 522.
  • the fact that the current state of deterioration has been stored in the measurement DB 522 means that the current state of deterioration has already been estimated for the latest measurement data stored in the measurement DB 522.
  • step S11 If it is determined that the estimation process is to be executed because the current state of deterioration has not been stored (step S11: YES), the control unit 51 obtains actual measurement data by extracting the measurement data to be stored in the measurement DB 522. (Step S12).
  • Step S11 corresponds to switching processing between estimation processing and prediction processing.
  • control unit 51 may determine whether to perform the estimation process or the prediction process by receiving an instruction to execute the estimation process or the prediction process from the user.
  • the control unit 51 estimates the virtual load of the power storage element based on the measurement data stored in the measurement DB 522 for the entire period from the beginning of measurement to the present (step S13). In step S13, the control unit 51 may estimate a plurality of virtual loads.
  • the control unit 51 generates virtual measurement data based on the estimated virtual load (step S14). When a plurality of virtual loads are estimated, the control unit 51 generates a plurality of virtual measurement data corresponding to each virtual load.
  • the control unit 51 calculates the SOC and temperature as internal state quantities based on the acquired actual measurement data or virtual measurement data (step S15).
  • the control unit 51 calculates the storage capacity at the calculation target time point based on the calculated internal state amount and the internal state amount at the previous time point (step S16).
  • the control unit 51 calculates the internal state quantity corresponding to the actual measurement data at the most recent time point t-1 in the past, and uses the calculated amount from the storage capacity at the most recent time point t-1. By subtracting the amount of deterioration corresponding to the internal state amount, the storage capacity at the current time t is calculated. Further, the control unit 51 calculates an internal state quantity corresponding to the virtual measurement data at the present time t, and subtracts the amount of deterioration corresponding to the calculated internal state quantity from the power storage capacity at the present time t. Calculate the storage capacity at t+1. By repeatedly calculating the power storage capacity at a future point in time, it becomes possible to predict the power storage capacity over an arbitrary prediction period.
  • the control unit 51 determines whether or not to correct the calculated storage capacity (step S17). For example, if the calculated power storage capacity is the current power storage capacity, and the absolute value of the difference between the calculated power storage capacity and the diagnosis result of the power storage capacity is equal to or greater than a preset threshold, the control unit 51 controls the power storage capacity. It is determined that it is corrected. On the other hand, if the calculated power storage capacity is the current power storage capacity and the absolute value of the difference between the calculated power storage capacity and the diagnostic result of the power storage capacity is less than a preset threshold, the control unit 51 controls the power storage capacity. is determined not to be corrected. Further, if the calculated power storage capacity is not the current power storage capacity, the control unit 51 determines not to correct the power storage capacity. As the power storage capacity diagnosis result, for example, a power storage capacity diagnosis result performed by an external diagnostic device may be obtained.
  • step S17 If it is determined that the power storage capacity is to be corrected (step S17: YES), the control unit 51 corrects the calculated current power storage capacity to match the diagnosis result (step S18). Further, the control unit 51 may correct the internal state quantity and SOH so as to match the corrected storage capacity. For example, without changing the ratio of the non-energized deterioration amount to the energized deterioration amount, the absolute values thereof may be corrected. The control unit 51 may replace the calculated current storage capacity with the capacity value in the diagnosis result. If it is determined that the power storage capacity is not to be corrected (step S17: NO), the control unit 51 skips the correction process. Step S17 and step S18 may be omitted.
  • the control unit 51 determines whether to end the calculation of the power storage capacity (step S19). For example, if it is determined that the calculation of the power storage capacity is not finished because either the current or future power storage capacity has not been calculated (step S19: NO), the control unit 51 returns the process to step S11. Thereby, after executing the process of estimating the current storage capacity, the control unit 51 switches the process from the estimation process to the prediction process, and executes the process of predicting the future storage capacity.
  • step S19: YES If it is determined that the calculation of the electricity storage capacity is to be completed because both the current and future electricity storage capacities have been calculated (step S19: YES), the control unit 51 generates screen information indicating the calculation result of the electricity storage capacity. , screen information indicating the generated calculation result of the storage capacity is displayed on the display unit 54 (step S20). The control unit 51 ends the series of processing. On the screen showing the calculation result of the power storage capacity, for example, numerical values and graphs showing the power storage capacity at each point in time up to the present and the power storage capacity at a future point in time are displayed.
  • the processing content before and after the calculation algorithm is set in accordance with the estimation process or prediction process, such as calculating a wide range of deterioration states when predicting future deterioration states in response to the reliability of the measurement data that is the input element. can do.
  • the calculation device 50 of the second embodiment corrects the calculation algorithm based on correction information of the current state of deterioration by functioning as the correction unit 516 shown in FIG.
  • the correction information may be determined, for example, based on the content of correction of the current state of deterioration.
  • the correction unit 516 specifies a correction pattern by analyzing the correction contents executed at each time point from the beginning of measurement to the present.
  • the modification unit 516 uses the identified correction pattern as modification information and modifies the calculation algorithm according to the identified correction pattern.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure executed by the calculation device 50 of the second embodiment.
  • the control unit 51 of the calculation device 50 acquires correction information of the calculation algorithm (step S31).
  • the control unit 51 may acquire correction information generated by an external device through communication, and may obtain correction information by deriving a specific correction pattern based on the correction contents executed at each point from the beginning of measurement to the present. You may obtain it.
  • the control unit 51 modifies the calculation algorithm according to the acquired modification information (step S32), and ends the series of processing.
  • the calculation algorithm can be optimized through the operation of this system, and the accuracy of estimating the deterioration state is improved.
  • An estimation device uses an acquisition unit that acquires measurement data of a power storage element, and a power storage element simulator that estimates the measurement data of the power storage element based on an internal state quantity of the power storage element, and an estimation unit that estimates an internal state quantity of the electricity storage element so that the measurement data output from the electricity storage element simulator approximates the measurement data acquired by the acquisition unit.
  • the term "power storage element simulator” means a simulator constructed to simulate the behavior of a power storage element.
  • the power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element.
  • the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like.
  • a shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
  • the estimation device it is possible to efficiently and accurately estimate the internal state quantity of a power storage element from measurement data obtained through actual measurement using a power storage element simulator. Efficient calculation of the internal state quantity leads to a reduction in calculation load in various processes, especially in a large-scale system including a plurality of power storage elements. By acquiring internal state quantities that are difficult to directly measure, it is possible to appropriately grasp the state of the power storage element that cannot be directly expressed from measurement data.
  • a power storage element simulator is constructed to accurately simulate measurement data according to the internal state quantity of a power storage element, and is usually used to predict the behavior of measurement data of a power storage element.
  • the estimation device utilizes a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. Internal state quantities can be calculated efficiently. By using a power storage element simulator built in advance, it is not necessary to generate a new estimation model, and the internal state quantity can be estimated easily and accurately.
  • the estimated internal state quantity can be used for various processes such as state diagnosis including abnormality detection of the power storage element, deterioration state estimation, or life prediction.
  • state diagnosis including abnormality detection of the power storage element, deterioration state estimation, or life prediction.
  • the estimating unit is configured to calculate the internal state quantity to minimize the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. You may also search for the optimal value.
  • difference means the absolute value of the difference.
  • the estimation unit uses the power storage element simulator to estimate measurement data of the power storage element based on the internal state quantity and usage history of the power storage element.
  • the internal state quantity of the power storage element may be estimated so that the measurement data output from the power storage element simulator using the usage history of the power storage element as input approximates the measurement data acquired by the acquisition unit.
  • the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element.
  • the usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
  • the measurement data depends on the usage history as well as the internal state quantity of the electricity storage element. According to the estimating device described in (12) above, the accuracy of estimating the internal state quantity can be further improved by considering the usage history of the power storage element.
  • An estimation method uses a power storage element simulator that acquires measurement data of a power storage element and estimates the measurement data of the power storage element based on an internal state quantity of the power storage element.
  • a computer executes a process of estimating the internal state quantity of the electricity storage element so that the measurement data output from the simulator approximates the acquired measurement data.
  • a program according to an aspect of the present disclosure uses a power storage element simulator that acquires measurement data of a power storage element and estimates the measurement data of the power storage element based on an internal state quantity of the power storage element.
  • a computer is caused to perform a process of estimating the internal state quantity of the electricity storage element so that the measurement data output from the storage device approximates the measurement data obtained.
  • FIG. 7 is a diagram showing a configuration example of a remote monitoring system 300 according to the third embodiment.
  • Remote monitoring system 300 enables remote access to information regarding power storage elements included in power generation system 200.
  • Remote monitoring system 300 includes a power generation system 200 to be remotely monitored, and an estimation device 60 that collects information from power generation system 200.
  • the estimation device 60 and the power generation system 200 are communicably connected via a network N1 such as the Internet.
  • the number of power generation systems 200 may be one or three or more.
  • Estimation device 60 may be integrated into any power generation system 200.
  • FIG. 8 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted.
  • the power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2.
  • Power storage unit 40 may include a plurality of banks 41.
  • the power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru.
  • a configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system.
  • the power storage system may include a power conditioner (not shown).
  • the power storage unit 40 is not limited to industrial use, and may be used for home use.
  • the business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 300.
  • the communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14.
  • the control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory.
  • the storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
  • the first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44.
  • the control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
  • the second communication unit 14 includes a communication interface that realizes communication via the network N2.
  • the control unit 11 can communicate with the server device 20 through the second communication unit 14.
  • the domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface.
  • the storage unit 12 can store measurement data acquired via the domain management device 30.
  • the server device 20 can collect measurement data of the power storage system from the communication device 10.
  • the measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system.
  • the server device 20 may separate and store the collected measurement data for each power storage element.
  • the server device 20 can transmit measurement data to the estimation device 60 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
  • the bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
  • BMU battery management unit
  • CMU Cell Management Unit
  • the power storage module 42 has a plurality of power storage cells connected in series.
  • a “power storage element” may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel.
  • the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42.
  • the measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example.
  • the "power storage element” is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
  • the battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43.
  • the battery management device 44 can send and receive information to and from the domain management device 30.
  • the domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain.
  • the domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
  • the communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.).
  • the measurement data may be associated with identification information of the power storage element.
  • FIG. 9 is a block diagram showing a configuration example of the estimation device 60.
  • the estimation device 60 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information.
  • the estimation device 60 may be a multi-computer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software.
  • the estimation device 60 includes a control section 61, a storage section 62, a communication section 63, a display section 64, an operation section 65, and the like.
  • the control unit 61 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like.
  • the CPU or GPU included in the control unit 61 executes various computer programs stored in the ROM or the storage unit 62, and controls the operations of the hardware units described above.
  • the control unit 61 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
  • the storage unit 62 includes a nonvolatile storage device such as a flash memory or a hard disk drive.
  • the storage unit 62 stores various computer programs, data, etc. that are referenced by the control unit 61.
  • the storage unit 62 stores a program 621 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 622 as data necessary for executing the program 621. I remember.
  • the measurement DB 622 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200.
  • the measurement DB 622 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using an ID for identifying measurement data as a key.
  • the measurement DB 622 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
  • a computer program (program product) including the program 621 may be provided by a non-temporary recording medium 6A on which the computer program is readably recorded.
  • the recording medium 6A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card.
  • the control unit 61 reads a desired computer program from the recording medium 6A using a reading device (not shown), and stores the read computer program in the storage unit 62.
  • the computer program may be provided via communication.
  • Program 621 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
  • the communication unit 63 includes a communication interface that realizes communication via the network N1.
  • the control unit 61 receives measurement data transmitted from the power generation system 200 through the communication unit 63.
  • the display unit 64 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display section 64 displays various information according to instructions from the control section 61.
  • the operation unit 65 is an interface that accepts user operations.
  • the operation unit 65 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like.
  • the operation unit 65 receives operation input from the user and sends a control signal to the control unit 61 according to the operation content.
  • the estimating device 60 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the estimation device 60 does not need to include the display section 64 and the operation section 65.
  • FIG. 10 is a functional block diagram showing a configuration example of the estimation device 60.
  • the control unit 61 of the estimation device 60 realizes each function of the power storage element simulator 611, the acquisition unit 612, the estimation unit 613, and the output unit 614 by reading out and executing the program 621 stored in the storage unit 62.
  • some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 61.
  • the power storage element simulator 611 has a function as a measurement data estimator.
  • the power storage element simulator 611 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element.
  • the power storage element simulator 611 may estimate the measurement data of the power storage element using at least the internal state quantity of the power storage element as input.
  • the power storage element simulator 611 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
  • the internal state quantities that are input data to the power storage element simulator 611 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element.
  • the usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns.
  • the measurement data that is the output data from the power storage element simulator 611 is data that includes at least one of the voltage, current, and temperature of the power storage element.
  • the power storage element simulator 611 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output.
  • the temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 611.
  • the acquisition unit 612 acquires measurement data of the power storage element by receiving measurement data transmitted from the server device 20 at an appropriate timing.
  • the acquisition unit 612 acquires the measured values of the voltage, current, and temperature of the power storage element.
  • the measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged.
  • the measurement data may be real-time data or historical data for a predetermined period in the past.
  • the acquisition unit 612 stores the acquired measurement data in the measurement DB 622 in chronological order. Alternatively, the acquisition unit 612 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 622 in advance.
  • the acquisition unit 612 acquires (identifies) the usage history of the power storage element based on the acquired measurement data.
  • the acquisition unit 612 may identify the load pattern of the power storage element and the environmental temperature pattern, for example, based on changes in the voltage, current, and temperature of the power storage element over a predetermined period.
  • the environmental temperature pattern of the power storage element may be determined by considering the arrangement of the power storage element.
  • the acquisition unit 612 stores a plurality of preset usage histories in the storage unit 62, and reads out one of the usage histories of the plurality of usage histories, thereby obtaining the usage history of the power storage element. may be obtained. That is, the acquisition unit 612 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
  • the estimation unit 613 estimates the internal state quantity of the power storage element based on the measurement data and usage history acquired by the acquisition unit 612 and the power storage element simulator 611.
  • FIG. 11 is a diagram illustrating a method for estimating internal state quantities.
  • the acquisition unit 612 acquires actual measured values of measurement data O t including voltage, current, and temperature at time t.
  • the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t.
  • the usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
  • the estimation unit 613 sets the internal state quantity S t at time t, and obtains the estimated value of the measurement data O t output from the power storage element simulator 611 based on the set internal state quantity S t and the usage history U t . .
  • the estimation unit 613 compares the estimated value of the measured data O t with the actual measured value of the measured data O t and sets the internal state quantity S so that the estimated value of the measured data O t approximates the actual measured value of the measured data O t .
  • Estimate t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used.
  • the estimation unit 613 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
  • SOH and SOC of the internal state quantities S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated voltage value approximates the actual measured value.
  • the SOC may be an initial SOC.
  • the estimation unit 613 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions.
  • the estimation unit 613 can set the obtained optimal solution (approximate solution) of SOH and SOC as the internal state quantity S t .
  • the usage history U t that is input to the power storage element simulator 611 may be a temporary usage history as described above. For example, by using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t when each usage history U t is used as an input element is estimated. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
  • the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more.
  • the measurement data may be other than voltage, and the types of measurement data may be two or more.
  • the output unit 614 receives the estimation result of the internal state quantity output from the estimation unit 613 and outputs information indicating the received estimation result of the internal state quantity to the display unit 64.
  • the display unit 64 displays information indicating the estimation result of the internal state quantity.
  • the output unit 614 may output information indicating the estimation result of the internal state quantity to an analysis unit, another analysis device, an external computer, etc., which will be described later.
  • the control unit 61 may further realize a function as an analysis unit (not shown).
  • the analysis unit detects an abnormality in the power storage element based on the internal state amount estimated by the estimation unit 613, for example.
  • Anomaly detection is an example of analysis processing using estimated internal state quantities.
  • FIG. 12 is a flowchart illustrating an example of an internal state quantity estimation process procedure.
  • the control unit 61 of the estimation device 60 starts the following process at predetermined or appropriate intervals according to the program 621 stored in the storage unit 62.
  • the control unit 61 of the estimation device 60 acquires actual measured values of measurement data including the voltage, current, and temperature of the power storage element (step S111).
  • the control unit 61 acquires the usage history of the power storage element based on the acquired measurement data (step S112).
  • the control unit 61 may acquire a temporary usage history.
  • the control unit 61 estimates (sets) the internal state quantity (step S113).
  • the control unit 61 may randomly set an initial value for estimating the internal state amount, for example, between an upper limit value and a lower limit value of the internal state amount set in the power storage element.
  • the control unit 61 may also set the previous estimation result or the estimation result of another power storage element as the initial value.
  • the control unit 61 receives the estimated internal state quantity and the acquired usage history as input, and acquires an estimated value of the measurement data output from the power storage element simulator 611 (step S114).
  • the control unit 61 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S115).
  • step S115 NO
  • the control unit 61 If it is determined that the difference is not within the allowable range (step S115: NO), the control unit 61 returns the process to step S113 and repeats estimation of the internal state quantity so as to minimize the difference.
  • the internal state quantity is optimized through steps S113 to S115.
  • step S115 If it is determined that the difference is within the allowable range (step S115: YES), the control unit 61 outputs the estimation result of the internal state quantity, for example, through the display unit 64 (step S116), and ends the example process. Alternatively, the control unit 61 may output the estimation result of the internal state quantity to, for example, an analysis unit or an external device.
  • the actual value of the measurement data can be matched by estimating the internal state quantity in the opposite direction using a storage element simulator and optimizing the internal state quantity to approximate the estimated value of the measurement data to the actual measurement value.
  • the internal state quantity can be estimated efficiently.
  • the estimation device 60 executes each process in the above flowchart.
  • part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and from each measurement data acquired by the acquisition unit and an internal state quantity of the power storage element. of the reference energy storage element and the target energy storage element so that the measurement data output from the energy storage element simulator approximates the measurement data acquired by the acquisition unit based on the energy storage element simulator that estimates the measurement data of the energy storage element. an estimation unit that estimates an internal state quantity; and a detection that detects an abnormality in the target power storage element based on a comparison between the internal state quantity of the reference power storage element estimated by the estimation unit and the internal state quantity of the target power storage element. It is equipped with a section.
  • the “reference electricity storage element” means an electricity storage element that serves as a comparison standard when detecting an abnormality.
  • “Target power storage element” means a power storage element that is a target of abnormality detection.
  • the reference power storage element and the target power storage element may be provided within the same power generation system, for example.
  • “Electricity storage element simulator” means a simulator constructed to simulate the behavior of an electricity storage element.
  • the power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element. Further, the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like.
  • a shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
  • the measurement data of the power storage element depends on the internal state quantity of the power storage element.
  • the difference value of measurement data between power storage elements changes depending on the internal state quantity. Therefore, when abnormality detection is performed by comparing the difference value of measurement data between the power storage elements and a certain threshold value, there is a possibility that false detections will increase. Although false detections can be prevented or the detection rate can be improved by adjusting the threshold value, setting the threshold value becomes complicated, leading to a decrease in the explainability of abnormality detection.
  • the abnormality detection device it is possible to detect an abnormality in a power storage element by taking into consideration the internal state quantity of the power storage element.
  • the accuracy of abnormality detection can be improved compared to the case where abnormalities are detected simply based on measurement data.
  • the internal state quantities of the reference power storage element and the target power storage element which are factors for false detection, to detect an abnormality, it is possible to reduce false detections and to detect an abnormality with high explainability.
  • the estimation unit can efficiently estimate the internal state quantities of the reference power storage element and the target power storage element.
  • a power storage element simulator is constructed to accurately simulate measurement data based on internal state quantities of a power storage element, and is usually used to predict behavior of measurement data of a power storage element.
  • the abnormality detection device uses a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. , internal state quantities can be calculated efficiently.
  • the internal state quantity can be estimated easily and accurately. In a large-scale system including a plurality of power storage elements, by efficiently calculating internal state quantities, the computational load of abnormality detection processing can be reduced.
  • the estimating section minimizes the absolute value of the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition section.
  • the optimum value of the internal state quantity may be searched.
  • difference means the absolute value of the difference. According to the abnormality detection device described in (16) above, an optimal solution for the internal state quantity can be obtained efficiently and accurately using an optimization method.
  • the estimation unit uses the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity and usage history of the power storage element.
  • the internal state quantities of the reference power storage element and the target power storage element may be estimated so that the measurement data output from the power storage element simulator using the usage history as input approximates the measurement data acquired by the acquisition unit. good.
  • the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element.
  • the usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
  • the measurement data depends on the usage history as well as the internal state quantity of the electricity storage element.
  • the internal state quantity can be estimated with higher accuracy by considering the usage history of the power storage element. Furthermore, by changing the usage history, it is possible to estimate various internal state quantities.
  • the internal state amount may include a health state or a charging state of the power storage element.
  • the "state of health” may be SOH
  • the "state of charge” may be SOC. According to the abnormality detection device described in (18) above, the accuracy of abnormality detection can be improved by using the health condition or the state of charge that greatly affects measurement data as an indicator for abnormality detection.
  • An abnormality detection method acquires measured data of a reference power storage element and a target power storage element, and calculates the measured data of the power storage element from each acquired measurement data and an internal state quantity of the power storage element. Based on the estimated energy storage element simulator, the internal state quantities of the reference energy storage element and the target energy storage element are estimated so that the measurement data output from the energy storage element simulator approximates the acquired measurement data, and the estimated reference A computer executes a process of detecting an abnormality in the target power storage element based on a comparison between an internal state quantity of the power storage element and an internal state quantity of the target power storage element.
  • a program acquires measurement data of a reference power storage element and a target power storage element, and estimates measurement data of the power storage element from each acquired measurement data and an internal state quantity of the power storage element. Based on the power storage element simulator, the internal state quantities of the reference power storage element and the target power storage element are estimated so that the measurement data output from the power storage element simulator approximates the acquired measurement data, and the estimated reference power storage element A computer is caused to execute a process of detecting an abnormality in the target power storage element based on a comparison between the internal state quantity of the target power storage element and the internal state quantity of the target power storage element.
  • FIG. 13 is a diagram showing a configuration example of a remote monitoring system 400 according to the fourth embodiment.
  • Remote monitoring system 400 allows remote access to information regarding power storage elements included in power generation system 200.
  • the remote monitoring system 400 includes a power generation system 200 to be remotely monitored, and an abnormality detection device 70 that collects information from the power generation system 200.
  • the abnormality detection device 70 and the power generation system 200 are communicably connected via a network N1 such as the Internet.
  • the number of power generation systems 200 may be one or three or more.
  • the abnormality detection device 70 may be integrated into any of the power generation systems 200.
  • FIG. 14 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted.
  • the power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2.
  • Power storage unit 40 may include a plurality of banks 41.
  • the power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru.
  • a configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system.
  • the power storage system may include a power conditioner (not shown).
  • the power storage unit 40 is not limited to industrial use, and may be used for home use.
  • the business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 400.
  • the communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14.
  • the control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory.
  • the storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
  • the first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44.
  • the control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
  • the second communication unit 14 includes a communication interface that realizes communication via the network N2.
  • the control unit 11 can communicate with the server device 20 through the second communication unit 14.
  • the domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface.
  • the storage unit 12 can store measurement data acquired via the domain management device 30.
  • the server device 20 can collect measurement data of the power storage system from the communication device 10.
  • the measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system.
  • the server device 20 may separate and store the collected measurement data for each power storage element.
  • the server device 20 can transmit measurement data to the abnormality detection device 70 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
  • the bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
  • BMU battery management unit
  • CMU Cell Management Unit
  • the power storage module 42 has a plurality of power storage cells connected in series.
  • a “power storage element” may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel.
  • the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42.
  • the measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example.
  • the "power storage element” is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
  • the battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43.
  • the battery management device 44 can send and receive information to and from the domain management device 30.
  • the domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain.
  • the domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
  • the communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.).
  • the measurement data may be associated with identification information of the power storage element.
  • the abnormality detection device 70 of this embodiment performs abnormality detection on the target storage element that is the subject of abnormality detection, using measurement data of a reference storage element that serves as the standard for abnormality detection, among the multiple storage elements provided in the power generation system 200.
  • the reference storage element and the target storage element may be selected in advance according to a predetermined rule, for example, or may be selected manually.
  • the reference storage element and the target storage element can be determined taking into consideration the total number and arrangement of storage elements in the power generation system 200. There may be multiple reference storage elements and target storage elements, and they can be changed for each abnormality detection process.
  • FIG. 15 is a block diagram showing a configuration example of the abnormality detection device 70.
  • the abnormality detection device 70 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information.
  • the abnormality detection device 70 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software.
  • the abnormality detection device 70 includes a control section 71, a storage section 72, a communication section 73, a display section 74, an operation section 75, and the like.
  • the control unit 71 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like.
  • the CPU or GPU included in the control unit 71 executes various computer programs stored in the ROM or the storage unit 72, and controls the operations of the hardware units described above.
  • the control unit 71 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given to when a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
  • the storage unit 72 includes a nonvolatile storage device such as a flash memory or a hard disk drive.
  • the storage unit 72 stores various computer programs, data, etc. that are referenced by the control unit 71.
  • the storage unit 72 stores a program 721 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 722 as data necessary for executing the program 721. I remember.
  • the measurement DB 722 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200.
  • the measurement DB 722 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using, for example, an ID for identifying measurement data as a key.
  • the measurement DB 722 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
  • the storage unit 72 also stores identification information of the reference power storage element and the target power storage element, a threshold value for detecting an abnormality, which will be described later, and the like.
  • a computer program (program product) including the program 721 may be provided by a non-temporary recording medium 7A on which the computer program is readably recorded.
  • the recording medium 7A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card.
  • the control unit 71 reads a desired computer program from the recording medium 7A using a reading device (not shown), and stores the read computer program in the storage unit 72.
  • the computer program may be provided via communication.
  • Program 721 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
  • the communication unit 73 includes a communication interface that realizes communication via the network N1.
  • the control unit 71 receives measurement data transmitted from the power generation system 200 through the communication unit 73.
  • the display unit 74 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display section 74 displays various information according to instructions from the control section 71.
  • the operation unit 75 is an interface that accepts user operations.
  • the operation unit 75 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like.
  • the operation unit 75 receives operation input from the user and sends a control signal to the control unit 71 according to the operation content.
  • the abnormality detection device 70 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the abnormality detection device 70 does not need to include the display section 74 and the operation section 75.
  • FIG. 16 is a functional block diagram showing a configuration example of the abnormality detection device 70.
  • the control unit 71 of the abnormality detection device 70 reads and executes a program 721 stored in the storage unit 72 to control each of the power storage element simulator 711, the acquisition unit 712, the estimation unit 713, the detection unit 714, and the output unit 715. Achieve functionality. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 71.
  • a dedicated hardware circuit for example, FPGA or ASIC
  • the power storage element simulator 711 has a function as a measurement data estimator.
  • the power storage element simulator 711 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element.
  • the power storage element simulator 711 may estimate the measurement data of the power storage element by using at least the internal state quantity of the power storage element as input.
  • the power storage element simulator 711 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
  • the internal state quantities that are input data to the power storage element simulator 711 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element.
  • the usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns.
  • the measurement data that is output data from the power storage element simulator 711 is data that includes at least one of the voltage, current, and temperature of the power storage element.
  • the power storage element simulator 711 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output.
  • the temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 711.
  • the acquisition unit 712 acquires measurement data of a plurality of power storage elements including the target power storage element and the reference power storage element by receiving the measurement data transmitted from the server device 20 at an appropriate timing.
  • the acquisition unit 712 acquires observed values of voltage, current, and temperature of the power storage element.
  • the measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged.
  • the measurement data may be real-time data or historical data for a predetermined period in the past.
  • the acquisition unit 712 stores the acquired measurement data in the measurement DB 722 in chronological order. Alternatively, the acquisition unit 712 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 722 in advance.
  • the acquisition unit 712 acquires (identifies) the usage history of the power storage element based on the acquired measurement data.
  • the acquisition unit 712 may identify the load pattern of the power storage element and the environmental temperature pattern, for example, based on changes in the voltage, current, and temperature of the power storage element over a predetermined period.
  • the environmental temperature pattern of the power storage element may be determined by considering the arrangement of the power storage element.
  • the acquisition unit 712 stores a plurality of preset usage histories in the storage unit 72, and reads out one of the usage histories of the plurality of usage histories, thereby obtaining the usage history of the power storage element. may be obtained. That is, the acquisition unit 712 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
  • the estimation unit 713 estimates the internal state quantity of the power storage element based on the measurement data and usage history acquired by the acquisition unit 712 and the power storage element simulator 711. Estimating unit 713 estimates the internal state quantity of the reference power storage element and the target power storage element based on the measurement data and usage history regarding each of the reference power storage element and the target power storage element specified in advance.
  • FIG. 17 is a diagram illustrating a method for estimating internal state quantities.
  • the acquisition unit 712 acquires actual measured values of measurement data O t including voltage, current, and temperature at time t.
  • the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t.
  • the usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
  • the estimation unit 713 sets the internal state quantity S t at time t, and obtains the estimated value of the measurement data O t output from the power storage element simulator 711 based on the set internal state quantity S t and the usage history U t . .
  • the estimation unit 713 compares the estimated value of the measurement data O t with the actual measurement value of the measurement data O t and sets the internal state quantity S so that the estimated value of the measurement data O t approximates the actual measurement value of the measurement data O t .
  • Estimate t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used.
  • the estimation unit 713 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
  • SOH and SOC of the internal state quantity S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated value of the voltage approximates the actual measured value.
  • the SOC may be an initial SOC.
  • the estimation unit 713 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions.
  • the estimation unit 713 can use the obtained optimal solution (approximate solution) of SOH and SOC as the internal state amount S t .
  • the usage history U t that is input to the power storage element simulator 711 may be a temporary usage history as described above. For example, using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t is estimated when each usage history U t is used as an input element. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
  • the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more.
  • the measurement data may be other than voltage, and the types of measurement data may be two or more.
  • the detection unit 714 receives the estimation results of the internal state quantities of the target power storage element and the reference power storage element output from the estimation unit 713.
  • the detection unit 714 detects an abnormality in the target power storage element by comparing the internal state quantities of the target power storage element and the reference power storage element estimated by the estimation unit 713.
  • the detection unit 714 calculates the difference (absolute value of the difference) ⁇ S between the internal state quantity of the target power storage element estimated by the estimation unit 713 and the internal state quantity of the reference power storage element.
  • the detection unit 714 performs abnormality detection by determining whether the calculated difference ⁇ S of the internal state quantities is less than a preset threshold.
  • the detection unit 714 determines that the target power storage element is normal when the internal state quantity difference ⁇ S is less than the threshold value, and determines the target power storage element to be abnormal when the internal state quantity difference ⁇ S is greater than or equal to the threshold value.
  • the output unit 715 receives the abnormality detection result from the detection unit 714 and outputs information indicating the received detection result to the display unit 74.
  • the display unit 74 displays information indicating the detection results.
  • the output unit 715 may output information indicating the detection result to an external computer.
  • FIG. 18 is a flowchart illustrating an example of an abnormality detection processing procedure.
  • the control unit 71 of the abnormality detection device 70 starts the following process at predetermined or appropriate intervals according to the program 721 stored in the storage unit 72.
  • the control unit 71 of the abnormality detection device 70 acquires actual measured values of measurement data including the voltage, current, and temperature of the reference power storage element and the target power storage element (step S211).
  • the number of reference power storage elements and target power storage elements may be plural.
  • the control unit 71 acquires the usage history of the reference power storage element and the target power storage element based on the acquired measurement data of the reference power storage element and the target power storage element (step S212).
  • the control unit 71 may acquire a temporary usage history.
  • FIG. 19 is a flowchart illustrating an example of a detailed procedure for estimating the internal state quantity.
  • the processing procedure shown in the flowchart of FIG. 19 corresponds to the details of step S213 in the flowchart of FIG.
  • the control unit 71 estimates (sets) the internal state quantity of the power storage element (step S221).
  • the control unit 71 may randomly set an initial value for estimating the internal state amount, for example, between an upper limit value and a lower limit value of the internal state amount set in the power storage element.
  • the control unit 71 may also set the previous estimation result or the estimation result of other power storage elements as the initial value.
  • the control unit 71 receives the estimated internal state quantity and the acquired usage history as input, and acquires an estimated value of the measurement data output from the power storage element simulator 711 (step S222).
  • the control unit 71 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S223).
  • step S223 If it is determined that the difference is not within the allowable range (step S223: NO), the control unit 71 returns the process to step S221 and repeats estimation of the internal state quantity so as to minimize the difference.
  • the internal state quantity is optimized through steps S221 to S223.
  • step S223 If it is determined that the difference is within the allowable range (step S223: YES), the control unit 71 sets the obtained internal state amount to the optimum value and returns the process to step S214 in the flowchart of FIG.
  • the control unit 71 executes the estimation of the internal state quantities described above for all the designated reference power storage elements and target power storage elements.
  • the control unit 71 estimates the internal state quantity of the reference power storage element using the acquired temporary usage history.
  • the control unit 71 may estimate the internal state quantities of the plurality of reference power storage elements for each usage history set in advance.
  • the control unit 71 may use the usage history specified based on the measurement data of the target power storage element as the temporary usage history of the reference power storage element.
  • the internal state quantity may be estimated for each reference power storage element for each usage history.
  • the control unit 71 calculates a difference ⁇ S between the estimated internal state quantity of the reference power storage element and the internal state quantity of the target power storage element, and determines whether the calculated difference ⁇ S is less than a preset threshold value. (Step S214). In step S214, the control unit 71 may determine whether it is less than a threshold value based on the standard deviation of the internal state quantities of the plurality of reference power storage elements. The control unit 71 may also perform abnormality determination based on the estimated distribution shape of the internal state quantities.
  • step S214 determines that the target power storage element is normal (step S215). If it is determined that the calculated difference ⁇ S is greater than or equal to the preset threshold (step S214: NO), the control unit 71 determines that the target power storage element is abnormal (step S216). Steps S214 to S216 correspond to abnormality detection processing. The control unit 71 calculates the difference ⁇ S for each combination of the internal state quantities of the target power storage element and the estimated reference power storage element, and executes threshold determination.
  • the control unit 71 outputs the abnormality detection result, for example, through the display unit 74 (step S217), and ends the example process. Alternatively, the control unit 71 may output the abnormality detection result to an external computer.
  • an abnormality in the power storage element can be detected with high accuracy by considering the internal state quantity.
  • the internal state quantity used for abnormality detection can be estimated efficiently by estimating the internal state quantity in the opposite direction using a power storage element simulator and optimizing the internal state quantity by approximating the estimated value of the measurement data to the actual measured value.
  • the abnormality detection device 70 executes each process in the above flowchart.
  • part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a measurement data of the reference power storage element acquired by the acquisition unit. Detection criteria are determined based on measurement data estimated by a power storage element simulator based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference power storage element, and measurement data of the reference power storage element acquired by the acquisition unit.
  • the power storage device includes a setting unit for setting, a detection unit for detecting an abnormality in the target power storage element based on the detection criteria set by the setting unit, and measurement data of the target power storage element acquired by the acquisition unit.
  • the “reference electricity storage element” means an electricity storage element that serves as a comparison standard when detecting an abnormality.
  • “Target power storage element” means a power storage element that is a target of abnormality detection.
  • the reference power storage element and the target power storage element may be provided within the same power generation system, for example.
  • “Electricity storage element simulator” means a simulator constructed to simulate the behavior of an electricity storage element.
  • the power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element. Further, the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like.
  • a shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
  • the measurement data of the power storage element depends on the internal state quantity of the power storage element.
  • the difference value of measurement data between power storage elements changes depending on the internal state quantity. Therefore, when abnormality detection is performed by comparing the difference value of measurement data between the power storage elements and a certain threshold value, there is a possibility that false detections will increase. Although false detections can be prevented or the detection rate can be improved by adjusting the threshold value, setting the threshold value becomes complicated, leading to a decrease in the accuracy of abnormality detection.
  • the detection standard is dynamically determined each time an anomaly is detected or at an appropriate detection timing based on measurement data estimated from the internal state quantity of the reference energy storage element with allowances taken into account. It becomes possible to set abnormality of the power storage element using the set detection standard.
  • the detection criteria By dynamically setting the detection criteria, the accuracy of abnormality detection can be improved compared to the case where abnormality detection is performed using a fixed threshold value.
  • the internal state quantity that is a factor of false detection, it is possible to reduce false detections and detect abnormalities with high accuracy compared to the case where abnormalities are detected simply based on measurement data. Since internal state quantities can be reflected in the detection criteria, more appropriate detection criteria can be generated.
  • the detection standard regarding the internal state quantity can be converted into the detection standard regarding the measurement data.
  • internal state quantities are not required and abnormality detection can be performed based on easily obtainable measurement data, so the calculation load of the detection process is reduced and it can be performed at high speed.
  • the power storage device may include an estimation unit that estimates the internal state quantity of the reference electricity storage element so that the measurement data of the reference electricity storage element obtained by the acquisition unit approximates the measurement data of the reference electricity storage element.
  • the internal state quantity of the reference power storage element can be efficiently estimated.
  • a power storage element simulator is constructed to accurately simulate measurement data based on internal state quantities of a power storage element, and is usually used to predict behavior of measurement data of a power storage element.
  • the abnormality detection device uses a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. , internal state quantities can be calculated efficiently.
  • the internal state quantity can be estimated easily and accurately. In a large-scale system including a plurality of power storage elements, by efficiently calculating internal state quantities, the computational load of abnormality detection processing can be reduced.
  • the estimating unit is configured to minimize the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. You may also search for the optimal value of .
  • difference means the absolute value of the difference. According to the abnormality detection device described in (23) above, an optimal solution for the internal state quantity can be obtained efficiently and accurately using an optimization method.
  • the setting unit is configured to set an internal state quantity of the reference energy storage element estimated for each usage history of the reference energy storage element.
  • a plurality of the detection criteria may be set based on the above.
  • the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element.
  • the usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
  • the measurement data depends on the usage history as well as the internal state quantity of the electricity storage element.
  • the detection criteria can be set in consideration of the internal state quantities and usage history of various power storage elements, so that Anomaly detection becomes possible.
  • the detection unit may detect an abnormality based on the voltage of the target power storage element.
  • the accuracy of abnormality detection can be further improved by using voltage, which is a measurement value that easily changes depending on the state of the power storage element, as a base among measurement data. .
  • the internal state quantity may include a degree of deterioration or a state of charge of the electricity storage element.
  • the "state of health” may be SOH
  • the “state of charge” may be SOC.
  • the accuracy of abnormality detection can be improved by taking into account the health condition or the state of charge that greatly affects the measurement data.
  • a computer acquires measurement data of a reference energy storage element and a target energy storage element, sets a detection criterion based on the measurement data estimated by a storage element simulator and the acquired measurement data of the reference energy storage element based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference energy storage element estimated from the acquired measurement data of the reference energy storage element, and detects an anomaly in the target energy storage element based on the set detection criterion and the acquired measurement data of the target energy storage element.
  • a program acquires measurement data of a reference energy storage element and a target energy storage element, and allows an internal state quantity of the reference energy storage element estimated from the acquired measurement data of the reference energy storage element. Based on the internal state quantity including the difference, a detection standard is set based on the measurement data estimated by the power storage element simulator and the acquired measurement data of the reference power storage element, and the set detection standard and the acquired target are determined. The computer is caused to execute a process of detecting an abnormality in the target power storage element based on the measurement data of the power storage element.
  • An abnormality detection device includes an acquisition unit that acquires measurement data of a reference energy storage element and a target energy storage element, and a Detection criteria are determined based on measurement data estimated by a power storage element simulator based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference power storage element, and measurement data of the reference power storage element acquired by the acquisition unit. and a setting section for setting.
  • the detection standard is dynamically set every time an abnormality is detected or at an appropriate detection timing, based on the measurement data estimated from the internal state quantity of the reference energy storage element, taking into account the allowable difference. can be set.
  • the accuracy of abnormality detection can be improved compared to the case where abnormality detection is performed using a fixed threshold value.
  • FIG. 20 is a diagram showing a configuration example of a remote monitoring system 500 according to the fifth embodiment.
  • Remote monitoring system 500 enables remote access to information regarding power storage elements included in power generation system 200.
  • Remote monitoring system 500 includes a power generation system 200 to be remotely monitored, and an abnormality detection device 80 that collects information from power generation system 200.
  • the abnormality detection device 80 and the power generation system 200 are communicably connected via a network N1 such as the Internet.
  • the number of power generation systems 200 may be one or three or more.
  • the abnormality detection device 80 may be integrated into any of the power generation systems 200.
  • FIG. 21 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted.
  • the power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2.
  • Power storage unit 40 may include a plurality of banks 41.
  • the power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru.
  • a configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system.
  • the power storage system may include a power conditioner (not shown).
  • the power storage unit 40 is not limited to industrial use, and may be used for home use.
  • the business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 500.
  • the communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14.
  • the control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory.
  • the storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
  • the first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44.
  • the control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
  • the second communication unit 14 includes a communication interface that realizes communication via the network N2.
  • the control unit 11 can communicate with the server device 20 through the second communication unit 14.
  • the domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface.
  • the storage unit 12 can store measurement data acquired via the domain management device 30.
  • the server device 20 can collect measurement data of the power storage system from the communication device 10.
  • the measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system.
  • the server device 20 may separate and store the collected measurement data for each power storage element.
  • the server device 20 can transmit measurement data to the abnormality detection device 80 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
  • the bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
  • BMU battery management unit
  • CMU Cell Management Unit
  • the power storage module 42 has a plurality of power storage cells connected in series.
  • a “power storage element” may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel.
  • the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42.
  • the measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example.
  • the "power storage element” is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
  • the battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43.
  • the battery management device 44 can send and receive information to and from the domain management device 30.
  • the domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain.
  • the domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
  • the communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.).
  • the measurement data may be associated with identification information of the power storage element.
  • the abnormality detection device 80 of this embodiment uses measurement data of a reference power storage element, which is a reference for abnormality detection, among a plurality of power storage elements provided in the power generation system 200, to detect a target power storage element that is a target of abnormality detection. Anomaly detection is performed.
  • the reference power storage element and the target power storage element may be selected in advance according to a predetermined rule, or may be selected manually, for example.
  • the reference power storage element and the target power storage element can be determined in consideration of the total number and arrangement of power storage elements in the power generation system 200.
  • Each of the reference power storage element and the target power storage element may be plural, and can be changed for each abnormality detection process.
  • FIG. 22 is a block diagram showing a configuration example of the abnormality detection device 80.
  • the abnormality detection device 80 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information.
  • the abnormality detection device 80 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software.
  • the abnormality detection device 80 includes a control section 81, a storage section 82, a communication section 83, a display section 84, an operation section 85, and the like.
  • the control unit 81 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like.
  • the CPU or GPU included in the control unit 81 executes various computer programs stored in the ROM or the storage unit 82, and controls the operations of the hardware units described above.
  • the control unit 81 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
  • the storage unit 82 includes a nonvolatile storage device such as a flash memory or a hard disk drive.
  • the storage unit 82 stores various computer programs, data, etc. that the control unit 81 refers to.
  • the storage unit 82 stores a program 821 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 822 as data necessary for executing the program 821. I remember.
  • the measurement DB 822 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200.
  • the measurement DB 822 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked, for example, using an ID for identifying measurement data as a key.
  • the measurement DB 822 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
  • the storage unit 82 also stores identification information of the reference power storage element and the target power storage element, a permissible difference value for abnormality detection, which will be described later, and the like.
  • a computer program (program product) including the program 821 may be provided by a non-temporary recording medium 8A on which the computer program is readably recorded.
  • the recording medium 8A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card.
  • the control unit 81 reads a desired computer program from the recording medium 8A using a reading device (not shown), and stores the read computer program in the storage unit 82.
  • the computer program may be provided via communication.
  • Program 821 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
  • the communication unit 83 includes a communication interface that realizes communication via the network N1.
  • the control unit 81 receives measurement data transmitted from the power generation system 200 through the communication unit 83.
  • the display unit 84 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display section 84 displays various information according to instructions from the control section 81.
  • the operation unit 85 is an interface that accepts user operations.
  • the operation unit 85 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like.
  • the operation unit 85 receives operation input from the user and sends a control signal to the control unit 81 according to the operation content.
  • the abnormality detection device 80 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the abnormality detection device 80 does not need to include the display section 84 and the operation section 85.
  • FIG. 23 is a functional block diagram showing a configuration example of the abnormality detection device 80.
  • the control unit 81 of the abnormality detection device 80 reads and executes a program 821 stored in the storage unit 82 to control the power storage element simulator 811, the acquisition unit 812, the estimation unit 813, the setting unit 814, the detection unit 815, and the output.
  • Each function of section 816 is realized. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 81.
  • the power storage element simulator 811 has a function as a measurement data estimator.
  • the power storage element simulator 811 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element.
  • the power storage element simulator 811 may estimate the measurement data of the power storage element using at least the internal state quantity of the power storage element as input.
  • the power storage element simulator 811 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
  • the internal state quantities that are input data to the power storage element simulator 811 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element.
  • the usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns.
  • the measurement data that is the output data from the power storage element simulator 811 is data that includes at least one of the voltage, current, and temperature of the power storage element.
  • the power storage element simulator 811 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output.
  • the temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 811.
  • the power storage element simulator 811 is used both for estimating an internal state quantity, which will be described later, and for estimating measurement data based on the estimated internal state quantity.
  • the acquisition unit 812 acquires measurement data of a plurality of power storage elements including the target power storage element and the reference power storage element by receiving the measurement data transmitted from the server device 20 at an appropriate timing.
  • the acquisition unit 812 acquires observed values of voltage, current, and temperature of the power storage element.
  • the measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged.
  • the measurement data may be real-time data or historical data for a predetermined period in the past.
  • the acquisition unit 812 stores the acquired measurement data in the measurement DB 822 in chronological order. Alternatively, the acquisition unit 812 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 822 in advance.
  • the acquisition unit 812 acquires (identifies) the usage history of the reference power storage element based on the acquired measurement data of the reference power storage element.
  • the acquisition unit 812 may identify the load pattern and the environmental temperature pattern of the reference power storage element based on, for example, changes in the voltage, current, and temperature of the reference power storage element over a predetermined period.
  • the environmental temperature pattern of the reference power storage element may be determined by considering the arrangement of the reference power storage element.
  • the acquisition unit 812 stores a plurality of preset usage histories in the storage unit 82 in advance, and reads out one of the usage histories of the plurality of usage histories to determine the reference power storage element. Usage history may also be obtained. That is, the acquisition unit 812 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
  • the estimation unit 813 estimates the internal state quantity of the reference electricity storage element based on the measurement data and usage history of the reference electricity storage element acquired by the acquisition unit 812 and the electricity storage element simulator 811.
  • FIG. 24 is a diagram illustrating a method for estimating internal state quantities.
  • the acquisition unit 812 acquires the actual measured value of measurement data O t including voltage, current, and temperature at time t.
  • the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t.
  • the usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
  • the estimation unit 813 sets the internal state quantity S t at time t, and acquires the estimated value of the measurement data O t output from the power storage element simulator 811 based on the set internal state quantity S t and the usage history U t . .
  • the estimation unit 813 compares the estimated value of the measured data O t with the actual measured value of the measured data O t and sets the internal state quantity S so that the estimated value of the measured data O t approximates the actual measured value of the measured data O t .
  • Estimate t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used.
  • the estimation unit 813 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
  • SOH and SOC of the internal state quantity S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated value of the voltage approximates the actual measured value.
  • the SOC may be an initial SOC.
  • the estimation unit 813 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions.
  • the estimation unit 813 can use the obtained optimal solution (approximate solution) of SOH and SOC as the internal state quantity S t .
  • the usage history U t that is input to the power storage element simulator 811 may be a temporary usage history as described above. For example, by using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t when each usage history U t is used as an input element is estimated. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
  • the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more.
  • the measurement data may be other than voltage, and the types of measurement data may be two or more.
  • the setting unit 814 sets a detection reference value (threshold value) of the measurement data based on the internal state quantity of the reference power storage element estimated by the estimation unit 813.
  • the setting unit 814 calculates the allowable internal state amount by adding the allowable difference to the estimated internal state amount using the estimated internal state amount of the reference power storage element as a reference.
  • the allowable difference can be determined by taking into consideration the normal variation range in the internal state quantities. As an example, when the internal state quantity is SOC, the allowable difference may be ⁇ 2% or +2%. The allowable difference may be a negative value or a positive value. That is, the allowable internal state amount may be the lower limit value or the upper limit value of the internal state amount. The allowable internal state quantity includes one or both of a lower limit value and an upper limit value.
  • the setting unit 814 Based on the calculated allowable internal state amount and usage history and the power storage element simulator 811, the setting unit 814 obtains measurement data (allowable measurement data) corresponding to the calculated allowable internal state amount and usage history.
  • the allowable measurement data corresponds to one or both of a lower limit value and an upper limit value representing a normal variation range in measurement data.
  • the usage history used when calculating the allowable measurement data may be the same as the usage history used when estimating the internal state amount that is a reference for the allowable internal state amount.
  • the setting unit 814 determines a detection reference value (threshold value) by calculating the difference (absolute value of the difference) between the obtained allowable measurement data and the actual measurement value of the measurement data of the reference power storage element. Furthermore, the difference between the obtained allowable measurement data and the estimated value of the measurement data of the reference power storage element (value calculated using the power storage element simulator 811) may be used as the detection reference value.
  • the detection unit 815 detects an abnormality in the target power storage element based on the detection reference value set by the setting unit 814 and the measurement data of the target power storage element acquired by the acquisition unit 812.
  • the detection unit 815 calculates the difference (absolute value of the difference) ⁇ O between the measurement data of the target power storage element and the average value of the measurement data.
  • the average value of the measured data may be the average value of the measured data of some of the power storage elements in the power generation system 200 extracted according to a predetermined rule. Alternatively, the average value of the measured data may be the average value of the measured data of all the power storage elements in the power generation system 200.
  • the detection unit 815 performs abnormality detection by determining whether the calculated difference ⁇ O of the measurement data is less than the detection reference value.
  • the detection unit 815 determines the target power storage element to be normal when the difference ⁇ O in the measurement data is less than the detection reference value, and determines the target power storage element to be abnormal when the difference ⁇ O in the measurement data is greater than or equal to the detection reference value. .
  • the detection unit 815 may also determine the presence or absence of an abnormality using a plurality of detection reference values based on a plurality of allowable measurement data. In this case, since each detection reference value and each allowable internal state quantity range are related, it is possible to investigate the cause of the abnormality. For example, if the difference in measured data exceeds a detection reference value based on the lower limit of SOC, it is possible to infer that the cause of the abnormality is the excess of the lower limit of SOC.
  • the abnormality detection is performed based on the difference between the voltage of the target storage element and the voltage average value using a detection reference value that is a threshold regarding the voltage difference. Abnormalities can be detected with high accuracy by using a voltage that best represents the state of the power storage element in the measurement data.
  • the output unit 816 receives the abnormality detection result from the detection unit 815 and outputs information indicating the received detection result to the display unit 84.
  • the display unit 84 displays information indicating the detection results.
  • the output unit 816 may output information indicating the detection result to an external computer.
  • an allowable internal state amount indicating the range of normal internal state amounts is specified based on the internal state amount of the reference power storage element estimated using the power storage element simulator 811.
  • a detection reference value of the measurement data is set based on the allowable measurement data corresponding to the specified allowable internal state quantity.
  • estimation of the internal state quantity of the target power storage element is not necessary, and abnormality detection is performed by comparing the difference between the measurement data and the detection reference value.
  • FIG. 25 is a flowchart illustrating an example of an abnormality detection processing procedure.
  • the control unit 81 of the abnormality detection device 80 starts the following process at predetermined or appropriate intervals according to the program 821 stored in the storage unit 82.
  • the control unit 81 of the abnormality detection device 80 acquires actual measured values of measurement data including the voltage, current, and temperature of the reference power storage element and the target power storage element (step S311).
  • the number of reference power storage elements and target power storage elements may be plural.
  • the control unit 81 acquires the usage history of the reference power storage element based on the acquired measurement data of the reference power storage element (step S312).
  • the control unit 81 may acquire a temporary usage history.
  • FIG. 26 is a flowchart illustrating an example of a detailed procedure for estimating the internal state quantity.
  • the processing procedure shown in the flowchart of FIG. 26 corresponds to the details of step S313 in the flowchart of FIG. 25.
  • the control unit 81 estimates (sets) the internal state quantity of the reference electricity storage element (step S321).
  • the control unit 81 may randomly set the initial value for estimating the internal state amount, for example, between the upper limit value and the lower limit value of the internal state amount set in the reference electricity storage element.
  • the control unit 81 may also set the previous estimation result or the estimation result of another power storage element as the initial value.
  • the control unit 81 receives the estimated internal state quantity and the acquired usage history as input, and acquires the estimated value of the measurement data output from the power storage element simulator 811 (step S322).
  • the control unit 81 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S323).
  • step S323 NO
  • the control unit 81 returns the process to step S321 and repeats estimation of the internal state quantity so as to minimize the difference.
  • the internal state quantity is optimized through steps S321 to S323.
  • step S323 If it is determined that the difference is within the allowable range (step S323: YES), the control unit 81 sets the obtained internal state amount to the optimal value and returns the process to step S314 in the flowchart of FIG. 25.
  • the control unit 81 executes the estimation of the internal state quantities described above for all designated reference power storage elements.
  • the control unit 81 estimates the internal state quantity of the reference electricity storage element using the acquired temporary usage history.
  • the control unit 81 may estimate a plurality of internal state quantities corresponding to all preset usage histories.
  • the internal state quantity may be estimated for each reference power storage element for each usage history.
  • the control unit 81 calculates the allowable internal state amount by adding a preset allowable difference to the estimated internal state amount of the reference power storage element (step S314).
  • the control unit 81 calculates allowable measurement data corresponding to the calculated allowable internal state amount and usage history based on the calculated allowable internal state amount and usage history and the power storage element simulator 811 (step S315).
  • the control unit 81 acquires the calculated allowable internal state amount and usage history, and the allowable measurement data output from the power storage element simulator 811 as input.
  • the control unit 81 calculates the difference between the calculated allowable measurement data and the actual measurement value of the measurement data of the reference power storage element, and sets the calculated value as the detection reference value of the measurement data (step S316).
  • the control unit 81 may set a plurality of detection reference values based on a plurality of internal state quantities estimated for each usage history.
  • the control unit 81 calculates the difference ⁇ O between the measured data of the target power storage element and the average value of the measured data, and determines whether the calculated difference ⁇ O is less than the set detection reference value (step S317).
  • step S317: YES If it is determined that the calculated difference ⁇ O is less than the detection reference value (step S317: YES), the control unit 81 determines that the target power storage element is normal (step S318). If it is determined that the calculated difference ⁇ O is greater than or equal to the detection reference value (step S317: NO), the control unit 81 determines that the target power storage element is abnormal (step S319). Steps S317 to S319 correspond to abnormality detection processing. The control unit 81 performs threshold determination for each set detection reference value for all target power storage elements.
  • the control unit 81 outputs the abnormality detection result, for example, through the display unit 84 (step S320), and ends the example process.
  • the control unit 81 may output the abnormality detection result to an external computer.
  • the control unit 81 may estimate the internal state amount using a method other than estimating the internal state amount using the power storage element simulator 811.
  • the control unit 81 may estimate the internal state amount based on the previous estimation result of the internal state amount. For example, the control unit 81 may obtain the current SOC using a current integration method based on the previous SOC estimated using the power storage element simulator 811.
  • the control unit 81 may estimate the internal state quantity every predetermined number of abnormality detections, and may continue to use the previous estimation result of the internal state quantity until the predetermined number of times is reached.
  • an abnormality in the power storage element can be detected with high accuracy by considering the internal state quantity.
  • the internal state quantity used for abnormality detection can be estimated efficiently by estimating the internal state quantity in the opposite direction using a power storage element simulator and optimizing the internal state quantity by approximating the estimated value of the measurement data to the actual measured value.
  • the abnormality detection device 80 executes each process in the above flowchart.
  • part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided are a calculating device, etc., capable of accurately calculating current and future degradation states of an electricity storage element. The calculating device comprises: an acquiring unit for acquiring actual measurement data and virtual measurement data relating to the electricity storage element; and a calculating unit for calculating the current and future degradation states of the electricity storage element on the basis of the measurement data relating to the electricity storage element. If the current degradation state is to be calculated, the calculating unit calculates the degradation state in accordance with a predetermined calculation algorithm on the basis of the actual measurement data acquired by the acquiring unit, and if the future degradation state is to be calculated, the calculating unit calculates the degradation state in accordance with the predetermined calculation algorithm on the basis of the virtual measurement data acquired by the acquiring unit.

Description

算出装置、劣化状態の算出方法、プログラム、推定装置、推定方法、異常検知装置及び異常検知方法Calculation device, deterioration state calculation method, program, estimation device, estimation method, abnormality detection device and abnormality detection method
 本発明は、算出装置、劣化状態の算出方法、プログラム、推定装置、推定方法、異常検知装置及び異常検知方法に関する。 The present invention relates to a calculation device, a deterioration state calculation method, a program, an estimation device, an estimation method, an abnormality detection device, and an abnormality detection method.
 蓄電素子(Energy Storage Device)は、無停電電源装置(バックアップ)用電池、自動車・鉄道・航空機といった移動体動力用電池又は補機用電池、或いは安定した電源供給を補償する再生可能エネルギー発電所用電池等に広く使用されている。 Energy storage devices are batteries for uninterruptible power supplies (backup), batteries for movable bodies such as automobiles, trains, and aircraft, or batteries for auxiliary equipment, or batteries for renewable energy power plants that guarantee a stable power supply. etc. are widely used.
 蓄電素子は、充放電を繰り返すことで劣化が進行し、蓄電容量が徐々に低下することが知られている。蓄電素子を有効活用するためには、蓄電容量がどの程度低下するかを把握することが重要である。 It is known that repeated charging and discharging of a power storage element progresses its deterioration, and its power storage capacity gradually decreases. In order to effectively utilize a power storage element, it is important to understand how much the power storage capacity decreases.
 特許文献1には、電池容量を予測することができる電池容量予測装置が開示されている。特許文献1では、電池の充電状態と温度と経過時間により、一定期間における電池容量の劣化量を算出し、その劣化量の積算値を初期の電池容量から減算することにより、所定時点における電池容量を算出する。 Patent Document 1 discloses a battery capacity prediction device that can predict battery capacity. In Patent Document 1, the battery capacity at a predetermined point in time is determined by calculating the amount of battery capacity deterioration over a certain period of time based on the state of charge, temperature, and elapsed time of the battery, and subtracting the integrated value of the deterioration amount from the initial battery capacity. Calculate.
 特許文献2には、今現在使用しているリチウムイオン二次電池の将来の劣化状態の予測精度を向上させる技術が開示されている。特許文献2では、データベースに登録されている二次電池の使用履歴の中から抽出された予測対象の現在の状態と一致または近似している過去製品のデータを用いて、予測対象の二次電池の寿命予測を行う。 Patent Document 2 discloses a technique for improving the accuracy of predicting the future deterioration state of lithium ion secondary batteries currently in use. In Patent Document 2, data on past products that match or approximate the current state of the prediction target, extracted from the usage history of the secondary battery registered in a database, are used to determine the current state of the secondary battery to be predicted. predict the lifespan of
 蓄電素子は、無停電電源装置、直流電源装置等に広く使用されている。また、再生可能エネルギー又は既存の発電システムにて発電された電力を蓄電しておく大規模なシステムでの蓄電素子の利用が拡大している。大規模なシステムでは複数の蓄電素子が使用されている。 Power storage elements are widely used in uninterruptible power supplies, DC power supplies, etc. In addition, the use of power storage elements in large-scale systems that store electricity generated by renewable energy or existing power generation systems is expanding. Multiple power storage elements are used in large-scale systems.
 蓄電素子を使用したシステムにおいては、各蓄電素子の状態を正確に把握することが重要になる。蓄電素子の状態を把握するための方法については、蓄電素子の充放電時に観測される電圧、電流、温度等の計測データを用いる方法等が種々提案され、精度向上が図られている(例えば特許文献3参照)。 In systems using power storage elements, it is important to accurately understand the status of each power storage element. Various methods have been proposed to understand the state of power storage elements, including methods that use measurement data such as voltage, current, and temperature observed during charging and discharging of power storage elements, and efforts are being made to improve accuracy (for example, patents (See Reference 3).
特開第2000-228227号公報Japanese Patent Application Publication No. 2000-228227 特許第6411538号公報Patent No. 6411538 特開2013-003115号公報Japanese Patent Application Publication No. 2013-003115
 蓄電素子の劣化状態の算出に関して、蓄電素子の現在の劣化状態及び将来の劣化状態の両方を算出するニーズがある。特許文献1では、現在の劣化状態及び将来の劣化状態それぞれを算出する個別の技術が提案されているが、それらを統合して劣化状態を算出することについて、未だ十分な検討が行われていない。 Regarding calculation of the deterioration state of the power storage element, there is a need to calculate both the current deterioration state and the future deterioration state of the power storage element. Patent Document 1 proposes separate techniques for calculating the current state of deterioration and the future state of deterioration, but sufficient studies have not yet been conducted on integrating them to calculate the state of deterioration. .
 また特許文献1では、将来の蓄電容量の算出時に、蓄電素子の現在に至るまでの履歴データが考慮されておらず、蓄電素子の現在の劣化状態を適切に把握できない。蓄電容量と劣化状態とは異なる場合があり、例えば使用温度帯や使用態様(例えばサイクル使用、静置使用等)等の使用履歴に応じて、同じ蓄電容量であってもSOH(State of Health)が異なる場合が多い。このような場合に、履歴データに基づかない現在の劣化状態から将来の劣化状態を予測すると、予測精度が悪くなる。 Further, in Patent Document 1, when calculating the future power storage capacity, historical data of the power storage element up to the present is not taken into account, and the current state of deterioration of the power storage element cannot be appropriately grasped. The storage capacity and the state of deterioration may differ, for example, depending on the usage history such as the operating temperature range and usage conditions (e.g. cycle use, stationary use, etc.), even if the storage capacity is the same, the state of health (SOH) may differ. are often different. In such a case, predicting the future state of deterioration from the current state of deterioration that is not based on historical data will result in poor prediction accuracy.
 特許文献2に記載の技術は、予測対象の現在の状態と一致または近似している過去製品のデータが存在しない場合には寿命予測ができない。また、予測可能な期間が登録された過去製品のデータ区間に応じた期間に限られているため、長期の期間に係る寿命予測は、データの蓄積の観点から困難である。 The technology described in Patent Document 2 cannot predict the lifespan if there is no data on past products that match or approximate the current state of the prediction target. Furthermore, since the predictable period is limited to the period corresponding to the data interval of registered past products, it is difficult to predict the lifespan over a long period from the viewpoint of data accumulation.
 一つの側面では、蓄電素子における現在及び将来の劣化状態を精度よく算出することができる算出装置等を提供することを目的とする。 One aspect of the present invention is to provide a calculation device and the like that can accurately calculate the current and future deterioration states of power storage elements.
 蓄電素子の電圧、電流、温度等の計測データは、蓄電素子の内部状態量に依存する。例えば、蓄電素子に所定期間にわたり放電電流又は充電電流が流れると、蓄電素子の充電状態(SOC:State of Charge)、健康状態(SOH:State of Health)といった、蓄電素子の内部状態が推移し、蓄電素子の電圧が変化する。蓄電素子の状態を正確に把握するためには、蓄電素子の内部状態量を把握することが重要である。蓄電素子の内部状態量は、電圧、電流、温度等とは異なり、直接的に計測することができないか、あるいは容易には計測することができない。特に、複数の蓄電素子を備える大規模なシステムにおいて、各蓄電素子の内部状態量を効率よく把握することは容易ではない。このため蓄電素子の内部状態量を効率よく提示できる技術が望まれる。 Measured data such as voltage, current, temperature, etc. of the power storage element depend on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element. The voltage of the electricity storage element changes. In order to accurately understand the state of the power storage element, it is important to understand the internal state quantity of the power storage element. Unlike voltage, current, temperature, etc., the internal state quantity of a power storage element cannot be directly measured or cannot be easily measured. In particular, in a large-scale system including a plurality of power storage elements, it is not easy to efficiently grasp the internal state quantity of each power storage element. For this reason, a technology that can efficiently present the internal state quantity of a power storage element is desired.
 一つの側面では、蓄電素子の内部状態量を効率よく提示できる推定装置等を提供することを目的とする。 One aspect of the present invention is to provide an estimation device or the like that can efficiently present the internal state quantity of a power storage element.
 蓄電素子の状態診断として、蓄電素子の計測データと前記計測データの閾値との差分の大きさに基づいて、蓄電素子の異常を検知することが行われている。このような計測データと閾値との比較による状態診断では、蓄電素子の内部状態量が考慮されていない。 As a state diagnosis of the power storage element, an abnormality of the power storage element is detected based on the magnitude of the difference between the measurement data of the power storage element and the threshold value of the measurement data. In such state diagnosis based on comparison of measurement data and a threshold value, the internal state quantity of the power storage element is not taken into consideration.
 蓄電素子の計測データは、蓄電素子の内部状態量に依存する。例えば、蓄電素子に所定期間にわたり放電電流又は充電電流が流れると、蓄電素子の充電状態(SOC:State of Charge)、健康状態(SOH:State of Health)といった、蓄電素子の内部状態が推移するとともに、蓄電素子の電圧が変化する。計測データと閾値との差分の値が同じであっても、蓄電素子の内部状態量の推移に応じて、蓄電素子に与える影響は異なる。例えば、SOC約20%の蓄電素子における電圧差が1Vの場合と、SOC約50%の蓄電素子における電圧差が1Vの場合とを比較すると、同じ電圧差1Vであっても、蓄電素子の異質の程度が異なる。従って、計測データの値のみに着目した場合には、異常の検知精度が悪くなるおそれがある。 The measurement data of the power storage element depends on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element. , the voltage of the storage element changes. Even if the value of the difference between the measurement data and the threshold value is the same, the influence on the power storage element differs depending on the transition of the internal state quantity of the power storage element. For example, when comparing a case where the voltage difference in a power storage element with an SOC of approximately 20% is 1V and a case where a voltage difference in a power storage element with an SOC of approximately 50% is 1V, it is found that even though the voltage difference is 1V, there are differences in the power storage element. The degree of Therefore, when focusing only on the value of measurement data, there is a risk that the accuracy of abnormality detection will deteriorate.
 一つの側面では、蓄電素子の異常検知精度を向上できる異常検知装置等を提供することを目的とする。 One aspect of the present invention is to provide an abnormality detection device and the like that can improve the accuracy of abnormality detection of power storage elements.
 蓄電素子の状態診断として、蓄電素子の計測データと前記計測データの閾値との差分の大きさに基づいて、蓄電素子の異常を検知することが行われている。このような計測データと閾値との比較による状態診断では、蓄電素子の内部状態量が考慮されていない。 As a state diagnosis of the power storage element, an abnormality of the power storage element is detected based on the magnitude of the difference between the measurement data of the power storage element and the threshold value of the measurement data. In such state diagnosis based on comparison of measurement data and a threshold value, the internal state quantity of the power storage element is not taken into account.
 蓄電素子の計測データは、蓄電素子の内部状態量に依存する。例えば、蓄電素子に所定期間にわたり放電電流又は充電電流が流れると、蓄電素子の充電状態(SOC:State of Charge)、健康状態(SOH:State of Health)といった、蓄電素子の内部状態が推移するとともに、蓄電素子の電圧が変化する。計測データと閾値との差分の値が同じであっても、蓄電素子の内部状態量の推移に応じて、蓄電素子に与える影響は異なる。例えば、SOC約20%の蓄電素子における電圧差が1Vの場合と、SOC約50%の蓄電素子における電圧差が1Vの場合とを比較すると、同じ電圧差1Vであっても、蓄電素子の異質の程度が異なる。従って、計測データの値のみに着目した場合には、異常の検知精度が悪くなるおそれがある。 The measurement data of the power storage element depends on the internal state quantity of the power storage element. For example, when a discharging current or a charging current flows through a power storage element for a predetermined period of time, the internal state of the power storage element changes, such as the state of charge (SOC) and state of health (SOH) of the power storage element. , the voltage of the storage element changes. Even if the value of the difference between the measurement data and the threshold value is the same, the influence on the power storage element differs depending on the transition of the internal state quantity of the power storage element. For example, when comparing a case where the voltage difference in a power storage element with an SOC of approximately 20% is 1V and a case where a voltage difference in a power storage element with an SOC of approximately 50% is 1V, it is found that even though the voltage difference is 1V, there are differences in the power storage element. The degree of Therefore, when focusing only on the value of measurement data, there is a risk that the accuracy of abnormality detection will deteriorate.
 一つの側面では、蓄電素子の異常検知精度を向上できる異常検知装置等を提供することを目的とする。 One aspect of the present invention is to provide an abnormality detection device and the like that can improve the accuracy of abnormality detection of power storage elements.
 本開示の一態様に係る算出装置は、蓄電素子の実際の計測データ及び仮想の計測データを取得する取得部と、前記蓄電素子の計測データに基づき前記蓄電素子の現在及び将来の劣化状態を算出する算出部とを備える。前記算出部は、現在の劣化状態を算出する場合、前記取得部で取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、将来の劣化状態を算出する場合、前記取得部で取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する。 A calculation device according to an aspect of the present disclosure includes an acquisition unit that acquires actual measurement data and virtual measurement data of a power storage element, and calculates a current and future deterioration state of the power storage element based on the measurement data of the power storage element. and a calculating section. When calculating the current deterioration state, the calculation section calculates the deterioration state according to a predetermined calculation algorithm based on the actual measurement data acquired by the acquisition section, and when calculating the future deterioration state, the acquisition section calculates the deterioration state. The deterioration state is calculated based on the acquired virtual measurement data according to the predetermined calculation algorithm.
 本開示の一態様に係る推定装置は、蓄電素子の計測データを取得する取得部と、蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する推定部とを備える。 An estimation device according to an aspect of the present disclosure uses an acquisition unit that acquires measurement data of a power storage element and a power storage element simulator that estimates measurement data of the power storage element based on an internal state quantity of the power storage element. and an estimation section that estimates an internal state quantity of the electricity storage element so that the measurement data output from the simulator approximates the measurement data acquired by the acquisition section.
 本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定する推定部と、前記推定部で推定した前記基準蓄電素子の内部状態量と、前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する検知部とを備える。 An abnormality detection device according to an aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a power storage element based on each measurement data acquired by the acquisition unit and an internal state quantity of the power storage element. and a power storage element simulator that estimates the measurement data of the reference power storage element and the target power storage element so that the measurement data output from the power storage element simulator approximates the measurement data acquired by the acquisition unit. and a detection unit that detects an abnormality in the target power storage element based on a comparison between the internal state quantity of the reference power storage element estimated by the estimation part and the internal state quantity of the target power storage element. Be prepared.
 本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部と、前記設定部で設定した検知基準と、前記取得部で取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する検知部とを備える。 An abnormality detection device according to an aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a reference power storage element that is estimated from the measurement data of the reference power storage element acquired by the acquisition unit. Setting a detection standard based on measurement data estimated by a power storage element simulator and measurement data of the reference power storage element acquired by the acquisition unit based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of . and a detection unit that detects an abnormality in the target power storage element based on the detection criteria set by the setting unit and the measurement data of the target power storage element acquired by the acquisition unit.
 本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部とを備える。 An abnormality detection device according to an aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a reference power storage element that is estimated from the measurement data of the reference power storage element acquired by the acquisition unit. Setting a detection standard based on measurement data estimated by a power storage element simulator and measurement data of the reference power storage element acquired by the acquisition unit based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of . It is equipped with a section.
 一つの側面によれば、蓄電素子における現在及び将来の劣化状態を精度よく算出することができる。 According to one aspect, the current and future deterioration states of the power storage element can be calculated with high accuracy.
 一つの側面によれば、蓄電素子の内部状態量を効率よく提示できる。 According to one aspect, the internal state quantity of the power storage element can be efficiently presented.
 一つの側面によれば、蓄電素子の異常検知精度を向上できる。 According to one aspect, the accuracy of abnormality detection of the power storage element can be improved.
 一つの側面によれば、蓄電素子の異常検知精度を向上できる。 According to one aspect, the accuracy of abnormality detection of the power storage element can be improved.
遠隔監視システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a remote monitoring system. 発電システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a power generation system. 算出装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of a calculation device. 算出装置の構成例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a configuration example of a calculation device. 劣化状態の算出処理手順の一例を示すフローチャートである。12 is a flowchart illustrating an example of a deterioration state calculation process procedure. 第2実施形態の算出装置が実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure which the calculation device of 2nd Embodiment performs. 第3実施形態の遠隔監視システムの構成例を示す図である。It is a figure showing an example of composition of a remote monitoring system of a 3rd embodiment. 発電システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a power generation system. 推定装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of an estimation device. 推定装置の構成例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a configuration example of an estimation device. 内部状態量を推定する方法を説明する図である。It is a figure explaining the method of estimating an internal state quantity. 内部状態量の推定処理手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of a procedure for estimating an internal state quantity. 第4実施形態の遠隔監視システムの構成例を示す図である。It is a figure showing an example of composition of a remote monitoring system of a 4th embodiment. 発電システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a power generation system. 異常検知装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of an abnormality detection device. 異常検知装置の構成例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a configuration example of an abnormality detection device. 内部状態量を推定する方法を説明する図である。It is a figure explaining the method of estimating an internal state quantity. 異常検知の処理手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of an abnormality detection processing procedure. 内部状態量の推定の詳細な手順の一例を示すフローチャートである。12 is a flowchart illustrating an example of a detailed procedure for estimating an internal state quantity. 第5実施形態の遠隔監視システムの構成例を示す図である。It is a figure showing an example of composition of a remote monitoring system of a 5th embodiment. 発電システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a power generation system. 異常検知装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of an abnormality detection device. 異常検知装置の構成例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a configuration example of an abnormality detection device. 内部状態量を推定する方法を説明する図である。It is a figure explaining the method of estimating an internal state quantity. 異常検知の処理手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of an abnormality detection processing procedure. 内部状態量の推定の詳細な手順の一例を示すフローチャートである。12 is a flowchart illustrating an example of a detailed procedure for estimating an internal state quantity.
 (1)本開示の一態様に係る算出装置は、蓄電素子の実際の計測データ及び仮想の計測データを取得する取得部と、前記蓄電素子の計測データに基づき前記蓄電素子の現在及び将来の劣化状態を算出する算出部とを備える。前記算出部は、現在の劣化状態を算出する場合、前記取得部で取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、将来の劣化状態を算出する場合、前記取得部で取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する。 (1) A calculation device according to one aspect of the present disclosure includes an acquisition unit that acquires actual measurement data and virtual measurement data of a power storage element, and current and future deterioration of the power storage element based on the measurement data of the power storage element. and a calculation unit that calculates the state. When calculating the current deterioration state, the calculation section calculates the deterioration state according to a predetermined calculation algorithm based on the actual measurement data acquired by the acquisition section, and when calculating the future deterioration state, the acquisition section calculates the deterioration state. The deterioration state is calculated based on the acquired virtual measurement data according to the predetermined calculation algorithm.
 本開示の一態様に係る算出装置によれば、現在の劣化状態を算出する推定処理と、将来の劣化状態を算出する予測処理とを共通化できる。算出アルゴリズムを共通化することで記憶させるアルゴリズムが減るだけでなく、場合に応じて算出アルゴリズムを選択するための処理が不要となり、処理フローを単純化できる。また、算出アルゴリズムが異なると精度も異なる場合があるが、共通化によって、現在及び将来の劣化状態について精度が異なることが無い。言い換えると、算出アルゴリズムを共通化することで、現在の劣化状態の推定処理における蓄電素子の状態を引き継ぎ、かつ同じ精度で、将来の劣化状態の予測処理を行うことが可能となる。過去、現在、将来と連続性のある劣化状態の算出が可能となるとともに、劣化状態の算出結果に対する整合性が高まる。 According to the calculation device according to one aspect of the present disclosure, the estimation process for calculating the current state of deterioration and the prediction process for calculating the future state of deterioration can be made common. By standardizing the calculation algorithms, not only the number of algorithms to be stored is reduced, but also the processing for selecting calculation algorithms depending on the case becomes unnecessary, and the processing flow can be simplified. Further, although different calculation algorithms may have different accuracy, by making them common, there is no difference in accuracy for current and future deterioration states. In other words, by standardizing the calculation algorithm, it becomes possible to inherit the state of the power storage element in the current deterioration state estimation process and perform the future deterioration state prediction process with the same accuracy. It is possible to calculate a deterioration state that is continuous with the past, present, and future, and the consistency of the deterioration state calculation results is increased.
 (2)上記(1)に記載の算出装置において、前記算出部は、前記実際の計測データに基づき現在の劣化状態を算出した後、前記実際の計測データに基づき生成された前記仮想の計測データに基づき将来の劣化状態を算出してもよい。 (2) In the calculation device according to (1) above, the calculation unit calculates the current state of deterioration based on the actual measurement data, and then calculates the virtual measurement data generated based on the actual measurement data. The future state of deterioration may be calculated based on the following.
 上記(2)に記載の算出装置によれば、現在の劣化状態の推定処理と、将来の劣化状態の予測処理とに関する劣化状態の算出アルゴリズムを共通化し、現在の劣化状態を算出した後に将来の劣化状態を予測するため、入力される計測データに対応して処理を切り換えることができ、データの連続性を担保しつつ、任意の時点における劣化状態を効率的に算出できる。また、実際の計測データに基づき、仮想の計測データを生成させて将来の劣化状態を予測するため、精度が向上する。 According to the calculation device described in (2) above, the deterioration state calculation algorithm for the current deterioration state estimation process and the future deterioration state prediction process is made common, and the future deterioration state is calculated after calculating the current deterioration state. In order to predict the state of deterioration, processing can be switched depending on the input measurement data, and the state of deterioration at any point in time can be efficiently calculated while ensuring data continuity. Furthermore, since virtual measurement data is generated based on actual measurement data and future deterioration conditions are predicted, accuracy is improved.
 (3)上記(1)又は(2)に記載の算出装置において、前記算出部は、前記実際の計測データに基づき算出した現在の劣化状態を基準値として将来の劣化状態を算出してもよい。 (3) In the calculation device according to (1) or (2) above, the calculation unit may calculate a future deterioration state using the current deterioration state calculated based on the actual measurement data as a reference value. .
 上記(3)に記載の算出装置によれば、現在の劣化状態の算出結果を将来の劣化状態に反映できる。例えば、現在の劣化状態の値を初期値として将来の劣化状態を連続的に算出できるため、劣化状態の予測精度を向上できる。 According to the calculation device described in (3) above, the calculation result of the current state of deterioration can be reflected in the future state of deterioration. For example, since the future deterioration state can be continuously calculated using the current deterioration state value as an initial value, the prediction accuracy of the deterioration state can be improved.
 (4)上記(1)から(3)のいずれか1つに記載の算出装置において、時系列的な実際の計測データに基づき前記蓄電素子の仮想負荷を推定する負荷推定部と、前記負荷推定部で推定した仮想負荷に基づき前記仮想の計測データを生成する生成部とを備えてもよい。 (4) In the calculation device according to any one of (1) to (3) above, a load estimating unit that estimates a virtual load of the power storage element based on time-series actual measurement data, and the load estimator. and a generation section that generates the virtual measurement data based on the virtual load estimated by the section.
 「仮想負荷」とは、仮想的な負荷であり、仮想的な蓄電素子の使われ方を意味する。仮想負荷は、例えば仮想の電力、環境温度、熱伝達率又は熱伝導率などの蓄電素子の放熱条件、蓄電素子の制御方法等を示す情報を含んでもよい。 "Virtual load" is a virtual load and means how a virtual power storage element is used. The virtual load may include information indicating, for example, virtual power, environmental temperature, heat dissipation conditions of the power storage element such as heat transfer coefficient or thermal conductivity, a control method of the power storage element, and the like.
 現在及び将来の劣化状態を算出する算出アルゴリズムの共通化においては、将来の劣化状態の算出に用いる未計測の計測データが必要となる。上記(4)に記載の算出装置によれば、蓄電素子の実測値の履歴に基づき仮想負荷を推定し、推定した仮想負荷から計測データを生成することで、これまでの蓄電素子の使用状態に対応した仮想の計測データを好適に生成できる。所望の期間に亘る仮想の計測データを生成することで、任意の予測期間における寿命予測が可能となる。 In standardizing calculation algorithms for calculating current and future deterioration states, unmeasured measurement data used to calculate future deterioration states will be required. According to the calculation device described in (4) above, by estimating the virtual load based on the history of the actual measured values of the energy storage element and generating measurement data from the estimated virtual load, the usage state of the energy storage element can be adjusted. Corresponding virtual measurement data can be suitably generated. By generating virtual measurement data over a desired period, it becomes possible to predict the lifespan in any prediction period.
 (5)上記(4)に記載の算出装置において、前記生成部は複数の仮想負荷パターンに基づき複数の前記仮想の計測データを生成し、前記算出部は各仮想の計測データに対応する将来の劣化状態を算出してもよい。 (5) In the calculation device according to (4) above, the generation unit generates a plurality of virtual measurement data based on a plurality of virtual load patterns, and the calculation unit generates future data corresponding to each virtual measurement data. The state of deterioration may also be calculated.
 上記(5)に記載の算出装置によれば、多様な使用態様を想定した幅のある劣化状態の算出が可能となる。将来の劣化状態は、仮想の計測データに基づき算出されるため、実際の計測データに基づき算出される現在の劣化状態に比べて、算出結果の確実性が低減する。幅を持たせた劣化状態の算出を行うことで、将来の劣化状態の予測にの信頼性を向上できる。 According to the calculation device described in (5) above, it is possible to calculate a wide range of deterioration states assuming various usage modes. Since the future state of deterioration is calculated based on virtual measurement data, the reliability of the calculation result is lower than that of the current state of deterioration that is calculated based on actual measurement data. By calculating the deterioration state with a range, it is possible to improve the reliability of predicting the future deterioration state.
 (6)上記(1)から(5)のいずれか1つに記載の算出装置において、前記算出部は、前記蓄電素子の計測データに基づき前記蓄電素子の内部状態量を算出し、算出した前記内部状態量に基づき前記蓄電素子の劣化状態を算出してもよい。 (6) In the calculation device according to any one of (1) to (5) above, the calculation unit calculates an internal state quantity of the electricity storage element based on measurement data of the electricity storage element, and The deterioration state of the power storage element may be calculated based on the internal state quantity.
 内部状態量は、例えば蓄電素子のSOC(State of Charge:充電状態)、内部温度、正極容量、負極容量、容量バランスのずれ等を含んでもよい。容量バランスのずれとは、蓄電素子の正極と負極とにおける、可逆的に電荷イオンが電極から出入りできる容量の相違を意味する。容量バランスのずれの詳細については、特許6428958号公報を参照されたい。 The internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, capacity balance shift, etc. A shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
 上記(6)に記載の算出装置によれば、計測データを内部状態量の履歴に変換することで、蓄電素子の劣化状態や使用履歴を正確に考慮して劣化状態を算出できるため、劣化状態の算出精度を向上できる。 According to the calculation device described in (6) above, the deterioration state can be calculated by accurately considering the deterioration state and usage history of the power storage element by converting the measurement data into the history of internal state quantities. The calculation accuracy can be improved.
 (7)上記(1)から(6)のいずれか1つに記載の算出装置において、前記算出部で算出した現在の劣化状態の修正情報に基づき前記所定の算出アルゴリズムを修正する修正部を備えてもよい。 (7) The calculation device according to any one of (1) to (6) above, further comprising a correction section that corrects the predetermined calculation algorithm based on correction information of the current state of deterioration calculated by the calculation section. You can.
 上記(7)に記載の算出装置によれば、修正情報に基づき算出アルゴリズムを修正することで、劣化状態の算出精度を向上できる。算出アルゴリズムの精度を、計算しながら(算出装置を運用しながら)向上させることができる。組み込んだ算出アルゴリズムが不変ではなく、精度が上がる方向に算出装置が算出アルゴリズムを自律的に進化させることができる。 According to the calculation device described in (7) above, the calculation accuracy of the deterioration state can be improved by correcting the calculation algorithm based on the correction information. The accuracy of the calculation algorithm can be improved while calculating (while operating the calculation device). The built-in calculation algorithm is not immutable, and the calculation device can autonomously evolve the calculation algorithm in a direction that improves accuracy.
 (8)本開示の一態様に係る劣化状態の算出方法は、蓄電素子の実際の計測データ及び仮想の計測データを取得し、現在の劣化状態を算出する場合、取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、将来の劣化状態を算出する場合、取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する処理をコンピュータが実行する。 (8) A method for calculating a state of deterioration according to one aspect of the present disclosure is to obtain actual measurement data and virtual measurement data of a power storage element, and when calculating the current state of deterioration, based on the obtained actual measurement data. When calculating the deterioration state according to a predetermined calculation algorithm and calculating the future deterioration state, the computer executes a process of calculating the deterioration state according to the predetermined calculation algorithm based on the acquired virtual measurement data.
 (9)本開示の一態様に係るプログラムは、蓄電素子の実際の計測データ及び仮想の計測データを取得し、現在の劣化状態を算出する場合、取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、将来の劣化状態を算出する場合、取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する処理をコンピュータに実行させる。 (9) When the program according to one aspect of the present disclosure acquires actual measurement data and virtual measurement data of a power storage element and calculates the current state of deterioration, the program uses a predetermined calculation algorithm based on the acquired actual measurement data. When calculating the state of deterioration according to the method and calculating the state of deterioration in the future, the computer is caused to execute a process of calculating the state of deterioration according to the predetermined calculation algorithm based on the acquired virtual measurement data.
 以下、本開示をその実施の形態を示す図面を参照して具体的に説明する。 Hereinafter, the present disclosure will be specifically described with reference to drawings showing embodiments thereof.
(第1実施形態)
 図1は、遠隔監視システム100の構成例を示す図である。遠隔監視システム100は、発電システム200に含まれる蓄電素子に関する情報への遠隔からのアクセスを可能とする。遠隔監視システム100は、遠隔監視の対象となる発電システム200と、発電システム200から情報を収集する算出装置50とを含む。算出装置50と発電システム200とは、インターネットなどのネットワークN1を介して通信可能に接続されている。発電システム200の数は1又は3以上でもよい。算出装置50はいずれかの発電システム200に統合してもよい。
(First embodiment)
FIG. 1 is a diagram showing a configuration example of a remote monitoring system 100. Remote monitoring system 100 allows remote access to information regarding power storage elements included in power generation system 200. The remote monitoring system 100 includes a power generation system 200 to be remotely monitored, and a calculation device 50 that collects information from the power generation system 200. The calculation device 50 and the power generation system 200 are communicably connected via a network N1 such as the Internet. The number of power generation systems 200 may be one or three or more. The calculation device 50 may be integrated into any of the power generation systems 200.
 図2は、発電システム200の構成例を示すブロック図である。太陽光発電システムや風力発電システムといった発電装置の図示は省略する。発電システム200は、通信デバイス10、ドメイン管理装置30、蓄電ユニット(ドメイン)40を備える。サーバ装置20は、ネットワークN2を介して通信デバイス10と接続されている。蓄電ユニット40は、複数のバンク41を含んでもよい。蓄電ユニット40は、例えば、電池盤に収容されて、火力発電システム、メガソーラー発電システム、風力発電システム、無停電電源装置(UPS:Uninterruptible Power Supply)、鉄道用の安定化電源システムなどに使用される。通信デバイス10、ドメイン管理装置30及び蓄電ユニット40を含む構成は、蓄電システムと呼ばれる。蓄電システムは、図示しないパワーコンディショナを含んでもよい。蓄電ユニット40は産業用途に限らず、家庭用のものであってもよい。 FIG. 2 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted. The power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2. Power storage unit 40 may include a plurality of banks 41. The power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru. A configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system. The power storage system may include a power conditioner (not shown). The power storage unit 40 is not limited to industrial use, and may be used for home use.
 事業者は、通信デバイス10、ドメイン管理装置30、蓄電ユニット40を含む蓄電システムの設計、導入、運用及び保守する事業を行い、蓄電システムを遠隔監視システム100により遠隔監視できる。 An operator conducts a business that designs, installs, operates, and maintains a power storage system including a communication device 10, a domain management device 30, and a power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 100.
 通信デバイス10は、制御部11、記憶部12、第1通信部13及び第2通信部14を備える。制御部11は、CPU(Central Processing Unit)などで構成され、内蔵するROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを用い、通信デバイス10全体を制御する。 The communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14. The control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
 記憶部12は、例えば、フラッシュメモリ等の不揮発性記憶装置を備える。記憶部12は、所要の情報を記憶することができ、例えば、制御部11の処理によって得られた情報を記憶することができる。 The storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory. The storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
 第1通信部13は、ドメイン管理装置30又は電池管理装置44との通信を実現する通信インタフェースを備える。制御部11は、第1通信部13を通してドメイン管理装置30との間で通信を行うことができる。 The first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44. The control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
 第2通信部14は、ネットワークN2を介した通信を実現する通信インタフェースを備える。制御部11は、第2通信部14を通してサーバ装置20との間で通信を行うことができる。 The second communication unit 14 includes a communication interface that realizes communication via the network N2. The control unit 11 can communicate with the server device 20 through the second communication unit 14.
 ドメイン管理装置30は、所定の通信インタフェースを用いて各バンク41との間で情報の送受信を行う。記憶部12は、ドメイン管理装置30を介して取得した運用データを記憶することができる。 The domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface. The storage unit 12 can store operational data acquired via the domain management device 30.
 サーバ装置20は、通信デバイス10から蓄電システムの計測データの実測値を収集することができる。計測データは、蓄電システム内の各蓄電素子の電流値、電圧値、温度などの計測値を含む。サーバ装置20は、収集された計測データを、蓄電素子毎に区分して記憶する。サーバ装置20は、ネットワークN2、N1を介して計測データを算出装置50に送信することができる。なお、ネットワークN1、N2は、1つの通信ネットワークであってもよい。サーバ装置20が、算出装置50として機能してもよい。 The server device 20 can collect actual measured values of measurement data of the power storage system from the communication device 10. The measurement data includes measured values such as the current value, voltage value, and temperature of each power storage element in the power storage system. The server device 20 stores the collected measurement data classified for each power storage element. The server device 20 can transmit measurement data to the calculation device 50 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network. The server device 20 may function as the calculation device 50.
 バンク41は、蓄電モジュールを複数直列に接続したものであり、電池管理装置(BMU:Battery Management Unit)44、複数の蓄電モジュール42、及び各蓄電モジュール42に設けられた計測基板(CMU:Cell Management Unit)43などを備える。 The bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
 蓄電モジュール42は、複数の蓄電セルが直列に接続されている。本明細書では、「蓄電素子」は、蓄電セル、蓄電モジュール42、バンク41、またはバンク41を並列に接続したドメインを意味してもよい。本実施形態では、計測基板43は、蓄電モジュール42の各蓄電セルの状態に関する蓄電素子情報を取得する。蓄電素子情報は、例えば、蓄電セルの電圧、電流、温度などを含む。蓄電素子情報は、例えば、0.1秒、0.5秒、1秒などの適宜の周期で繰り返し取得することができる。蓄電素子情報は計測データ又は計測データの一部となる。「蓄電素子」は、鉛蓄電池及びリチウムイオン電池のような二次電池や、キャパシタのような、再充電可能なものであることが好ましい。蓄電素子の一部が、再充電不可能な一次電池であってもよい。 The power storage module 42 has a plurality of power storage cells connected in series. In this specification, a "power storage element" may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel. In this embodiment, the measurement board 43 acquires power storage element information regarding the state of each power storage cell of the power storage module 42. The power storage element information includes, for example, the voltage, current, temperature, etc. of the power storage cell. The power storage element information can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example. The power storage element information becomes measurement data or a part of the measurement data. The "power storage element" is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
 電池管理装置44は、通信機能付きの計測基板43とシリアル通信によって通信を行うことができ、計測基板43が検出した蓄電素子情報を取得することができる。電池管理装置44は、ドメイン管理装置30との間で情報の送受信を行うことができる。ドメイン管理装置30は、ドメインに所属するバンクの電池管理装置44からの蓄電素子情報を集約する。ドメイン管理装置30は、集約された蓄電素子情報を通信デバイス10へ出力する。このように、通信デバイス10は、ドメイン管理装置30を介して、蓄電ユニット40の計測データを取得することができる。通信デバイス10は、取得した計測データを、サーバ装置20を介して算出装置50へ送信する。 The battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire information on the power storage elements detected by the measurement board 43. The battery management device 44 can send and receive information to and from the domain management device 30. The domain management device 30 aggregates power storage element information from the battery management devices 44 of banks belonging to the domain. The domain management device 30 outputs the aggregated power storage element information to the communication device 10. In this way, the communication device 10 can acquire measurement data of the power storage unit 40 via the domain management device 30. The communication device 10 transmits the acquired measurement data to the calculation device 50 via the server device 20.
 図3は、算出装置50の構成例を示すブロック図である。算出装置50は、例えばサーバコンピュータ、パーソナルコンピュータ、量子コンピュータ等であり、種々の情報処理、情報の送受信を行う。算出装置50は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。算出装置50は、制御部51、記憶部52、通信部53、表示部54及び操作部55等を備える。 FIG. 3 is a block diagram showing a configuration example of the calculation device 50. The calculation device 50 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information. The calculation device 50 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software. The calculation device 50 includes a control section 51, a storage section 52, a communication section 53, a display section 54, an operation section 55, and the like.
 制御部51は、CPU、GPU(Graphics Processing Unit)、ROM、RAM等を備える演算回路である。制御部51が備えるCPU又はGPUは、ROMや記憶部52に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部51は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。 The control unit 51 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like. The CPU or GPU included in the control unit 51 executes various computer programs stored in the ROM or the storage unit 52, and controls the operations of the hardware units described above. The control unit 51 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
 記憶部52は、フラッシュメモリ、ハードディスクドライブ等の不揮発性記憶装置を備える。記憶部52は、制御部51が参照する各種コンピュータプログラム及びデータ等を記憶する。 The storage unit 52 includes a nonvolatile storage device such as a flash memory or a hard disk drive. The storage unit 52 stores various computer programs, data, etc. that are referenced by the control unit 51.
 本実施形態では記憶部52は、蓄電素子の劣化状態の算出に関する処理をコンピュータに実行させるためのプログラム521と、このプログラム521の実行に必要なデータとして計測DB(Data Base)522とを記憶している。 In this embodiment, the storage unit 52 stores a program 521 for causing a computer to execute processing related to calculating the deterioration state of the power storage element, and a measurement DB (Data Base) 522 as data necessary for executing the program 521. ing.
 計測DB522は、発電システム200から受け付けた計測データを記憶するデータベースである。計測データは、上述の通り、発電システム200内の蓄電素子の電流、電圧及び温度の計測値を含む。計測DB522には、例えば、計測データを識別するためのIDをキーに、蓄電素子の識別情報、計測値の計測日時及び計測データ等の情報を紐付けたレコードが時系列順に格納されている。計測DB522にはさらに、各時点の計測データに基づく劣化状態が記憶されていてもよい。計測DB522には、計測データの実測値が記憶されている。制御部51は、サーバ装置20から送信される計測データを受信した場合、受信した計測データ等を時系列順に計測DB522に記憶する。 The measurement DB 522 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200. The measurement DB 522 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using, for example, an ID for identifying measurement data as a key. The measurement DB 522 may further store a deterioration state based on measurement data at each point in time. The measurement DB 522 stores actual measured values of measurement data. When the control unit 51 receives the measurement data transmitted from the server device 20, the control unit 51 stores the received measurement data and the like in the measurement DB 522 in chronological order.
 プログラム521を含むコンピュータプログラム(プログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体5Aにより提供されてもよい。記録媒体5Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部51は、図示しない読取装置を用いて、記録媒体5Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部52に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。プログラム521は、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。 A computer program (program product) including the program 521 may be provided by a non-temporary recording medium 5A on which the computer program is readably recorded. The recording medium 5A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card. The control unit 51 reads a desired computer program from the recording medium 5A using a reading device (not shown), and stores the read computer program in the storage unit 52. Alternatively, the computer program may be provided via communication. Program 521 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
 通信部53は、ネットワークN1を介した通信を実現する通信インタフェースを備える。制御部51は、通信部53を通じて、発電システム200から送信された計測データを受信する。 The communication unit 53 includes a communication interface that realizes communication via the network N1. The control unit 51 receives measurement data transmitted from the power generation system 200 through the communication unit 53.
 表示部54は、例えば液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイ等のディスプレイ装置を備える。表示部54は、制御部51からの指示に従って各種の情報を表示する。操作部55は、ユーザの操作を受け付けるインタフェースである。操作部55は、例えばキーボード、ディスプレイ内蔵のタッチパネルデバイス、スピーカ及びマイクロフォン等を備える。操作部55は、ユーザからの操作入力を受け付け、操作内容に応じた制御信号を制御部51へ送出する。 The display unit 54 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display section 54 displays various information according to instructions from the control section 51. The operation unit 55 is an interface that accepts user operations. The operation unit 55 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like. The operation unit 55 receives operation input from the user and sends a control signal to the control unit 51 according to the operation content.
 算出装置50は、外部に接続されたコンピュータを通じて操作を受付け、通知すべき情報を外部のコンピュータへ出力する構成であってもよい。この場合、算出装置50は、表示部54及び操作部55を備えていなくてもよい。 The calculation device 50 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the calculation device 50 does not need to include the display section 54 and the operation section 55.
 図4は、算出装置50の構成例を示す機能ブロック図である。算出装置50の制御部51は、記憶部52に記憶されたプログラム521を読み出して実行することにより、取得部511、算出部512、負荷推定部513、生成部514、及び出力部515の各機能を実現する。代替的に、これらの各機能の一部は、制御部51に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよい。 FIG. 4 is a functional block diagram showing a configuration example of the calculation device 50. The control unit 51 of the calculation device 50 reads and executes the program 521 stored in the storage unit 52, thereby controlling the functions of the acquisition unit 511, the calculation unit 512, the load estimation unit 513, the generation unit 514, and the output unit 515. Realize. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 51.
 取得部511は、蓄電素子の計測データを取得する。取得部511は、現在(現時点)の劣化状態の推定を行う場合、計測DB522に記憶された計測データから所望の計測データを読み出すことにより、実際の計測データを取得する。実際の計測データとは、計測データの実測値を意味する。また、取得部511は、将来の劣化状態の予測を行う場合、後述する生成部514から出力される仮想の計測データを受け付けることにより、仮想の計測データを取得する。仮想の計測データとは、仮想的に生成された計測データであって、未計測の計測データを意味する。取得部511は、実際の計測データを取得する第1の取得部511と、仮想の計測データを取得する第2の取得部511とを含んでもよい。 The acquisition unit 511 acquires measurement data of the power storage element. When estimating the current (current) state of deterioration, the acquisition unit 511 acquires actual measurement data by reading desired measurement data from the measurement data stored in the measurement DB 522. Actual measurement data means actual measured values of measurement data. Further, when predicting a future state of deterioration, the acquisition unit 511 acquires virtual measurement data by accepting virtual measurement data output from the generation unit 514, which will be described later. Virtual measurement data is measurement data that is virtually generated and means unmeasured measurement data. The acquisition unit 511 may include a first acquisition unit 511 that acquires actual measurement data, and a second acquisition unit 511 that acquires virtual measurement data.
 算出部512は、取得部511で取得した実際の計測データ又は仮想の計測データに基づいて、蓄電素子の劣化状態を算出する。算出部512は、計測データに基づいて蓄電素子の蓄電容量を算出するための所定の算出アルゴリズムに従い劣化状態を算出する。以下では、劣化状態として、蓄電素子の蓄電容量(電池容量)を算出する場合を説明する。代替的に、劣化状態は、例えば内部抵抗、充放電特性、蓄電容量の劣化量(例えば通電劣化量及び非通電劣化量)、SOH、正極・負極の劣化率、容量バランスのずれ等であってもよい。 The calculation unit 512 calculates the deterioration state of the power storage element based on the actual measurement data or virtual measurement data acquired by the acquisition unit 511. The calculation unit 512 calculates the state of deterioration according to a predetermined calculation algorithm for calculating the storage capacity of the storage element based on the measurement data. In the following, a case will be described in which the storage capacity (battery capacity) of the storage element is calculated as the deteriorated state. Alternatively, the state of deterioration may be, for example, internal resistance, charge/discharge characteristics, amount of deterioration in storage capacity (e.g. amount of deterioration when energized and amount of deterioration when not energized), SOH, deterioration rate of positive electrode/negative electrode, shift in capacity balance, etc. Good too.
 本実施形態では、算出アルゴリズムとして、計測データに基づき蓄電素子の内部状態量を算出し、算出した内部状態量に基づき劣化状態を算出するものを例に挙げて説明するが、算出アルゴリズムはこれに限定されない。 In this embodiment, an example calculation algorithm will be described in which an internal state quantity of a power storage element is calculated based on measurement data, and a deterioration state is calculated based on the calculated internal state quantity. Not limited.
 算出部512は、時系列で得られた計測データに基づき蓄電素子のSOC及び温度を含む内部状態量の時系列データを算出する。算出部512は、計測データと、算出したSOC及び温度との履歴に基づき、蓄電素子の通電による劣化を示す通電劣化と、蓄電素子の通電によらない劣化を示す非通電劣化とを峻別し、例えばルート則に基づきそれぞれの劣化量を算出する。算出部512は、SOCの時系列データに基づき特定されるSOCの変動量(変動の大きさ)に基づき、SOCの変動量が大きい程、通電劣化量が大きくなるように、通電劣化量を算出することが好ましい。 The calculation unit 512 calculates time-series data of internal state quantities including the SOC and temperature of the power storage element based on the measurement data obtained in time-series. Based on the measurement data and the history of the calculated SOC and temperature, the calculation unit 512 sharply distinguishes between energized deterioration, which indicates deterioration due to energization of the power storage element, and non-energized deterioration, which represents deterioration not caused by energization of the power storage element, For example, each amount of deterioration is calculated based on the root rule. The calculation unit 512 calculates the amount of energization deterioration based on the amount of SOC fluctuation (size of fluctuation) specified based on the SOC time series data such that the larger the amount of SOC fluctuation, the larger the amount of energization deterioration. It is preferable to do so.
 算出部512は、得られた通電劣化量と非通電劣化量との和に基づき合計劣化量を算出する。算出部512は、前回の蓄電容量(算出時点よりも1つ前の時点における蓄電容量)から、算出した合計劣化量を減算することにより、算出時点における蓄電素子の蓄電容量を求めることができる。 The calculation unit 512 calculates the total amount of deterioration based on the sum of the obtained energized deterioration amount and the non-energized deterioration amount. Calculation unit 512 can obtain the power storage capacity of the power storage element at the time of calculation by subtracting the calculated total amount of deterioration from the previous power storage capacity (the power storage capacity at the time immediately before the time of calculation).
 算出部512は、現在の劣化状態の推定を行う場合、取得部511で取得した実際の計測データを受け付け、受け付けた実際の計測データを用いて上記算出アルゴリズムにより現在の蓄電容量を算出する。算出部512は、計測初期から現在までの全期間における各時点の計測データと、計測初期における初期容量とに基づき、各時点の蓄電容量を逐次演算し、現在の蓄電容量を算出してもよい。 When estimating the current state of deterioration, the calculation unit 512 receives the actual measurement data acquired by the acquisition unit 511, and calculates the current storage capacity using the above calculation algorithm using the received actual measurement data. The calculation unit 512 may calculate the current storage capacity by sequentially calculating the storage capacity at each point based on the measurement data at each point in the entire period from the beginning of measurement to the present and the initial capacity at the beginning of measurement. .
 また、算出部512は、将来の劣化状態の予測を行う場合、取得部511で取得した仮想の計測データを受け付け、受け付けた仮想の計測データを用いて上記算出アルゴリズムにより将来の蓄電容量を算出する。算出部512は、上述の推定処理にて得られた現在の蓄電容量を基準値として、将来の蓄電容量を算出してもよい。すなわち、算出部512は、仮想の計測データ及び算出アルゴリズムにより算出される合計劣化量を、現在の蓄電容量から減算することにより、将来の時点における蓄電容量を算出してもよい。 Further, when predicting a future state of deterioration, the calculation unit 512 receives the virtual measurement data acquired by the acquisition unit 511, and calculates the future power storage capacity using the above calculation algorithm using the received virtual measurement data. . The calculation unit 512 may calculate the future power storage capacity using the current power storage capacity obtained through the above-described estimation process as a reference value. That is, the calculation unit 512 may calculate the power storage capacity at a future point in time by subtracting the total amount of deterioration calculated by virtual measurement data and a calculation algorithm from the current power storage capacity.
 計測データに基づき推定されるSOCは、蓄電素子の劣化状態に対応して異なる。将来の蓄電容量の算出時に、現在の蓄電容量を基準値として用いることで、現在の蓄電容量により表される蓄電素子の劣化状態を保持させた上で、将来の蓄電容量の算出が可能となる。 The SOC estimated based on the measurement data differs depending on the state of deterioration of the power storage element. By using the current storage capacity as a reference value when calculating the future storage capacity, it becomes possible to calculate the future storage capacity while maintaining the deterioration state of the storage element represented by the current storage capacity. .
 算出部512は、現在の蓄電素子の蓄電容量の診断結果に基づき、算出した現在の蓄電容量を補正してもよい。診断結果とは、例えば、直近の短期間における蓄電素子の計測データに基づき特定される蓄電素子の容量値(蓄電容量)を意味する。蓄電容量の診断手法は特に限定されないが、例えば、蓄電素子の内部抵抗を測定することにより蓄電容量を算出してもよく、蓄電素子に設定される下限電圧値から上限電圧までに亘りフル充放電を行うことにより実容量を測定してもよい。算出部512は、取得した診断結果と、算出した現在の蓄電容量とを比較し、算出した現在の蓄電容量を診断結果に沿うよう補正する。診断結果を用いた補正は、各時点における蓄電容量を算出する度実行されてもよい。診断結果を用いた補正は、将来の蓄電容量の算出結果に対しては実行されないものであってよい。 The calculation unit 512 may correct the calculated current storage capacity based on the diagnosis result of the current storage capacity of the storage element. The diagnosis result means, for example, a capacitance value (storage capacity) of a power storage element specified based on measurement data of the power storage element in the most recent short period of time. The method of diagnosing the storage capacity is not particularly limited, but, for example, the storage capacity may be calculated by measuring the internal resistance of the storage element, and the storage capacity can be fully charged and discharged from the lower limit voltage value to the upper limit voltage set for the storage element. The actual capacity may be measured by performing the following. The calculation unit 512 compares the acquired diagnosis result with the calculated current storage capacity, and corrects the calculated current storage capacity to match the diagnosis result. Correction using the diagnosis result may be performed every time the power storage capacity at each time point is calculated. The correction using the diagnosis result may not be performed on the future calculation result of the storage capacity.
 負荷推定部513は、時系列的な実際の計測データに基づき、蓄電素子の仮想負荷を推定する。負荷推定部513は、例えば、初期時点から現時点までの計測データの履歴に基づき、将来の仮想負荷としての電力値及び環境温度を推定する。電力値は、計測データの履歴により示される現在までの蓄電素子の使われ方に基づき、将来の蓄電素子の使われ方を予測することで決定される。仮想負荷としての電力値及び環境温度は、計測データの履歴に基づき特定された実際の電力値及び環境温度と同じであってもよく、所定ルールに基づき実際の電力値及び環境温度の少なくとも一方を増加又は減少させた値であってもよい。 The load estimating unit 513 estimates the virtual load of the power storage element based on actual time-series measurement data. The load estimating unit 513 estimates a future electric power value and environmental temperature as a virtual load, for example, based on the history of measurement data from the initial point to the present time. The power value is determined by predicting how the power storage element will be used in the future, based on the way the power storage element has been used up to the present, which is indicated by the history of measurement data. The electric power value and environmental temperature as a virtual load may be the same as the actual electric power value and environmental temperature specified based on the history of measurement data, and at least one of the actual electric power value and environmental temperature may be determined based on a predetermined rule. It may be an increased or decreased value.
 負荷推定部513は、複数パターンの仮想負荷を生成してもよい。電力値及び環境温度の少なくとも一方を異ならせた複数の仮想負荷を生成することで、幅のある将来の劣化状態の予測が可能となる。 The load estimation unit 513 may generate multiple patterns of virtual loads. By generating a plurality of virtual loads in which at least one of the power value and the environmental temperature is different, it is possible to predict a wide range of future deterioration states.
 生成部514は、負荷推定部513で推定した仮想負荷に基づき仮想の計測データを生成する。生成部514は、負荷推定部513で推定した電力値及び環境温度に基づき、将来時点の計測データ、すなわち電流、電圧及び温度を導出する。負荷推定部513から複数の仮想負荷を受け付けた場合、生成部514は、各仮想負荷に対応した複数の計測データを生成する。生成部514で生成した仮想の計測データは、取得部511に出力される。 The generation unit 514 generates virtual measurement data based on the virtual load estimated by the load estimation unit 513. The generation unit 514 derives measurement data at a future point in time, that is, current, voltage, and temperature, based on the power value and environmental temperature estimated by the load estimation unit 513. When receiving a plurality of virtual loads from the load estimation section 513, the generation section 514 generates a plurality of measurement data corresponding to each virtual load. The virtual measurement data generated by the generation unit 514 is output to the acquisition unit 511.
 出力部515は、算出部512で算出した現在及び将来の蓄電容量の算出結果を示す情報を表示部54へ出力する。表示部54は、蓄電容量の算出結果を示す情報を表示する。 The output unit 515 outputs information indicating the current and future power storage capacity calculation results calculated by the calculation unit 512 to the display unit 54. The display unit 54 displays information indicating the calculation result of the storage capacity.
 制御部51はさらに、図4に示すように修正部516として機能する構成であってもよい。修正部516は、算出部512で算出した現在の蓄電容量の修正情報に基づき、算出アルゴリズムを修正する。修正部516については、他の実施形態で詳述する。 The control unit 51 may further have a configuration that functions as a modification unit 516 as shown in FIG. The modification unit 516 modifies the calculation algorithm based on the current power storage capacity modification information calculated by the calculation unit 512. The modification unit 516 will be described in detail in other embodiments.
 図5は、劣化状態の算出処理手順の一例を示すフローチャートである。算出装置50の制御部51は、記憶部52に記憶するプログラム521に従って所定の又は適宜の間隔で以下の処理を開始する。制御部51は、プログラム521の処理に並行して、サーバ装置20から送信される計測データを受信し、受信した計測データを計測DB522に記憶している。 FIG. 5 is a flowchart illustrating an example of a deterioration state calculation process procedure. The control unit 51 of the calculation device 50 starts the following process at predetermined or appropriate intervals according to the program 521 stored in the storage unit 52. In parallel with the processing of the program 521, the control unit 51 receives measurement data transmitted from the server device 20, and stores the received measurement data in the measurement DB 522.
 算出装置50の制御部51は、現在の劣化状態を算出する推定処理を実行するか否かを判定する(ステップS11)。制御部51は、例えば現在の劣化状態が計測DB522に記憶済みであるか否かを判定することにより、推定処理を実行するか否かを判定してもよい。現在の劣化状態が計測DB522に記憶済みであるとは、計測DB522に記憶する最新の計測データについて現在の劣化状態が既に推定済みであることを意味する。 The control unit 51 of the calculation device 50 determines whether to perform estimation processing to calculate the current state of deterioration (step S11). The control unit 51 may determine whether to perform the estimation process, for example, by determining whether the current state of deterioration has been stored in the measurement DB 522. The fact that the current state of deterioration has been stored in the measurement DB 522 means that the current state of deterioration has already been estimated for the latest measurement data stored in the measurement DB 522.
 現在の劣化状態が記憶済みでないことにより推定処理を実行すると判定した場合(ステップS11:YES)、制御部51は、計測DB522に記憶する計測データを抽出することにより、実際の計測データを取得する(ステップS12)。 If it is determined that the estimation process is to be executed because the current state of deterioration has not been stored (step S11: YES), the control unit 51 obtains actual measurement data by extracting the measurement data to be stored in the measurement DB 522. (Step S12).
 現在の劣化状態が記憶済みであることにより推定処理を実行しないと判定した場合(ステップS11:NO)、制御部51は、将来の劣化状態の予測処理を実行すると判定し、処理をステップS13へ進める。ステップS11は、推定処理と予測処理との切り替え処理に対応する。 If it is determined that the estimation process is not to be performed because the current state of deterioration has been stored (step S11: NO), the control unit 51 determines that the process of predicting the future state of deterioration is to be performed, and the process proceeds to step S13. Proceed. Step S11 corresponds to switching processing between estimation processing and prediction processing.
 ステップS11において制御部51は、ユーザから推定処理又は予測処理の実行指示を受け付けることにより、推定処理又は予測処理のいずれを実行するかを判定してもよい。 In step S11, the control unit 51 may determine whether to perform the estimation process or the prediction process by receiving an instruction to execute the estimation process or the prediction process from the user.
 将来の劣化状態の予測処理を実行する場合、制御部51は、計測DB522に記憶する計測初期から現在までの全期間における計測データに基づき、蓄電素子の仮想負荷を推定する(ステップS13)。ステップS13において制御部51は、複数の仮想負荷を推定してもよい。 When executing the prediction process of the future deterioration state, the control unit 51 estimates the virtual load of the power storage element based on the measurement data stored in the measurement DB 522 for the entire period from the beginning of measurement to the present (step S13). In step S13, the control unit 51 may estimate a plurality of virtual loads.
 制御部51は、推定した仮想負荷に基づき、仮想の計測データを生成する(ステップS14)。複数の仮想負荷が推定されている場合には、制御部51は、各仮想負荷に対応する複数の仮想の計測データを生成する。 The control unit 51 generates virtual measurement data based on the estimated virtual load (step S14). When a plurality of virtual loads are estimated, the control unit 51 generates a plurality of virtual measurement data corresponding to each virtual load.
 制御部51は、取得した実際の計測データ又は仮想の計測データに基づき、内部状態量としてのSOC及び温度を算出する(ステップS15)。制御部51は、算出した内部状態量と、1つ前の時点における内部状態量とに基づき、算出対象時点における蓄電容量を算出する(ステップS16)。 The control unit 51 calculates the SOC and temperature as internal state quantities based on the acquired actual measurement data or virtual measurement data (step S15). The control unit 51 calculates the storage capacity at the calculation target time point based on the calculated internal state amount and the internal state amount at the previous time point (step S16).
 算出を実行する時点を現時点tとした場合、制御部51は、過去の直近時点t-1における実際の計測データに対応する内部状態量を算出し、直近時点t-1における蓄電容量から、算出した内部状態量に対応する劣化量を減算することで、現時点tの蓄電容量を算出する。また、制御部51は、現時点tにおける仮想の計測データに対応する内部状態量を算出し、現時点tにおける蓄電容量から、算出した内部状態量に対応する劣化量を減算することで、将来の時点t+1の蓄電容量を算出する。将来時点の蓄電容量の算出を繰り返し実行することで、任意の予測期間に亘る蓄電容量の予測が可能となる。 When the time point at which the calculation is executed is the current time t, the control unit 51 calculates the internal state quantity corresponding to the actual measurement data at the most recent time point t-1 in the past, and uses the calculated amount from the storage capacity at the most recent time point t-1. By subtracting the amount of deterioration corresponding to the internal state amount, the storage capacity at the current time t is calculated. Further, the control unit 51 calculates an internal state quantity corresponding to the virtual measurement data at the present time t, and subtracts the amount of deterioration corresponding to the calculated internal state quantity from the power storage capacity at the present time t. Calculate the storage capacity at t+1. By repeatedly calculating the power storage capacity at a future point in time, it becomes possible to predict the power storage capacity over an arbitrary prediction period.
 制御部51は、算出した蓄電容量を補正するか否かを判定する(ステップS17)。例えば、算出した蓄電容量が現在の蓄電容量であり、且つ、算出した蓄電容量と蓄電容量の診断結果との差分の絶対値が予め設定される閾値以上である場合、制御部51は、蓄電容量を補正すると判定する。一方、算出した蓄電容量が現在の蓄電容量であり、且つ、算出した蓄電容量と蓄電容量の診断結果との差分の絶対値が予め設定される閾値未満である場合、制御部51は、蓄電容量を補正しないと判定する。また、算出した蓄電容量が現在の蓄電容量でない場合、制御部51は、蓄電容量を補正しないと判定する。蓄電容量の診断結果は、例えば外部の診断装置により行われた蓄電容量の診断結果を取得してもよい。 The control unit 51 determines whether or not to correct the calculated storage capacity (step S17). For example, if the calculated power storage capacity is the current power storage capacity, and the absolute value of the difference between the calculated power storage capacity and the diagnosis result of the power storage capacity is equal to or greater than a preset threshold, the control unit 51 controls the power storage capacity. It is determined that it is corrected. On the other hand, if the calculated power storage capacity is the current power storage capacity and the absolute value of the difference between the calculated power storage capacity and the diagnostic result of the power storage capacity is less than a preset threshold, the control unit 51 controls the power storage capacity. is determined not to be corrected. Further, if the calculated power storage capacity is not the current power storage capacity, the control unit 51 determines not to correct the power storage capacity. As the power storage capacity diagnosis result, for example, a power storage capacity diagnosis result performed by an external diagnostic device may be obtained.
 蓄電容量を補正すると判定した場合(ステップS17:YES)、制御部51は、算出した現在の蓄電容量を診断結果に沿うよう補正する(ステップS18)。また、制御部51は、修正された蓄電容量に沿うように、内部状態量やSOHを補正してもよい。例えば、非通電劣化量と通電劣化量の割合を変えずに、それらの絶対値を補正してもよい。制御部51は、算出した現在の蓄電容量を診断結果における容量値に置き換えてもよい。蓄電容量を補正しないと判定した場合(ステップS17:NO)、制御部51は、補正処理をスキップする。ステップS17及びステップS18は省略してもよい。 If it is determined that the power storage capacity is to be corrected (step S17: YES), the control unit 51 corrects the calculated current power storage capacity to match the diagnosis result (step S18). Further, the control unit 51 may correct the internal state quantity and SOH so as to match the corrected storage capacity. For example, without changing the ratio of the non-energized deterioration amount to the energized deterioration amount, the absolute values thereof may be corrected. The control unit 51 may replace the calculated current storage capacity with the capacity value in the diagnosis result. If it is determined that the power storage capacity is not to be corrected (step S17: NO), the control unit 51 skips the correction process. Step S17 and step S18 may be omitted.
 制御部51は、蓄電容量の算出を終了するか否かを判定する(ステップS19)。例えば、現在及び将来の蓄電容量のいずれかが算出済みでないことにより、蓄電容量の算出を終了しないと判定した場合(ステップS19:NO)、制御部51は、処理をステップS11に戻す。これにより、制御部51は、現在の蓄電容量の推定処理を実行した後、処理を推定処理から予測処理へと切り替え、将来の蓄電容量の予測処理を実行する。 The control unit 51 determines whether to end the calculation of the power storage capacity (step S19). For example, if it is determined that the calculation of the power storage capacity is not finished because either the current or future power storage capacity has not been calculated (step S19: NO), the control unit 51 returns the process to step S11. Thereby, after executing the process of estimating the current storage capacity, the control unit 51 switches the process from the estimation process to the prediction process, and executes the process of predicting the future storage capacity.
 現在及び将来の蓄電容量の両方が算出済みであることにより、蓄電容量の算出を終了すると判定した場合(ステップS19:YES)、制御部51は、蓄電容量の算出結果を示す画面情報を生成し、生成した蓄電容量の算出結果を示す画面情報を表示部54に表示する(ステップS20)。制御部51は、一連の処理を終了する。蓄電容量の算出結果を示す画面には、例えば現在までの各時点における蓄電容量と、将来の時点における蓄電容量とを示す数値やグラフが表示されている。 If it is determined that the calculation of the electricity storage capacity is to be completed because both the current and future electricity storage capacities have been calculated (step S19: YES), the control unit 51 generates screen information indicating the calculation result of the electricity storage capacity. , screen information indicating the generated calculation result of the storage capacity is displayed on the display unit 54 (step S20). The control unit 51 ends the series of processing. On the screen showing the calculation result of the power storage capacity, for example, numerical values and graphs showing the power storage capacity at each point in time up to the present and the power storage capacity at a future point in time are displayed.
 本実施形態によれば、連続性を持たせた現在及び将来の劣化状態を精度よく算出できる。現在の劣化状態の推定及び将来の劣化状態の予測における劣化状態の算出アルゴリズムを共通化することで、効率的且つ精度よく劣化状態を算出できる。また、入力要素となる計測データの確実性に対応して将来の劣化状態の予測時には幅のある劣化状態を算出するなど、算出アルゴリズムの前後における処理内容を推定処理又は予測処理に対応して設定することができる。 According to this embodiment, it is possible to accurately calculate the current and future deterioration states with continuity. By using a common deterioration state calculation algorithm for estimating the current deterioration state and predicting the future deterioration state, the deterioration state can be calculated efficiently and accurately. In addition, the processing content before and after the calculation algorithm is set in accordance with the estimation process or prediction process, such as calculating a wide range of deterioration states when predicting future deterioration states in response to the reliability of the measurement data that is the input element. can do.
(第2実施形態)
 第2実施形態では、劣化状態の算出アルゴリズムを修正する。
(Second embodiment)
In the second embodiment, the deterioration state calculation algorithm is modified.
 第2実施形態の算出装置50は、図4に示した修正部516としての機能により、現在の劣化状態の修正情報に基づき、算出アルゴリズムを修正する。修正情報は、例えば現在の劣化状態の補正内容に基づき決定されてもよい。修正部516は、計測初期から現在までの各時点で実行した補正内容を解析することにより、補正パターンを特定する。修正部516は、特定した補正パターンを修正情報として、特定した補正パターンに従い算出アルゴリズムを修正する。 The calculation device 50 of the second embodiment corrects the calculation algorithm based on correction information of the current state of deterioration by functioning as the correction unit 516 shown in FIG. The correction information may be determined, for example, based on the content of correction of the current state of deterioration. The correction unit 516 specifies a correction pattern by analyzing the correction contents executed at each time point from the beginning of measurement to the present. The modification unit 516 uses the identified correction pattern as modification information and modifies the calculation algorithm according to the identified correction pattern.
 図6は、第2実施形態の算出装置50が実行する処理手順の一例を示すフローチャートである。 FIG. 6 is a flowchart illustrating an example of a processing procedure executed by the calculation device 50 of the second embodiment.
 算出装置50の制御部51は、算出アルゴリズムの修正情報を取得する(ステップS31)。制御部51は、外部装置で生成された修正情報を通信により取得してもよく、計測初期から現在までの各時点で実行した補正内容に基づき特定の補正パターンを導出することにより、修正情報を取得してもよい。 The control unit 51 of the calculation device 50 acquires correction information of the calculation algorithm (step S31). The control unit 51 may acquire correction information generated by an external device through communication, and may obtain correction information by deriving a specific correction pattern based on the correction contents executed at each point from the beginning of measurement to the present. You may obtain it.
 制御部51は、取得した修正情報に従い算出アルゴリズムを修正し(ステップS32)、一連の処理を終了する。 The control unit 51 modifies the calculation algorithm according to the acquired modification information (step S32), and ends the series of processing.
 本実施形態によれば、本システムの運用を通じて算出アルゴリズムを最適化することができ、劣化状態の推定精度が向上する。 According to this embodiment, the calculation algorithm can be optimized through the operation of this system, and the accuracy of estimating the deterioration state is improved.
(第3実施形態)
 (10)本開示の一態様に係る推定装置は、蓄電素子の計測データを取得する取得部と、蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する推定部とを備える。
(Third embodiment)
(10) An estimation device according to an aspect of the present disclosure uses an acquisition unit that acquires measurement data of a power storage element, and a power storage element simulator that estimates the measurement data of the power storage element based on an internal state quantity of the power storage element, and an estimation unit that estimates an internal state quantity of the electricity storage element so that the measurement data output from the electricity storage element simulator approximates the measurement data acquired by the acquisition unit.
 ここで、「蓄電素子シミュレータ」とは、蓄電素子の挙動を模擬するよう構築されたシミュレータを意味する。蓄電素子シミュレータは、蓄電素子の内部状態量に基づき蓄電素子の計測データを出力することができる。
 また、内部状態量は、例えば蓄電素子のSOC(State of Charge)、内部温度、正極容量、負極容量、容量バランスのずれ等を含んでもよい。容量バランスのずれとは、蓄電素子の正極と負極とにおける、可逆的に電荷イオンが電極から出入りできる容量の相違を意味する。容量バランスのずれの詳細については、特許第6428958号公報を参照されたい。
Here, the term "power storage element simulator" means a simulator constructed to simulate the behavior of a power storage element. The power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element.
Further, the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like. A shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
 本開示の一態様に係る推定装置によれば、蓄電素子シミュレータを利用して、実測により得られた計測データから蓄電素子の内部状態量を効率的且つ精度よく推定できる。内部状態量の効率的な算出は、特に複数の蓄電素子を備える大規模なシステムにおいて、各種処理における演算負荷の低減につながる。直接計測することが困難な内部状態量を取得することで、計測データから直接表現できない蓄電素子の状態を好適に把握できる。 According to the estimation device according to one aspect of the present disclosure, it is possible to efficiently and accurately estimate the internal state quantity of a power storage element from measurement data obtained through actual measurement using a power storage element simulator. Efficient calculation of the internal state quantity leads to a reduction in calculation load in various processes, especially in a large-scale system including a plurality of power storage elements. By acquiring internal state quantities that are difficult to directly measure, it is possible to appropriately grasp the state of the power storage element that cannot be directly expressed from measurement data.
 蓄電素子シミュレータは、蓄電素子の内部状態量に沿った計測データを精度よく模擬するよう構築されており、通常、蓄電素子の計測データの挙動を予測するために用いられる。推定装置は、蓄電素子の内部状態量と計測データとの関係性を高精度に表現する蓄電素子シミュレータを利用し、実測で得られた計測データから内部状態量を逆方向に推定することで、内部状態量を効率よく算出できる。予め構築された蓄電素子シミュレータを利用することで、新たな推定モデルの生成を不要とし、内部状態量を容易且つ精度よく推定できる。 A power storage element simulator is constructed to accurately simulate measurement data according to the internal state quantity of a power storage element, and is usually used to predict the behavior of measurement data of a power storage element. The estimation device utilizes a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. Internal state quantities can be calculated efficiently. By using a power storage element simulator built in advance, it is not necessary to generate a new estimation model, and the internal state quantity can be estimated easily and accurately.
 推定された内部状態量は、例えば蓄電素子の異常検知を初めとする状態診断、劣化状態推定、又は寿命予測等の多様な処理に使用可能である。推定装置が推定した内部状態量を使用することで、その後に行われる各処理の効率性及び精度の向上につながる。 The estimated internal state quantity can be used for various processes such as state diagnosis including abnormality detection of the power storage element, deterioration state estimation, or life prediction. By using the internal state quantities estimated by the estimation device, the efficiency and accuracy of each process performed thereafter can be improved.
 (11)上記(10)に記載の推定装置において、前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分を最小化する前記内部状態量の最適値を探索してもよい。 (11) In the estimating device according to (10) above, the estimating unit is configured to calculate the internal state quantity to minimize the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. You may also search for the optimal value.
 ここで、「差分」とは差分の絶対値を意味する。
 上記(11)に記載の推定装置によれば、最適化手法を用いて効率的且つ精度よく内部状態量の最適解を求めることができる。
Here, "difference" means the absolute value of the difference.
According to the estimating device described in (11) above, an optimal solution for the internal state quantity can be obtained efficiently and accurately using an optimization method.
 (12)上記(10)又は(11)に記載の推定装置において、前記推定部は、蓄電素子の内部状態量及び使用履歴に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記蓄電素子の使用履歴を入力として前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう前記蓄電素子の内部状態量を推定してもよい。 (12) In the estimating device according to (10) or (11) above, the estimation unit uses the power storage element simulator to estimate measurement data of the power storage element based on the internal state quantity and usage history of the power storage element. The internal state quantity of the power storage element may be estimated so that the measurement data output from the power storage element simulator using the usage history of the power storage element as input approximates the measurement data acquired by the acquisition unit.
 ここで、蓄電素子の「使用履歴」とは、蓄電素子の使用パターン(使われ方)を示す情報を意味する。使用履歴は、例えば所定期間に亘る蓄電素子の電力又は電流(負荷)の推移を表す情報(以下、負荷パターンとも記載する)と、所定期間に亘る環境温度の推移を表す情報(以下、環境温度パターンとも記載する)とを含んでもよい。 Here, the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element. The usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
 計測データは、蓄電素子の内部状態量に加え使用履歴にも依存する。上記(12)に記載の推定装置によれば、蓄電素子の使用履歴を考慮することにより、内部状態量の推定精度を一層向上できる。 The measurement data depends on the usage history as well as the internal state quantity of the electricity storage element. According to the estimating device described in (12) above, the accuracy of estimating the internal state quantity can be further improved by considering the usage history of the power storage element.
 (13)本開示の一態様に係る推定方法は、蓄電素子の計測データを取得し、蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する処理をコンピュータが実行する。 (13) An estimation method according to an aspect of the present disclosure uses a power storage element simulator that acquires measurement data of a power storage element and estimates the measurement data of the power storage element based on an internal state quantity of the power storage element. A computer executes a process of estimating the internal state quantity of the electricity storage element so that the measurement data output from the simulator approximates the acquired measurement data.
 (14)本開示の一態様に係るプログラムは、蓄電素子の計測データを取得し、蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する処理をコンピュータに実行させる。 (14) A program according to an aspect of the present disclosure uses a power storage element simulator that acquires measurement data of a power storage element and estimates the measurement data of the power storage element based on an internal state quantity of the power storage element. A computer is caused to perform a process of estimating the internal state quantity of the electricity storage element so that the measurement data output from the storage device approximates the measurement data obtained.
 本開示をその実施の形態を示す図面を参照して具体的に説明する。 This disclosure will be specifically described with reference to drawings showing its embodiments.
 図7は、第3実施形態の遠隔監視システム300の構成例を示す図である。遠隔監視システム300は、発電システム200に含まれる蓄電素子に関する情報への遠隔からのアクセスを可能とする。遠隔監視システム300は、遠隔監視の対象となる発電システム200と、発電システム200から情報を収集する推定装置60とを含む。推定装置60と発電システム200とは、インターネットなどのネットワークN1を介して通信可能に接続されている。発電システム200の数は1又は3以上でもよい。推定装置60はいずれかの発電システム200に統合してもよい。 FIG. 7 is a diagram showing a configuration example of a remote monitoring system 300 according to the third embodiment. Remote monitoring system 300 enables remote access to information regarding power storage elements included in power generation system 200. Remote monitoring system 300 includes a power generation system 200 to be remotely monitored, and an estimation device 60 that collects information from power generation system 200. The estimation device 60 and the power generation system 200 are communicably connected via a network N1 such as the Internet. The number of power generation systems 200 may be one or three or more. Estimation device 60 may be integrated into any power generation system 200.
 図8は、発電システム200の構成例を示すブロック図である。太陽光発電システムや風力発電システムといった発電装置の図示は省略する。発電システム200は、通信デバイス10、ドメイン管理装置30、蓄電ユニット(ドメイン)40を備える。サーバ装置20は、ネットワークN2を介して通信デバイス10と接続されている。蓄電ユニット40は、複数のバンク41を含んでもよい。蓄電ユニット40は、例えば、電池盤に収容されて、火力発電システム、メガソーラー発電システム、風力発電システム、無停電電源装置(UPS:Uninterruptible Power Supply)、鉄道用の安定化電源システムなどに使用される。通信デバイス10、ドメイン管理装置30及び蓄電ユニット40を含む構成は、蓄電システムと呼ばれる。蓄電システムは、図示しないパワーコンディショナを含んでもよい。蓄電ユニット40は産業用途に限らず、家庭用のものであってもよい。 FIG. 8 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted. The power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2. Power storage unit 40 may include a plurality of banks 41. The power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru. A configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system. The power storage system may include a power conditioner (not shown). The power storage unit 40 is not limited to industrial use, and may be used for home use.
 事業者は、通信デバイス10、ドメイン管理装置30、蓄電ユニット40を含む蓄電システムの設計、導入、運用及び保守する事業を行い、蓄電システムを遠隔監視システム300により遠隔監視できる。 The business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 300.
 通信デバイス10は、制御部11、記憶部12、第1通信部13及び第2通信部14を備える。制御部11は、CPU(Central Processing Unit)などで構成され、内蔵するROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを用い、通信デバイス10全体を制御する。 The communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14. The control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
 記憶部12は、例えば、フラッシュメモリ等の不揮発性記憶装置を備える。記憶部12は、所要の情報を記憶することができ、例えば、制御部11の処理によって得られた情報を記憶することができる。 The storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory. The storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
 第1通信部13は、ドメイン管理装置30又は電池管理装置44との通信を実現する通信インタフェースを備える。制御部11は、第1通信部13を通してドメイン管理装置30との間で通信を行うことができる。 The first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44. The control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
 第2通信部14は、ネットワークN2を介した通信を実現する通信インタフェースを備える。制御部11は、第2通信部14を通してサーバ装置20との間で通信を行うことができる。 The second communication unit 14 includes a communication interface that realizes communication via the network N2. The control unit 11 can communicate with the server device 20 through the second communication unit 14.
 ドメイン管理装置30は、所定の通信インタフェースを用いて各バンク41との間で情報の送受信を行う。記憶部12は、ドメイン管理装置30を介して取得した計測データを記憶することができる。 The domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface. The storage unit 12 can store measurement data acquired via the domain management device 30.
 サーバ装置20は、通信デバイス10から蓄電システムの計測データを収集することができる。計測データは、蓄電システム内の各蓄電素子の電流、電圧、温度などの計測値を含む。サーバ装置20は、収集された計測データを、蓄電素子毎に区分して記憶してもよい。サーバ装置20は、ネットワークN2、N1を介して計測データを推定装置60に送信することができる。なお、ネットワークN1、N2は、1つの通信ネットワークであってもよい。 The server device 20 can collect measurement data of the power storage system from the communication device 10. The measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system. The server device 20 may separate and store the collected measurement data for each power storage element. The server device 20 can transmit measurement data to the estimation device 60 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
 バンク41は、蓄電モジュールを複数直列に接続したものであり、電池管理装置(BMU:Battery Management Unit)44、複数の蓄電モジュール42、及び各蓄電モジュール42に設けられた計測基板(CMU:Cell Management Unit)43などを備える。 The bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
 蓄電モジュール42は、複数の蓄電セルが直列に接続されている。本明細書において、「蓄電素子」は、蓄電セル、蓄電モジュール42、バンク41、又はバンク41を並列に接続したドメインを意味してもよい。本実施形態では、計測基板43は、蓄電モジュール42の各蓄電セルに関する計測データを取得する。計測データは、例えば、0.1秒、0.5秒、1秒などの適宜の周期で繰り返し取得することができる。「蓄電素子」は、鉛蓄電池及びリチウムイオン電池のような二次電池や、キャパシタのような、再充電可能なものであることが好ましい。蓄電素子の一部が、再充電不可能な一次電池であってもよい。 The power storage module 42 has a plurality of power storage cells connected in series. In this specification, a "power storage element" may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel. In this embodiment, the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42. The measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example. The "power storage element" is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
 電池管理装置44は、通信機能付きの計測基板43とシリアル通信によって通信を行うことができ、計測基板43が検出した計測データを取得することができる。電池管理装置44は、ドメイン管理装置30との間で情報の送受信を行うことができる。ドメイン管理装置30は、ドメインに所属するバンクの電池管理装置44からの計測データを集約する。ドメイン管理装置30は、集約された計測データを通信デバイス10へ出力する。このように、通信デバイス10は、ドメイン管理装置30を介して、蓄電ユニット40の計測データを取得し、記憶することができる。 The battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43. The battery management device 44 can send and receive information to and from the domain management device 30. The domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain. The domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
 通信デバイス10は、所定タイミング(例えば一定周期、又はデータ量が所定条件を満たした場合等)で、前回のタイミング以降に記憶しておいた計測データをサーバ装置20へ送信する。計測データには、蓄電素子の識別情報が対応付けられていてもよい。 The communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.). The measurement data may be associated with identification information of the power storage element.
 図9は、推定装置60の構成例を示すブロック図である。推定装置60は、例えばサーバコンピュータ、パーソナルコンピュータ、量子コンピュータ等であり、種々の情報処理、情報の送受信を行う。推定装置60は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。推定装置60は、制御部61、記憶部62、通信部63、表示部64及び操作部65等を備える。 FIG. 9 is a block diagram showing a configuration example of the estimation device 60. The estimation device 60 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information. The estimation device 60 may be a multi-computer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software. The estimation device 60 includes a control section 61, a storage section 62, a communication section 63, a display section 64, an operation section 65, and the like.
 制御部61は、CPU、GPU(Graphics Processing Unit)、ROM、RAM等を備える演算回路である。制御部61が備えるCPU又はGPUは、ROMや記憶部62に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部61は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。 The control unit 61 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like. The CPU or GPU included in the control unit 61 executes various computer programs stored in the ROM or the storage unit 62, and controls the operations of the hardware units described above. The control unit 61 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
 記憶部62は、フラッシュメモリ、ハードディスクドライブ等の不揮発性記憶装置を備える。記憶部62は、制御部61が参照する各種コンピュータプログラム及びデータ等を記憶する。 The storage unit 62 includes a nonvolatile storage device such as a flash memory or a hard disk drive. The storage unit 62 stores various computer programs, data, etc. that are referenced by the control unit 61.
 本実施形態において記憶部62は、蓄電素子の内部状態量の推定に関する処理をコンピュータに実行させるためのプログラム621と、このプログラム621の実行に必要なデータとしての計測DB(Data Base)622とを記憶している。 In this embodiment, the storage unit 62 stores a program 621 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 622 as data necessary for executing the program 621. I remember.
 計測DB622は、発電システム200から受け付けた計測データを記憶するデータベースである。計測データは、上述の通り、発電システム200内の蓄電素子の電流、電圧及び温度の計測値を含む。計測DB622には、例えば、計測データを識別するためのIDをキーに、蓄電素子の識別情報、計測値の計測日時及び計測データ等の情報を紐付けたレコードが時系列順に格納されている。計測DB622にはさらに、例えば蓄電素子の配置に関する情報、後述する推定処理により得られた内部状態量、異常検知の結果等が記憶されてもよい。 The measurement DB 622 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200. The measurement DB 622 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using an ID for identifying measurement data as a key. The measurement DB 622 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
 プログラム621を含むコンピュータプログラム(プログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体6Aにより提供されてもよい。記録媒体6Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部61は、図示しない読取装置を用いて、記録媒体6Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部62に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。プログラム621は、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。 A computer program (program product) including the program 621 may be provided by a non-temporary recording medium 6A on which the computer program is readably recorded. The recording medium 6A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card. The control unit 61 reads a desired computer program from the recording medium 6A using a reading device (not shown), and stores the read computer program in the storage unit 62. Alternatively, the computer program may be provided via communication. Program 621 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
 通信部63は、ネットワークN1を介した通信を実現する通信インタフェースを備える。制御部61は、通信部63を通じて、発電システム200から送信された計測データを受信する。 The communication unit 63 includes a communication interface that realizes communication via the network N1. The control unit 61 receives measurement data transmitted from the power generation system 200 through the communication unit 63.
 表示部64は、例えば液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイ等のディスプレイ装置を備える。表示部64は、制御部61からの指示に従って各種の情報を表示する。操作部65は、ユーザの操作を受け付けるインタフェースである。操作部65は、例えばキーボード、ディスプレイ内蔵のタッチパネルデバイス、スピーカ及びマイクロフォン等を備える。操作部65は、ユーザからの操作入力を受け付け、操作内容に応じた制御信号を制御部61へ送出する。 The display unit 64 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display section 64 displays various information according to instructions from the control section 61. The operation unit 65 is an interface that accepts user operations. The operation unit 65 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like. The operation unit 65 receives operation input from the user and sends a control signal to the control unit 61 according to the operation content.
 推定装置60は、外部に接続されたコンピュータを通じて操作を受付け、通知すべき情報を外部のコンピュータへ出力する構成であってもよい。この場合、推定装置60は、表示部64及び操作部65を備えていなくてもよい。 The estimating device 60 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the estimation device 60 does not need to include the display section 64 and the operation section 65.
 図10は、推定装置60の構成例を示す機能ブロック図である。推定装置60の制御部61は、記憶部62に記憶されたプログラム621を読み出して実行することにより、蓄電素子シミュレータ611、取得部612、推定部613、及び出力部614の各機能を実現する。代替的に、これらの各機能の一部は、制御部61に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよい。 FIG. 10 is a functional block diagram showing a configuration example of the estimation device 60. The control unit 61 of the estimation device 60 realizes each function of the power storage element simulator 611, the acquisition unit 612, the estimation unit 613, and the output unit 614 by reading out and executing the program 621 stored in the storage unit 62. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 61.
 蓄電素子シミュレータ611は、計測データの推定部としての機能を有する。本実施形態の蓄電素子シミュレータ611は、蓄電素子の内部状態量及び使用履歴を入力として、蓄電素子の計測データを推定する。代替的に、蓄電素子シミュレータ611は、少なくとも蓄電素子の内部状態量を入力として、蓄電素子の計測データを推定するものであってもよい。蓄電素子シミュレータ611は、推定した蓄電素子の計測データを用いて、蓄電素子の劣化を推定するものであってもよい。 The power storage element simulator 611 has a function as a measurement data estimator. The power storage element simulator 611 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element. Alternatively, the power storage element simulator 611 may estimate the measurement data of the power storage element using at least the internal state quantity of the power storage element as input. The power storage element simulator 611 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
 蓄電素子シミュレータ611への入力データとなる内部状態量は、例えば蓄電素子のSOC、SOH、表面や内部の温度、内部抵抗等を含む。使用履歴は、所定期間に亘る蓄電素子の電力又は電流(負荷)と、環境温度とを表す情報を含む。使用履歴は、予め設定される複数パターンに分類されていてもよい。蓄電素子シミュレータ611からの出力データとなる計測データは、蓄電素子の電圧、電流及び温度の少なくとも1つを含むデータである。 The internal state quantities that are input data to the power storage element simulator 611 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element. The usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns. The measurement data that is the output data from the power storage element simulator 611 is data that includes at least one of the voltage, current, and temperature of the power storage element.
 蓄電素子シミュレータ611は、電流電圧シミュレーション及び温度シミュレーションの要素から構成されてもよく、(初回の)SOC及び(初回の)SOH(より限定的には、可逆放電容量又は内部の代表的な抵抗値、並びにそれらの組み合わせ)と、使用履歴としての負荷パターン及び蓄電素子の温度環境とを入力してもよく、蓄電素子の電流、電圧及び温度を出力することができる。温度シミュレーションは行わず、代わりに蓄電素子の温度を蓄電素子シミュレータ611に入力してもよい。 The power storage element simulator 611 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output. The temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 611.
 取得部612は、適宜のタイミングでサーバ装置20から送信される計測データを受信することにより、蓄電素子の計測データを取得する。取得部612は、蓄電素子の電圧、電流及び温度の計測値を取得する。電圧、電流及び温度の計測データは、蓄電素子の充電時又は放電時のデータを含む。計測データは、リアルタイムのデータでもよく、過去の所定期間の履歴データでもよい。取得部612は、計測データを取得した場合、取得した計測データを時系列順に計測DB622に記憶する。代替的に、取得部612は、予め計測DB622に記憶したデータの中から、対象となる蓄電素子のデータを読み出すことで、計測データを取得してもよい。 The acquisition unit 612 acquires measurement data of the power storage element by receiving measurement data transmitted from the server device 20 at an appropriate timing. The acquisition unit 612 acquires the measured values of the voltage, current, and temperature of the power storage element. The measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged. The measurement data may be real-time data or historical data for a predetermined period in the past. When acquiring measurement data, the acquisition unit 612 stores the acquired measurement data in the measurement DB 622 in chronological order. Alternatively, the acquisition unit 612 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 622 in advance.
 取得部612は、取得した計測データに基づき蓄電素子の使用履歴を取得(特定)する。取得部612は、例えば所定期間にわたる蓄電素子の電圧、電流及び温度の推移に基づき、蓄電素子の負荷パターン及び環境温度パターンを特定してもよい。蓄電素子の環境温度パターンは、蓄電素子の配置を考慮して求めてもよい。代替的に、取得部612は、予め設定された複数種類の使用履歴を記憶部62に記憶しておき、複数の使用履歴のうちのいずれかの使用履歴を読み出すことで、蓄電素子の使用履歴を取得してもよい。すなわち、取得部612は、実際の使用履歴に限らず、発電システム200内において想定し得る仮の使用履歴を取得してもよい。 The acquisition unit 612 acquires (identifies) the usage history of the power storage element based on the acquired measurement data. The acquisition unit 612 may identify the load pattern of the power storage element and the environmental temperature pattern, for example, based on changes in the voltage, current, and temperature of the power storage element over a predetermined period. The environmental temperature pattern of the power storage element may be determined by considering the arrangement of the power storage element. Alternatively, the acquisition unit 612 stores a plurality of preset usage histories in the storage unit 62, and reads out one of the usage histories of the plurality of usage histories, thereby obtaining the usage history of the power storage element. may be obtained. That is, the acquisition unit 612 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
 推定部613は、取得部612で取得した計測データ及び使用履歴と、蓄電素子シミュレータ611とに基づき、蓄電素子の内部状態量を推定する。 The estimation unit 613 estimates the internal state quantity of the power storage element based on the measurement data and usage history acquired by the acquisition unit 612 and the power storage element simulator 611.
 図11は、内部状態量を推定する方法を説明する図である。初めに、取得部612にて、時点tにおける電圧、電流及び温度を含む計測データOtの実測値が取得される。さらに、時点tまでに取得した時系列の計測データに基づき、時点tにおける使用履歴Utが取得される。使用履歴Utは、例えば負荷パターン及び環境温度パターンを含む。代替的に、使用履歴Utは負荷パターンのみであってもよい。 FIG. 11 is a diagram illustrating a method for estimating internal state quantities. First, the acquisition unit 612 acquires actual measured values of measurement data O t including voltage, current, and temperature at time t. Furthermore, the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t. The usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
 推定部613は、時点tにおける内部状態量Stを設定し、設定した内部状態量St及び使用履歴Utに基づき、蓄電素子シミュレータ611から出力される計測データOtの推定値を取得する。推定部613は、計測データOtの推定値と、計測データOtの実測値とを比較し、計測データOtの推定値が計測データOtの実測値に近似するよう、内部状態量Stを推定する。内部状態量Stの推定手法は限定的ではないが、例えば遺伝的アルゴリズム、Nelder-mead法、勾配法等の公知の最適化手法を用いてもよい。推定部613は、計測データOtの推定値と計測データOtの実測値との差分(差分の絶対値)を最小化するよう、内部状態量Stの最適値を探索する。 The estimation unit 613 sets the internal state quantity S t at time t, and obtains the estimated value of the measurement data O t output from the power storage element simulator 611 based on the set internal state quantity S t and the usage history U t . . The estimation unit 613 compares the estimated value of the measured data O t with the actual measured value of the measured data O t and sets the internal state quantity S so that the estimated value of the measured data O t approximates the actual measured value of the measured data O t . Estimate t . Although the method for estimating the internal state quantity S t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used. The estimation unit 613 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
 本実施形態では、図11に示すように、内部状態量StのうちのSOH及びSOCを設計変数とし、計測データOtのうちの電圧を目的変数として、電圧の推定値が実測値に近似するよう、SOH及びSOCを最適化する。図11中の破線で示す電流及び温度それぞれは、実測段階と推定段階で共通の値を用いる。SOCは、初回のSOCであってもよい。 In this embodiment, as shown in FIG. 11, SOH and SOC of the internal state quantities S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated voltage value approximates the actual measured value. Optimize SOH and SOC to For the current and temperature indicated by broken lines in FIG. 11, common values are used in the actual measurement stage and the estimation stage. The SOC may be an initial SOC.
 推定部613は、例えば適応度、探索試行回数(世代数)等が所定条件を満たすことにより探索を終了する。推定部613は、得られたSOH及びSOCの最適解(近似解)を、内部状態量Stとすることができる。 The estimation unit 613 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions. The estimation unit 613 can set the obtained optimal solution (approximate solution) of SOH and SOC as the internal state quantity S t .
 蓄電素子シミュレータ611への入力となる使用履歴Utは、上述の通り仮の使用履歴であってもよい。例えば、予め設定される複数の使用履歴Utを用いて、各使用履歴Utを入力要素とした場合における内部状態量Stの最適値をそれぞれ推定する。これにより、多様な使用履歴を考慮した複数パターンの内部状態量を推定できる。 The usage history U t that is input to the power storage element simulator 611 may be a temporary usage history as described above. For example, by using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t when each usage history U t is used as an input element is estimated. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
 上記では、電圧の推定値が実測値に近似するようSOH及びSOCを最適化する例を説明した。代替的に、内部状態量は、SOH及びSOC以外であってもよく、また、内部状態量の種類は1又は3以上でもよい。同様に計測データは電圧以外であってもよく、また、計測データの種類は2以上でもよい。 In the above, an example has been described in which the SOH and SOC are optimized so that the estimated voltage value approximates the actual measured value. Alternatively, the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more. Similarly, the measurement data may be other than voltage, and the types of measurement data may be two or more.
 図10に戻り説明を続ける。出力部614は、推定部613から出力される内部状態量の推定結果を受け付け、受け付けた内部状態量の推定結果を示す情報を表示部64へ出力する。表示部64は、内部状態量の推定結果を示す情報を表示する。代替的に、出力部614は、後述する解析部、別の解析装置、外部のコンピュータ等へ内部状態量の推定結果を示す情報を出力してもよい。 Returning to FIG. 10, the explanation will continue. The output unit 614 receives the estimation result of the internal state quantity output from the estimation unit 613 and outputs information indicating the received estimation result of the internal state quantity to the display unit 64. The display unit 64 displays information indicating the estimation result of the internal state quantity. Alternatively, the output unit 614 may output information indicating the estimation result of the internal state quantity to an analysis unit, another analysis device, an external computer, etc., which will be described later.
 制御部61はさらに、図示を省略する解析部としての機能を実現してもよい。解析部は、例えば推定部613で推定した内部状態量に基づき、蓄電素子の異常を検知する。異常検知は、推定した内部状態量を用いた解析処理の一例である。 The control unit 61 may further realize a function as an analysis unit (not shown). The analysis unit detects an abnormality in the power storage element based on the internal state amount estimated by the estimation unit 613, for example. Anomaly detection is an example of analysis processing using estimated internal state quantities.
 図12は、内部状態量の推定処理手順の一例を示すフローチャートである。推定装置60の制御部61は、記憶部62に記憶するプログラム621に従って所定の又は適宜の間隔で以下の処理を開始する。 FIG. 12 is a flowchart illustrating an example of an internal state quantity estimation process procedure. The control unit 61 of the estimation device 60 starts the following process at predetermined or appropriate intervals according to the program 621 stored in the storage unit 62.
 推定装置60の制御部61は、蓄電素子の電圧、電流及び温度を含む計測データの実測値を取得する(ステップS111)。制御部61は、取得した計測データに基づき、蓄電素子の使用履歴を取得する(ステップS112)。制御部61は、仮の使用履歴を取得してもよい。 The control unit 61 of the estimation device 60 acquires actual measured values of measurement data including the voltage, current, and temperature of the power storage element (step S111). The control unit 61 acquires the usage history of the power storage element based on the acquired measurement data (step S112). The control unit 61 may acquire a temporary usage history.
 制御部61は、内部状態量を推定(設定)する(ステップS113)。制御部61は、例えば蓄電素子に設定される内部状態量の上限値から下限値の間において、ランダムに内部状態量の推定における初期値を設定してもよい。制御部61はまた、前回の推定結果や他の蓄電素子の推定結果を初期値として設定してもよい。 The control unit 61 estimates (sets) the internal state quantity (step S113). The control unit 61 may randomly set an initial value for estimating the internal state amount, for example, between an upper limit value and a lower limit value of the internal state amount set in the power storage element. The control unit 61 may also set the previous estimation result or the estimation result of another power storage element as the initial value.
 制御部61は、推定した内部状態量及び取得した使用履歴を入力として、蓄電素子シミュレータ611から出力される計測データの推定値を取得する(ステップS114)。 The control unit 61 receives the estimated internal state quantity and the acquired usage history as input, and acquires an estimated value of the measurement data output from the power storage element simulator 611 (step S114).
 制御部61は、取得した計測データの推定値と、計測データの実測値との差分が許容範囲内であるか否かを判定する(ステップS115)。 The control unit 61 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S115).
 差分が許容範囲内でないと判定した場合(ステップS115:NO)、制御部61は、処理をステップS113に戻し、差分を最小化するよう内部状態量の推定を繰り返す。ステップS113からステップS115により、内部状態量が最適化される。 If it is determined that the difference is not within the allowable range (step S115: NO), the control unit 61 returns the process to step S113 and repeats estimation of the internal state quantity so as to minimize the difference. The internal state quantity is optimized through steps S113 to S115.
 差分が許容範囲内であると判定した場合(ステップS115:YES)、制御部61は、内部状態量の推定結果を、例えば表示部64を通じて出力し(ステップS116)、一例の処理を終了する。代替的に、制御部61は、例えば解析部又は外部装置等へ内部状態量の推定結果を出力してもよい。 If it is determined that the difference is within the allowable range (step S115: YES), the control unit 61 outputs the estimation result of the internal state quantity, for example, through the display unit 64 (step S116), and ends the example process. Alternatively, the control unit 61 may output the estimation result of the internal state quantity to, for example, an analysis unit or an external device.
 上述の処理によれば、蓄電素子シミュレータを利用した内部状態量の逆方向の推定と、計測データの推定値を実測値に近似させる内部状態量の最適化とにより、計測データの実測値に対応する内部状態量を効率よく推定できる。 According to the above-mentioned process, the actual value of the measurement data can be matched by estimating the internal state quantity in the opposite direction using a storage element simulator and optimizing the internal state quantity to approximate the estimated value of the measurement data to the actual measurement value. The internal state quantity can be estimated efficiently.
 上述した実施の形態では、上記フローチャートにおける各処理を推定装置60が実行する例を説明した。代替的に、上述の処理の一部又は全部は、例えばドメイン管理装置30、サーバ装置20等、他の処理主体により実行されてもよい。 In the embodiment described above, an example has been described in which the estimation device 60 executes each process in the above flowchart. Alternatively, part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.
(第4実施形態)
 (15)本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定する推定部と、前記推定部で推定した前記基準蓄電素子の内部状態量と、前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する検知部とを備える。
(Fourth embodiment)
(15) An abnormality detection device according to one aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and from each measurement data acquired by the acquisition unit and an internal state quantity of the power storage element. of the reference energy storage element and the target energy storage element so that the measurement data output from the energy storage element simulator approximates the measurement data acquired by the acquisition unit based on the energy storage element simulator that estimates the measurement data of the energy storage element. an estimation unit that estimates an internal state quantity; and a detection that detects an abnormality in the target power storage element based on a comparison between the internal state quantity of the reference power storage element estimated by the estimation unit and the internal state quantity of the target power storage element. It is equipped with a section.
 ここで、「基準蓄電素子」とは、異常検知を行う際の比較基準となる蓄電素子を意味する。「対象蓄電素子」とは、異常検知の対象となる蓄電素子を意味する。基準蓄電素子及び対象蓄電素子は、例えば同一の発電システム内に設けられていてもよい。
 「蓄電素子シミュレータ」とは、蓄電素子の挙動を模擬するよう構築されたシミュレータを意味する。蓄電素子シミュレータは、蓄電素子の内部状態量に基づき蓄電素子の計測データを出力することができる。
 また、内部状態量は、例えば蓄電素子のSOC(State of Charge)、内部温度、正極容量、負極容量、容量バランスのずれ等を含んでもよい。容量バランスのずれとは、蓄電素子の正極と負極とにおける、可逆的に電荷イオンが電極から出入りできる容量の相違を意味する。容量バランスのずれの詳細については、特許第6428958号公報を参照されたい。
Here, the "reference electricity storage element" means an electricity storage element that serves as a comparison standard when detecting an abnormality. "Target power storage element" means a power storage element that is a target of abnormality detection. The reference power storage element and the target power storage element may be provided within the same power generation system, for example.
“Electricity storage element simulator” means a simulator constructed to simulate the behavior of an electricity storage element. The power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element.
Further, the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like. A shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
 上述の通り蓄電素子の計測データは、蓄電素子の内部状態量に依存する。蓄電素子間における計測データの差分値は、内部状態量に依存して変化する。従って、蓄電素子間における計測データの差分値と一定の閾値とを比較することにより異常検知を行った場合、誤検知が多くなるおそれがある。閾値を調整することで誤検知を防止又は検知率を向上できるが、閾値の設定が複雑となり、異常検知の説明性の低下につながる。 As mentioned above, the measurement data of the power storage element depends on the internal state quantity of the power storage element. The difference value of measurement data between power storage elements changes depending on the internal state quantity. Therefore, when abnormality detection is performed by comparing the difference value of measurement data between the power storage elements and a certain threshold value, there is a possibility that false detections will increase. Although false detections can be prevented or the detection rate can be improved by adjusting the threshold value, setting the threshold value becomes complicated, leading to a decrease in the explainability of abnormality detection.
 本開示の一態様に係る異常検知装置によれば、蓄電素子の内部状態量を加味して蓄電素子の異常検知を行うことが可能となる。内部状態量を加味することで、単に計測データに基づいて異常を検知する場合と比較して、異常検知の精度を向上できる。誤検知因子となる基準蓄電素子及び対象蓄電素子の内部状態量を直接比較して異常検知を行うことで、誤検知を低減し、且つ説明性の高い異常検知が可能となる。 According to the abnormality detection device according to one aspect of the present disclosure, it is possible to detect an abnormality in a power storage element by taking into consideration the internal state quantity of the power storage element. By taking internal state quantities into account, the accuracy of abnormality detection can be improved compared to the case where abnormalities are detected simply based on measurement data. By directly comparing the internal state quantities of the reference power storage element and the target power storage element, which are factors for false detection, to detect an abnormality, it is possible to reduce false detections and to detect an abnormality with high explainability.
 推定部は、蓄電素子シミュレータを利用することにより、基準蓄電素子及び対象蓄電素子の内部状態量を効率よく推定できる。蓄電素子シミュレータは、蓄電素子の内部状態量に沿った計測データを精度よく模擬するよう構築されており、通常、蓄電素子の計測データの挙動を予測するために用いられる。異常検知装置は、蓄電素子の内部状態量と計測データとの関係性を高精度に表現する蓄電素子シミュレータを利用し、実測で得られた計測データから内部状態量を逆方向に推定することで、内部状態量を効率よく算出できる。予め構築された蓄電素子シミュレータを利用することで、内部状態量を容易且つ精度よく推定できる。複数の蓄電素子を備える大規模なシステムにおいて、内部状態量を効率よく算出することで、異常検知処理の演算負荷を低減できる。 By using the power storage element simulator, the estimation unit can efficiently estimate the internal state quantities of the reference power storage element and the target power storage element. A power storage element simulator is constructed to accurately simulate measurement data based on internal state quantities of a power storage element, and is usually used to predict behavior of measurement data of a power storage element. The abnormality detection device uses a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. , internal state quantities can be calculated efficiently. By using a power storage element simulator built in advance, the internal state quantity can be estimated easily and accurately. In a large-scale system including a plurality of power storage elements, by efficiently calculating internal state quantities, the computational load of abnormality detection processing can be reduced.
 (16)上記(15)に記載の異常検知装置において、前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分の絶対値を最小化する前記内部状態量の最適値を探索してもよい。 (16) In the abnormality detection device according to (15) above, the estimating section minimizes the absolute value of the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition section. The optimum value of the internal state quantity may be searched.
 ここで、「差分」とは差分の絶対値を意味する。
 上記(16)に記載の異常検知装置によれば、最適化手法を用いて効率的且つ精度よく内部状態量の最適解を求めることができる。
Here, "difference" means the absolute value of the difference.
According to the abnormality detection device described in (16) above, an optimal solution for the internal state quantity can be obtained efficiently and accurately using an optimization method.
 (17)上記(15)又は(16)に記載の異常検知装置において、前記推定部は、蓄電素子の内部状態量及び使用履歴に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記使用履歴を入力として前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定してもよい。 (17) In the abnormality detection device according to (15) or (16) above, the estimation unit uses the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity and usage history of the power storage element. The internal state quantities of the reference power storage element and the target power storage element may be estimated so that the measurement data output from the power storage element simulator using the usage history as input approximates the measurement data acquired by the acquisition unit. good.
 ここで、蓄電素子の「使用履歴」とは、蓄電素子の使用パターン(使われ方)を示す情報を意味する。使用履歴は、例えば所定期間に亘る蓄電素子の電力又は電流(負荷)の推移を表す情報(以下、負荷パターンとも記載する)と、所定期間に亘る環境温度の推移を表す情報(以下、環境温度パターンとも記載する)とを含んでもよい。 Here, the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element. The usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
 計測データは、蓄電素子の内部状態量に加え使用履歴にも依存する。上記(17)に記載の異常検知装置によれば、蓄電素子の使用履歴を考慮することにより、より精度よく内部状態量を推定できる。また、使用履歴を変化させることで、多様な内部状態量の推定が可能となる。 The measurement data depends on the usage history as well as the internal state quantity of the electricity storage element. According to the abnormality detection device described in (17) above, the internal state quantity can be estimated with higher accuracy by considering the usage history of the power storage element. Furthermore, by changing the usage history, it is possible to estimate various internal state quantities.
 (18)上記(15)から(17)のいずれか1つに記載の異常検知装置において、前記内部状態量は蓄電素子の健康状態又は充電状態を含んでもよい。 (18) In the abnormality detection device according to any one of (15) to (17) above, the internal state amount may include a health state or a charging state of the power storage element.
 ここで、「健康状態」とはSOHであってもよく、「充電状態」とはSOCであってもよい。上記(18)に記載の異常検知装置によれば、計測データに大きく影響を及ぼす健康状態又は充電状態を異常検知の指標とすることで、異常検知の精度を向上できる。 Here, the "state of health" may be SOH, and the "state of charge" may be SOC. According to the abnormality detection device described in (18) above, the accuracy of abnormality detection can be improved by using the health condition or the state of charge that greatly affects measurement data as an indicator for abnormality detection.
 (19)本開示の一態様に係る異常検知方法は、基準蓄電素子及び対象蓄電素子の計測データを取得し、取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定し、推定した前記基準蓄電素子の内部状態量と前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する処理をコンピュータが実行する。 (19) An abnormality detection method according to an aspect of the present disclosure acquires measured data of a reference power storage element and a target power storage element, and calculates the measured data of the power storage element from each acquired measurement data and an internal state quantity of the power storage element. Based on the estimated energy storage element simulator, the internal state quantities of the reference energy storage element and the target energy storage element are estimated so that the measurement data output from the energy storage element simulator approximates the acquired measurement data, and the estimated reference A computer executes a process of detecting an abnormality in the target power storage element based on a comparison between an internal state quantity of the power storage element and an internal state quantity of the target power storage element.
 (20)本開示の一態様に係るプログラムは、基準蓄電素子及び対象蓄電素子の計測データを取得し、取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定し、推定した前記基準蓄電素子の内部状態量と前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する処理をコンピュータに実行させる。 (20) A program according to one aspect of the present disclosure acquires measurement data of a reference power storage element and a target power storage element, and estimates measurement data of the power storage element from each acquired measurement data and an internal state quantity of the power storage element. Based on the power storage element simulator, the internal state quantities of the reference power storage element and the target power storage element are estimated so that the measurement data output from the power storage element simulator approximates the acquired measurement data, and the estimated reference power storage element A computer is caused to execute a process of detecting an abnormality in the target power storage element based on a comparison between the internal state quantity of the target power storage element and the internal state quantity of the target power storage element.
 本開示をその実施の形態を示す図面を参照して具体的に説明する。 The present disclosure will be specifically described with reference to drawings showing embodiments thereof.
 図13は、第4実施形態の遠隔監視システム400の構成例を示す図である。遠隔監視システム400は、発電システム200に含まれる蓄電素子に関する情報への遠隔からのアクセスを可能とする。遠隔監視システム400は、遠隔監視の対象となる発電システム200と、発電システム200から情報を収集する異常検知装置70とを含む。異常検知装置70と発電システム200とは、インターネットなどのネットワークN1を介して通信可能に接続されている。発電システム200の数は1又は3以上でもよい。異常検知装置70はいずれかの発電システム200に統合してもよい。 FIG. 13 is a diagram showing a configuration example of a remote monitoring system 400 according to the fourth embodiment. Remote monitoring system 400 allows remote access to information regarding power storage elements included in power generation system 200. The remote monitoring system 400 includes a power generation system 200 to be remotely monitored, and an abnormality detection device 70 that collects information from the power generation system 200. The abnormality detection device 70 and the power generation system 200 are communicably connected via a network N1 such as the Internet. The number of power generation systems 200 may be one or three or more. The abnormality detection device 70 may be integrated into any of the power generation systems 200.
 図14は、発電システム200の構成例を示すブロック図である。太陽光発電システムや風力発電システムといった発電装置の図示は省略する。発電システム200は、通信デバイス10、ドメイン管理装置30、蓄電ユニット(ドメイン)40を備える。サーバ装置20は、ネットワークN2を介して通信デバイス10と接続されている。蓄電ユニット40は、複数のバンク41を含んでもよい。蓄電ユニット40は、例えば、電池盤に収容されて、火力発電システム、メガソーラー発電システム、風力発電システム、無停電電源装置(UPS:Uninterruptible Power Supply)、鉄道用の安定化電源システムなどに使用される。通信デバイス10、ドメイン管理装置30及び蓄電ユニット40を含む構成は、蓄電システムと呼ばれる。蓄電システムは、図示しないパワーコンディショナを含んでもよい。蓄電ユニット40は産業用途に限らず、家庭用のものであってもよい。 FIG. 14 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted. The power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2. Power storage unit 40 may include a plurality of banks 41. The power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru. A configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system. The power storage system may include a power conditioner (not shown). The power storage unit 40 is not limited to industrial use, and may be used for home use.
 事業者は、通信デバイス10、ドメイン管理装置30、蓄電ユニット40を含む蓄電システムの設計、導入、運用及び保守する事業を行い、蓄電システムを遠隔監視システム400により遠隔監視できる。 The business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 400.
 通信デバイス10は、制御部11、記憶部12、第1通信部13及び第2通信部14を備える。制御部11は、CPU(Central Processing Unit)などで構成され、内蔵するROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを用い、通信デバイス10全体を制御する。 The communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14. The control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
 記憶部12は、例えば、フラッシュメモリ等の不揮発性記憶装置を備える。記憶部12は、所要の情報を記憶することができ、例えば、制御部11の処理によって得られた情報を記憶することができる。 The storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory. The storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
 第1通信部13は、ドメイン管理装置30又は電池管理装置44との通信を実現する通信インタフェースを備える。制御部11は、第1通信部13を通してドメイン管理装置30との間で通信を行うことができる。 The first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44. The control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
 第2通信部14は、ネットワークN2を介した通信を実現する通信インタフェースを備える。制御部11は、第2通信部14を通してサーバ装置20との間で通信を行うことができる。 The second communication unit 14 includes a communication interface that realizes communication via the network N2. The control unit 11 can communicate with the server device 20 through the second communication unit 14.
 ドメイン管理装置30は、所定の通信インタフェースを用いて各バンク41との間で情報の送受信を行う。記憶部12は、ドメイン管理装置30を介して取得した計測データを記憶することができる。 The domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface. The storage unit 12 can store measurement data acquired via the domain management device 30.
 サーバ装置20は、通信デバイス10から蓄電システムの計測データを収集することができる。計測データは、蓄電システム内の各蓄電素子の電流、電圧、温度などの計測値を含む。サーバ装置20は、収集された計測データを、蓄電素子毎に区分して記憶してもよい。サーバ装置20は、ネットワークN2、N1を介して計測データを異常検知装置70に送信することができる。なお、ネットワークN1、N2は、1つの通信ネットワークであってもよい。 The server device 20 can collect measurement data of the power storage system from the communication device 10. The measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system. The server device 20 may separate and store the collected measurement data for each power storage element. The server device 20 can transmit measurement data to the abnormality detection device 70 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
 バンク41は、蓄電モジュールを複数直列に接続したものであり、電池管理装置(BMU:Battery Management Unit)44、複数の蓄電モジュール42、及び各蓄電モジュール42に設けられた計測基板(CMU:Cell Management Unit)43などを備える。 The bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
 蓄電モジュール42は、複数の蓄電セルが直列に接続されている。本明細書において、「蓄電素子」は、蓄電セル、蓄電モジュール42、バンク41、又はバンク41を並列に接続したドメインを意味してもよい。本実施形態では、計測基板43は、蓄電モジュール42の各蓄電セルに関する計測データを取得する。計測データは、例えば、0.1秒、0.5秒、1秒などの適宜の周期で繰り返し取得することができる。「蓄電素子」は、鉛蓄電池及びリチウムイオン電池のような二次電池や、キャパシタのような、再充電可能なものであることが好ましい。蓄電素子の一部が、再充電不可能な一次電池であってもよい。 The power storage module 42 has a plurality of power storage cells connected in series. In this specification, a "power storage element" may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel. In this embodiment, the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42. The measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example. The "power storage element" is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
 電池管理装置44は、通信機能付きの計測基板43とシリアル通信によって通信を行うことができ、計測基板43が検出した計測データを取得することができる。電池管理装置44は、ドメイン管理装置30との間で情報の送受信を行うことができる。ドメイン管理装置30は、ドメインに所属するバンクの電池管理装置44からの計測データを集約する。ドメイン管理装置30は、集約された計測データを通信デバイス10へ出力する。このように、通信デバイス10は、ドメイン管理装置30を介して、蓄電ユニット40の計測データを取得し、記憶することができる。 The battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43. The battery management device 44 can send and receive information to and from the domain management device 30. The domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain. The domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
 通信デバイス10は、所定タイミング(例えば一定周期、又はデータ量が所定条件を満たした場合等)で、前回のタイミング以降に記憶しておいた計測データをサーバ装置20へ送信する。計測データには、蓄電素子の識別情報が対応付けられていてもよい。 The communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.). The measurement data may be associated with identification information of the power storage element.
 本実施形態の異常検知装置70は、発電システム200内に設けられた複数の蓄電素子のうち、異常検知の基準となる基準蓄電素子の計測データを用いて、異常検知の対象となる対象蓄電素子の異常検知を実行する。基準蓄電素子及び対象蓄電素子は、例えば、予め所定ルールに従い選択されてもよく、人手により選択されてもよい。基準蓄電素子及び対象蓄電素子は、発電システム200内における蓄電素子の総数や配置を考慮して決定できる。基準蓄電素子及び対象蓄電素子はそれぞれ、複数であってもよく、又、異常検知の処理毎に変更可能である。 The abnormality detection device 70 of this embodiment performs abnormality detection on the target storage element that is the subject of abnormality detection, using measurement data of a reference storage element that serves as the standard for abnormality detection, among the multiple storage elements provided in the power generation system 200. The reference storage element and the target storage element may be selected in advance according to a predetermined rule, for example, or may be selected manually. The reference storage element and the target storage element can be determined taking into consideration the total number and arrangement of storage elements in the power generation system 200. There may be multiple reference storage elements and target storage elements, and they can be changed for each abnormality detection process.
 図15は、異常検知装置70の構成例を示すブロック図である。異常検知装置70は、例えばサーバコンピュータ、パーソナルコンピュータ、量子コンピュータ等であり、種々の情報処理、情報の送受信を行う。異常検知装置70は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。異常検知装置70は、制御部71、記憶部72、通信部73、表示部74及び操作部75等を備える。 FIG. 15 is a block diagram showing a configuration example of the abnormality detection device 70. The abnormality detection device 70 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information. The abnormality detection device 70 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software. The abnormality detection device 70 includes a control section 71, a storage section 72, a communication section 73, a display section 74, an operation section 75, and the like.
 制御部71は、CPU、GPU(Graphics Processing Unit)、ROM、RAM等を備える演算回路である。制御部71が備えるCPU又はGPUは、ROMや記憶部72に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部71は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。 The control unit 71 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like. The CPU or GPU included in the control unit 71 executes various computer programs stored in the ROM or the storage unit 72, and controls the operations of the hardware units described above. The control unit 71 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given to when a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
 記憶部72は、フラッシュメモリ、ハードディスクドライブ等の不揮発性記憶装置を備える。記憶部72は、制御部71が参照する各種コンピュータプログラム及びデータ等を記憶する。 The storage unit 72 includes a nonvolatile storage device such as a flash memory or a hard disk drive. The storage unit 72 stores various computer programs, data, etc. that are referenced by the control unit 71.
 本実施形態において記憶部72は、蓄電素子の内部状態量の推定に関する処理をコンピュータに実行させるためのプログラム721と、このプログラム721の実行に必要なデータとしての計測DB(Data Base)722とを記憶している。 In the present embodiment, the storage unit 72 stores a program 721 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 722 as data necessary for executing the program 721. I remember.
 計測DB722は、発電システム200から受け付けた計測データを記憶するデータベースである。計測データは、上述の通り、発電システム200内の蓄電素子の電流、電圧及び温度の計測値を含む。計測DB722には、例えば、計測データを識別するためのIDをキーに、蓄電素子の識別情報、計測値の計測日時及び計測データ等の情報を紐付けたレコードが時系列順に格納されている。計測DB722にはさらに、例えば蓄電素子の配置に関する情報、後述する推定処理により得られた内部状態量、異常検知の結果等が記憶されてもよい。 The measurement DB 722 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200. The measurement DB 722 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked using, for example, an ID for identifying measurement data as a key. The measurement DB 722 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
 記憶部72にはまた、基準蓄電素子及び対象蓄電素子の識別情報、後述する異常検知のための閾値等が記憶されている。 The storage unit 72 also stores identification information of the reference power storage element and the target power storage element, a threshold value for detecting an abnormality, which will be described later, and the like.
 プログラム721を含むコンピュータプログラム(プログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体7Aにより提供されてもよい。記録媒体7Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部71は、図示しない読取装置を用いて、記録媒体7Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部72に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。プログラム721は、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。 A computer program (program product) including the program 721 may be provided by a non-temporary recording medium 7A on which the computer program is readably recorded. The recording medium 7A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card. The control unit 71 reads a desired computer program from the recording medium 7A using a reading device (not shown), and stores the read computer program in the storage unit 72. Alternatively, the computer program may be provided via communication. Program 721 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
 通信部73は、ネットワークN1を介した通信を実現する通信インタフェースを備える。制御部71は、通信部73を通じて、発電システム200から送信された計測データを受信する。 The communication unit 73 includes a communication interface that realizes communication via the network N1. The control unit 71 receives measurement data transmitted from the power generation system 200 through the communication unit 73.
 表示部74は、例えば液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイ等のディスプレイ装置を備える。表示部74は、制御部71からの指示に従って各種の情報を表示する。操作部75は、ユーザの操作を受け付けるインタフェースである。操作部75は、例えばキーボード、ディスプレイ内蔵のタッチパネルデバイス、スピーカ及びマイクロフォン等を備える。操作部75は、ユーザからの操作入力を受け付け、操作内容に応じた制御信号を制御部71へ送出する。 The display unit 74 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display section 74 displays various information according to instructions from the control section 71. The operation unit 75 is an interface that accepts user operations. The operation unit 75 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like. The operation unit 75 receives operation input from the user and sends a control signal to the control unit 71 according to the operation content.
 異常検知装置70は、外部に接続されたコンピュータを通じて操作を受付け、通知すべき情報を外部のコンピュータへ出力する構成であってもよい。この場合、異常検知装置70は、表示部74及び操作部75を備えていなくてもよい。 The abnormality detection device 70 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the abnormality detection device 70 does not need to include the display section 74 and the operation section 75.
 図16は、異常検知装置70の構成例を示す機能ブロック図である。異常検知装置70の制御部71は、記憶部72に記憶されたプログラム721を読み出して実行することにより、蓄電素子シミュレータ711、取得部712、推定部713、検知部714、及び出力部715の各機能を実現する。代替的に、これらの各機能の一部は、制御部71に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよい。 FIG. 16 is a functional block diagram showing a configuration example of the abnormality detection device 70. The control unit 71 of the abnormality detection device 70 reads and executes a program 721 stored in the storage unit 72 to control each of the power storage element simulator 711, the acquisition unit 712, the estimation unit 713, the detection unit 714, and the output unit 715. Achieve functionality. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 71.
 蓄電素子シミュレータ711は、計測データの推定部としての機能を有する。本実施形態の蓄電素子シミュレータ711は、蓄電素子の内部状態量及び使用履歴を入力として、蓄電素子の計測データを推定する。代替的に、蓄電素子シミュレータ711は、少なくとも蓄電素子の内部状態量を入力として、蓄電素子の計測データを推定するものであってもよい。蓄電素子シミュレータ711は、推定した蓄電素子の計測データを用いて、蓄電素子の劣化を推定するものであってもよい。 The power storage element simulator 711 has a function as a measurement data estimator. The power storage element simulator 711 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element. Alternatively, the power storage element simulator 711 may estimate the measurement data of the power storage element by using at least the internal state quantity of the power storage element as input. The power storage element simulator 711 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
 蓄電素子シミュレータ711への入力データとなる内部状態量は、例えば蓄電素子のSOC、SOH、表面や内部の温度、内部抵抗等を含む。使用履歴は、所定期間に亘る蓄電素子の電力又は電流(負荷)と、環境温度とを表す情報を含む。使用履歴は、予め設定される複数パターンに分類されていてもよい。蓄電素子シミュレータ711からの出力データとなる計測データは、蓄電素子の電圧、電流及び温度の少なくとも1つを含むデータである。 The internal state quantities that are input data to the power storage element simulator 711 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element. The usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns. The measurement data that is output data from the power storage element simulator 711 is data that includes at least one of the voltage, current, and temperature of the power storage element.
 蓄電素子シミュレータ711は、電流電圧シミュレーション及び温度シミュレーションの要素から構成されてもよく、(初回の)SOC及び(初回の)SOH(より限定的には、可逆放電容量又は内部の代表的な抵抗値、並びにそれらの組み合わせ)と、使用履歴としての負荷パターン及び蓄電素子の温度環境とを入力してもよく、蓄電素子の電流、電圧及び温度を出力することができる。温度シミュレーションは行わず、代わりに蓄電素子の温度を蓄電素子シミュレータ711に入力してもよい。 The power storage element simulator 711 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output. The temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 711.
 取得部712は、適宜のタイミングでサーバ装置20から送信される計測データを受信することにより、対象蓄電素子及び基準蓄電素子を含む複数の蓄電素子の計測データを取得する。取得部712は、蓄電素子の電圧、電流及び温度の観測値を取得する。電圧、電流及び温度の計測データは、蓄電素子の充電時又は放電時のデータを含む。計測データは、リアルタイムのデータでもよく、過去の所定期間の履歴データでもよい。取得部712は、計測データを取得した場合、取得した計測データを時系列順に計測DB722に記憶する。代替的に、取得部712は、予め計測DB722に記憶したデータの中から、対象となる蓄電素子のデータを読み出すことで、計測データを取得してもよい。 The acquisition unit 712 acquires measurement data of a plurality of power storage elements including the target power storage element and the reference power storage element by receiving the measurement data transmitted from the server device 20 at an appropriate timing. The acquisition unit 712 acquires observed values of voltage, current, and temperature of the power storage element. The measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged. The measurement data may be real-time data or historical data for a predetermined period in the past. When acquiring measurement data, the acquisition unit 712 stores the acquired measurement data in the measurement DB 722 in chronological order. Alternatively, the acquisition unit 712 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 722 in advance.
 取得部712は、取得した計測データに基づき蓄電素子の使用履歴を取得(特定)する。取得部712は、例えば所定期間にわたる蓄電素子の電圧、電流及び温度の推移に基づき、蓄電素子の負荷パターン及び環境温度パターンを特定してもよい。蓄電素子の環境温度パターンは、蓄電素子の配置を考慮して求めてもよい。代替的に、取得部712は、予め設定された複数種類の使用履歴を記憶部72に記憶しておき、複数の使用履歴のうちのいずれかの使用履歴を読み出すことで、蓄電素子の使用履歴を取得してもよい。すなわち、取得部712は、実際の使用履歴に限らず、発電システム200内において想定し得る仮の使用履歴を取得してもよい。 The acquisition unit 712 acquires (identifies) the usage history of the power storage element based on the acquired measurement data. The acquisition unit 712 may identify the load pattern of the power storage element and the environmental temperature pattern, for example, based on changes in the voltage, current, and temperature of the power storage element over a predetermined period. The environmental temperature pattern of the power storage element may be determined by considering the arrangement of the power storage element. Alternatively, the acquisition unit 712 stores a plurality of preset usage histories in the storage unit 72, and reads out one of the usage histories of the plurality of usage histories, thereby obtaining the usage history of the power storage element. may be obtained. That is, the acquisition unit 712 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
 推定部713は、取得部712で取得した計測データ及び使用履歴と、蓄電素子シミュレータ711とに基づき、蓄電素子の内部状態量を推定する。推定部713は、予め指定された基準蓄電素子及び対象蓄電素子それぞれに関する計測データ及び使用履歴に基づいて、基準蓄電素子の内部状態量及び対象蓄電素子の内部状態量を推定する。 The estimation unit 713 estimates the internal state quantity of the power storage element based on the measurement data and usage history acquired by the acquisition unit 712 and the power storage element simulator 711. Estimating unit 713 estimates the internal state quantity of the reference power storage element and the target power storage element based on the measurement data and usage history regarding each of the reference power storage element and the target power storage element specified in advance.
 図17は、内部状態量を推定する方法を説明する図である。初めに、取得部712にて、時点tにおける電圧、電流及び温度を含む計測データOtの実測値が取得される。さらに、時点tまでに取得した時系列の計測データに基づき、時点tにおける使用履歴Utが取得される。使用履歴Utは、例えば負荷パターン及び環境温度パターンを含む。代替的に、使用履歴Utは負荷パターンのみであってもよい。 FIG. 17 is a diagram illustrating a method for estimating internal state quantities. First, the acquisition unit 712 acquires actual measured values of measurement data O t including voltage, current, and temperature at time t. Furthermore, the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t. The usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
 推定部713は、時点tにおける内部状態量Stを設定し、設定した内部状態量St及び使用履歴Utに基づき、蓄電素子シミュレータ711から出力される計測データOtの推定値を取得する。推定部713は、計測データOtの推定値と、計測データOtの実測値とを比較し、計測データOtの推定値が計測データOtの実測値に近似するよう、内部状態量Stを推定する。内部状態量Stの推定手法は限定的ではないが、例えば遺伝的アルゴリズム、Nelder-mead法、勾配法等の公知の最適化手法を用いてもよい。推定部713は、計測データOtの推定値と計測データOtの実測値との差分(差分の絶対値)を最小化するよう、内部状態量Stの最適値を探索する。 The estimation unit 713 sets the internal state quantity S t at time t, and obtains the estimated value of the measurement data O t output from the power storage element simulator 711 based on the set internal state quantity S t and the usage history U t . . The estimation unit 713 compares the estimated value of the measurement data O t with the actual measurement value of the measurement data O t and sets the internal state quantity S so that the estimated value of the measurement data O t approximates the actual measurement value of the measurement data O t . Estimate t . Although the method for estimating the internal state quantity S t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used. The estimation unit 713 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
 本実施形態では、図17に示すように、内部状態量StのうちのSOH及びSOCを設計変数とし、計測データOtのうちの電圧を目的変数として、電圧の推定値が実測値に近似するよう、SOH及びSOCを最適化する。図17中の破線で示す電流及び温度それぞれは、実測段階と推定段階で共通の値を用いる。SOCは、初回のSOCであってもよい。 In this embodiment, as shown in FIG. 17, SOH and SOC of the internal state quantity S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated value of the voltage approximates the actual measured value. Optimize SOH and SOC to For the current and temperature indicated by broken lines in FIG. 17, common values are used in the actual measurement stage and the estimation stage. The SOC may be an initial SOC.
 推定部713は、例えば適応度、探索試行回数(世代数)等が所定条件を満たすことにより探索を終了する。推定部713は、得られたSOH及びSOCの最適解(近似解)を、内部状態量Stとすることができる。 The estimation unit 713 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions. The estimation unit 713 can use the obtained optimal solution (approximate solution) of SOH and SOC as the internal state amount S t .
 蓄電素子シミュレータ711への入力となる使用履歴Utは、上述の通り仮の使用履歴であってもよい。例えば、予め設定される複数の使用履歴Utを用いて、各使用履歴Utを入力要素とした場合における内部状態量Stの最適値をそれぞれ推定する。これにより、多様な使用履歴を考慮した複数パターンの内部状態量を推定できる。 The usage history U t that is input to the power storage element simulator 711 may be a temporary usage history as described above. For example, using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t is estimated when each usage history U t is used as an input element. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
 上記では、電圧の推定値が実測値に近似するようSOH及びSOCを最適化する例を説明した。代替的に、内部状態量は、SOH及びSOC以外であってもよく、また、内部状態量の種類は1又は3以上でもよい。同様に計測データは電圧以外であってもよく、また、計測データの種類は2以上でもよい。 In the above, an example has been described in which the SOH and SOC are optimized so that the estimated voltage value approximates the actual measured value. Alternatively, the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more. Similarly, the measurement data may be other than voltage, and the types of measurement data may be two or more.
 図16に戻り説明を続ける。検知部714は、推定部713から出力される対象蓄電素子及び基準蓄電素子の内部状態量の推定結果を受け付ける。検知部714は、推定部713で推定した対象蓄電素子及び基準蓄電素子の内部状態量を比較することにより、対象蓄電素子における異常を検知する。 Returning to FIG. 16, the explanation will continue. The detection unit 714 receives the estimation results of the internal state quantities of the target power storage element and the reference power storage element output from the estimation unit 713. The detection unit 714 detects an abnormality in the target power storage element by comparing the internal state quantities of the target power storage element and the reference power storage element estimated by the estimation unit 713.
 検知部714は、推定部713で推定した対象蓄電素子の内部状態量と、基準蓄電素子の内部状態量との差分(差分の絶対値)ΔSを算出する。検知部714は、算出した内部状態量の差分ΔSが予め設定されている閾値未満であるか否かを判定することにより、異常検知を行う。検知部714は、内部状態量の差分ΔSが閾値未満である場合、対象蓄電素子を正常と判定し、内部状態量の差分ΔSが閾値以上である場合、対象蓄電素子を異常と判定する。 The detection unit 714 calculates the difference (absolute value of the difference) ΔS between the internal state quantity of the target power storage element estimated by the estimation unit 713 and the internal state quantity of the reference power storage element. The detection unit 714 performs abnormality detection by determining whether the calculated difference ΔS of the internal state quantities is less than a preset threshold. The detection unit 714 determines that the target power storage element is normal when the internal state quantity difference ΔS is less than the threshold value, and determines the target power storage element to be abnormal when the internal state quantity difference ΔS is greater than or equal to the threshold value.
 出力部715は、検知部714から異常の検知結果を受け付け、受け付けた検知結果を示す情報を表示部74へ出力する。表示部74は、検知結果を示す情報を表示する。代替的に、出力部715は、外部のコンピュータへ検知結果を示す情報を出力してもよい。 The output unit 715 receives the abnormality detection result from the detection unit 714 and outputs information indicating the received detection result to the display unit 74. The display unit 74 displays information indicating the detection results. Alternatively, the output unit 715 may output information indicating the detection result to an external computer.
 図18は、異常検知の処理手順の一例を示すフローチャートである。異常検知装置70の制御部71は、記憶部72に記憶するプログラム721に従って所定の又は適宜の間隔で以下の処理を開始する。 FIG. 18 is a flowchart illustrating an example of an abnormality detection processing procedure. The control unit 71 of the abnormality detection device 70 starts the following process at predetermined or appropriate intervals according to the program 721 stored in the storage unit 72.
 異常検知装置70の制御部71は、基準蓄電素子及び対象蓄電素子の電圧、電流及び温度を含む計測データの実測値を取得する(ステップS211)。基準蓄電素子及び対象蓄電素子の数は、複数であってもよい。 The control unit 71 of the abnormality detection device 70 acquires actual measured values of measurement data including the voltage, current, and temperature of the reference power storage element and the target power storage element (step S211). The number of reference power storage elements and target power storage elements may be plural.
 制御部71は、取得した基準蓄電素子及び対象蓄電素子の計測データに基づき、基準蓄電素子及び対象蓄電素子の使用履歴を取得する(ステップS212)。制御部71は、仮の使用履歴を取得してもよい。 The control unit 71 acquires the usage history of the reference power storage element and the target power storage element based on the acquired measurement data of the reference power storage element and the target power storage element (step S212). The control unit 71 may acquire a temporary usage history.
 制御部71は、基準蓄電素子及び対象蓄電素子の内部状態量を推定する(ステップS213)。図19は、内部状態量の推定の詳細な手順の一例を示すフローチャートである。図19のフローチャートに示す処理手順は、図18のフローチャートにおけるステップS213の詳細に対応する。 The control unit 71 estimates the internal state quantities of the reference power storage element and the target power storage element (step S213). FIG. 19 is a flowchart illustrating an example of a detailed procedure for estimating the internal state quantity. The processing procedure shown in the flowchart of FIG. 19 corresponds to the details of step S213 in the flowchart of FIG.
 制御部71は、蓄電素子の内部状態量を推定(設定)する(ステップS221)。制御部71は、例えば蓄電素子に設定される内部状態量の上限値から下限値の間において、ランダムに内部状態量の推定における初期値を設定してもよい。制御部71はまた、前回の推定結果や他の蓄電素子の推定結果を初期値として設定してもよい。 The control unit 71 estimates (sets) the internal state quantity of the power storage element (step S221). The control unit 71 may randomly set an initial value for estimating the internal state amount, for example, between an upper limit value and a lower limit value of the internal state amount set in the power storage element. The control unit 71 may also set the previous estimation result or the estimation result of other power storage elements as the initial value.
 制御部71は、推定した内部状態量及び取得した使用履歴を入力として、蓄電素子シミュレータ711から出力される計測データの推定値を取得する(ステップS222)。 The control unit 71 receives the estimated internal state quantity and the acquired usage history as input, and acquires an estimated value of the measurement data output from the power storage element simulator 711 (step S222).
 制御部71は、取得した計測データの推定値と、計測データの実測値との差分が許容範囲内であるか否かを判定する(ステップS223)。 The control unit 71 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S223).
 差分が許容範囲内でないと判定した場合(ステップS223:NO)、制御部71は、処理をステップS221に戻し、差分を最小化するよう内部状態量の推定を繰り返す。ステップS221からステップS223により、内部状態量が最適化される。 If it is determined that the difference is not within the allowable range (step S223: NO), the control unit 71 returns the process to step S221 and repeats estimation of the internal state quantity so as to minimize the difference. The internal state quantity is optimized through steps S221 to S223.
 差分が許容範囲内であると判定した場合(ステップS223:YES)、制御部71は、得られた内部状態量を最適値とし、図18のフローチャートにおけるステップS214へ処理を戻す。制御部71は、指定された全ての基準蓄電素子及び対象蓄電素子について、上述の内部状態量の推定を実行する。 If it is determined that the difference is within the allowable range (step S223: YES), the control unit 71 sets the obtained internal state amount to the optimum value and returns the process to step S214 in the flowchart of FIG. The control unit 71 executes the estimation of the internal state quantities described above for all the designated reference power storage elements and target power storage elements.
 上述の処理において制御部71は、例えば、基準蓄電素子の仮の使用履歴を取得した場合、取得した仮の使用履歴を用いて基準蓄電素子の内部状態量を推定する。制御部71は、予め設定される使用履歴毎に、複数の基準蓄電素子の内部状態量を推定してもよい。制御部71は、対象蓄電素子の計測データに基づき特定された使用履歴を基準蓄電素子の仮の使用履歴として用いてもよい。基準蓄電素子が複数存在する場合、各基準蓄電素子について、使用履歴毎に内部状態量を推定してもよい。 In the above process, for example, when the control unit 71 acquires the temporary usage history of the reference power storage element, the control unit 71 estimates the internal state quantity of the reference power storage element using the acquired temporary usage history. The control unit 71 may estimate the internal state quantities of the plurality of reference power storage elements for each usage history set in advance. The control unit 71 may use the usage history specified based on the measurement data of the target power storage element as the temporary usage history of the reference power storage element. When a plurality of reference power storage elements exist, the internal state quantity may be estimated for each reference power storage element for each usage history.
 図18に戻り説明を続ける。制御部71は、推定した基準蓄電素子の内部状態量と、対象蓄電素子の内部状態量との差分ΔSを算出し、算出した差分ΔSが予め設定される閾値未満であるか否かを判定する(ステップS214)。ステップS214では、制御部71は、複数の基準蓄電素子の内部状態量の標準偏差を基に、閾値未満であるかどうかを判定してもよい。また制御部71は、推定した内部状態量の分布形状から異常判定を行ってもよい。 Returning to FIG. 18, the explanation will be continued. The control unit 71 calculates a difference ΔS between the estimated internal state quantity of the reference power storage element and the internal state quantity of the target power storage element, and determines whether the calculated difference ΔS is less than a preset threshold value. (Step S214). In step S214, the control unit 71 may determine whether it is less than a threshold value based on the standard deviation of the internal state quantities of the plurality of reference power storage elements. The control unit 71 may also perform abnormality determination based on the estimated distribution shape of the internal state quantities.
 算出した差分ΔSが予め設定される閾値未満であると判定した場合(ステップS214:YES)、制御部71は、対象蓄電素子が正常であると判定する(ステップS215)。算出した差分ΔSが予め設定される閾値以上であると判定した場合(ステップS214:NO)、制御部71は、対象蓄電素子が異常であると判定する(ステップS216)。ステップS214からステップS216は、異常検知処理に対応する。制御部71は、対象蓄電素子及び推定した基準蓄電素子の内部状態量の組み合わせ毎に差分ΔSを算出し、閾値判定を実行する。 If it is determined that the calculated difference ΔS is less than the preset threshold (step S214: YES), the control unit 71 determines that the target power storage element is normal (step S215). If it is determined that the calculated difference ΔS is greater than or equal to the preset threshold (step S214: NO), the control unit 71 determines that the target power storage element is abnormal (step S216). Steps S214 to S216 correspond to abnormality detection processing. The control unit 71 calculates the difference ΔS for each combination of the internal state quantities of the target power storage element and the estimated reference power storage element, and executes threshold determination.
 制御部71は、異常の検知結果を、例えば表示部74を通じて出力し(ステップS217)、一例の処理を終了する。代替的に、制御部71は、外部のコンピュータへ異常の検知結果を出力してもよい。 The control unit 71 outputs the abnormality detection result, for example, through the display unit 74 (step S217), and ends the example process. Alternatively, the control unit 71 may output the abnormality detection result to an external computer.
 本実施形態によれば、内部状態量を考慮して蓄電素子の異常を精度よく検知できる。異常検知に用いる内部状態量は、蓄電素子シミュレータを利用した内部状態量の逆方向の推定と、計測データの推定値を実測値に近似させる内部状態量の最適化とにより、効率よく推定できる。 According to the present embodiment, an abnormality in the power storage element can be detected with high accuracy by considering the internal state quantity. The internal state quantity used for abnormality detection can be estimated efficiently by estimating the internal state quantity in the opposite direction using a power storage element simulator and optimizing the internal state quantity by approximating the estimated value of the measurement data to the actual measured value.
 上述した実施の形態では、上記フローチャートにおける各処理を異常検知装置70が実行する例を説明した。代替的に、上述の処理の一部又は全部は、例えばドメイン管理装置30、サーバ装置20等、他の処理主体により実行されてもよい。 In the embodiment described above, an example has been described in which the abnormality detection device 70 executes each process in the above flowchart. Alternatively, part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.
(第5実施形態)
 (21)本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部と、前記設定部で設定した検知基準と、前記取得部で取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する検知部とを備える。
(Fifth embodiment)
(21) An abnormality detection device according to an aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference power storage element and a target power storage element, and a measurement data of the reference power storage element acquired by the acquisition unit. Detection criteria are determined based on measurement data estimated by a power storage element simulator based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference power storage element, and measurement data of the reference power storage element acquired by the acquisition unit. The power storage device includes a setting unit for setting, a detection unit for detecting an abnormality in the target power storage element based on the detection criteria set by the setting unit, and measurement data of the target power storage element acquired by the acquisition unit.
 ここで、「基準蓄電素子」とは、異常検知を行う際の比較基準となる蓄電素子を意味する。「対象蓄電素子」とは、異常検知の対象となる蓄電素子を意味する。基準蓄電素子及び対象蓄電素子は、例えば同一の発電システム内に設けられていてもよい。
 「蓄電素子シミュレータ」とは、蓄電素子の挙動を模擬するよう構築されたシミュレータを意味する。蓄電素子シミュレータは、蓄電素子の内部状態量に基づき蓄電素子の計測データを出力することができる。
 また、内部状態量は、例えば蓄電素子のSOC(State of Charge)、内部温度、正極容量、負極容量、容量バランスのずれ等を含んでもよい。容量バランスのずれとは、蓄電素子の正極と負極とにおける、可逆的に電荷イオンが電極から出入りできる容量の相違を意味する。容量バランスのずれの詳細については、特許第6428958号公報を参照されたい。
Here, the "reference electricity storage element" means an electricity storage element that serves as a comparison standard when detecting an abnormality. "Target power storage element" means a power storage element that is a target of abnormality detection. The reference power storage element and the target power storage element may be provided within the same power generation system, for example.
“Electricity storage element simulator” means a simulator constructed to simulate the behavior of an electricity storage element. The power storage element simulator can output measurement data of the power storage element based on the internal state quantity of the power storage element.
Further, the internal state quantity may include, for example, the SOC (State of Charge) of the power storage element, internal temperature, positive electrode capacity, negative electrode capacity, deviation in capacity balance, and the like. A shift in capacity balance refers to a difference in capacity between the positive electrode and the negative electrode of a power storage element, in which charged ions can reversibly enter and exit from the electrodes. Please refer to Japanese Patent No. 6428958 for details on the capacity imbalance.
 上述の通り蓄電素子の計測データは、蓄電素子の内部状態量に依存する。蓄電素子間における計測データの差分値は、内部状態量に依存して変化する。従って、蓄電素子間における計測データの差分値と一定の閾値とを比較することにより異常検知を行った場合、誤検知が多くなるおそれがある。閾値を調整することで誤検知を防止又は検知率を向上できるが、閾値の設定が複雑となり、異常検知の精度低下につながる。 As mentioned above, the measurement data of the power storage element depends on the internal state quantity of the power storage element. The difference value of measurement data between power storage elements changes depending on the internal state quantity. Therefore, when abnormality detection is performed by comparing the difference value of measurement data between the power storage elements and a certain threshold value, there is a possibility that false detections will increase. Although false detections can be prevented or the detection rate can be improved by adjusting the threshold value, setting the threshold value becomes complicated, leading to a decrease in the accuracy of abnormality detection.
 本開示の一態様に係る異常検知装置によれば、許容差分を加味した基準蓄電素子の内部状態量から推定される計測データに基づき、異常検知毎に又は適宜の検知タイミングで動的に検知基準を設定し、設定した検知基準を用いて蓄電素子の異常検知を行うことが可能となる。動的に検知基準を設定することで、一定の閾値を用いて異常検知を行う場合と比較して、異常検知の精度を向上できる。誤検知因子となる内部状態量を加味することで、単に計測データに基づいて異常を検知する場合と比較して、誤検知を低減し、且つ精度の高い異常検知が可能となる。内部状態量を検知基準に反映できるため、より適正な検知基準を生成できる。 According to the anomaly detection device according to one aspect of the present disclosure, the detection standard is dynamically determined each time an anomaly is detected or at an appropriate detection timing based on measurement data estimated from the internal state quantity of the reference energy storage element with allowances taken into account. It becomes possible to set abnormality of the power storage element using the set detection standard. By dynamically setting the detection criteria, the accuracy of abnormality detection can be improved compared to the case where abnormality detection is performed using a fixed threshold value. By taking into account the internal state quantity that is a factor of false detection, it is possible to reduce false detections and detect abnormalities with high accuracy compared to the case where abnormalities are detected simply based on measurement data. Since internal state quantities can be reflected in the detection criteria, more appropriate detection criteria can be generated.
 また、許容差分を考慮した内部状態量に基づく計測データにより検知基準を設定することで、内部状態量に関する検知基準を計測データに関する検知基準へと変換することができる。異常検知時には、内部状態量を不要とし、容易に取得可能な計測データに基づき異常検知を行うことができるため、検知処理の演算負荷が低減し、高速に実施できる。 Furthermore, by setting the detection standard using measurement data based on the internal state quantity in consideration of the allowable difference, the detection standard regarding the internal state quantity can be converted into the detection standard regarding the measurement data. At the time of abnormality detection, internal state quantities are not required and abnormality detection can be performed based on easily obtainable measurement data, so the calculation load of the detection process is reduced and it can be performed at high speed.
 (22)上記(21)に記載の異常検知装置において、蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した前記基準蓄電素子の計測データに近似するよう前記基準蓄電素子の内部状態量を推定する推定部を備えてもよい。 (22) In the abnormality detection device according to (21) above, using the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity of the power storage element, measurement data output from the power storage element simulator The power storage device may include an estimation unit that estimates the internal state quantity of the reference electricity storage element so that the measurement data of the reference electricity storage element obtained by the acquisition unit approximates the measurement data of the reference electricity storage element.
 上記(22)に記載の異常検知装置によれば、蓄電素子シミュレータを利用することにより、基準蓄電素子の内部状態量を効率よく推定できる。蓄電素子シミュレータは、蓄電素子の内部状態量に沿った計測データを精度よく模擬するよう構築されており、通常、蓄電素子の計測データの挙動を予測するために用いられる。異常検知装置は、蓄電素子の内部状態量と計測データとの関係性を高精度に表現する蓄電素子シミュレータを利用し、実測で得られた計測データから内部状態量を逆方向に推定することで、内部状態量を効率よく算出できる。予め構築された蓄電素子シミュレータを利用することで、内部状態量を容易且つ精度よく推定できる。複数の蓄電素子を備える大規模なシステムにおいて、内部状態量を効率よく算出することで、異常検知処理の演算負荷を低減できる。 According to the abnormality detection device described in (22) above, by using the power storage element simulator, the internal state quantity of the reference power storage element can be efficiently estimated. A power storage element simulator is constructed to accurately simulate measurement data based on internal state quantities of a power storage element, and is usually used to predict behavior of measurement data of a power storage element. The abnormality detection device uses a power storage element simulator that expresses the relationship between the internal state quantity of the power storage element and measured data with high precision, and estimates the internal state quantity in the opposite direction from the measurement data obtained in actual measurements. , internal state quantities can be calculated efficiently. By using a power storage element simulator built in advance, the internal state quantity can be estimated easily and accurately. In a large-scale system including a plurality of power storage elements, by efficiently calculating internal state quantities, the computational load of abnormality detection processing can be reduced.
 (23)上記(22)に記載の異常検知装置において、前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分を最小化する前記内部状態量の最適値を探索してもよい。 (23) In the abnormality detection device according to (22) above, the estimating unit is configured to minimize the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. You may also search for the optimal value of .
 ここで、「差分」とは差分の絶対値を意味する。
 上記(23)に記載の異常検知装置によれば、最適化手法を用いて効率的且つ精度よく内部状態量の最適解を求めることができる。
Here, "difference" means the absolute value of the difference.
According to the abnormality detection device described in (23) above, an optimal solution for the internal state quantity can be obtained efficiently and accurately using an optimization method.
 (24)上記(21)から(23)のいずれか1つに記載の異常検知装置において、前記設定部は、前記基準蓄電素子の使用履歴毎に推定される前記基準蓄電素子の内部状態量に基づき複数の前記検知基準を設定してもよい。 (24) In the abnormality detection device according to any one of (21) to (23) above, the setting unit is configured to set an internal state quantity of the reference energy storage element estimated for each usage history of the reference energy storage element. A plurality of the detection criteria may be set based on the above.
 ここで、蓄電素子の「使用履歴」とは、蓄電素子の使用パターン(使われ方)を示す情報を意味する。使用履歴は、例えば所定期間に亘る蓄電素子の電力又は電流(負荷)の推移を表す情報(以下、負荷パターンとも記載する)と、所定期間に亘る環境温度の推移を表す情報(以下、環境温度パターンとも記載する)とを含んでもよい。 Here, the "usage history" of the power storage element means information indicating the usage pattern (how to use) of the power storage element. The usage history includes, for example, information representing changes in power or current (load) of the energy storage element over a predetermined period (hereinafter also referred to as load pattern), and information representing changes in environmental temperature over a predetermined period (hereinafter referred to as environmental temperature). (also referred to as a pattern).
 計測データは、蓄電素子の内部状態量に加え使用履歴にも依存する。上記(24)に記載の異常検知装置によれば、多様な蓄電素子の内部状態量及び使用履歴を考慮して検知基準を設定できるため、多様な蓄電素子の内部状態量及び使用履歴に応じた異常検知が可能となる。 The measurement data depends on the usage history as well as the internal state quantity of the electricity storage element. According to the abnormality detection device described in (24) above, the detection criteria can be set in consideration of the internal state quantities and usage history of various power storage elements, so that Anomaly detection becomes possible.
 (25)上記(21)から(24)のいずれか1つに記載の異常検知装置において、前記検知部は、前記対象蓄電素子の電圧に基づき異常を検知してもよい。 (25) In the abnormality detection device according to any one of (21) to (24) above, the detection unit may detect an abnormality based on the voltage of the target power storage element.
 上記(25)に記載の異常検知装置によれば、計測データの中でも、蓄電素子の状態に応じて変化し易い計測値である電圧をベースにすることで、異常検知の精度をより一層向上できる。 According to the abnormality detection device described in (25) above, the accuracy of abnormality detection can be further improved by using voltage, which is a measurement value that easily changes depending on the state of the power storage element, as a base among measurement data. .
 (26)上記(21)から(25)のいずれか1つに記載の異常検知装置において、前記内部状態量は蓄電素子の劣化度又は充電状態を含んでもよい。 (26) In the abnormality detection device according to any one of (21) to (25) above, the internal state quantity may include a degree of deterioration or a state of charge of the electricity storage element.
 ここで、「健康状態」とはSOHであってもよく、「充電状態」とはSOCであってもよい。上記(26)に記載の異常検知装置によれば、計測データに大きく影響を及ぼす健康状態又は充電状態を考慮することで、異常検知の精度を向上できる。 Here, the "state of health" may be SOH, and the "state of charge" may be SOC. According to the abnormality detection device described in (26) above, the accuracy of abnormality detection can be improved by taking into account the health condition or the state of charge that greatly affects the measurement data.
 (27)本開示の一態様に係る異常検知方法は、基準蓄電素子及び対象蓄電素子の計測データを取得し、取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定し、設定した検知基準と、取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する処理をコンピュータが実行する。 (27) In an anomaly detection method according to one aspect of the present disclosure, a computer acquires measurement data of a reference energy storage element and a target energy storage element, sets a detection criterion based on the measurement data estimated by a storage element simulator and the acquired measurement data of the reference energy storage element based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference energy storage element estimated from the acquired measurement data of the reference energy storage element, and detects an anomaly in the target energy storage element based on the set detection criterion and the acquired measurement data of the target energy storage element.
 (28)本開示の一態様に係るプログラムは、基準蓄電素子及び対象蓄電素子の計測データを取得し、取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定し、設定した検知基準と、取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する処理をコンピュータに実行させる。 (28) A program according to an aspect of the present disclosure acquires measurement data of a reference energy storage element and a target energy storage element, and allows an internal state quantity of the reference energy storage element estimated from the acquired measurement data of the reference energy storage element. Based on the internal state quantity including the difference, a detection standard is set based on the measurement data estimated by the power storage element simulator and the acquired measurement data of the reference power storage element, and the set detection standard and the acquired target are determined. The computer is caused to execute a process of detecting an abnormality in the target power storage element based on the measurement data of the power storage element.
 (29)本開示の一態様に係る異常検知装置は、基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部とを備える。 (29) An abnormality detection device according to an aspect of the present disclosure includes an acquisition unit that acquires measurement data of a reference energy storage element and a target energy storage element, and a Detection criteria are determined based on measurement data estimated by a power storage element simulator based on an internal state quantity obtained by adding an allowable difference to the internal state quantity of the reference power storage element, and measurement data of the reference power storage element acquired by the acquisition unit. and a setting section for setting.
 上記(29)に記載の異常検知装置によれば、許容差分を加味した基準蓄電素子の内部状態量から推定される計測データに基づき、異常検知毎に又は適宜の検知タイミングで動的に検知基準を設定できる。動的に検知基準を設定することで、一定の閾値を用いて異常検知を行う場合と比較して、異常検知の精度を向上できる。 According to the abnormality detection device described in (29) above, the detection standard is dynamically set every time an abnormality is detected or at an appropriate detection timing, based on the measurement data estimated from the internal state quantity of the reference energy storage element, taking into account the allowable difference. can be set. By dynamically setting the detection criteria, the accuracy of abnormality detection can be improved compared to the case where abnormality detection is performed using a fixed threshold value.
 本開示をその実施の形態を示す図面を参照して具体的に説明する。 The present disclosure will be specifically described with reference to drawings showing embodiments thereof.
 図20は、第5実施形態の遠隔監視システム500の構成例を示す図である。遠隔監視システム500は、発電システム200に含まれる蓄電素子に関する情報への遠隔からのアクセスを可能とする。遠隔監視システム500は、遠隔監視の対象となる発電システム200と、発電システム200から情報を収集する異常検知装置80とを含む。異常検知装置80と発電システム200とは、インターネットなどのネットワークN1を介して通信可能に接続されている。発電システム200の数は1又は3以上でもよい。異常検知装置80はいずれかの発電システム200に統合してもよい。 FIG. 20 is a diagram showing a configuration example of a remote monitoring system 500 according to the fifth embodiment. Remote monitoring system 500 enables remote access to information regarding power storage elements included in power generation system 200. Remote monitoring system 500 includes a power generation system 200 to be remotely monitored, and an abnormality detection device 80 that collects information from power generation system 200. The abnormality detection device 80 and the power generation system 200 are communicably connected via a network N1 such as the Internet. The number of power generation systems 200 may be one or three or more. The abnormality detection device 80 may be integrated into any of the power generation systems 200.
 図21は、発電システム200の構成例を示すブロック図である。太陽光発電システムや風力発電システムといった発電装置の図示は省略する。発電システム200は、通信デバイス10、ドメイン管理装置30、蓄電ユニット(ドメイン)40を備える。サーバ装置20は、ネットワークN2を介して通信デバイス10と接続されている。蓄電ユニット40は、複数のバンク41を含んでもよい。蓄電ユニット40は、例えば、電池盤に収容されて、火力発電システム、メガソーラー発電システム、風力発電システム、無停電電源装置(UPS:Uninterruptible Power Supply)、鉄道用の安定化電源システムなどに使用される。通信デバイス10、ドメイン管理装置30及び蓄電ユニット40を含む構成は、蓄電システムと呼ばれる。蓄電システムは、図示しないパワーコンディショナを含んでもよい。蓄電ユニット40は産業用途に限らず、家庭用のものであってもよい。 FIG. 21 is a block diagram showing a configuration example of the power generation system 200. Illustrations of power generation devices such as solar power generation systems and wind power generation systems are omitted. The power generation system 200 includes a communication device 10, a domain management device 30, and a power storage unit (domain) 40. Server device 20 is connected to communication device 10 via network N2. Power storage unit 40 may include a plurality of banks 41. The power storage unit 40 is, for example, housed in a battery panel and used in a thermal power generation system, a mega solar power generation system, a wind power generation system, an uninterruptible power supply (UPS), a stabilized power supply system for railways, etc. Ru. A configuration including the communication device 10, the domain management device 30, and the power storage unit 40 is called a power storage system. The power storage system may include a power conditioner (not shown). The power storage unit 40 is not limited to industrial use, and may be used for home use.
 事業者は、通信デバイス10、ドメイン管理装置30、蓄電ユニット40を含む蓄電システムの設計、導入、運用及び保守する事業を行い、蓄電システムを遠隔監視システム500により遠隔監視できる。 The business operator designs, installs, operates, and maintains a power storage system including the communication device 10, the domain management device 30, and the power storage unit 40, and can remotely monitor the power storage system using the remote monitoring system 500.
 通信デバイス10は、制御部11、記憶部12、第1通信部13及び第2通信部14を備える。制御部11は、CPU(Central Processing Unit)などで構成され、内蔵するROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを用い、通信デバイス10全体を制御する。 The communication device 10 includes a control section 11, a storage section 12, a first communication section 13, and a second communication section 14. The control unit 11 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 10 using built-in memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
 記憶部12は、例えば、フラッシュメモリ等の不揮発性記憶装置を備える。記憶部12は、所要の情報を記憶することができ、例えば、制御部11の処理によって得られた情報を記憶することができる。 The storage unit 12 includes, for example, a nonvolatile storage device such as a flash memory. The storage unit 12 can store necessary information, for example, information obtained through processing by the control unit 11.
 第1通信部13は、ドメイン管理装置30又は電池管理装置44との通信を実現する通信インタフェースを備える。制御部11は、第1通信部13を通してドメイン管理装置30との間で通信を行うことができる。 The first communication unit 13 includes a communication interface that realizes communication with the domain management device 30 or the battery management device 44. The control unit 11 can communicate with the domain management device 30 through the first communication unit 13.
 第2通信部14は、ネットワークN2を介した通信を実現する通信インタフェースを備える。制御部11は、第2通信部14を通してサーバ装置20との間で通信を行うことができる。 The second communication unit 14 includes a communication interface that realizes communication via the network N2. The control unit 11 can communicate with the server device 20 through the second communication unit 14.
 ドメイン管理装置30は、所定の通信インタフェースを用いて各バンク41との間で情報の送受信を行う。記憶部12は、ドメイン管理装置30を介して取得した計測データを記憶することができる。 The domain management device 30 sends and receives information to and from each bank 41 using a predetermined communication interface. The storage unit 12 can store measurement data acquired via the domain management device 30.
 サーバ装置20は、通信デバイス10から蓄電システムの計測データを収集することができる。計測データは、蓄電システム内の各蓄電素子の電流、電圧、温度などの計測値を含む。サーバ装置20は、収集された計測データを、蓄電素子毎に区分して記憶してもよい。サーバ装置20は、ネットワークN2、N1を介して計測データを異常検知装置80に送信することができる。なお、ネットワークN1、N2は、1つの通信ネットワークであってもよい。 The server device 20 can collect measurement data of the power storage system from the communication device 10. The measurement data includes measured values such as current, voltage, and temperature of each power storage element in the power storage system. The server device 20 may separate and store the collected measurement data for each power storage element. The server device 20 can transmit measurement data to the abnormality detection device 80 via the networks N2 and N1. Note that the networks N1 and N2 may be one communication network.
 バンク41は、蓄電モジュールを複数直列に接続したものであり、電池管理装置(BMU:Battery Management Unit)44、複数の蓄電モジュール42、及び各蓄電モジュール42に設けられた計測基板(CMU:Cell Management Unit)43などを備える。 The bank 41 includes a plurality of power storage modules connected in series, and includes a battery management unit (BMU) 44, a plurality of power storage modules 42, and a measurement board (CMU: Cell Management Unit) provided in each power storage module 42. Unit) 43, etc.
 蓄電モジュール42は、複数の蓄電セルが直列に接続されている。本明細書において、「蓄電素子」は、蓄電セル、蓄電モジュール42、バンク41、又はバンク41を並列に接続したドメインを意味してもよい。本実施形態では、計測基板43は、蓄電モジュール42の各蓄電セルに関する計測データを取得する。計測データは、例えば、0.1秒、0.5秒、1秒などの適宜の周期で繰り返し取得することができる。「蓄電素子」は、鉛蓄電池及びリチウムイオン電池のような二次電池や、キャパシタのような、再充電可能なものであることが好ましい。蓄電素子の一部が、再充電不可能な一次電池であってもよい。 The power storage module 42 has a plurality of power storage cells connected in series. In this specification, a "power storage element" may mean a power storage cell, a power storage module 42, a bank 41, or a domain in which banks 41 are connected in parallel. In this embodiment, the measurement board 43 acquires measurement data regarding each power storage cell of the power storage module 42. The measurement data can be repeatedly acquired at appropriate intervals, such as 0.1 seconds, 0.5 seconds, 1 second, etc., for example. The "power storage element" is preferably a rechargeable secondary battery such as a lead-acid battery or a lithium ion battery, or a capacitor. A portion of the power storage element may be a non-rechargeable primary battery.
 電池管理装置44は、通信機能付きの計測基板43とシリアル通信によって通信を行うことができ、計測基板43が検出した計測データを取得することができる。電池管理装置44は、ドメイン管理装置30との間で情報の送受信を行うことができる。ドメイン管理装置30は、ドメインに所属するバンクの電池管理装置44からの計測データを集約する。ドメイン管理装置30は、集約された計測データを通信デバイス10へ出力する。このように、通信デバイス10は、ドメイン管理装置30を介して、蓄電ユニット40の計測データを取得し、記憶することができる。 The battery management device 44 can communicate with the measurement board 43 with a communication function through serial communication, and can acquire measurement data detected by the measurement board 43. The battery management device 44 can send and receive information to and from the domain management device 30. The domain management device 30 aggregates measurement data from the battery management devices 44 of banks belonging to the domain. The domain management device 30 outputs the aggregated measurement data to the communication device 10. In this way, the communication device 10 can acquire and store measurement data of the power storage unit 40 via the domain management device 30.
 通信デバイス10は、所定タイミング(例えば一定周期、又はデータ量が所定条件を満たした場合等)で、前回のタイミング以降に記憶しておいた計測データをサーバ装置20へ送信する。計測データには、蓄電素子の識別情報が対応付けられていてもよい。 The communication device 10 transmits the measurement data stored after the previous timing to the server device 20 at a predetermined timing (for example, at a certain period, or when the amount of data satisfies a predetermined condition, etc.). The measurement data may be associated with identification information of the power storage element.
 本実施形態の異常検知装置80は、発電システム200内に設けられた複数の蓄電素子のうち、異常検知の基準となる基準蓄電素子の計測データを用いて、異常検知の対象となる対象蓄電素子の異常検知を実行する。基準蓄電素子及び対象蓄電素子は、例えば、予め所定ルールに従い選択されてもよく、人手により選択されてもよい。基準蓄電素子及び対象蓄電素子は、発電システム200内における蓄電素子の総数や配置を考慮して決定できる。基準蓄電素子及び対象蓄電素子はそれぞれ、複数であってもよく、又、異常検知の処理毎に変更可能である。 The abnormality detection device 80 of this embodiment uses measurement data of a reference power storage element, which is a reference for abnormality detection, among a plurality of power storage elements provided in the power generation system 200, to detect a target power storage element that is a target of abnormality detection. Anomaly detection is performed. The reference power storage element and the target power storage element may be selected in advance according to a predetermined rule, or may be selected manually, for example. The reference power storage element and the target power storage element can be determined in consideration of the total number and arrangement of power storage elements in the power generation system 200. Each of the reference power storage element and the target power storage element may be plural, and can be changed for each abnormality detection process.
 図22は、異常検知装置80の構成例を示すブロック図である。異常検知装置80は、例えばサーバコンピュータ、パーソナルコンピュータ、量子コンピュータ等であり、種々の情報処理、情報の送受信を行う。異常検知装置80は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。異常検知装置80は、制御部81、記憶部82、通信部83、表示部84及び操作部85等を備える。 FIG. 22 is a block diagram showing a configuration example of the abnormality detection device 80. The abnormality detection device 80 is, for example, a server computer, a personal computer, a quantum computer, etc., and performs various information processing and transmission and reception of information. The abnormality detection device 80 may be a multicomputer consisting of a plurality of computers, or may be a virtual machine virtually constructed by software. The abnormality detection device 80 includes a control section 81, a storage section 82, a communication section 83, a display section 84, an operation section 85, and the like.
 制御部81は、CPU、GPU(Graphics Processing Unit)、ROM、RAM等を備える演算回路である。制御部81が備えるCPU又はGPUは、ROMや記憶部82に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部81は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。 The control unit 81 is an arithmetic circuit including a CPU, a GPU (Graphics Processing Unit), a ROM, a RAM, and the like. The CPU or GPU included in the control unit 81 executes various computer programs stored in the ROM or the storage unit 82, and controls the operations of the hardware units described above. The control unit 81 may have functions such as a timer that measures the elapsed time from when a measurement start instruction is given until a measurement end instruction is given, a counter that counts, a clock that outputs date and time information, and the like.
 記憶部82は、フラッシュメモリ、ハードディスクドライブ等の不揮発性記憶装置を備える。記憶部82は、制御部81が参照する各種コンピュータプログラム及びデータ等を記憶する。 The storage unit 82 includes a nonvolatile storage device such as a flash memory or a hard disk drive. The storage unit 82 stores various computer programs, data, etc. that the control unit 81 refers to.
 本実施形態において記憶部82は、蓄電素子の内部状態量の推定に関する処理をコンピュータに実行させるためのプログラム821と、このプログラム821の実行に必要なデータとしての計測DB(Data Base)822とを記憶している。 In the present embodiment, the storage unit 82 stores a program 821 for causing a computer to execute processing related to estimating the internal state quantity of the power storage element, and a measurement DB (Data Base) 822 as data necessary for executing the program 821. I remember.
 計測DB822は、発電システム200から受け付けた計測データを記憶するデータベースである。計測データは、上述の通り、発電システム200内の蓄電素子の電流、電圧及び温度の計測値を含む。計測DB822には、例えば、計測データを識別するためのIDをキーに、蓄電素子の識別情報、計測値の計測日時及び計測データ等の情報を紐付けたレコードが時系列順に格納されている。計測DB822にはさらに、例えば蓄電素子の配置に関する情報、後述する推定処理により得られた内部状態量、異常検知の結果等が記憶されてもよい。 The measurement DB 822 is a database that stores measurement data received from the power generation system 200. As described above, the measurement data includes measured values of the current, voltage, and temperature of the power storage element in the power generation system 200. The measurement DB 822 stores, in chronological order, records in which information such as the identification information of the power storage element, the measurement date and time of the measurement value, and the measurement data are linked, for example, using an ID for identifying measurement data as a key. The measurement DB 822 may further store, for example, information regarding the arrangement of power storage elements, internal state quantities obtained by estimation processing described later, results of abnormality detection, and the like.
 記憶部82にはまた、基準蓄電素子及び対象蓄電素子の識別情報、後述する異常検知のための許容差分値等が記憶されている。 The storage unit 82 also stores identification information of the reference power storage element and the target power storage element, a permissible difference value for abnormality detection, which will be described later, and the like.
 プログラム821を含むコンピュータプログラム(プログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体8Aにより提供されてもよい。記録媒体8Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部81は、図示しない読取装置を用いて、記録媒体8Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部82に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。プログラム821は、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。 A computer program (program product) including the program 821 may be provided by a non-temporary recording medium 8A on which the computer program is readably recorded. The recording medium 8A is a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card. The control unit 81 reads a desired computer program from the recording medium 8A using a reading device (not shown), and stores the read computer program in the storage unit 82. Alternatively, the computer program may be provided via communication. Program 821 may be a single computer program or may consist of multiple computer programs, and may be executed on a single computer or multiple computers interconnected by a communications network. good.
 通信部83は、ネットワークN1を介した通信を実現する通信インタフェースを備える。制御部81は、通信部83を通じて、発電システム200から送信された計測データを受信する。 The communication unit 83 includes a communication interface that realizes communication via the network N1. The control unit 81 receives measurement data transmitted from the power generation system 200 through the communication unit 83.
 表示部84は、例えば液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイ等のディスプレイ装置を備える。表示部84は、制御部81からの指示に従って各種の情報を表示する。操作部85は、ユーザの操作を受け付けるインタフェースである。操作部85は、例えばキーボード、ディスプレイ内蔵のタッチパネルデバイス、スピーカ及びマイクロフォン等を備える。操作部85は、ユーザからの操作入力を受け付け、操作内容に応じた制御信号を制御部81へ送出する。 The display unit 84 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display section 84 displays various information according to instructions from the control section 81. The operation unit 85 is an interface that accepts user operations. The operation unit 85 includes, for example, a keyboard, a touch panel device with a built-in display, a speaker, a microphone, and the like. The operation unit 85 receives operation input from the user and sends a control signal to the control unit 81 according to the operation content.
 異常検知装置80は、外部に接続されたコンピュータを通じて操作を受付け、通知すべき情報を外部のコンピュータへ出力する構成であってもよい。この場合、異常検知装置80は、表示部84及び操作部85を備えていなくてもよい。 The abnormality detection device 80 may be configured to accept operations through an externally connected computer and output information to be notified to the external computer. In this case, the abnormality detection device 80 does not need to include the display section 84 and the operation section 85.
 図23は、異常検知装置80の構成例を示す機能ブロック図である。異常検知装置80の制御部81は、記憶部82に記憶されたプログラム821を読み出して実行することにより、蓄電素子シミュレータ811、取得部812、推定部813、設定部814、検知部815、及び出力部816の各機能を実現する。代替的に、これらの各機能の一部は、制御部81に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよい。 FIG. 23 is a functional block diagram showing a configuration example of the abnormality detection device 80. The control unit 81 of the abnormality detection device 80 reads and executes a program 821 stored in the storage unit 82 to control the power storage element simulator 811, the acquisition unit 812, the estimation unit 813, the setting unit 814, the detection unit 815, and the output. Each function of section 816 is realized. Alternatively, some of these functions may be realized by a dedicated hardware circuit (for example, FPGA or ASIC) provided in the control unit 81.
 蓄電素子シミュレータ811は、計測データの推定部としての機能を有する。本実施形態の蓄電素子シミュレータ811は、蓄電素子の内部状態量及び使用履歴を入力として、蓄電素子の計測データを推定する。代替的に、蓄電素子シミュレータ811は、少なくとも蓄電素子の内部状態量を入力として、蓄電素子の計測データを推定するものであってもよい。蓄電素子シミュレータ811は、推定した蓄電素子の計測データを用いて、蓄電素子の劣化を推定するものであってもよい。 The power storage element simulator 811 has a function as a measurement data estimator. The power storage element simulator 811 of this embodiment estimates measurement data of the power storage element by inputting the internal state quantity and usage history of the power storage element. Alternatively, the power storage element simulator 811 may estimate the measurement data of the power storage element using at least the internal state quantity of the power storage element as input. The power storage element simulator 811 may estimate deterioration of the power storage element using estimated measurement data of the power storage element.
 蓄電素子シミュレータ811への入力データとなる内部状態量は、例えば蓄電素子のSOC、SOH、表面や内部の温度、内部抵抗等を含む。使用履歴は、所定期間に亘る蓄電素子の電力又は電流(負荷)と、環境温度とを表す情報を含む。使用履歴は、予め設定される複数パターンに分類されていてもよい。蓄電素子シミュレータ811からの出力データとなる計測データは、蓄電素子の電圧、電流及び温度の少なくとも1つを含むデータである。 The internal state quantities that are input data to the power storage element simulator 811 include, for example, the SOC, SOH, surface and internal temperature, internal resistance, etc. of the power storage element. The usage history includes information representing the power or current (load) of the power storage element over a predetermined period and the environmental temperature. The usage history may be classified into a plurality of preset patterns. The measurement data that is the output data from the power storage element simulator 811 is data that includes at least one of the voltage, current, and temperature of the power storage element.
 蓄電素子シミュレータ811は、電流電圧シミュレーション及び温度シミュレーションの要素から構成されてもよく、(初回の)SOC及び(初回の)SOH(より限定的には、可逆放電容量又は内部の代表的な抵抗値、並びにそれらの組み合わせ)と、使用履歴としての負荷パターン及び蓄電素子の温度環境とを入力してもよく、蓄電素子の電流、電圧及び温度を出力することができる。温度シミュレーションは行わず、代わりに蓄電素子の温度を蓄電素子シミュレータ811に入力してもよい。 The power storage element simulator 811 may be composed of current-voltage simulation and temperature simulation elements, and includes (initial) SOC and (initial) SOH (more specifically, reversible discharge capacity or internal representative resistance value). , and combinations thereof), the load pattern as the usage history, and the temperature environment of the power storage element may be input, and the current, voltage, and temperature of the power storage element can be output. The temperature simulation may not be performed, and instead, the temperature of the power storage element may be input to the power storage element simulator 811.
 蓄電素子シミュレータ811は、後述する内部状態量の推定、及び推定した内部状態量に基づく計測データの推定の両方に使用される。 The power storage element simulator 811 is used both for estimating an internal state quantity, which will be described later, and for estimating measurement data based on the estimated internal state quantity.
 取得部812は、適宜のタイミングでサーバ装置20から送信される計測データを受信することにより、対象蓄電素子及び基準蓄電素子を含む複数の蓄電素子の計測データを取得する。取得部812は、蓄電素子の電圧、電流及び温度の観測値を取得する。電圧、電流及び温度の計測データは、蓄電素子の充電時又は放電時のデータを含む。計測データは、リアルタイムのデータでもよく、過去の所定期間の履歴データでもよい。取得部812は、計測データを取得した場合、取得した計測データを時系列順に計測DB822に記憶する。代替的に、取得部812は、予め計測DB822に記憶したデータの中から、対象となる蓄電素子のデータを読み出すことで、計測データを取得してもよい。 The acquisition unit 812 acquires measurement data of a plurality of power storage elements including the target power storage element and the reference power storage element by receiving the measurement data transmitted from the server device 20 at an appropriate timing. The acquisition unit 812 acquires observed values of voltage, current, and temperature of the power storage element. The measurement data of voltage, current, and temperature includes data when the power storage element is charged or discharged. The measurement data may be real-time data or historical data for a predetermined period in the past. When acquiring measurement data, the acquisition unit 812 stores the acquired measurement data in the measurement DB 822 in chronological order. Alternatively, the acquisition unit 812 may acquire the measurement data by reading data of the target power storage element from data stored in the measurement DB 822 in advance.
 取得部812は、取得した基準蓄電素子の計測データに基づき、基準蓄電素子の使用履歴を取得(特定)する。取得部812は、例えば所定期間にわたる基準蓄電素子の電圧、電流及び温度の推移に基づき、基準蓄電素子の負荷パターン及び環境温度パターンを特定してもよい。基準蓄電素子の環境温度パターンは、基準蓄電素子の配置を考慮して求めてもよい。代替的に、取得部812は、予め設定された複数種類の使用履歴を予め記憶部82に記憶しておき、複数の使用履歴のうちのいずれかの使用履歴を読み出すことで、基準蓄電素子の使用履歴を取得してもよい。すなわち、取得部812は、実際の使用履歴に限らず、発電システム200内において想定し得る仮の使用履歴を取得してもよい。 The acquisition unit 812 acquires (identifies) the usage history of the reference power storage element based on the acquired measurement data of the reference power storage element. The acquisition unit 812 may identify the load pattern and the environmental temperature pattern of the reference power storage element based on, for example, changes in the voltage, current, and temperature of the reference power storage element over a predetermined period. The environmental temperature pattern of the reference power storage element may be determined by considering the arrangement of the reference power storage element. Alternatively, the acquisition unit 812 stores a plurality of preset usage histories in the storage unit 82 in advance, and reads out one of the usage histories of the plurality of usage histories to determine the reference power storage element. Usage history may also be obtained. That is, the acquisition unit 812 may acquire not only the actual usage history but also a hypothetical usage history that can be assumed within the power generation system 200.
 推定部813は、取得部812で取得した基準蓄電素子の計測データ及び使用履歴と、蓄電素子シミュレータ811とに基づき、基準蓄電素子の内部状態量を推定する。 The estimation unit 813 estimates the internal state quantity of the reference electricity storage element based on the measurement data and usage history of the reference electricity storage element acquired by the acquisition unit 812 and the electricity storage element simulator 811.
 図24は、内部状態量を推定する方法を説明する図である。初めに、取得部812にて、時点tにおける電圧、電流及び温度を含む計測データOtの実測値が取得される。さらに、時点tまでに取得した時系列の計測データに基づき、時点tにおける使用履歴Utが取得される。使用履歴Utは、例えば負荷パターン及び環境温度パターンを含む。代替的に、使用履歴Utは負荷パターンのみであってもよい。 FIG. 24 is a diagram illustrating a method for estimating internal state quantities. First, the acquisition unit 812 acquires the actual measured value of measurement data O t including voltage, current, and temperature at time t. Furthermore, the usage history U t at time t is acquired based on the time-series measurement data acquired up to time t. The usage history U t includes, for example, a load pattern and an environmental temperature pattern. Alternatively, the usage history U t may be only the load pattern.
 推定部813は、時点tにおける内部状態量Stを設定し、設定した内部状態量St及び使用履歴Utに基づき、蓄電素子シミュレータ811から出力される計測データOtの推定値を取得する。推定部813は、計測データOtの推定値と、計測データOtの実測値とを比較し、計測データOtの推定値が計測データOtの実測値に近似するよう、内部状態量Stを推定する。内部状態量Stの推定手法は限定的ではないが、例えば遺伝的アルゴリズム、Nelder-mead法、勾配法等の公知の最適化手法を用いてもよい。推定部813は、計測データOtの推定値と計測データOtの実測値との差分(差分の絶対値)を最小化するよう、内部状態量Stの最適値を探索する。 The estimation unit 813 sets the internal state quantity S t at time t, and acquires the estimated value of the measurement data O t output from the power storage element simulator 811 based on the set internal state quantity S t and the usage history U t . . The estimation unit 813 compares the estimated value of the measured data O t with the actual measured value of the measured data O t and sets the internal state quantity S so that the estimated value of the measured data O t approximates the actual measured value of the measured data O t . Estimate t . Although the method for estimating the internal state quantity S t is not limited, for example, a known optimization method such as a genetic algorithm, a Nelder-mead method, or a gradient method may be used. The estimation unit 813 searches for the optimal value of the internal state quantity S t so as to minimize the difference (absolute value of the difference) between the estimated value of the measurement data O t and the actual measurement value of the measurement data O t .
 本実施形態では、図24に示すように、内部状態量StのうちのSOH及びSOCを設計変数とし、計測データOtのうちの電圧を目的変数として、電圧の推定値が実測値に近似するよう、SOH及びSOCを最適化する。図24中の破線で示す電流及び温度それぞれは、実測段階と推定段階で共通の値を用いる。SOCは、初回のSOCであってもよい。 In this embodiment, as shown in FIG. 24, SOH and SOC of the internal state quantity S t are used as design variables, and the voltage of the measurement data O t is used as the objective variable, so that the estimated value of the voltage approximates the actual measured value. Optimize SOH and SOC to For the current and temperature indicated by broken lines in FIG. 24, common values are used in the actual measurement stage and the estimation stage. The SOC may be an initial SOC.
 推定部813は、例えば適応度、探索試行回数(世代数)等が所定条件を満たすことにより探索を終了する。推定部813は、得られたSOH及びSOCの最適解(近似解)を、内部状態量Stとすることができる。 The estimation unit 813 ends the search when, for example, the fitness, the number of search trials (number of generations), etc. satisfy predetermined conditions. The estimation unit 813 can use the obtained optimal solution (approximate solution) of SOH and SOC as the internal state quantity S t .
 蓄電素子シミュレータ811への入力となる使用履歴Utは、上述の通り仮の使用履歴であってもよい。例えば、予め設定される複数の使用履歴Utを用いて、各使用履歴Utを入力要素とした場合における内部状態量Stの最適値をそれぞれ推定する。これにより、多様な使用履歴を考慮した複数パターンの内部状態量を推定できる。 The usage history U t that is input to the power storage element simulator 811 may be a temporary usage history as described above. For example, by using a plurality of preset usage histories U t , the optimum value of the internal state quantity S t when each usage history U t is used as an input element is estimated. Thereby, it is possible to estimate internal state quantities of multiple patterns in consideration of various usage histories.
 上記では、電圧の推定値が実測値に近似するようSOH及びSOCを最適化する例を説明した。代替的に、内部状態量は、SOH及びSOC以外であってもよく、また、内部状態量の種類は1又は3以上でもよい。同様に計測データは電圧以外であってもよく、また、計測データの種類は2以上でもよい。 In the above, an example has been described in which the SOH and SOC are optimized so that the estimated voltage value approximates the actual measured value. Alternatively, the internal state quantity may be other than SOH and SOC, and the number of types of internal state quantity may be one or more. Similarly, the measurement data may be other than voltage, and the types of measurement data may be two or more.
 図23に戻り説明を続ける。設定部814は、推定部813で推定した基準蓄電素子の内部状態量に基づき計測データの検知基準値(閾値)を設定する。設定部814は、推定した基準蓄電素子の内部状態量を基準として、推定した内部状態量に許容差分を加算することにより許容内部状態量を算出する。 Returning to FIG. 23, the explanation will be continued. The setting unit 814 sets a detection reference value (threshold value) of the measurement data based on the internal state quantity of the reference power storage element estimated by the estimation unit 813. The setting unit 814 calculates the allowable internal state amount by adding the allowable difference to the estimated internal state amount using the estimated internal state amount of the reference power storage element as a reference.
 許容差分は、内部状態量における正常なバラつき範囲を考慮して決定することができる。一例として、内部状態量がSOCである場合、許容差分は-2%又は+2%としてもよい。許容差分は、負の値であってもよく、正の値であってもよい。すなわち許容内部状態量は、内部状態量の下限値であってもよく、上限値であってもよい。許容内部状態量は、下限値及び上限値の一方又は両方を含む。 The allowable difference can be determined by taking into consideration the normal variation range in the internal state quantities. As an example, when the internal state quantity is SOC, the allowable difference may be −2% or +2%. The allowable difference may be a negative value or a positive value. That is, the allowable internal state amount may be the lower limit value or the upper limit value of the internal state amount. The allowable internal state quantity includes one or both of a lower limit value and an upper limit value.
 設定部814は、算出した許容内部状態量及び使用履歴と、蓄電素子シミュレータ811とに基づき、算出した許容内部状態量及び使用履歴に対応する計測データ(許容計測データ)を求める。許容計測データは、計測データにおける正常なバラつき範囲を表す下限値及び上限値の一方又は両方に対応する。許容計測データの算出時に用いる使用履歴は、許容内部状態量の基準となる内部状態量の推定時に用いた使用履歴と同じであってもよい。 Based on the calculated allowable internal state amount and usage history and the power storage element simulator 811, the setting unit 814 obtains measurement data (allowable measurement data) corresponding to the calculated allowable internal state amount and usage history. The allowable measurement data corresponds to one or both of a lower limit value and an upper limit value representing a normal variation range in measurement data. The usage history used when calculating the allowable measurement data may be the same as the usage history used when estimating the internal state amount that is a reference for the allowable internal state amount.
 設定部814は、得られた許容計測データと、基準蓄電素子の計測データの実測値との差分(差分の絶対値)を算出することにより、検知基準値(閾値)を求める。また、検知基準値には、得られた許容計測データと、基準蓄電素子の計測データの推定値(蓄電素子シミュレータ811を用いた計算値)との差分を用いてもよい。 The setting unit 814 determines a detection reference value (threshold value) by calculating the difference (absolute value of the difference) between the obtained allowable measurement data and the actual measurement value of the measurement data of the reference power storage element. Furthermore, the difference between the obtained allowable measurement data and the estimated value of the measurement data of the reference power storage element (value calculated using the power storage element simulator 811) may be used as the detection reference value.
 検知部815は、設定部814で設定した検知基準値と、取得部812で取得した対象蓄電素子の計測データとに基づき、対象蓄電素子における異常を検知する。検知部815は、対象蓄電素子の計測データと、計測データの平均値との差分(差分の絶対値)ΔOを算出する。計測データの平均値とは、所定ルールに従い抽出された発電システム200内における一部の蓄電素子の計測データの平均値であってもよい。代替的に、計測データの平均値は、発電システム200内における全ての蓄電素子の計測データの平均値であってもよい。 The detection unit 815 detects an abnormality in the target power storage element based on the detection reference value set by the setting unit 814 and the measurement data of the target power storage element acquired by the acquisition unit 812. The detection unit 815 calculates the difference (absolute value of the difference) ΔO between the measurement data of the target power storage element and the average value of the measurement data. The average value of the measured data may be the average value of the measured data of some of the power storage elements in the power generation system 200 extracted according to a predetermined rule. Alternatively, the average value of the measured data may be the average value of the measured data of all the power storage elements in the power generation system 200.
 検知部815は、算出した計測データの差分ΔOが検知基準値未満であるか否かを判定することにより、異常検知を行う。検知部815は、計測データの差分ΔOが検知基準値未満である場合、対象蓄電素子を正常と判定し、計測データの差分ΔOが検知基準値以上である場合、対象蓄電素子を異常と判定する。また検知部815は、複数の許容計測データに基づいた複数の検知基準値を用いて異常の有無を判定してもよい。その場合、各検知基準値と各許容内部状態量の範囲とが関連づいているため、異常の原因を究明することができる。例えば、SOCの下限許容値に基づいた検知基準値を計測データの差分が超過していた場合、異常の原因をSOC下限値超過と推定することができる。 The detection unit 815 performs abnormality detection by determining whether the calculated difference ΔO of the measurement data is less than the detection reference value. The detection unit 815 determines the target power storage element to be normal when the difference ΔO in the measurement data is less than the detection reference value, and determines the target power storage element to be abnormal when the difference ΔO in the measurement data is greater than or equal to the detection reference value. . The detection unit 815 may also determine the presence or absence of an abnormality using a plurality of detection reference values based on a plurality of allowable measurement data. In this case, since each detection reference value and each allowable internal state quantity range are related, it is possible to investigate the cause of the abnormality. For example, if the difference in measured data exceeds a detection reference value based on the lower limit of SOC, it is possible to infer that the cause of the abnormality is the excess of the lower limit of SOC.
 異常検知は、電圧差分に関する閾値である検知基準値を用いて、対象蓄電素子の電圧と電圧平均値との差分に基づき行われることが好ましい。計測データの中でも蓄電素子の状態を良好に表現する電圧を使用することで、精度よく異常を検知できる。 It is preferable that the abnormality detection is performed based on the difference between the voltage of the target storage element and the voltage average value using a detection reference value that is a threshold regarding the voltage difference. Abnormalities can be detected with high accuracy by using a voltage that best represents the state of the power storage element in the measurement data.
 出力部816は、検知部815から異常の検知結果を受け付け、受け付けた検知結果を示す情報を表示部84へ出力する。表示部84は、検知結果を示す情報を表示する。代替的に、出力部816は、外部のコンピュータへ検知結果を示す情報を出力してもよい。 The output unit 816 receives the abnormality detection result from the detection unit 815 and outputs information indicating the received detection result to the display unit 84. The display unit 84 displays information indicating the detection results. Alternatively, the output unit 816 may output information indicating the detection result to an external computer.
 上述の通り、異常検知の準備段階として、蓄電素子シミュレータ811を用いて推定された基準蓄電素子の内部状態量に基づき、正常な内部状態量の範囲を示す許容内部状態量を特定する。特定した許容内部状態量に対応する許容計測データに基づき、計測データの検知基準値を設定する。そして、異常検知の段階では、対象蓄電素子の内部状態量の推定は不要であり、計測データの差分と検知基準値との比較により異常検知が行われる。複数の蓄電素子を備える大規模なシステムであっても、異常検知処理そのものの演算負荷を低減することで、異常検知の網羅性を高めることができ、且つ説明性の高い検知基準値の生成が可能となる。 As described above, as a preparation step for detecting an abnormality, an allowable internal state amount indicating the range of normal internal state amounts is specified based on the internal state amount of the reference power storage element estimated using the power storage element simulator 811. A detection reference value of the measurement data is set based on the allowable measurement data corresponding to the specified allowable internal state quantity. In the abnormality detection stage, estimation of the internal state quantity of the target power storage element is not necessary, and abnormality detection is performed by comparing the difference between the measurement data and the detection reference value. Even in a large-scale system with multiple energy storage elements, by reducing the computational load of the anomaly detection process itself, it is possible to increase the comprehensiveness of anomaly detection and to generate highly explainable detection reference values. It becomes possible.
 図25は、異常検知の処理手順の一例を示すフローチャートである。異常検知装置80の制御部81は、記憶部82に記憶するプログラム821に従って所定の又は適宜の間隔で以下の処理を開始する。 FIG. 25 is a flowchart illustrating an example of an abnormality detection processing procedure. The control unit 81 of the abnormality detection device 80 starts the following process at predetermined or appropriate intervals according to the program 821 stored in the storage unit 82.
 異常検知装置80の制御部81は、基準蓄電素子及び対象蓄電素子の電圧、電流及び温度を含む計測データの実測値を取得する(ステップS311)。基準蓄電素子及び対象蓄電素子の数は、複数であってもよい。 The control unit 81 of the abnormality detection device 80 acquires actual measured values of measurement data including the voltage, current, and temperature of the reference power storage element and the target power storage element (step S311). The number of reference power storage elements and target power storage elements may be plural.
 制御部81は、取得した基準蓄電素子の計測データに基づき、基準蓄電素子の使用履歴を取得する(ステップS312)。制御部81は、仮の使用履歴を取得してもよい。 The control unit 81 acquires the usage history of the reference power storage element based on the acquired measurement data of the reference power storage element (step S312). The control unit 81 may acquire a temporary usage history.
 制御部81は、基準蓄電素子の内部状態量を推定する(ステップS313)。図26は、内部状態量の推定の詳細な手順の一例を示すフローチャートである。図26のフローチャートに示す処理手順は、図25のフローチャートにおけるステップS313の詳細に対応する。 The control unit 81 estimates the internal state quantity of the reference electricity storage element (step S313). FIG. 26 is a flowchart illustrating an example of a detailed procedure for estimating the internal state quantity. The processing procedure shown in the flowchart of FIG. 26 corresponds to the details of step S313 in the flowchart of FIG. 25.
 制御部81は、基準蓄電素子の内部状態量を推定(設定)する(ステップS321)。制御部81は、例えば基準蓄電素子に設定される内部状態量の上限値から下限値の間において、ランダムに内部状態量の推定における初期値を設定してもよい。制御部81はまた、前回の推定結果や他の蓄電素子の推定結果を初期値として設定してもよい。 The control unit 81 estimates (sets) the internal state quantity of the reference electricity storage element (step S321). The control unit 81 may randomly set the initial value for estimating the internal state amount, for example, between the upper limit value and the lower limit value of the internal state amount set in the reference electricity storage element. The control unit 81 may also set the previous estimation result or the estimation result of another power storage element as the initial value.
 制御部81は、推定した内部状態量及び取得した使用履歴を入力として、蓄電素子シミュレータ811から出力される計測データの推定値を取得する(ステップS322)。 The control unit 81 receives the estimated internal state quantity and the acquired usage history as input, and acquires the estimated value of the measurement data output from the power storage element simulator 811 (step S322).
 制御部81は、取得した計測データの推定値と、計測データの実測値との差分が許容範囲内であるか否かを判定する(ステップS323)。 The control unit 81 determines whether the difference between the estimated value of the acquired measurement data and the actual value of the measurement data is within an allowable range (step S323).
 差分が許容範囲内でないと判定した場合(ステップS323:NO)、制御部81は、処理をステップS321に戻し、差分を最小化するよう内部状態量の推定を繰り返す。ステップS321からステップS323により、内部状態量が最適化される。 If it is determined that the difference is not within the allowable range (step S323: NO), the control unit 81 returns the process to step S321 and repeats estimation of the internal state quantity so as to minimize the difference. The internal state quantity is optimized through steps S321 to S323.
 差分が許容範囲内であると判定した場合(ステップS323:YES)、制御部81は、得られた内部状態量を最適値とし、図25のフローチャートにおけるステップS314へ処理を戻す。制御部81は、指定された全ての基準蓄電素子について、上述の内部状態量の推定を実行する。 If it is determined that the difference is within the allowable range (step S323: YES), the control unit 81 sets the obtained internal state amount to the optimal value and returns the process to step S314 in the flowchart of FIG. 25. The control unit 81 executes the estimation of the internal state quantities described above for all designated reference power storage elements.
 上述の処理において制御部81は、例えば仮の使用履歴を取得した場合、取得した仮の使用履歴を用いて基準蓄電素子の内部状態量を推定する。制御部81は、予め設定される全ての使用履歴に対応する複数の内部状態量を推定してもよい。基準蓄電素子が複数存在する場合、各基準蓄電素子について、使用履歴毎に内部状態量を推定してもよい。 In the above process, for example, when the temporary usage history is acquired, the control unit 81 estimates the internal state quantity of the reference electricity storage element using the acquired temporary usage history. The control unit 81 may estimate a plurality of internal state quantities corresponding to all preset usage histories. When a plurality of reference power storage elements exist, the internal state quantity may be estimated for each reference power storage element for each usage history.
 図25に戻り説明を続ける。制御部81は、推定した基準蓄電素子の内部状態量に、予め設定される許容差分を加算することにより、許容内部状態量を算出する(ステップS314)。制御部81は、算出した許容内部状態量及び使用履歴と、蓄電素子シミュレータ811とに基づき、算出した許容内部状態量及び使用履歴に対応する許容計測データを算出する(ステップS315)。制御部81は、算出した許容内部状態量及び使用履歴と入力として、蓄電素子シミュレータ811から出力される許容計測データを取得する。 Returning to FIG. 25, the explanation will be continued. The control unit 81 calculates the allowable internal state amount by adding a preset allowable difference to the estimated internal state amount of the reference power storage element (step S314). The control unit 81 calculates allowable measurement data corresponding to the calculated allowable internal state amount and usage history based on the calculated allowable internal state amount and usage history and the power storage element simulator 811 (step S315). The control unit 81 acquires the calculated allowable internal state amount and usage history, and the allowable measurement data output from the power storage element simulator 811 as input.
 制御部81は、算出した許容計測データと、基準蓄電素子の計測データの実測値との差分を算出し、算出した値を計測データの検知基準値と設定する(ステップS316)。制御部81は、使用履歴毎に推定された複数の内部状態量に基づき、複数の検知基準値を設定してもよい。 The control unit 81 calculates the difference between the calculated allowable measurement data and the actual measurement value of the measurement data of the reference power storage element, and sets the calculated value as the detection reference value of the measurement data (step S316). The control unit 81 may set a plurality of detection reference values based on a plurality of internal state quantities estimated for each usage history.
 制御部81は、対象蓄電素子の計測データと計測データの平均値との差分ΔOを算出し、算出した差分ΔOが設定した検知基準値未満であるか否かを判定する(ステップS317)。 The control unit 81 calculates the difference ΔO between the measured data of the target power storage element and the average value of the measured data, and determines whether the calculated difference ΔO is less than the set detection reference value (step S317).
 算出した差分ΔOが検知基準値未満であると判定した場合(ステップS317:YES)、制御部81は、対象蓄電素子が正常であると判定する(ステップS318)。算出した差分ΔOが検知基準値以上であると判定した場合(ステップS317:NO)、制御部81は、対象蓄電素子が異常であると判定する(ステップS319)。ステップS317からステップS319は、異常検知処理に対応する。制御部81は、全ての対象蓄電素子について、設定された検知基準値毎に、閾値判定を実行する。 If it is determined that the calculated difference ΔO is less than the detection reference value (step S317: YES), the control unit 81 determines that the target power storage element is normal (step S318). If it is determined that the calculated difference ΔO is greater than or equal to the detection reference value (step S317: NO), the control unit 81 determines that the target power storage element is abnormal (step S319). Steps S317 to S319 correspond to abnormality detection processing. The control unit 81 performs threshold determination for each set detection reference value for all target power storage elements.
 制御部81は、異常の検知結果を、例えば表示部84を通じて出力し(ステップS320)、一例の処理を終了する。代替的に、制御部81は、外部のコンピュータへ異常の検知結果を出力してもよい。 The control unit 81 outputs the abnormality detection result, for example, through the display unit 84 (step S320), and ends the example process. Alternatively, the control unit 81 may output the abnormality detection result to an external computer.
 上述のステップS313において、制御部81は、蓄電素子シミュレータ811を用いて内部状態量を推定する以外の手法で内部状態量を推定してもよい。制御部81は、前回の内部状態量の推定結果に基づき内部状態量を推定してもよい。制御部81は、例えば、蓄電素子シミュレータ811を用いて推定した前回のSOCに基づき、電流積算の手法により今回のSOCを求めてもよい。制御部81は、所定の異常検知回数毎に内部状態量の推定を行い、所定回数に到達するまでは、前回の内部状態量の推定結果を継続して使用してもよい。 In step S313 described above, the control unit 81 may estimate the internal state amount using a method other than estimating the internal state amount using the power storage element simulator 811. The control unit 81 may estimate the internal state amount based on the previous estimation result of the internal state amount. For example, the control unit 81 may obtain the current SOC using a current integration method based on the previous SOC estimated using the power storage element simulator 811. The control unit 81 may estimate the internal state quantity every predetermined number of abnormality detections, and may continue to use the previous estimation result of the internal state quantity until the predetermined number of times is reached.
 本実施形態によれば、内部状態量を考慮して蓄電素子の異常を精度よく検知できる。異常検知に用いる内部状態量は、蓄電素子シミュレータを利用した内部状態量の逆方向の推定と、計測データの推定値を実測値に近似させる内部状態量の最適化とにより、効率よく推定できる。 According to the present embodiment, an abnormality in the power storage element can be detected with high accuracy by considering the internal state quantity. The internal state quantity used for abnormality detection can be estimated efficiently by estimating the internal state quantity in the opposite direction using a power storage element simulator and optimizing the internal state quantity by approximating the estimated value of the measurement data to the actual measured value.
 上述した実施の形態では、上記フローチャートにおける各処理を異常検知装置80が実行する例を説明した。代替的に、上述の処理の一部又は全部は、例えばドメイン管理装置30、サーバ装置20等、他の処理主体により実行されてもよい。 In the embodiment described above, an example has been described in which the abnormality detection device 80 executes each process in the above flowchart. Alternatively, part or all of the above processing may be executed by another processing entity, such as the domain management device 30 or the server device 20.
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、特許の範囲内での全ての変更及び請求の範囲と均等の範囲が含まれることが意図される。
 各実施形態に示すシーケンスは限定されるものではなく、矛盾の無い範囲で、各処理手順はその順序を変更して実行されてもよく、また並行して複数の処理が実行されてもよい。各処理の処理主体は限定されるものではなく、矛盾の無い範囲で、各装置の処理を他の装置が実行してもよい。
The embodiments disclosed herein are illustrative in all respects and should be considered not to be restrictive. The technical features described in each example can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the patent and the scope of equivalents to the scope of the claims. .
The sequences shown in each embodiment are not limited, and each processing procedure may be executed with the order changed, or a plurality of processes may be executed in parallel, as long as there is no contradiction. The processing entity of each process is not limited, and the processes of each device may be executed by other devices as long as there is no contradiction.
 各実施形態に記載した事項は相互に組み合わせることが可能である。また、請求の範囲に記載した独立請求項及び従属請求項は、引用形式に関わらず、相互に組み合わせることが可能である。さらに、請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも一つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載してもよい。 The items described in each embodiment can be combined with each other. Moreover, independent claims and dependent claims described in the claims can be combined with each other regardless of the form in which they are cited. Furthermore, although the scope of claims uses a format in which claims refer to two or more other claims (multi-claim format), the invention is not limited to this format. It may be written using a multi-claim format that cites at least one multi-claim.
 100,300,400,500 遠隔監視システム
 200 発電システム
 10 通信デバイス
 11 制御部
 12 記憶部
 13 第1通信部
 14 第2通信部
 20 サーバ装置
 30 ドメイン管理装置
 40 蓄電ユニット
 41 バンク
 42 蓄電モジュール
 43 計測基板
 44 電池管理装置
 50 算出装置
 51 制御部
 52 記憶部
 53 通信部
 54 表示部
 55 操作部
 511 取得部
 512 算出部
 513 負荷推定部
 514 生成部
 515 出力部
 516 修正部
 521 プログラム
 5A 記録媒体
 60 推定装置
 61 制御部
 62 記憶部
 63 通信部
 64 表示部
 65 操作部
 611 蓄電素子シミュレータ
 612 取得部
 613 推定部
 614 出力部
 621 プログラム
 622 計測DB
 6A 記録媒体
 70 異常検知装置
 71 制御部
 72 記憶部
 73 通信部
 74 表示部
 75 操作部
 711 蓄電素子シミュレータ
 712 取得部
 713 推定部
 714 検知部
 715 出力部
 721 プログラム
 722 計測DB
 7A 記録媒体
 80 異常検知装置
 81 制御部
 82 記憶部
 83 通信部
 84 表示部
 85 操作部
 811 蓄電素子シミュレータ
 812 取得部
 813 推定部
 814 設定部
 815 検知部
 816 出力部
 821 プログラム
 822 計測DB
 8A 記録媒体
 
100, 300, 400, 500 remote monitoring system 200 power generation system 10 communication device 11 control unit 12 storage unit 13 first communication unit 14 second communication unit 20 server device 30 domain management device 40 power storage unit 41 bank 42 power storage module 43 measurement board 44 Battery management device 50 Calculation device 51 Control section 52 Storage section 53 Communication section 54 Display section 55 Operation section 511 Acquisition section 512 Calculation section 513 Load estimation section 514 Generation section 515 Output section 516 Modification section 521 Program 5A Recording medium 60 Estimation device 61 Control unit 62 Storage unit 63 Communication unit 64 Display unit 65 Operation unit 611 Energy storage element simulator 612 Acquisition unit 613 Estimation unit 614 Output unit 621 Program 622 Measurement DB
6A Recording medium 70 Abnormality detection device 71 Control section 72 Storage section 73 Communication section 74 Display section 75 Operation section 711 Energy storage element simulator 712 Acquisition section 713 Estimation section 714 Detection section 715 Output section 721 Program 722 Measurement DB
7A Recording medium 80 Abnormality detection device 81 Control unit 82 Storage unit 83 Communication unit 84 Display unit 85 Operation unit 811 Energy storage element simulator 812 Acquisition unit 813 Estimation unit 814 Setting unit 815 Detection unit 816 Output unit 821 Program 822 Measurement DB
8A Recording medium

Claims (29)

  1.  蓄電素子の実際の計測データ及び仮想の計測データを取得する取得部と、
     前記蓄電素子の計測データに基づき前記蓄電素子の現在及び将来の劣化状態を算出する算出部とを備え、
     前記算出部は、現在の劣化状態を算出する場合、前記取得部で取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、将来の劣化状態を算出する場合、前記取得部で取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する
     算出装置。
    an acquisition unit that acquires actual measurement data and virtual measurement data of the power storage element;
    a calculation unit that calculates the current and future deterioration state of the power storage element based on measurement data of the power storage element,
    When calculating the current deterioration state, the calculation section calculates the deterioration state according to a predetermined calculation algorithm based on the actual measurement data acquired by the acquisition section, and when calculating the future deterioration state, the acquisition section calculates the deterioration state. A calculation device that calculates a state of deterioration based on the acquired virtual measurement data according to the predetermined calculation algorithm.
  2.  前記算出部は、前記実際の計測データに基づき現在の劣化状態を算出した後、前記実際の計測データに基づき生成された前記仮想の計測データに基づき将来の劣化状態を算出する
     請求項1に記載の算出装置。
    The calculation unit calculates the current state of deterioration based on the actual measurement data, and then calculates the future state of deterioration based on the virtual measurement data generated based on the actual measurement data. calculation device.
  3.  前記算出部は、前記実際の計測データに基づき算出した現在の劣化状態を基準値として将来の劣化状態を算出する
     請求項1又は請求項2に記載の算出装置。
    The calculation device according to claim 1 or 2, wherein the calculation unit calculates a future deterioration state using a current deterioration state calculated based on the actual measurement data as a reference value.
  4.  時系列的な実際の計測データに基づき前記蓄電素子の仮想負荷を推定する負荷推定部と、
     前記負荷推定部で推定した仮想負荷に基づき前記仮想の計測データを生成する生成部とを備える
     請求項1又は請求項2に記載の算出装置。
    a load estimation unit that estimates a virtual load of the electricity storage element based on time-series actual measurement data;
    The calculation device according to claim 1 or 2, further comprising a generation unit that generates the virtual measurement data based on the virtual load estimated by the load estimation unit.
  5.  前記生成部は複数の仮想負荷パターンに基づき複数の前記仮想の計測データを生成し、
     前記算出部は各仮想の計測データに対応する将来の劣化状態を算出する
     請求項4に記載の算出装置。
    The generation unit generates a plurality of virtual measurement data based on a plurality of virtual load patterns,
    The calculation device according to claim 4, wherein the calculation unit calculates a future state of deterioration corresponding to each virtual measurement data.
  6.  前記算出部は、前記蓄電素子の計測データに基づき前記蓄電素子の内部状態量を算出し、
     算出した前記内部状態量に基づき前記蓄電素子の劣化状態を算出する
     請求項1又は請求項2に記載の算出装置。
    The calculation unit calculates an internal state quantity of the power storage element based on measurement data of the power storage element,
    The calculation device according to claim 1 or 2, wherein the deterioration state of the electricity storage element is calculated based on the calculated internal state amount.
  7.  前記算出部で算出した現在の劣化状態の修正情報に基づき前記所定の算出アルゴリズムを修正する修正部を備える
     請求項1又は請求項2に記載の算出装置。
    The calculation device according to claim 1 or 2, further comprising a modification unit that modifies the predetermined calculation algorithm based on modification information of the current state of deterioration calculated by the calculation unit.
  8.  蓄電素子の実際の計測データ及び仮想の計測データを取得し、
     現在の劣化状態を算出する場合、取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、
     将来の劣化状態を算出する場合、取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する
     処理をコンピュータが実行する劣化状態の算出方法。
    Acquire actual measurement data and virtual measurement data of the energy storage element,
    When calculating the current state of deterioration, the state of deterioration is calculated according to a predetermined calculation algorithm based on the acquired actual measurement data,
    When calculating a future state of deterioration, a method for calculating a state of deterioration in which a computer executes a process of calculating the state of deterioration according to the predetermined calculation algorithm based on acquired virtual measurement data.
  9.  蓄電素子の実際の計測データ及び仮想の計測データを取得し、
     現在の劣化状態を算出する場合、取得した実際の計測データに基づき所定の算出アルゴリズムに従い劣化状態を算出し、
     将来の劣化状態を算出する場合、取得した仮想の計測データに基づき前記所定の算出アルゴリズムに従い劣化状態を算出する
     処理をコンピュータに実行させるためのプログラム。
    Acquire actual measurement data and virtual measurement data of the energy storage element,
    When calculating the current state of deterioration, the state of deterioration is calculated according to a predetermined calculation algorithm based on the acquired actual measurement data,
    When calculating a future state of deterioration, the program causes a computer to execute a process of calculating the state of deterioration according to the predetermined calculation algorithm based on the acquired virtual measurement data.
  10.  蓄電素子の計測データを取得する取得部と、
     蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する推定部と
     を備える推定装置。
    an acquisition unit that acquires measurement data of the electricity storage element;
    A power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity of the power storage element is used to estimate the power storage element so that the measurement data output from the power storage element simulator approximates the measurement data acquired by the acquisition unit. An estimating device comprising an estimating unit that estimates an internal state quantity of.
  11.  前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分を最小化する前記内部状態量の最適値を探索する
     請求項10に記載の推定装置。
    The estimation device according to claim 10, wherein the estimation unit searches for an optimal value of the internal state quantity that minimizes a difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit.
  12.  前記推定部は、蓄電素子の内部状態量及び使用履歴に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記蓄電素子の使用履歴を入力として前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する
     請求項10又は請求項11に記載の推定装置。
    The estimating unit uses the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity and usage history of the power storage element, and receives the usage history of the power storage element as input and outputs from the power storage element simulator. The estimation device according to claim 10 or 11, wherein the internal state quantity of the electricity storage element is estimated so that the measurement data approximates the measurement data acquired by the acquisition unit.
  13.  蓄電素子の計測データを取得し、
     蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する
     処理をコンピュータが実行する推定方法。
    Obtain the measurement data of the energy storage element,
    Using a power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity of the power storage element, the internal state quantity of the power storage element is estimated so that the measurement data output from the power storage element simulator approximates the acquired measurement data. An estimation method in which the process is performed by a computer.
  14.  蓄電素子の計測データを取得し、
     蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう前記蓄電素子の内部状態量を推定する
     処理をコンピュータに実行させるためのプログラム。
    Obtain the measurement data of the energy storage element,
    Using a power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity of the power storage element, the internal state quantity of the power storage element is estimated so that the measurement data output from the power storage element simulator approximates the acquired measurement data. A program that causes a computer to perform a process to estimate.
  15.  基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、
     前記取得部で取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定する推定部と、
     前記推定部で推定した前記基準蓄電素子の内部状態量と、前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する検知部と
     を備える異常検知装置。
    an acquisition unit that acquires measurement data of the reference energy storage element and the target energy storage element;
    Measurement data output from the power storage element simulator is acquired by the acquisition unit based on each measurement data acquired by the acquisition unit and a power storage element simulator that estimates measurement data of the power storage element from an internal state quantity of the power storage element. an estimation unit that estimates internal state quantities of the reference power storage element and the target power storage element so as to approximate the measured data;
    An abnormality detection device comprising: a detection unit that detects an abnormality in the target power storage element based on a comparison between the internal state quantity of the reference power storage element estimated by the estimation unit and the internal state quantity of the target power storage element.
  16.  前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分の絶対値を最小化する前記内部状態量の最適値を探索する
     請求項15に記載の異常検知装置。
    The estimation unit searches for an optimal value of the internal state quantity that minimizes the absolute value of the difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. Anomaly detection device.
  17.  前記推定部は、蓄電素子の内部状態量及び使用履歴に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記使用履歴を入力として前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定する
     請求項15又は請求項16に記載の異常検知装置。
    The estimating unit uses the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity and usage history of the power storage element, and uses the usage history as input and calculates the measurement data output from the power storage element simulator. The abnormality detection device according to claim 15 or 16, wherein the internal state quantities of the reference power storage element and the target power storage element are estimated so as to approximate the measurement data acquired by the acquisition unit.
  18.  前記内部状態量は蓄電素子の健康状態又は充電状態を含む
     請求項15又は請求項16に記載の異常検知装置。
    The abnormality detection device according to claim 15 or 16, wherein the internal state amount includes a health state or a charging state of the electricity storage element.
  19.  基準蓄電素子及び対象蓄電素子の計測データを取得し、
     取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定し、
     推定した前記基準蓄電素子の内部状態量と前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する
     処理をコンピュータが実行する異常検知方法。
    Obtain the measurement data of the reference energy storage element and the target energy storage element,
    Based on each acquired measurement data and a power storage element simulator that estimates the measurement data of the power storage element from the internal state quantity of the power storage element, so that the measurement data output from the power storage element simulator approximates the acquired measurement data, estimating internal state quantities of the reference energy storage element and the target energy storage element;
    An abnormality detection method in which a computer executes a process of detecting an abnormality in the target power storage element based on a comparison between an estimated internal state quantity of the reference power storage element and an internal state quantity of the target power storage element.
  20.  基準蓄電素子及び対象蓄電素子の計測データを取得し、
     取得した各計測データと、蓄電素子の内部状態量から前記蓄電素子の計測データを推定する蓄電素子シミュレータとに基づき、前記蓄電素子シミュレータから出力される計測データが取得した計測データに近似するよう、前記基準蓄電素子及び前記対象蓄電素子の内部状態量を推定し、
     推定した前記基準蓄電素子の内部状態量と前記対象蓄電素子の内部状態量との比較に基づき、前記対象蓄電素子における異常を検知する
     処理をコンピュータに実行させるためのプログラム。
    Obtain the measurement data of the reference energy storage element and the target energy storage element,
    Based on each acquired measurement data and a power storage element simulator that estimates the measurement data of the power storage element from the internal state quantity of the power storage element, so that the measurement data output from the power storage element simulator approximates the acquired measurement data, estimating internal state quantities of the reference energy storage element and the target energy storage element;
    A program for causing a computer to execute a process of detecting an abnormality in the target power storage element based on a comparison between an estimated internal state quantity of the reference power storage element and an internal state quantity of the target power storage element.
  21.  基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、
     前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部と、
     前記設定部で設定した検知基準と、前記取得部で取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する検知部と
     を備える異常検知装置。
    an acquisition unit that acquires measurement data of the reference energy storage element and the target energy storage element;
    Measured data estimated by a power storage element simulator based on an internal state amount obtained by adding an allowable difference to the internal state amount of the reference power storage element estimated from the measurement data of the reference power storage element acquired by the acquisition unit, and the acquired a setting unit that sets a detection standard based on measurement data of the reference energy storage element acquired by the unit;
    An abnormality detection device comprising: a detection unit that detects an abnormality in the target power storage element based on a detection criterion set by the setting unit and measurement data of the target power storage element acquired by the acquisition unit.
  22.  蓄電素子の内部状態量に基づき前記蓄電素子の計測データを推定する前記蓄電素子シミュレータを用いて、前記蓄電素子シミュレータから出力される計測データが前記取得部で取得した前記基準蓄電素子の計測データに近似するよう前記基準蓄電素子の内部状態量を推定する推定部を備える
     請求項21に記載の異常検知装置。
    Using the power storage element simulator that estimates measurement data of the power storage element based on the internal state quantity of the power storage element, the measurement data output from the power storage element simulator is matched with the measurement data of the reference power storage element acquired by the acquisition unit. The abnormality detection device according to claim 21, further comprising an estimation unit that estimates the internal state quantity of the reference electricity storage element so as to approximate it.
  23.  前記推定部は、前記蓄電素子シミュレータから出力される計測データと前記取得部で取得した計測データとの差分を最小化する前記内部状態量の最適値を探索する
     請求項22に記載の異常検知装置。
    The abnormality detection device according to claim 22, wherein the estimation unit searches for an optimal value of the internal state quantity that minimizes a difference between the measurement data output from the power storage element simulator and the measurement data acquired by the acquisition unit. .
  24.  前記設定部は、前記基準蓄電素子の使用履歴毎に推定される前記基準蓄電素子の内部状態量に基づき複数の前記検知基準を設定する
     請求項21又は請求項22に記載の異常検知装置。
    The abnormality detection device according to claim 21 or 22, wherein the setting unit sets the plurality of detection criteria based on an internal state quantity of the reference electricity storage element estimated for each usage history of the reference electricity storage element.
  25.  前記検知部は、前記対象蓄電素子の電圧に基づき異常を検知する
     請求項21又は請求項22に記載の異常検知装置。
    The abnormality detection device according to claim 21 or 22, wherein the detection unit detects abnormality based on the voltage of the target power storage element.
  26.  前記内部状態量は蓄電素子の劣化度又は充電状態を含む
     請求項21又は請求項22に記載の異常検知装置。
    The abnormality detection device according to claim 21 or 22, wherein the internal state quantity includes a degree of deterioration or a state of charge of the electricity storage element.
  27.  基準蓄電素子及び対象蓄電素子の計測データを取得し、
     取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定し、
     設定した検知基準と、取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する
     処理をコンピュータが実行する異常検知方法。
    Obtain the measurement data of the reference energy storage element and the target energy storage element,
    Measurement data estimated by a power storage element simulator based on an internal state amount obtained by adding an allowable difference to the internal state amount of the reference power storage element estimated from the acquired measurement data of the reference power storage element, and the acquired reference power storage element Detection criteria are set based on the measurement data of
    An abnormality detection method in which a computer executes a process of detecting an abnormality in the target power storage element based on set detection criteria and acquired measurement data of the target power storage element.
  28.  基準蓄電素子及び対象蓄電素子の計測データを取得し、
     取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定し、
     設定した検知基準と、取得した前記対象蓄電素子の計測データとに基づき、前記対象蓄電素子における異常を検知する
     処理をコンピュータに実行させるためのプログラム。
    Obtain the measurement data of the reference energy storage element and the target energy storage element,
    Measurement data estimated by a power storage element simulator based on an internal state amount obtained by adding an allowable difference to the internal state amount of the reference power storage element estimated from the acquired measurement data of the reference power storage element, and the acquired reference power storage element Detection criteria are set based on the measurement data of
    A program for causing a computer to execute a process of detecting an abnormality in the target power storage element based on set detection criteria and acquired measurement data of the target power storage element.
  29.  基準蓄電素子及び対象蓄電素子の計測データを取得する取得部と、
     前記取得部で取得した前記基準蓄電素子の計測データから推定される前記基準蓄電素子の内部状態量に許容差分を加えた内部状態量に基づき、蓄電素子シミュレータにより推定される計測データと、前記取得部で取得した前記基準蓄電素子の計測データと、に基づき検知基準を設定する設定部と
     を備える異常検知装置。
     
    an acquisition unit that acquires measurement data of the reference energy storage element and the target energy storage element;
    Measured data estimated by a power storage element simulator based on an internal state amount obtained by adding an allowable difference to the internal state amount of the reference power storage element estimated from the measurement data of the reference power storage element acquired by the acquisition unit, and the acquired An abnormality detection device comprising: measurement data of the reference energy storage element acquired by the section; and a setting section that sets a detection standard based on the measurement data of the reference power storage element.
PCT/JP2023/032309 2022-09-14 2023-09-05 Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method WO2024057996A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022146389A JP2024041523A (en) 2022-09-14 2022-09-14 Estimation device, estimation method, and program
JP2022-146391 2022-09-14
JP2022-146390 2022-09-14
JP2022146390A JP2024041524A (en) 2022-09-14 2022-09-14 Abnormality detection device, abnormality detection method, and program
JP2022146388A JP2024041522A (en) 2022-09-14 2022-09-14 Calculation device, method for calculating deterioration state, and program
JP2022-146389 2022-09-14
JP2022-146388 2022-09-14
JP2022146391A JP2024041525A (en) 2022-09-14 2022-09-14 Abnormality detection device, abnormality detection method, and program

Publications (1)

Publication Number Publication Date
WO2024057996A1 true WO2024057996A1 (en) 2024-03-21

Family

ID=90274828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032309 WO2024057996A1 (en) 2022-09-14 2023-09-05 Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method

Country Status (1)

Country Link
WO (1) WO2024057996A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2011196906A (en) * 2010-03-23 2011-10-06 Furukawa Electric Co Ltd:The Battery internal state estimation device and battery internal state estimation method
WO2016002398A1 (en) * 2014-07-01 2016-01-07 日産自動車株式会社 Battery degradation level estimation device and battery degradation level estimation method
WO2016194082A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Device for estimating degree of battery degradation, and estimation method
JP2017050126A (en) * 2015-09-01 2017-03-09 日立オートモティブシステムズ株式会社 Battery management device, battery system and hybrid vehicle control system
JP2021093253A (en) * 2019-12-06 2021-06-17 株式会社Gsユアサ Control device, degradation estimation system, control method, and computer program
JP2022064054A (en) * 2020-10-13 2022-04-25 株式会社豊田中央研究所 Deterioration determination device, deterioration determination system, and method for determining deterioration, and program thereof
JP2023013116A (en) * 2021-07-15 2023-01-26 株式会社豊田中央研究所 Evaluation device, evaluation system, evaluation method and program therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2011196906A (en) * 2010-03-23 2011-10-06 Furukawa Electric Co Ltd:The Battery internal state estimation device and battery internal state estimation method
WO2016002398A1 (en) * 2014-07-01 2016-01-07 日産自動車株式会社 Battery degradation level estimation device and battery degradation level estimation method
WO2016194082A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Device for estimating degree of battery degradation, and estimation method
JP2017050126A (en) * 2015-09-01 2017-03-09 日立オートモティブシステムズ株式会社 Battery management device, battery system and hybrid vehicle control system
JP2021093253A (en) * 2019-12-06 2021-06-17 株式会社Gsユアサ Control device, degradation estimation system, control method, and computer program
JP2022064054A (en) * 2020-10-13 2022-04-25 株式会社豊田中央研究所 Deterioration determination device, deterioration determination system, and method for determining deterioration, and program thereof
JP2023013116A (en) * 2021-07-15 2023-01-26 株式会社豊田中央研究所 Evaluation device, evaluation system, evaluation method and program therefor

Similar Documents

Publication Publication Date Title
JP7199568B2 (en) BATTERY DIAGNOSTIC SYSTEM, BATTERY DIAGNOSTIC METHOD, AND STORAGE MEDIUM
JP6482819B2 (en) Strategic modeling for economic optimization of grid tie energy background
JP5936711B2 (en) Storage device life prediction apparatus and storage device life prediction method
JP6234946B2 (en) Battery state estimation device
JP5307034B2 (en) Control valve type lead-acid battery performance analysis method
US10203375B2 (en) Method for ascertaining storage battery state, state-ascertaining system, and computer program
CN114371409B (en) Training method of battery state prediction model, battery state prediction method and device
CN111868539A (en) Degradation estimation device, computer program, and degradation estimation method
CN117318255B (en) Battery state analysis system and method based on big data visualization
CN111856309B (en) Quantitative judging method for battery health state
CN104316879A (en) Method for forecasting service life of lead-acid storage battery
CN114444370B (en) Method and device for predicting accumulated loss life of rechargeable battery by considering operation conditions, electronic equipment and readable storage medium
CN116401585B (en) Energy storage battery failure risk assessment method based on big data
CN114879070A (en) Battery state evaluation method and related equipment
KR20230080112A (en) Battery diagnostic device for predicting the current state of the battery
CN116609686B (en) Battery cell consistency assessment method based on cloud platform big data
JP6532374B2 (en) Storage battery state analysis system, storage battery state analysis method, and storage battery state analysis program
US20230305073A1 (en) Method and apparatus for providing a predicted aging state of a device battery based on a predicted usage pattern
WO2024057996A1 (en) Electricity storage element degradation state calculating device, degradation state calculating method, degradation state calculating program, degradation state estimating device, degradation state estimating method, abnormality detecting device, and abnormality detecting method
CN116842464A (en) Battery system SOC estimation method
CN110794319A (en) Method and device for predicting parameters of lithium battery impedance model and readable storage medium
CN114879054A (en) Battery safety monitoring method and device, electronic equipment and storage medium
JP2024041524A (en) Abnormality detection device, abnormality detection method, and program
JP2024041525A (en) Abnormality detection device, abnormality detection method, and program
JP2024041522A (en) Calculation device, method for calculating deterioration state, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865351

Country of ref document: EP

Kind code of ref document: A1