TWI794664B - Method of controlling a position of a moveable stage, imprint lithography system, and method of manufacturing articles - Google Patents

Method of controlling a position of a moveable stage, imprint lithography system, and method of manufacturing articles Download PDF

Info

Publication number
TWI794664B
TWI794664B TW109136284A TW109136284A TWI794664B TW I794664 B TWI794664 B TW I794664B TW 109136284 A TW109136284 A TW 109136284A TW 109136284 A TW109136284 A TW 109136284A TW I794664 B TWI794664 B TW I794664B
Authority
TW
Taiwan
Prior art keywords
information
control signal
substrate
alignment
platform
Prior art date
Application number
TW109136284A
Other languages
Chinese (zh)
Other versions
TW202122936A (en
Inventor
明吉 羅
傑佛瑞 克萊恩
孝宏 吉田
史蒂芬 詹金斯
炳鎮 崔
Original Assignee
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商佳能股份有限公司 filed Critical 日商佳能股份有限公司
Publication of TW202122936A publication Critical patent/TW202122936A/en
Application granted granted Critical
Publication of TWI794664B publication Critical patent/TWI794664B/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps

Abstract

A method and system for controlling a position of a moveable stage having a substrate supported thereon is provided. First position information representing a position of the substrate relative to a mark on an object is obtained from a sensor. Alignment prediction information is generated based on the obtained first position wherein the generated alignment prediction information including at least one parameter value. First trajectory information is generated and includes the at least one parameter value based on the obtained first position information and the generated alignment prediction information. Second trajectory information is generated based on the generated alignment prediction information first trajectory information and second position information, wherein the second position information represents a position of the moveable stage. An output control signal is generated based on the second trajectory information and used to control the moveable stage to approach a target position based on the generated output signal.

Description

控制可移動平台的位置的方法、壓印微影系統及製造物品的方法 Method of controlling the position of a movable platform, imprint lithography system and method of manufacturing an article

本發明涉及奈米壓印微影中的對準控制,更具體地涉及即時回饋和前饋控制。 The present invention relates to alignment control in nanoimprint lithography, and more particularly to immediate feedback and feedforward control.

在奈米壓印微影中,已經使用了用於場對場對準的技術來實現奈米級的覆蓋精確度。在一些範例中,可以透過相對於基板(例如,晶圓)移動模板來校正壓印模板與基板上的對應場之間的初始對準誤差。然而,快速和一致的奈米壓印微影對準是種挑戰。更具體地,稀液摩擦和初始狀態的變化是兩個主要困難。當前對準方案通常使用可以透過調諧旋鈕手動調諧的單一控制演算法。除了與手動調整控制演算法(如時間延遲)以實現對控制演算法的修改相關的傳統缺點外,當前方案的變化和非線性不足以 處理不同的RLT(模板和基板之間的可固化液體的殘留層厚度)、位置和過渡程序。這導致各種問題,包含慢對準收斂、對準過衝(alignment overshoot)、對準下衝(alignment undershoot)、停轉(stalling)、振盪和可重複性問題。這些問題始終影響大量生產的產量和效率,因此需要對其進行校正。 In nanoimprint lithography, techniques for field-to-field alignment have been used to achieve nanometer-scale overlay accuracy. In some examples, initial alignment errors between the imprint template and corresponding fields on the substrate can be corrected by moving the template relative to the substrate (eg, wafer). However, fast and consistent nanoimprint lithography alignment is a challenge. More specifically, dilute fluid friction and initial state changes are two major difficulties. Current alignment schemes typically use a single control algorithm that can be tuned manually via a tuning knob. In addition to the traditional disadvantages associated with manual tuning of the control algorithm (such as time delays) to implement modifications to the control algorithm, current schemes are not sufficiently variable and non-linear Handle different RLT (residual layer thickness of curable liquid between template and substrate), positions and transition procedures. This leads to various problems including slow alignment convergence, alignment overshoot, alignment undershoot, stalling, oscillations and repeatability issues. These issues consistently affect the yield and efficiency of mass production, so they need to be corrected.

根據本發明,提供一種控制其上支撐有基板的可移動平台的位置的方法。從感測器獲取表示所述基板相對於物體上的標記的位置的第一位置資訊。基於所獲取的第一位置來產生對準預測資訊,所產生的對準預測資訊包含至少一個參數值。基於所獲取的第一位置資訊和所產生的對準預測資訊來產生包含所述至少一個參數值的第一軌跡資訊。基於所產生的對準預測資訊、所述第一軌跡資訊以及第二位置資訊來產生第二軌跡資訊,其中所述第二位置資訊表示所述可移動平台的位置。基於所述第二軌跡資訊來產生輸出控制訊號,並基於所產生的輸出訊號來控制所述可移動平台以接近目標位置。 According to the present invention, there is provided a method of controlling the position of a movable platform having a substrate supported thereon. First position information representing the position of the substrate relative to the marking on the object is obtained from the sensor. Alignment prediction information is generated based on the obtained first position, and the generated alignment prediction information includes at least one parameter value. First trajectory information including the at least one parameter value is generated based on the acquired first position information and the generated alignment prediction information. Second trajectory information is generated based on the generated alignment prediction information, the first trajectory information, and second location information, wherein the second location information represents a location of the movable platform. An output control signal is generated based on the second trajectory information, and the movable platform is controlled to approach a target position based on the generated output signal.

在根據本發明的另一實施例中,基於表示所述基板相對於所述物體上的所述標記的所述位置的所述感測器來確定誤差值,所述物體係按照所述第二軌跡資訊來移動,並基於係在預定範圍內的所述誤差值來產生經更新的輸出控制訊號,並基於所述經更新的輸出控制訊號來控 制所述可移動平台以接近所述目標位置。 In another embodiment according to the invention, an error value is determined based on said sensor representing said position of said substrate relative to said marking on said object according to said second Track information to move, and based on the error value is within a predetermined range to generate an updated output control signal, and based on the updated output control signal to control controlling the movable platform to approach the target location.

在根據本發明其它實施例中,在所述可移動平台已經根據所述輸出控制訊號移動之後,基於透過影像擷取裝置獲取的經更新的第一位置資訊來更新所述對準預測資訊和包含在其中的所述至少一個參數值。 In other embodiments according to the present invention, after the movable platform has moved according to the output control signal, updating the alignment prediction information and including The at least one parameter value therein.

根據本發明,所述對準預測資訊為第一前饋訊號,並且所產生的第一軌跡資訊為透過獲取所獲取的第一位置資訊與所述前饋對準預測資訊之間的差異而產生的第一回饋訊號,以及所產生的第二軌跡資訊為第二回饋訊號。 According to the present invention, the alignment prediction information is a first feed-forward signal, and the generated first trajectory information is generated by obtaining the difference between the obtained first position information and the feed-forward alignment prediction information The first feedback signal and the generated second track information are the second feedback signal.

本發明提供了進一步的實施例,其提供了響應於基於表示所述基板相對於在所述對準預測資訊的終點位置處的所述物體上的所述標記的所述位置的所述感測器來確定誤差值在預定範圍之外,產生包含基於經更新的第一位置資訊確定的經更新的至少一個參數值的新對準預測資訊,以及將所述新對準預測資訊與所述第二軌跡資訊結合以產生經更新的輸出控制訊號,以基於所述經更新的輸出控制訊號來控制所述可移動平台。如此,所述輸出控制訊號係進一步基於第三前饋控制訊號和所述第二軌跡資訊的組合。 The present invention provides a further embodiment which provides a response to said sensing based on said position representing said substrate relative to said marker on said object at the end position of said alignment prediction information. determining that the error value is outside a predetermined range, generating new alignment prediction information including an updated at least one parameter value determined based on the updated first position information, and combining the new alignment prediction information with the first location information The two trajectory information are combined to generate an updated output control signal for controlling the movable platform based on the updated output control signal. As such, the output control signal is further based on a combination of the third feedforward control signal and the second trajectory information.

本文描述的一般態樣和實現的優點包含基於即時系統識別的對準誤差的前饋和回饋控制,從而在壓印微影中快速且準確地校正對準誤差。快速而準確的校正可將基板移動平穩過渡到對準狀態,從而提高對準產量和覆 蓋精確度。 Advantages of the general aspects and implementations described herein include feedforward and feedback control based on alignment errors identified by the system on the fly, thereby quickly and accurately correcting alignment errors in imprint lithography. Fast and accurate corrections provide a smooth transition from substrate movement to alignment, improving alignment throughput and coverage Cover accuracy.

本說明書中描述的標的之一或多種實現的細節在附圖和以下描述中闡述。根據說明書、圖式和申請專利範圍,標的之其它潛在特徵、態樣和優點將變得顯而易見。 The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other potential features, aspects, and advantages of the subject matter will become apparent from the specification, drawings, and claims.

100:壓印微影系統 100: Imprint lithography system

102:基板 102: Substrate

104:基板卡盤 104: substrate chuck

106:平台 106: Platform

108:模板 108:Template

110:模具 110: Mold

112:圖案化表面 112: Patterned surface

124:凹部 124: concave part

126:凸部 126: convex part

128:模板卡盤 128: template chuck

130:壓印頭 130: Embossing head

132:流體分配系統 132: Fluid distribution system

134:可聚合材料 134: Polymerizable material

136:液滴 136: droplet

138:能量源 138: energy source

140:能量 140: energy

142:路徑 142: path

144:控制器 144: Controller

146:記憶體 146: memory

148:表面 148: surface

150:聚合物圖案化層 150: polymer patterned layer

152:殘留層 152: residual layer

154:凸部 154: convex part

156:凹部 156: concave part

158:感測器 158: sensor

302:模板對準標記 302: template alignment mark

304:基板對準標記 304: Substrate alignment mark

402:測量訊號 402: Measurement signal

410:前饋控制器 410: Feedforward controller

412:第一前饋訊號 412: The first feedforward signal

414:第二前饋控制訊號 414: The second feedforward control signal

416:第三前饋訊號 416: The third feedforward signal

420:第一接面 420: First meeting

422:第一輸入訊號 422: The first input signal

430:對準回饋控制器 430: Align feedback controller

432:對準軌跡資訊 432: Alignment trajectory information

440:第二接面 440:Second Junction

442:第二輸入訊號 442: Second input signal

450:平台回饋控制器 450: Platform Feedback Controller

452:第二軌跡資訊 452:Second trajectory information

460:第三接面 460: The third junction

462:平台移動控制訊號 462: Platform movement control signal

470:平台放大器 470: Platform Amplifier

472:輸出控制訊號 472: output control signal

474:平台位置資訊 474:Platform location information

476:平台位置感測器 476: Platform position sensor

502:第一前饋產生器 502: The first feed-forward generator

504:第二前饋產生器 504: the second feed-forward generator

506:第三前饋產生器 506: The third feed-forward generator

S602:步驟 S602: step

S604:步驟 S604: step

S606:步驟 S606: step

S608:步驟 S608: step

S610:步驟 S610: step

S612:步驟 S612: step

S614:步驟 S614: step

S615:步驟 S615: step

S616:步驟 S616: step

702:目標標記距離 702: target marker distance

[圖1]描繪了奈米壓印微影系統的側視圖。 [Fig. 1] A side view depicting a nanoimprint lithography system.

[圖2]描繪了圖1的基板的側視圖。 [ Fig. 2 ] A side view depicting the substrate of Fig. 1 .

[圖3]描繪了與基板上的液體壓印抗蝕劑接觸的奈米壓印微影模板的側視圖,分別顯示模板和基板上的範例對準標記對之間的初始對準誤差X0。 [ FIG. 3 ] Depicts a side view of a nanoimprint lithography template in contact with a liquid imprint resist on a substrate, showing an initial alignment error X0 between a pair of exemplary alignment marks on the template and the substrate, respectively.

[圖4]描繪了顯示用於在模板和基板上對準標記的前饋和回饋控制的方塊圖。 [ FIG. 4 ] Depicts a block diagram showing feedforward and feedback control for aligning marks on the template and substrate.

[圖5A-5C]顯示圖4中顯示的不同類型的前饋控制器。 [Figs. 5A-5C] show different types of feedforward controllers shown in Fig. 4.

[圖6]是詳述對準控制演算法的流程圖。 [ Fig. 6 ] is a flow chart detailing the alignment control algorithm.

[圖7]是用於產生各種移動軌跡的前饋訊號的圖形表示。 [Fig. 7] is a graphical representation of the feedforward signals used to generate various moving trajectories.

[圖8A和8B]是控制訊號收斂到目標位置所花費的時間的圖形表示。 [FIGS. 8A and 8B] are graphical representations of the time taken for the control signal to converge to the target position.

圖1顯示在基板102上形成浮雕圖案的壓印微 影系統100。基板102可以被耦接到基板卡盤104。在一些範例中,基板卡盤104包含真空卡盤、銷式卡盤、凹式卡盤、電磁卡盤或其它合適的卡盤。範例性卡盤在美國專利號6,873,087中描述,其透過參照併入本文。基板102和基板卡盤104可以進一步由平台106支撐。平台106提供繞x軸、y軸和z軸的移動以及繞z軸的旋轉(例如,θ)。就這一點而言,平台106可以指XYθ平台。平台106、基板102和基板卡盤104也可以位於基座(未顯示)上。 FIG. 1 shows an embossed microstructure forming a relief pattern on a substrate 102. Shadow system 100. The substrate 102 may be coupled to a substrate chuck 104 . In some examples, the substrate chuck 104 includes a vacuum chuck, pin chuck, recessed chuck, electromagnetic chuck, or other suitable chuck. Exemplary chucks are described in US Patent No. 6,873,087, which is incorporated herein by reference. Substrate 102 and substrate chuck 104 may be further supported by platform 106 . The platform 106 provides movement about the x-, y-, and z-axes and rotation about the z-axis (eg, Θ). In this regard, platform 106 may refer to an XYθ platform. Platform 106, substrate 102, and substrate chuck 104 may also be located on a susceptor (not shown).

壓印微影系統100包含與基板102間隔開的壓印微影模板108。在一些範例中,模板108包含從模板108朝向基板102延伸的檯面110(模具110)。在一些範例中,模具110包含圖案化表面112。模板108和/或模具110可以由這種材料形成,這些材料包含但不限於熔融石英、石英、矽、有機聚合物、矽氧烷聚合物、硼矽酸鹽玻璃、碳氟化合物聚合物、金屬、硬化藍寶石或其它合適的材料。在圖示的範例中,圖案化表面112包含透過間隔開的凹部124和凸部126定義的複數個特徵。如上所述被形成的圖案僅是用於舉例的目的,並且任何類型的圖案也可以在圖案化表面112上呈現。因此,圖案化表面112可以定義任何圖案,所述圖案形成將透過壓印處理在基板102上形成的圖案的基礎。 The imprint lithography system 100 includes an imprint lithography template 108 spaced apart from a substrate 102 . In some examples, the template 108 includes a mesa 110 (mold 110 ) extending from the template 108 toward the substrate 102 . In some examples, mold 110 includes patterned surface 112 . Template 108 and/or mold 110 may be formed from materials including, but not limited to, fused silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal , hardened sapphire or other suitable material. In the illustrated example, patterned surface 112 includes a plurality of features defined by spaced apart recesses 124 and protrusions 126 . The patterns formed as described above are for example purposes only, and any type of pattern may also be present on the patterned surface 112 . Thus, the patterned surface 112 may define any pattern that forms the basis of the pattern that will be formed on the substrate 102 through the imprint process.

模板108可以耦接到模板卡盤128。在一些範例中,模板卡盤128包含真空卡盤、銷式卡盤、凹式卡盤、電磁卡盤或其它合適的卡盤。範例性卡盤在美國專利 號6,873,087中描述。在一些實施例中,模板卡盤128可以是與基板卡盤104相同的類型。在其它實施例中,模板卡盤128和基板卡盤可以是不同類型的卡盤。此外,模板卡盤128可以被耦接至壓印頭130,使得模板卡盤128、壓印頭130或兩者被配置成促進模板108的移動。模板108的移動包含相對於模板在模板的平面內的移動(平面內移動)和模板的平面外的移動(平面外移動)。平面內移動包含模板108在模板的平面中(例如,在圖1中描繪的XY平面中)的平移以及模板在模板的平面中(例如,在XY平面中和繞Z軸)的旋轉。模板108相對於基板102的平移或旋轉也可透過基板的平移或旋轉來實現。模板108的平面內移動還包含增大或減少模板相對側上的壓縮力(例如,使用放大致動器)來增大或減少模板在模板的XY平面上的尺寸。模板108的平面外移動包含模板沿Z軸的平移(例如,透過增加或減少模板和基板之間的距離來增加或減少經由模板施加到基板的力)和模板繞模板的XY平面中的軸的旋轉。模板108繞模板的XY平面中的軸線的旋轉改變了模板108的XY平面與基板102的XY平面之間的角度,並且在本文中被稱為相對於基板「傾斜」模板,或相對於基板改變模板的「傾斜」或「傾斜角」。美國專利號8,387,482揭露了在壓印微影系統中經由壓印頭的模板的移動,並且透過參照將其併入本文。 Template 108 may be coupled to template chuck 128 . In some examples, template chuck 128 includes a vacuum chuck, pin chuck, recessed chuck, electromagnetic chuck, or other suitable chuck. Exemplary chucks are patented in the U.S. No. 6,873,087 described. In some embodiments, template chuck 128 may be the same type as substrate chuck 104 . In other embodiments, the template chuck 128 and the substrate chuck may be different types of chucks. Additionally, template chuck 128 may be coupled to imprint head 130 such that template chuck 128 , imprint head 130 , or both are configured to facilitate movement of template 108 . Movement of the template 108 includes movement relative to the template in the plane of the template (in-plane movement) and movement out of the plane of the template (out-of-plane movement). In-plane movement includes translation of the template 108 in the plane of the template (eg, in the XY plane depicted in FIG. 1 ) and rotation of the template in the plane of the template (eg, in the XY plane and about the Z axis). The translation or rotation of the template 108 relative to the substrate 102 can also be achieved through the translation or rotation of the substrate. In-plane movement of the template 108 also involves increasing or decreasing the compressive force on the opposite side of the template (eg, using a magnification actuator) to increase or decrease the size of the template in the XY plane of the template. Out-of-plane movement of the template 108 includes translation of the template along the Z axis (e.g., increasing or decreasing the force applied to the substrate via the template by increasing or decreasing the distance between the template and the substrate) and translation of the template about the template's axes in the XY plane. rotate. Rotation of the template 108 about an axis in the XY plane of the template changes the angle between the XY plane of the template 108 and the XY plane of the substrate 102, and is referred to herein as "tilting" the template relative to the substrate, or changing the angle relative to the substrate. The "tilt" or "tilt angle" of the template. US Patent No. 8,387,482 discloses movement of a template through an imprint head in an imprint lithography system and is incorporated herein by reference.

壓印微影系統100還可包含流體分配系統132。流體分配系統132可以被用於在基板102上沉積可聚 合材料134。可聚合材料134可使用諸如滴分配、旋塗、浸塗、化學氣相沉積(CVD)、物理氣相沉積(PVD)、薄膜沉積、厚膜沉積的技術或其它合適的方法設置在基板102上。在一些範例中,在模具110和基板102之間限定所需的體積之前或之後,將可聚合材料134設置在基板102上。可聚合材料134可包含如美國專利號7,157,036和美國專利申請案公開號2005/0187339中揭露的單體,其兩者透過參照併入本文中。在一些範例中,可聚合材料134作為複數個液滴136設置在基板102上。 The imprint lithography system 100 may also include a fluid distribution system 132 . Fluid distribution system 132 may be used to deposit polymerizable Composite material 134. The polymerizable material 134 may be disposed on the substrate 102 using techniques such as drop dispensing, spin coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, or other suitable methods. . In some examples, polymerizable material 134 is disposed on substrate 102 either before or after the desired volume is defined between mold 110 and substrate 102 . The polymerizable material 134 may comprise monomers as disclosed in US Patent No. 7,157,036 and US Patent Application Publication No. 2005/0187339, both of which are incorporated herein by reference. In some examples, polymerizable material 134 is disposed on substrate 102 as a plurality of droplets 136 .

參照圖1和圖2,壓印微影系統100可以進一步包含能量源138,所述能量源138沿著路徑142耦接至直接能量140。在一些範例中,壓印頭130和平台106被配置成將模板108和基板102定位成與路徑142重疊。壓印微影系統100可以由與平台106、壓印頭130、流體分配系統132、能量源138或其任何組合進行通訊的控制器144來調整,並且可以在儲存在記憶體146中的電腦可讀取程式上操作。 Referring to FIGS. 1 and 2 , imprint lithography system 100 may further include an energy source 138 coupled to direct energy 140 along path 142 . In some examples, imprint head 130 and stage 106 are configured to position template 108 and substrate 102 to overlap path 142 . The imprint lithography system 100 can be regulated by a controller 144 in communication with the platform 106, the imprint head 130, the fluid distribution system 132, the energy source 138, or any combination thereof, and can be stored in the computer memory 146. Read the operation on the program.

在一些範例中,壓印頭130、平台106或兩者改變模具110與基板102之間的距離,以在其之間限定由可聚合材料134填充的所需體積。例如,壓印頭130可以向模板108施加力,以使得模具110接觸可聚合材料134。在所需體積被可聚合材料134填充之後,能量源138產生能量140,如寬帶紫外線輻射,從而致使可聚合材料134聚合並且順應基板102的表面148和圖案化表面112的形狀,從而 在基板102上限定了聚合物圖案化層150。在一些範例中,圖案化層150包含殘留層152與顯示為突部154和凹部156的複數個特徵,其中突部154的厚度為t1,而殘留層152的厚度為t2。 In some examples, imprint head 130 , platform 106 , or both vary the distance between mold 110 and substrate 102 to define a desired volume therebetween that is filled with polymerizable material 134 . For example, imprint head 130 may apply force to template 108 such that mold 110 contacts polymerizable material 134 . After the desired volume is filled with polymerizable material 134, energy source 138 generates energy 140, such as broadband ultraviolet radiation, to cause polymerizable material 134 to polymerize and conform to the shape of surface 148 of substrate 102 and patterned surface 112, thereby A polymer patterned layer 150 is defined on the substrate 102 . In some examples, patterned layer 150 includes residual layer 152 and a plurality of features shown as protrusions 154 and recesses 156 , wherein protrusions 154 have a thickness t1 and residual layer 152 have a thickness t2.

以上描述的系統和程序可以被進一步實現在涉及美國專利號6,932,934、美國專利申請案公開號2004/0124566、美國專利申請案公開號2004/0188381和美國專利申請案公開號2004/0211754(其全部透過參照併入本文)的壓印微影程序和系統中。 The systems and procedures described above can be further implemented in reference to U.S. Patent No. 6,932,934, U.S. Patent Application Publication No. 2004/0124566, U.S. Patent Application Publication No. 2004/0188381, and U.S. Patent Application Publication No. 2004/0211754 (all of which through in the imprint lithography programs and systems incorporated herein by reference).

壓印微影基板和模板可以包含對應的對準標記對,其允許模板和基板的即時對準。在將圖案化的模板放置在基板上(例如,疊加在基板上)之後,確定模板對準標記相對於基板對準標記的對準。對準方案可以包含與對應的對準標記相關的對準誤差的「穿過檯面」(TTM)測量,隨後對這些誤差的補償,以實現在模板和基板上的所需壓印位置的精確對準,如美國專利號6,916,585;7,170,589;7,298,456;以及7,420,654所揭露的,其全部透過參照併入本文中。對準誤差可能是由於基板和模板的相對定位,基板或模板的變形或其組合致使的。 The imprint lithography substrate and template may contain corresponding pairs of alignment marks that allow instant alignment of the template and substrate. After the patterned template is placed on (eg, superimposed on) the substrate, the alignment of the template alignment marks relative to the substrate alignment marks is determined. Alignment schemes can include "through-table" (TTM) measurement of alignment errors associated with corresponding alignment marks, followed by compensation of these errors to achieve precise alignment of the desired imprint position on the template and substrate. standards, as disclosed in US Patent Nos. 6,916,585; 7,170,589; 7,298,456; and 7,420,654, all of which are incorporated herein by reference. Alignment errors may be due to the relative positioning of the substrate and template, deformation of the substrate or template, or a combination thereof.

圖3說明與基板102上的液體壓印抗蝕劑134接觸的壓印微影模板108的側視圖,其分別顯示模板108和基板102上的一對範例性對準標記302和304之間的第一或初始對準誤差X0。對準誤差X0可以由諸如感測器158的影像擷取裝置測量。在一些範例中,感測器158包含配置成 檢測來自對準標記302和304的衍射光的TTM對準儀器,其中所述衍射光可以穿過液體壓印抗蝕劑134。初始對準誤差X0可能超過可容許的對準誤差,例如,其可以小於10nm,重複性為1nm或更小。儘管將感測器158描述為影像擷取裝置,但這僅是範例性的,並且影像擷取裝置可以包含能夠即時檢測、擷取和透射衍射光的任何裝置。 3 illustrates a side view of imprint lithography template 108 in contact with liquid imprint resist 134 on substrate 102, showing the distance between an exemplary pair of alignment marks 302 and 304 on template 108 and substrate 102, respectively. First or initial alignment error X0. The alignment error X0 can be measured by an image capture device such as the sensor 158 . In some examples, sensor 158 includes a A TTM alignment instrument that detects diffracted light from alignment marks 302 and 304 that can pass through liquid imprint resist 134 . The initial alignment error X0 may exceed the allowable alignment error, for example, it may be less than 10 nm with a repeatability of 1 nm or less. Although the sensor 158 is described as an image capture device, this is exemplary only and the image capture device may comprise any device capable of detecting, capturing and transmitting diffracted light in real time.

對準誤差X0可能主要是由於平台106(例如XYθ平台)的放置誤差、旋轉誤差和/或柔度和磁滯造成的,並且可能包含x和y軸上的誤差以及繞z軸(θ)的旋轉。例如,放置誤差通常是指模板與基板之間的XY定位誤差(也就是說,沿X軸、Y軸或這兩者的平移,其中X和Y軸位於模板或基板的壓印表面的平面中或與所述壓印表面平行,如圖1所示)。旋轉(θ)誤差一般是指繞Z軸的相對方位誤差(也就是說,繞Z軸的旋轉,其中如圖1所示Z軸正交於XY平面)。 Alignment error X0 may be primarily due to placement errors, rotation errors, and/or compliance and hysteresis of stage 106 (e.g., an XYθ stage), and may include errors in the x and y axes as well as errors around the z-axis (θ) rotate. For example, placement errors typically refer to XY positioning errors between the template and substrate (that is, translation along the X axis, the Y axis, or both, where the X and Y axes lie in the plane of the imprinting surface of the template or substrate. or parallel to the embossed surface, as shown in Figure 1). Rotation (θ) error generally refers to relative orientation error about the Z axis (that is, rotation about the Z axis, where the Z axis is orthogonal to the XY plane as shown in FIG. 1 ).

模板對準標記302和對應的基板對準標記304在XY平面上的偏移的放置誤差可以透過模板和基板的相對移動來補償(例如,透過在XY平面中受控的基板、模板或兩者的移動)。可以透過改變模板和基板在XY平面上的相對角度(例如,透過基板、模板或兩者的旋轉)來補償旋轉誤差。 Placement errors in the offset of the template alignment marks 302 and corresponding substrate alignment marks 304 in the XY plane can be compensated for by relative movement of the template and substrate (e.g., by controlling the substrate, template, or both in the XY plane). the movement). Rotation errors can be compensated for by changing the relative angle of the template and substrate in the XY plane (eg, through rotation of the substrate, template, or both).

本發明闡述了一種控制機構,其用於控制上文參考圖1至圖3描述的壓印系統的操作,以減少對準標記302和304收斂以進行正確對準所需的時間,以確保在檯面 110上定義的圖案成功地印在基板102上。換句話說,將在下面描述控制演算法,以在預定時間段內使通常由X0表示的減少的誤差值在預定誤差臨界值以下。較佳地,結果將致使模板上的標記與基板上的標記之間的相對距離小於預定距離值。然而,由於基板和用於在其上壓印圖案的聚合物兩者的各種物理特性,在可接受的時間段內使此誤差值達到可接受的程度存在一定的困難。更具體地,從在固化期間將聚合物(例如壓印抗蝕劑)沉積在基板上並在其上施加能量開始,使基板和模板對準以使每個對準標記之間的相對距離彼此在預定範圍內是困難的。 The present invention sets forth a control mechanism for controlling the operation of the imprint system described above with reference to FIGS. mesa The pattern defined at 110 is successfully printed on substrate 102 . In other words, a control algorithm will be described below to keep the reduced error value, generally indicated by X0, below a predetermined error threshold for a predetermined period of time. Preferably, the result is such that the relative distance between the marks on the template and the marks on the substrate is less than a predetermined distance value. However, due to the various physical properties of both the substrate and the polymer used to imprint the pattern thereon, there has been some difficulty in achieving an acceptable level of this error within an acceptable period of time. More specifically, starting with depositing a polymer (such as an imprint resist) on a substrate and applying energy to it during curing, the substrate and template are aligned such that the relative distance between each alignment mark is It is difficult to stay within the predetermined range.

為了對準模板和基板上的標記,產生控制訊號以控制平台在XYθ方向上的移動。所述控制訊號包含一或多個參數值,這些參數值被轉換成電訊號,所述電訊號被施加到平台馬達(未顯示)以將平台移動到所需的目標位置。構成控制訊號的參數值可以是指示移動發生時刻的加速度值、速度值、旋轉值和時間值中的任何一或多個。 In order to align the template and the marks on the substrate, control signals are generated to control the movement of the stage in the XYθ direction. The control signal includes one or more parameter values that are converted into electrical signals that are applied to a platform motor (not shown) to move the platform to a desired target position. The parameter values constituting the control signal may be any one or more of an acceleration value, a velocity value, a rotation value and a time value indicating when the movement occurs.

取決於對準處理期間確定的參數值,致使兩個常見問題之一。一個可能的問題與目標位置的過衝有關,因為一或多個參數值共同導致了致使平台移動的軌跡,以使基板上的標記穿越模板上的標記,從而需要進一步校正對準。另一個可能的問題與停轉有關。停轉表示致使平台移動太慢之控制訊號的參數值。如此,穿過模板施加到基板上的能量使液體抗蝕劑固化並聚合,從而致使在標記被對準之前使對準處理停轉。透過使用本文所述的控 制演算法,透過每個樣本至少使用兩個與回饋訊號整合在一起的前饋訊號來解決這些問題,以便不斷修改和更新用於使平台移向目標位置的控制訊號。透過連續地監控相對於模板的位置的平台和基板的位置資訊,並且使用這些測量值,如本文所描述的系統成功地更迅速減少對準標記之間的誤差值,而不對基板102的特性有負面影響,並且在可聚合材料134聚合之前的預定時間量內。 Depending on the parameter values determined during the alignment process, one of two common problems results. One possible problem is related to overshooting of the target position, as one or more parameter values together result in a trajectory that causes the stage to move such that a mark on the substrate crosses a mark on the template, necessitating further alignment corrections. Another possible problem has to do with stalling. Stall represents the parameter value of the control signal that caused the platform to move too slowly. As such, the energy applied to the substrate across the template cures and polymerizes the liquid resist, causing the alignment process to stall until the marks are aligned. By using the controls described in this An algorithm is developed to address these issues by using at least two feed-forward signals per sample that are integrated with the feedback signal in order to continuously modify and update the control signals used to move the platform towards the target position. By continuously monitoring the positional information of the stage and the substrate relative to the position of the template, and using these measurements, the system as described herein succeeds in reducing the error value between the alignment marks more rapidly without compromising the characteristics of the substrate 102. adverse effect, and within a predetermined amount of time before the polymerizable material 134 polymerizes.

圖4顯示用於前饋和回饋控制的範例控制方塊圖。如本文所述的控制系統被顯示為體現為圖1所示的系統100中的控制器144的一部分。控制器144包含至少一個中央處理單元(CPU)和記憶體,並且可以執行儲存在記憶體中的指令,以執行所描述的操作和/或功能中的一或多者。控制器144與一或多個記憶體(例如RAM和/或ROM)進行通訊,並且在某些情況下執行儲存的指令以執行一或多個控制操作。在其它情況下,控制器144可以將資料臨時儲存在一或多個記憶體中,所述記憶體用於在下文中描述的各種訊號的計算和產生中。因此,控制器144透過使用電腦程式(可由CPU執行的一或多個一連串的儲存指令)和儲存在RAM和/或ROM中的資料來控制圖1的系統100。在此,控制器144可以包含與CPU不同的一或多個專用硬體或圖形處理單元(GPU)(或者可以與之通訊),並且GPU或專用硬體可以由CPU執行部分處理。作為專用硬體的範例,有特殊應用積體電路(ASIC)、現場可程式化閘陣列(FPGA)和數位訊號處理器(DSP)等。在一個實施例中,控 制系統100可以被實現為如圖1所示的控制器144的一部分。在一些實施例中,控制器144可以是專用控制器。在其它實施例中,控制系統100可以包含彼此通訊的複數個控制器以及控制系統100的其它元件以實現本文描述的操作。 Figure 4 shows an example control block diagram for feedforward and feedback control. A control system as described herein is shown embodied as part of controller 144 in system 100 shown in FIG. 1 . Controller 144 includes at least one central processing unit (CPU) and memory, and may execute instructions stored in memory to perform one or more of the described operations and/or functions. Controller 144 is in communication with one or more memories (eg, RAM and/or ROM), and in some cases executes stored instructions to perform one or more control operations. In other cases, controller 144 may temporarily store data in one or more memories, which are used in the calculations and generation of various signals described below. Thus, the controller 144 controls the system 100 of FIG. 1 through the use of a computer program (a series of one or more stored instructions executable by the CPU) and data stored in RAM and/or ROM. Here, the controller 144 may include (or may be in communication with) one or more dedicated hardware or graphics processing units (GPUs) other than the CPU, and the GPUs or dedicated hardware may perform a portion of the processing by the CPU. As examples of dedicated hardware, there are Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), and Digital Signal Processors (DSPs). In one embodiment, the control Control system 100 may be implemented as part of controller 144 as shown in FIG. 1 . In some embodiments, controller 144 may be a dedicated controller. In other embodiments, the control system 100 may include a plurality of controllers in communication with each other and other elements of the control system 100 to achieve the operations described herein.

在下文中,將描述執行根據本發明的控制功能的圖4的方塊圖。儘管以下參考各種控制器,但是在某些實施例中,每個控制器可以包含一系列儲存的指令,這些指令由控制器144的CPU執行以執行所描述的功能。在其它實施例中,本文描述的每個控制器可以被體現為各自具有它們自己的CPU和記憶體的單獨積體電路,並且專用於執行與其相關的處理。在其它實施例中,本文描述的一或多個控制器可以體現為單一積體電路。此外,在一些實施例中,所描述的一些控制器可以是專用處理單元,並且與正在執行儲存的指令的控制器的CPU進行通訊,以完成本文描述的功能操作。 Hereinafter, the block diagram of FIG. 4 that performs the control function according to the present invention will be described. Although reference is made below to various controllers, in some embodiments, each controller may contain a stored series of instructions that are executed by the CPU of controller 144 to perform the described functions. In other embodiments, each of the controllers described herein may be embodied as separate integrated circuits, each with their own CPU and memory, and dedicated to performing the processes associated therewith. In other embodiments, one or more of the controllers described herein may be embodied as a single integrated circuit. Additionally, in some embodiments, some of the controllers described may be dedicated processing units and communicate with the controller's CPU executing stored instructions to perform the functional operations described herein.

圖4包含感測器158、前饋控制器410、對準回饋控制器430、平台回饋控制器450和平台放大器470(在下文中稱為「放大器470」)。位於上述元件之間的是複數個接面,這些接面將對應控制器輸出的訊號合併,這些控制器透過相加、相減或卷積來饋送訊號。上述的每個元件的操作如下述,以便使支撐基板的平台移動到表示預定對準誤差範圍內的對準誤差值的目標位置。在一個實施例中,目標位置表示實質上為零的對準誤差值,其指示基板 上的標記與模板上的標記直接對準。 4 includes a sensor 158, a feedforward controller 410, an alignment feedback controller 430, a stage feedback controller 450, and a stage amplifier 470 (hereinafter "amplifier 470"). Located between the aforementioned elements are a number of interfaces that combine the signals output by corresponding controllers that feed the signals through addition, subtraction, or convolution. Each of the elements described above operates as follows so that the stage supporting the substrate is moved to a target position representing an alignment error value within a predetermined alignment error range. In one embodiment, the target position represents an alignment error value of substantially zero, which indicates that the substrate The markings on the stencil align directly with the markings on the template.

對準回饋控制器430和平台回饋控制器450中之各者可以執行為比例積分微分(PID)控制器或任何其它回饋控制器。這樣做時,用於處理各個輸入訊號以產生輸出訊號的範例性控制功能可以是諸如

Figure 109136284-A0305-02-0016-1
Each of alignment feedback controller 430 and platform feedback controller 450 may be implemented as a proportional-integral-derivative (PID) controller or any other feedback controller. In doing so, an exemplary control function for processing various input signals to generate output signals may be such as
Figure 109136284-A0305-02-0016-1

其中K p 、K i K d 分別表示比例、積分和微分控制項,用於控制體現所述控制器的特定操作。由回饋控制器執行的所述控制功能的方式是已知的,並且不需要進一步描述,並且基於在其中接收的輸入來連續地計算誤差值。第一接面420位於前饋控制器410和感測器158之間,並透過獲取第一前饋控制訊號412和表示相對於基板上的標記的模板上的標記的位置的測量訊號402之差異來產生第一輸入訊號422給對準回饋控制器430。第一前饋訊號412表示對準參考軌跡資訊,並且基於測量訊號402和儲存在記憶體中的參考軌跡資訊來產生。第一前饋訊號412包含至少一個參數,所述參數定義用於控制平台的移動操作的一或多個態樣。例如,至少一個參數可以包含以下的一或多者:用於沿著所確定的軌跡啟動所述平台的移動(a)所需的位置值,(b)所需的速度值,(c)所需的加速度值;(d)所需的旋轉值,以及(e)所需的起始時間。第一前饋訊號可以是相位平面(Phase Plane)(x軸:位置,y軸:速度)中的前饋軌跡,接著將其映射到時域(x軸:時間,y軸:位置),以 產生基於每個樣本的前饋訊號。根據從前饋和回饋訊號觀察到的摩擦變化,透過迭代學習和模型預測,可以離線或線上最佳化相位平面中的軌跡。這種最佳化是為了以最小的振盪實現最小的過衝(overshoot)和下衝(undershoot),並收斂時間,使模板和基板上的標記彼此對準。 where K p , K i and K d represent proportional, integral and derivative control terms, respectively, for controlling specific operations embodying the controller. The manner in which said control function is performed by a feedback controller is known and requires no further description, and error values are continuously calculated based on inputs received therein. The first interface 420 is located between the feedforward controller 410 and the sensor 158 and operates by obtaining the difference between the first feedforward control signal 412 and the measurement signal 402 representing the position of the mark on the template relative to the mark on the substrate. to generate the first input signal 422 to the alignment feedback controller 430 . The first feedforward signal 412 represents alignment reference trajectory information and is generated based on the measurement signal 402 and the reference trajectory information stored in memory. The first feedforward signal 412 includes at least one parameter defining one or more aspects for controlling the movement operation of the platform. For example, at least one parameter may comprise one or more of: (a) a desired position value for initiating movement of the platform along the determined trajectory, (b) a desired velocity value, (c) a desired desired acceleration value; (d) desired rotation value, and (e) desired start time. The first feedforward signal can be a feedforward trajectory in the Phase Plane (x-axis: position, y-axis: velocity), and then map it to the time domain (x-axis: time, y-axis: position) to Generates a feed-forward signal on a per-sample basis. Trajectories in the phase plane can be optimized offline or online through iterative learning and model prediction based on the friction changes observed from the feedforward and feedback signals. This optimization is to achieve minimal overshoot and undershoot with minimal oscillation and to converge the timing to align the template and the marks on the substrate with each other.

透過利用基板相對於模板的即時測量位置以及參考軌跡資訊,第一前饋訊號412可以表示位置-速度相位平面中的多項式或指數衰減線,其被轉換到時域。以此方式,透過將第一前饋訊號412的對準參考軌跡資訊與從感測器158即時獲取的在測量訊號402中編碼的測量位置值進行組合,對準控制器430可以產生對準軌跡(有時稱為控制命令或控制作用力),其可以更快地對準基板和模板上的標記。對準控制器430基於第一輸入訊號422產生對準軌跡資訊432,並且將對準軌跡資訊432輸出到第二接面440。換句話說,對準回饋控制器根據方程式來連續計算對準誤差值eTTM(t)=FF1(t)-POSTTM(t) By utilizing the real-time measured position of the substrate relative to the template and the reference trajectory information, the first feedforward signal 412 can represent a polynomial or exponential decay line in the position-velocity phase plane, which is converted to the time domain. In this way, alignment controller 430 may generate an alignment trajectory by combining the alignment reference trajectory information of first feedforward signal 412 with the measured position value encoded in measurement signal 402 acquired in real time from sensor 158 (sometimes referred to as control commands or control forces), which allow for faster alignment of marks on substrates and stencils. The alignment controller 430 generates alignment trajectory information 432 based on the first input signal 422 , and outputs the alignment trajectory information 432 to the second interface 440 . In other words, the alignment feedback controller continuously calculates the alignment error value e TTM (t)=FF 1 (t)-POS TTM (t) according to the equation

其中eTTM表示在給定時間的誤差值,FF1是由前饋控制器410產生的第一前饋訊號412的值,而POSTTM是由感測器158獲取的相對於由平台106支撐的基板的模板的當前位置。在計算誤差值之後,對準回饋控制器430將對準軌跡資訊輸出為U AL (t)。如下述,將使用對準軌跡資訊432來產生使平台沿其移動以便對準基板和模板的軌跡(或控制作用力)。 where e TTM represents the error value at a given time, FF 1 is the value of the first feedforward signal 412 generated by the feedforward controller 410, and POSTTM is the value obtained by the sensor 158 relative to the value supported by the platform 106 The current position of the template for the substrate. After calculating the error value, the alignment feedback controller 430 outputs the alignment track information as U AL (t) . As described below, the alignment trajectory information 432 will be used to generate a trajectory (or control force) along which the stage is moved to align the substrate and template.

前饋控制器410還輸出第二前饋控制訊號414至第二接面440。在一個實施例中,第一前饋訊號412和第二前饋訊號414是相同的。在另一個實施例中,基於第一前饋訊號412產生第二前饋訊號。例如,在一個實施例中,第二前饋訊號414可以是第一前饋訊號412的幅度或時移版本,其中第一前饋訊號412從初始起始時間開始轉移。例如,在一個實施例中,第二前饋訊號414 FF2可以是第一前饋訊號412 FF1的幅度移位版本,其中第一前饋訊號412的幅度FF shift 移位如下式所示。 The feedforward controller 410 also outputs a second feedforward control signal 414 to the second interface 440 . In one embodiment, the first feedforward signal 412 and the second feedforward signal 414 are the same. In another embodiment, the second feedforward signal is generated based on the first feedforward signal 412 . For example, in one embodiment, the second feedforward signal 414 may be an amplitude or time shifted version of the first feedforward signal 412, wherein the first feedforward signal 412 is shifted from an initial start time. For example, in one embodiment, the second feedforward signal 414 FF 2 may be an amplitude-shifted version of the first feedforward signal 412 FF 1 , wherein the amplitude FF shift of the first feedforward signal 412 is expressed as follows.

FF 2(t)=FF 1(t)+FF shift FF 2 ( t ) = FF 1 ( t ) + FF shift

因此,如果平台將要移動到的目標位置表示實質上為零的對準誤差,則第二前饋訊號414具有與第一前饋訊號412相同的值,但是與開始於所測量的位置402的第一前饋訊號412相比,其從零目標位置開始。產生第二前饋訊號414的其它範例包含將轉換函數f( )施加到第一前饋訊號412,如下面的方程式所述。其中f( )是包含時間移位的非線性轉換。 Thus, if the target position to which the stage is to be moved represents substantially zero alignment error, the second feed-forward signal 414 has the same value as the first feed-forward signal 412, but with the same value as the first feed-forward signal starting at the measured position 402. A feedforward signal 412 is compared, which starts from the zero target position. Another example of generating the second feedforward signal 414 includes applying the transfer function f ( ) to the first feedforward signal 412, as described in the following equation. where f ( ) is a non-linear transformation involving a time shift.

FF 2(t)=f(FF 1(t)) FF 2 ( t ) = f ( FF 1 ( t ))

所述轉換函數f( )可以表示非線性摩擦,其致使透過平台位置感測器476和標記感測器158感測的移動的去同步。在另一個實施例中,第二前饋訊號414係獨立於第一前饋訊號412產生。 The transfer function f ( ) may represent non-linear friction that causes desynchronization of movement sensed through stage position sensor 476 and indicia sensor 158 . In another embodiment, the second feedforward signal 414 is generated independently of the first feedforward signal 412 .

除了對準軌跡資訊432和第二前饋訊號414之外,第二接面440接收從放大器470的平台位置感測器476 獲取的平台位置資訊474作為輸入。平台位置資訊474表示在放大器470請求的平台移動操作結束時平台106的當前測量位置。第二接面440將對準資訊432與第二前饋訊號414組合,接著獲取組合訊號與平台位置資訊474之間的差異以產生第二輸入訊號442。第二輸入訊號442被輸入到平台回饋控制器,並產生平台軌跡資訊452作為其輸出。雖然顯示平台位置感測器476與平台106分離,但是這僅是範例性的,並且被顯示為便於理解系統操作。應當理解,平台位置感測器476可以包含在平台106中。 In addition to the alignment trajectory information 432 and the second feedforward signal 414, the second interface 440 receives a stage position sensor 476 from an amplifier 470 The acquired platform location information 474 is used as input. The platform position information 474 represents the current measured position of the platform 106 at the end of the platform movement operation requested by the amplifier 470 . The second interface 440 combines the alignment information 432 with the second feedforward signal 414 , and then obtains the difference between the combined signal and the platform position information 474 to generate the second input signal 442 . The second input signal 442 is input to the platform feedback controller and produces platform trajectory information 452 as its output. Although the platform position sensor 476 is shown separate from the platform 106, this is exemplary only and is shown to facilitate understanding of system operation. It should be understood that the platform position sensor 476 may be included in the platform 106 .

應當注意,儘管兩個回饋訊號都是從每個樣本的平台106的操作得到的,但是由平台位置感測器476和標記感測器回饋402感測的平台感測器回饋474不是相同的訊號。這是因為標記感測器回饋402和平台感測器回饋474不在同一座標空間中,因此不同步。關於其中存在這些座標空間的座標空間,平台感測器回饋474具有通常被設置為零的原始位置,並且在全局座標系中被設置為與整個設備(例如機器)相同。然而,當模板與基板之間的標記誤差為零時,標記感測器回饋402被設置為零。這可以在圖3中看到為X0。標記感測器158的座標空間是與模板和基板之間相關的空間。換句話說,產生標記感測器回饋402的標記感測器158的座標空間是局部座標系。透過考慮兩個座標空間的移位來產生體現為前饋訊號412和414的預測資訊。 It should be noted that the platform sensor feedback 474 sensed by the platform position sensor 476 and the marker sensor feedback 402 are not the same signal, although both feedback signals are derived from the operation of the platform 106 for each sample. . This is because the marker sensor feedback 402 and the platform sensor feedback 474 are not in the same coordinate space and therefore are not synchronized. With respect to the coordinate space in which these coordinate spaces exist, the platform sensor feedback 474 has an original position that is typically set to zero, and is set to be the same as the entire device (eg, machine) in the global coordinate system. However, when the marking error between the template and the substrate is zero, the marking sensor feedback 402 is set to zero. This can be seen in Figure 3 as X0. The coordinate space of the mark sensor 158 is the space relative to the template and the substrate. In other words, the coordinate space of the marker sensor 158 that generates the marker sensor feedback 402 is the local coordinate system. The prediction information embodied in feedforward signals 412 and 414 is generated by taking into account the shift of the two coordinate spaces.

除了由於不同的座標空間而致使的移位之 外,模板與基板之間的非線性摩擦還可能致使非線性縮放,以及第一前饋訊號412與第二前饋訊號414之間的時間和幅度移位。例如,在這種極端情況下,即使平台感測器回饋474指示平台106正在移動,基板和模板之間的非常大的摩擦也會致使標記感測器158檢測到發生了停轉(stall)(例如,基板和模板黏在一起)。在諸如此類的實施例中,第一前饋訊號412和第二前饋訊號414的產生可能需要執行非線性轉換函數作為前饋控制器410的操作的一部分。 In addition to shifts due to different coordinate spaces In addition, non-linear friction between the template and the substrate may also cause non-linear scaling and time and amplitude shifts between the first feedforward signal 412 and the second feedforward signal 414 . For example, in this extreme case, even though the stage sensor feedback 474 indicates that the stage 106 is moving, the very high friction between the substrate and the template will cause the mark sensor 158 to detect that a stall has occurred ( For example, substrate and formwork glued together). In embodiments such as these, the generation of the first feedforward signal 412 and the second feedforward signal 414 may require the implementation of a non-linear transfer function as part of the operation of the feedforward controller 410 .

平台回饋控制器450連續計算與如由放大器470控制的平台的位置相關的誤差值。誤差值可以透過平台回饋控制器450使用下面的方程式被計算:e stage (t)=U AL (t)+FF 2(t)-POS stage (t) Platform feedback controller 450 continuously calculates an error value related to the position of the platform as controlled by amplifier 470 . The error value can be calculated by the platform feedback controller 450 using the following equation: e stage (t) = U AL (t) + FF 2 (t) - POS stage (t)

其中e stage 表示平台位置的誤差值,U AL (t)表示對準軌跡資訊432,表示第二前饋訊號414(例如,FF 1 (t)的恆定移位(FF shift )相加形式)的FF 2 (t)POS stage 是由放大器470操作並由平台位置感測器476感測的平台106的當前位置。在此處理中,第二前饋訊號414(FF 2 (t))還包含與來自第一前饋訊號412的至少一個參數值相關的值。在一個實施例中,第二前饋訊號414中的參數值與第一前饋訊號412中的參數值相同,除了由於上面討論的恆定偏移而增加的偏移之外。在另一實施例中,鑑於被確定為對準軌跡資訊處理的一部分的誤差值,表示移動控制(例如,位置、速度、旋轉、加速度)的至少一個參數值中的一或多個可基於確定的誤差值而被更新,從而改善了平台回饋控制器450輸出 的平台軌跡資訊452。 where e stage represents the error value of the platform position, U AL (t) represents the alignment trajectory information 432, represents the second feedforward signal 414 (for example, the constant shift ( FF shift ) addition form of FF 1 (t) ) FF 2 (t) and POS stage are the current position of the stage 106 operated by the amplifier 470 and sensed by the stage position sensor 476 . In this process, the second feedforward signal 414 ( FF 2 (t) ) also includes a value related to at least one parameter value from the first feedforward signal 412 . In one embodiment, the parameter values in the second feedforward signal 414 are the same as the parameter values in the first feedforward signal 412, except for the added offset due to the constant offset discussed above. In another embodiment, one or more of at least one parameter value representing movement control (e.g., position, velocity, rotation, acceleration) may be based on determining an error value determined as part of alignment trajectory information processing The error value is updated, thereby improving the platform trajectory information 452 output by the platform feedback controller 450 .

在一個實施例中,平台軌跡資訊452直接輸出到放大器470,其將平台軌跡資訊452轉換成電訊號,接著將其施加到平台106(如圖1所示)以驅動平台106朝目標位置前進。在訊號452中所定義的平台軌跡的端部的平台移動的結尾,平台放大器470內從平台回饋控制器450獲取命令,並且輸出此命令作為用於產生平台移動的平台電訊號。新的平台位置係透過平台位置感測器獲取,並被回饋到第二接面440中,並用於確定如上所述的誤差值。平台控制命令資訊452可以輸出為U stage (t)(輸出控制訊號472)。 In one embodiment, the platform trajectory information 452 is output directly to the amplifier 470, which converts the platform trajectory information 452 into an electrical signal, which is then applied to the platform 106 (shown in FIG. 1) to drive the platform 106 toward the target position. At the end of the platform movement at the end of the platform trajectory defined in signal 452, the platform amplifier 470 takes commands from the platform feedback controller 450 within the platform amplifier 470 and outputs this command as the platform electrical signal used to generate the platform movement. The new platform position is obtained through the platform position sensor and fed back to the second interface 440 for determining the error value as described above. The platform control command information 452 can be output as U stage (t) (output control signal 472 ).

在另一個實施例中,如圖4所示,控制系統包含設置在平台回饋控制器450和平台放大器470之間的第三接面460。第三接面460將平台軌跡資訊452與由前饋控制器410產生並輸出的第三前饋訊號416結合。第三前饋訊號416是移動控制命令預測訊號。在一個實施例中,它是透過獲取對準誤差基本上為零的平台的目標位置與第二前饋訊號414之間的差異並將所述差異乘以平台回饋控制器450用來控制平台106(圖1)的移動的比例增益而產生的。可以根據以下方程式來計算第三前饋訊號416:FF 3=(POS target -FF 2(t))* P gain In another embodiment, as shown in FIG. 4 , the control system includes a third interface 460 disposed between the platform feedback controller 450 and the platform amplifier 470 . The third interface 460 combines the platform trajectory information 452 with the third feedforward signal 416 generated and output by the feedforward controller 410 . The third feedforward signal 416 is a mobile control command prediction signal. In one embodiment, it is used to control the stage 106 by taking the difference between the target position of the stage with substantially zero alignment error and the second feedforward signal 414 and multiplying the difference by the stage feedback controller 450 (Figure 1) resulting from the shifted proportional gain. The third feedforward signal 416 can be calculated according to the following equation: FF 3 =( POS target FF 2 (t))* P gain

其中FF 3是第三前饋訊號416,POS target 表示對準誤差基本上為零的目標平台位置,而P gain 表示由平台回饋控制器450施加以控制平台移動的增益。第三接面460結合FF 3U stage (t),以產生平台移動控制訊號462作為平台放大器470 的輸入。平台放大器470將訊號轉換成電壓或電流(輸出控制訊號472),其用於根據透過組合第三前饋訊號416(FF 3)和平台命令資訊452(U stage (t))產生的移動控制訊號來驅動平台106。 Where FF 3 is the third feedforward signal 416 , POS target represents the target stage position at which the alignment error is substantially zero, and P gain represents the gain applied by the stage feedback controller 450 to control the movement of the stage. The third interface 460 combines FF 3 and U stage (t) to generate a stage movement control signal 462 as an input of a stage amplifier 470 . The stage amplifier 470 converts the signal into a voltage or current (output control signal 472), which is used in accordance with the movement control signal generated by combining the third feedforward signal 416 ( FF 3 ) and the stage command information 452 ( U stage (t)) to drive the platform 106.

透過產生和使用第三前饋訊號416以及平台軌跡資訊452,由平台回饋控制器處理致使的相位延遲更少,這致使更快的對準。透過使用第三前饋訊號416呈現的另一優點允許更大的設計自由度,以減少剪力並克服在對準和固化程序中的靜摩擦和非線性移動摩擦。此外,第三前饋訊號416集中在第二前饋訊號414與目標位置之間的殘餘誤差。這有利地透過基於第三前饋訊號416更新平台軌跡資訊來提高平台軌跡資訊的調諧能力,以使平台沿著將更快地對準基板和模板上的標記的軌跡移動。它也可用於最小化由模板和基板之間的非線性摩擦致使的第一和第二前饋之間的去同步;並且在處理較小的回饋誤差時降低了回饋控制器430和450設計的複雜性。 By generating and using the third feedforward signal 416 and the stage trajectory information 452, less phase delay is caused by the stage feedback controller processing, which results in faster alignment. Another advantage presented through the use of the third feedforward signal 416 allows greater design freedom to reduce shear forces and overcome static and non-linear movement friction during alignment and curing procedures. In addition, the third feedforward signal 416 focuses on the residual error between the second feedforward signal 414 and the target position. This advantageously improves the tuning capability of the stage trajectory information by updating the stage trajectory information based on the third feedforward signal 416 so that the stage moves along a trajectory that will more quickly align the marks on the substrate and template. It can also be used to minimize the desynchronization between the first and second feed-forwards caused by non-linear friction between the template and the substrate; Complexity.

基於以上內容,圖4的控制系統有利地使得第一和第二前饋訊號能夠著眼於各自的回饋迴路,從而使得回饋控制器430和平台回饋控制器450對準,能夠更容易地被調諧,因為它們的處理著眼於當前位置與由前饋控制器410產生的各自第一和第二前饋軌跡資訊之間的殘餘誤差。這允許第三前饋訊號基於由前一平台軌跡定義的平台的最新終點位置,以使所述平台更接近目標位置。圖7中顯示說明前饋訊號的範例性時間軌跡。沿x軸顯示以秒呈 現的時間,y軸顯示以奈米呈現的位置。這顯示在特定時間的位置不同,顯示基板和模板之間距目標位置的相對距離。在圖7中,目標標記對準由標記為702的目標標記距離0表示。第一前饋訊號412是基於由標記感測器158感測到的位置資訊,並在初始時間0秒略微之後開始的。如本文所指示,第一前饋訊號412用於產生對準軌跡資訊。具有實質上與第一前饋訊號412的相同特性的第二前饋訊號414被偏移添加,並且不是在由感測器158感測到的位置開始,被重新初始化,以從當前平台位置開始,其可以是零的首次初始化或重新初始化前的最後平台位置。如本文所示,第二前饋訊號414用於產生平台軌跡資訊。基於此,實質上同時,表示移動控制命令預測資訊的第三前饋訊號416係基於第二前饋訊號414產生。因此,隨著時間的流逝,感測的標記位置如同在對準軌跡和指出基板和模板的對準的移動預測資訊收斂中指示的。 Based on the above, the control system of FIG. 4 advantageously enables the first and second feedforward signals to be focused on the respective feedback loops, so that the feedback controller 430 and the platform feedback controller 450 are aligned and can be more easily tuned, Because their processing focuses on the residual error between the current position and the respective first and second feedforward trajectory information generated by the feedforward controller 410 . This allows the third feedforward signal to be based on the latest end position of the platform defined by the previous platform trajectory to bring the platform closer to the target position. An exemplary time trace illustrating a feedforward signal is shown in FIG. 7 . Displayed in seconds along the x-axis time, and the y-axis shows position in nanometers. This shows the difference in position at a specific time, showing the relative distance between the substrate and template from the target position. In FIG. 7 , target marker alignment is represented by a target marker distance of 0 labeled 702 . The first feedforward signal 412 is based on the position information sensed by the marker sensor 158 and starts slightly after the initial time 0 seconds. As indicated herein, the first feedforward signal 412 is used to generate alignment trajectory information. A second feedforward signal 414 having substantially the same characteristics as the first feedforward signal 412 is added with an offset, and instead of starting at the position sensed by the sensor 158, is re-initialized to start at the current platform position , which can be the first initialization of zero or the last platform position before reinitialization. As shown herein, the second feedforward signal 414 is used to generate platform trajectory information. Based on this, substantially at the same time, the third feedforward signal 416 representing the movement control command prediction information is generated based on the second feedforward signal 414 . Thus, over time, the sensed marker positions are as indicated in the alignment trajectory and convergence of movement prediction information indicating the alignment of the substrate and template.

如果來自標記感測器的初始誤差在預定範圍內,則前饋控制器使用目標標記位置來替換第一前饋,並且將第二和第三前饋設置為零。如果來自標記感測器的初始誤差在預定範圍之外時,則將會產生第一前饋使此標記誤差為零,並且所述第二和第三前饋將根據上述描述來產生。如果所產生的前饋已經使用,並且來自標記感測器的追蹤的結尾的標記誤差仍然比預定範圍大,則前饋將基於在前饋的結尾的標記誤差作為新的初始誤差來重新產生。第二前饋也將透過使用前一個前饋追蹤的結尾作為起點來 重新產生。預定範圍可以是基於標記感測器誤差的位置、速度或加速度。如果來自標記感測器的誤差在前饋完成最後一個樣本之前到達目標,則前饋訊號可以跳到最後一個樣本或一直持續直到最後一個樣本。 If the initial error from the marker sensor is within a predetermined range, the feedforward controller replaces the first feedforward with the target marker position and sets the second and third feedforwards to zero. If the initial error from the mark sensor is outside a predetermined range, a first feedforward will be generated to zero the mark error, and the second and third feedforwards will be generated as described above. If the generated feedforward has been used, and the marker error from the end of the track of the marker sensor is still greater than a predetermined range, the feedforward will be regenerated based on the marker error at the end of the feedforward as a new initial error. The second feedforward will also be done by using the end of the previous feedforward trace as the starting point reproduce. The predetermined range may be position, velocity or acceleration based on marker sensor error. If the error from the marker sensor reaches the target before the feedforward completes the last sample, the feedforward signal can skip to the last sample or continue until the last sample.

當參見圖8A和8B時,由現有控制系統呈現的第三前饋的其它優點是顯而易見的,圖8A和8B是平台到達目標位置並使用兩個前饋控制訊號(圖8A)和三個前饋控制訊號(圖8B)來對準基板和模板所花費的時間長度的圖形表示。從圖8B中可以看出,與圖8A相比,減少了所有跡線收斂到零的目標位置的時間。這是克服時間延遲和靜摩擦的第三前饋的直接結果。顯示的另一個好處是在比第三前饋更小的平台移動控制訊號的結尾比只有兩個前饋的方案更快克服停轉。在為聚合提供能量時,較小的平台控制命令接近於對準的端部的力可以減少由可聚合材料134經歷的力的量。 Additional advantages of the third feed-forward presented by existing control systems are apparent when referring to Figures 8A and 8B, which show the platform reaching the target position and using two feed-forward control signals (Figure 8A) and three feed-forward A graphical representation of the length of time it takes to feed the control signal (FIG. 8B) to align the substrate and template. It can be seen from Figure 8B that the time for all traces to converge to the target position of zero is reduced compared to Figure 8A. This is a direct result of the third feed-forward that overcomes time delays and stiction. Another benefit shown is that at the end of the platform movement control signal smaller than the third feedforward, stalls are overcome faster than the scheme with only two feedforwards. A smaller platform control command force proximate to the aligned end can reduce the amount of force experienced by the polymerizable material 134 when energizing polymerization.

雖然圖4顯示由各種控制器和感測器體現的總體控制系統,圖5A-5C顯示用於如何體現各個元件的額外配置。圖5A顯示產生了兩個前饋控制訊號並將其與上述各種回饋控制訊號整合的實施例中的前饋控制器410的更詳細視圖。如本文所示,每個方塊可以表示執行上述計算的對應CPU。在圖5A中,前饋控制器410可以包含第一前饋產生器502,其是從感測器158接收輸入以產生表示對準參考軌跡資訊的第一前饋控制訊號412的處理單元(CPU)。此外,第一前饋產生器502可以將第一前饋訊號輸出到作 為處理單元的第二前饋產生器504(與第一前饋產生器相同或單獨的CPU)。接著,第二前饋產生器504產生第二前饋訊號414,以輸出到平台控制器450。雖然在此顯示為直接輸出到控制器430和450的訊號,但是應當注意,這可以指示輸出到在圖4中所討論的各個接面。可替換地,透過接面處執行的功能可以在回饋控制器430和平台回饋控制器450的每個對準中封裝。圖5B顯示可以產生包含移動預測資訊的第三前饋訊號的實施例。在此實施例中,前饋控制器410包含第三前饋產生器506,其本身可以是其自己的處理單元CPU,或者可以是具有第一和第二前饋產生器中的一個或兩個的處理單元的一部分。進一步如圖5B的虛線框所示,範例性配置將前饋控制器410和對準回饋控制器430體現在與平台回饋控制器450單獨的單一處理單元上。圖5C包含與圖5B所示的元件類似的元件,除了虛線框指示前饋控制器410、對準回饋控制器430和平台回饋控制器450被體現在單一處理單元上之外。 While FIG. 4 shows the overall control system embodied by various controllers and sensors, FIGS. 5A-5C show additional configurations for how the individual elements are embodied. Figure 5A shows a more detailed view of the feedforward controller 410 in an embodiment where two feedforward control signals are generated and integrated with the various feedback control signals described above. As shown herein, each block may represent a corresponding CPU that performs the calculations described above. In FIG. 5A, the feedforward controller 410 may include a first feedforward generator 502, which is a processing unit (CPU) that receives an input from the sensor 158 to generate a first feedforward control signal 412 representing alignment reference trajectory information. ). In addition, the first feedforward generator 502 can output the first feedforward signal to the operator The second feedforward generator 504 is a processing unit (the same as the first feedforward generator or a separate CPU). Next, the second feedforward generator 504 generates a second feedforward signal 414 to output to the platform controller 450 . Although shown here as signals output directly to controllers 430 and 450 , it should be noted that this could indicate an output to the various interfaces discussed in FIG. 4 . Alternatively, the functionality performed through the interface may be encapsulated in each alignment of feedback controller 430 and platform feedback controller 450 . FIG. 5B shows an embodiment in which a third feed-forward signal including motion prediction information can be generated. In this embodiment, the feed-forward controller 410 includes a third feed-forward generator 506, which may itself be its own processing unit CPU, or may have one or both of the first and second feed-forward generators. part of the processing unit. As further shown by the dashed box in FIG. 5B , an exemplary configuration embodies the feedforward controller 410 and the alignment feedback controller 430 on a single processing unit separate from the platform feedback controller 450 . Figure 5C contains similar elements to those shown in Figure 5B, except that the dashed boxes indicate that the feedforward controller 410, the alignment feedback controller 430, and the platform feedback controller 450 are embodied on a single processing unit.

應當理解,以上描述的前饋控制器410顯示至少兩個但有時三個前饋訊號被產生並用於控制平台106的移動。如上所述,可以透過使用第一前饋訊號412和第二前饋訊號414來執行此控制。此外,以上描述指出第三前饋訊號416可以與第一前饋訊號412和第二前饋訊號414結合使用。還應該理解的是所述演算法可以進一步也僅連同第三前饋訊號416使用第一前饋訊號。可替代地,也可以僅使用第二前饋訊號414和第三前饋訊號416。關於這三 個前饋訊號的方式和時間的確定取決於所執行的誤差計算,以及所計算的誤差是否在預定範圍之外,從而需要產生更多(或更少)的主動預測資訊來控制平台移動,以使模板上的標記與基板上的標記對準。前饋訊號(412、414、416)的各種組合的目標可以是在控制作用力之前預測一組快速且穩定的位置和控制軌跡。另一個目標可能是使回饋誤差(422和442)盡可能小。在實施例中,同步的三個前饋之間有一個理想的關係,其可以被寫成如下:Sys 412(FF 1)=Sys 414(FF 2)+Sys 416(FF 3) It should be appreciated that the feedforward controller 410 described above shows that at least two but sometimes three feedforward signals are generated and used to control the movement of the platform 106 . As mentioned above, this control can be performed by using the first feedforward signal 412 and the second feedforward signal 414 . In addition, the above description indicates that the third feedforward signal 416 can be used in combination with the first feedforward signal 412 and the second feedforward signal 414 . It should also be understood that the algorithm may further use the first feedforward signal in conjunction with the third feedforward signal 416 as well. Alternatively, only the second feedforward signal 414 and the third feedforward signal 416 may be used. Determination of how and when these three feed-forward signals are determined depends on the error calculations performed and whether the calculated errors are outside a predetermined range, thus requiring more (or less) active predictive information to be generated to control the platform Move so that the marks on the template align with the marks on the substrate. The goal of various combinations of feed-forward signals (412, 414, 416) may be to predict a set of fast and stable positions and control trajectories prior to controlling forces. Another goal might be to keep the feedback errors (422 and 442) as small as possible. In an embodiment, there is an ideal relationship among the three synchronous feedforwards, which can be written as follows: Sys 412 ( FF 1 )= Sys 414 ( FF 2 )+ Sys 416 ( FF 3 )

其中Sys xxx 表示具有到前饋訊號412、414和416之輸入的開迴路系統響應。在另一個實施例中,三個前饋訊號的波形可由模型參照設計、迭代學習,和/或重複控制來確定。在實施例中,兩個或更多的前饋訊號可基於下列中的一或多者被最佳化:平台對準和標記對準之間的協調系統差異、基板和模板之間的非線性摩擦。 where Sys xxx represents the open loop system response with inputs to the feedforward signals 412 , 414 and 416 . In another embodiment, the waveforms of the three feedforward signals can be determined by model reference design, iterative learning, and/or repetitive control. In an embodiment, two or more feed-forward signals may be optimized based on one or more of: coordinated system differences between stage alignment and marker alignment, non-linearity between substrate and template friction.

現在轉向圖6,其顯示根據本發明實施例的用於實現對準控制的範例性控制演算法。以下描述將利用與圖1至圖4相關的參考符號來表示執行演算法控制的處理單元。如本文所示,所述演算法表示控制其上支撐有基板的可移動平台的位置的方法。在步驟S602中,透過感測器158獲取表示基板相對於模板上的標記的測量位置的第一位置資訊。第一位置資訊表示平台106的當前測量位置以及基板和模板上的標記之間的相對距離。第一位置資訊被提供給前饋控制器410和對準回饋控制器430中之各者。 Turning now to FIG. 6 , an exemplary control algorithm for implementing alignment control is shown in accordance with an embodiment of the present invention. The following description will use reference symbols related to FIGS. 1 to 4 to denote processing units that perform algorithmic control. As indicated herein, the algorithm represents a method of controlling the position of the movable platform on which the substrate is supported. In step S602 , first position information indicating the measured position of the substrate relative to the mark on the template is acquired through the sensor 158 . The first position information represents the current measurement position of the platform 106 and the relative distance between the marks on the substrate and the template. The first position information is provided to each of the feedforward controller 410 and the alignment feedback controller 430 .

在步驟S604中,前饋控制器410基於所獲取的第一位置來產生對準參考軌跡資訊。所產生的對準參考軌跡資訊表示第一、第二和第三前饋訊號412、414和416,從前饋控制器410輸出且包含用於控制可移動平台到目標位置的移動的至少一個參數值,以使基板和模板上的標記之間的確定對準誤差實質上為零。所述至少一個參數包含下列各者中的一或多者:用於沿著所確定的軌跡啟動所述平台的移動(a)所需的位置值,(b)所需的速度值,(c)所需的加速度值,以及(d)所需的起始時間。 In step S604 , the feedforward controller 410 generates alignment reference trajectory information based on the acquired first position. The generated alignment reference trajectory information represents the first, second and third feedforward signals 412, 414 and 416, output from the feedforward controller 410 and containing at least one parameter value for controlling the movement of the movable platform to the target position , so that the determined alignment error between the marks on the substrate and the template is substantially zero. The at least one parameter comprises one or more of the following: (a) a desired position value, (b) a desired velocity value, (c) for initiating movement of the platform along the determined trajectory ) the desired acceleration value, and (d) the desired start time.

在步驟S606中,由對準回饋控制器產生第一軌跡資訊。第一軌跡資訊表示由對準回饋控制器420輸出的對準軌跡資訊,並且包含基於所獲取的第一位置資訊和所產生的對準預測資訊的至少一個參數值。第一軌跡資訊是透過獲取所獲取的第一位置資訊和前饋對準參考軌跡資訊之間的差異而產生的第一回饋訊號422。 In step S606, the alignment feedback controller generates first trajectory information. The first trajectory information represents the alignment trajectory information output by the alignment feedback controller 420 and includes at least one parameter value based on the obtained first position information and the generated alignment prediction information. The first trajectory information is the first feedback signal 422 generated by obtaining the difference between the acquired first position information and the feed-forward alignment reference trajectory information.

在步驟S608中,產生第二軌跡資訊452。第二軌跡資訊452由平台回饋控制器450產生,並且基於對準預測資訊和414產生,誤差值是從第二參考軌跡資訊432和表示可移動平台的當前位置的平台位置資訊474確定的。如此,所產生的第二軌跡資訊452包含已經更新的至少一個參數值,所述參數值已基於計算出的誤差值而被更新。第二軌跡資訊表示透過組合第二前饋訊號414、對準軌跡資訊432和表示平台106的當前位置的位置訊號而產生的第二回饋訊號。在某些實施例中,S608還可包含第二誤差確 定處理,其基於可移動平台的當前位置來確定第二誤差值,所述可移動平台係根據第二軌跡資訊和目標位置而移動。 In step S608, the second track information 452 is generated. The second trajectory information 452 is generated by the platform feedback controller 450 and based on the alignment prediction information and 414, the error value is determined from the second reference trajectory information 432 and the platform position information 474 representing the current position of the movable platform. Thus, the generated second trajectory information 452 includes at least one parameter value that has been updated based on the calculated error value. The second trajectory information represents the second feedback signal generated by combining the second feedforward signal 414 , the alignment trajectory information 432 and the position signal representing the current position of the platform 106 . In some embodiments, S608 may also include a second error confirmation A process is defined that determines a second error value based on a current position of the movable platform that moves according to the second trajectory information and the target position.

在步驟S610中,平台回饋控制器450產生包含所述經更新的至少一個參數值的輸出控制訊號472,並將所述控制訊號輸出到平台放大器470,所述平台放大器470在步驟S612中,基於所產生的輸出訊號來控制可移動平台以接近目標位置。在步驟S610中產生的輸出控制訊號472還可以包含由上述第二誤差處理確定的第三前饋訊號,使得平台可以在步驟S612中被控制,以根據更新的參數值移動。 In step S610, the platform feedback controller 450 generates an output control signal 472 including the updated at least one parameter value, and outputs the control signal to the platform amplifier 470, and the platform amplifier 470, in step S612, based on The generated output signal is used to control the movable platform to approach the target position. The output control signal 472 generated in step S610 may also include a third feedforward signal determined by the above-mentioned second error processing, so that the platform can be controlled in step S612 to move according to the updated parameter value.

在步驟S614中,由感測器158確定標記是否與基板上的標記和模板上的標記的相對位置相關的誤差值在預定誤差範圍內。如果在S614中的確定結果為肯定的,則指出誤差值在可接受的範圍內,所述確定指示模板上的標記和基板上的標記彼此對準,並且控制演算法在S615中結束。 In step S614, it is determined by the sensor 158 whether the error value related to the relative position of the mark on the substrate and the mark on the template is within a predetermined error range. If the determination in S614 is affirmative, indicating that the error value is within an acceptable range, the determination indicates that the marks on the template and the marks on the substrate are aligned with each other, and the control algorithm ends in S615.

如果確定結果是否定的,則指出基板上的標記和模板上的標記未對準。在這種情況下,演算法重複步驟S602-S612。如此,更新了以上本文中描述的每個資訊和軌跡值,使得基於回饋和前饋控制兩者來修改其中包含的並且用於控制平台的移動的一或多個參數。這些更新是基於在可移動平台已經根據輸出控制訊號472移動並且到達了不是目標位置的最終位置之後,由感測器獲取的更新 的第一位置資訊。 If the determination is negative, it indicates that the marks on the substrate and the marks on the template are not aligned. In this case, the algorithm repeats steps S602-S612. As such, each of the information and trajectory values described herein above are updated such that one or more parameters contained therein and used to control the movement of the platform are modified based on both feedback and feedforward control. These updates are based on updates obtained by the sensors after the movable platform has moved according to the output control signal 472 and reached a final position that is not a target position The first location for .

除了重複步驟S602-S612之外,響應於否定的確定,演算法在步驟S616中產生移動預測資訊作為第三前饋訊號416。如此,響應於基於輸出控制訊號472確定可移動平台的最終位置距目標位置預定距離之外(例如,誤差值大於預定誤差臨界值),則移動控制器預測資訊被產生並且包含基於可移動平台的最終位置確定的經更新的至少一個參數值。所述經更新的至少一個參數值係基於最終位置和第二軌跡資訊之間的差異來更新。將移動控制器預測資訊與第二軌跡資訊組合以產生所述經更新的輸出控制訊號472,接著將其用於基於所述經更新的輸出控制訊號472來控制可移動平台。 In addition to repeating steps S602-S612, in response to a negative determination, the algorithm generates motion prediction information as a third feedforward signal 416 in step S616. As such, in response to determining based on the output control signal 472 that the final position of the moveable platform is outside a predetermined distance from the target position (e.g., the error value is greater than a predetermined error threshold), motion controller predictive information is generated and includes information based on the moveable platform. The updated at least one parameter value of the final position determination. The updated at least one parameter value is updated based on a difference between the final position and the second trajectory information. The mobile controller prediction information is combined with the second trajectory information to generate the updated output control signal 472, which is then used to control the movable platform based on the updated output control signal 472.

根據以上描述的演算法,模板與基板的相對位置可以透過接收表示模板上的標記相對於基板上的對準標記的相對位置的對準資訊來成功地控制。前饋對準軌跡基於對準資訊接著被產生,並且可以包含諸如前饋對準軌跡的所需的位置、所需的速度、所需的加速度和所需的起始時間中的一或多個的參數。基於此,可以產生對準誤差時間序列,所述對準誤差時間序列表示前饋對準軌跡減去所測得的對準軌跡,其中這些軌跡皆包含一或多個參數,諸如位置、速度和加速度。對準誤差時間序列可以轉換為對準閉迴路回饋控制輸出時間序列,接著將其用於產生由放大器使用的平台軌跡資訊作為輸入資訊,作為對準閉迴路回饋控制輸出時間序列加上平台前饋軌跡之和。平台回 饋控制器從平台位置感測器接收平台控制器輸入資訊和回饋資訊,所述平台位置感測器測量平台的位置並不斷更新和修改平台軌跡資訊,接著由平台回饋控制器使用所述平台軌跡資訊來驅動平台的位置邁向目標。 According to the algorithm described above, the relative position of the template and the substrate can be successfully controlled by receiving alignment information representing the relative position of the marks on the template with respect to the alignment marks on the substrate. A feed-forward alignment trajectory is then generated based on the alignment information and may contain one or more of desired position, desired velocity, desired acceleration, and desired start time such as a feed-forward alignment trajectory parameters. Based on this, an alignment error time series can be generated that represents the feed-forward alignment trajectory minus the measured alignment trajectory, where these trajectories each contain one or more parameters, such as position, velocity, and acceleration. The alignment error time series can be transformed into an alignment closed-loop feedback control output time series, which is then used to generate platform trajectory information used by the amplifier as input information, as an alignment closed-loop feedback control output time series plus platform feed-forward sum of trajectories. platform back The feedback controller receives platform controller input information and feedback information from the platform position sensor, which measures the position of the platform and continuously updates and modifies the platform trajectory information, and then the platform feedback controller uses the platform trajectory information to drive the position of the platform towards the goal.

本發明提供了一種動態前饋重新初始化機構,如果平台的最終位置導致平台不在目標位置的預定臨界值內,其用以產生新的前饋的軌跡資訊。在這種方式中,前饋控制器被重新初始化,以基於平台最近的位置來產生經更新的前饋訊號,並透過感測基板和模板之間的相對位置的感測器158來確定。由於前饋重新初始化,位置誤差可以與回饋增益和整體系統的複雜性一起降低。在操作中,測量基板和模板之間的相對距離的感測器158被用來測量平台移動的絕對距離。在獲取第一樣本時,所產生的前饋基於感測器資料在初始位置處開始,並且隨後重新初始化的前饋係用以從總體控制作用力開始,從而致使在上一個樣本期間的平台最終位置。因此,雙回饋環路可以在每次前饋重新初始化的開始時重新初始化。此操作有利地使得當前描述的控制系統能夠為壓印微影提供快速一致的對準,並且在壓印開始時補償液體抗蝕劑的液體內部分和基板的物理變化。上述演算法克服了與回饋控制系統相關的變化和非線性相關的缺點,以減少壓印微影期間的過衝、下衝和停轉。因此,本文提供的控制演算法提高了從基板大量生產一或多種物品的產量和效率。 The present invention provides a dynamic feed-forward re-initialization mechanism for generating new feed-forward trajectory information if the final position of the platform results in the platform not being within a predetermined threshold of the target position. In this manner, the feedforward controller is reinitialized to generate an updated feedforward signal based on the most recent position of the stage, as determined by the sensor 158 that senses the relative position between the substrate and template. Due to feed-forward reinitialization, position error can be reduced along with feedback gain and overall system complexity. In operation, the sensor 158, which measures the relative distance between the substrate and the template, is used to measure the absolute distance traveled by the stage. When the first sample is taken, the generated feed-forward starts at an initial position based on sensor data, and then a re-initialized feed-forward system is used to start from the overall control force, resulting in a plateau during the previous sample final position. Thus, the dual feedback loop can be reinitialized at the beginning of each feedforward reinitialization. This operation advantageously enables the presently described control system to provide fast and consistent alignment for imprint lithography, and to compensate for physical changes in the liquid interior of the liquid resist and the substrate when imprinting begins. The algorithm described above overcomes the variability and non-linearity related disadvantages associated with feedback control systems to reduce overshoot, undershoot and stall during imprint lithography. Accordingly, the control algorithms provided herein increase the throughput and efficiency of mass production of one or more items from a substrate.

因此,上文詳述的控制演算法可用於半導體 製造的程序中,以製造一或多個物品或裝置。根據以上本文描述的控制演算法對已經成功對準的基板進行處理的這些程序包含但不限於:壓印微影;以及微影;烘烤;氧化;層形成;沉積;摻雜;蝕刻;脫渣;切割;接合;封裝;等。可以使用用於物品製造的其它已知步驟和程序進一步處理基板,包含例如檢查、固化、氧化、層形成、沉積、摻雜、平面化、蝕刻、可成形材料移除、切割、接合、封裝,等等。基於上述,可以對基板進行處理以生產複數個物品(裝置)。 Therefore, the control algorithm detailed above can be applied to semiconductor The process of manufacturing to manufacture one or more articles or devices. These procedures for processing successfully aligned substrates according to the control algorithms described herein above include, but are not limited to: imprint lithography; and lithography; baking; oxidation; layer formation; deposition; doping; etching; stripping slag; cutting; bonding; encapsulation; etc. The substrate may be further processed using other known steps and procedures for article manufacture, including for example inspection, curing, oxidation, layer formation, deposition, doping, planarization, etching, formable material removal, dicing, bonding, encapsulation, etc. Based on the above, a substrate can be processed to produce a plurality of items (devices).

在一個範例中,所述處理可以包含在基板上分配壓印抗蝕劑(例如液體),並使所述壓印抗蝕劑與物體接觸,使得其上具有圖案的物體接觸所述壓印抗蝕劑。所述處理包含對準處理,以將基板和物體(例如,模板)對準至預定對準位置,接著處理其上已經分配了壓印抗蝕劑的基板,以製造製品。因此,將能量施加到基板上以固化抗蝕劑並在基板上形成與模板上的圖案相對應的圖案。重複執行此程序,以便在抗蝕劑被施加的能量固化之前,將物體和基板對準。 In one example, the process may include dispensing an imprint resist (eg, a liquid) on the substrate and contacting the imprint resist with an object such that the object having the pattern thereon contacts the imprint resist. etchant. The process includes an alignment process to align a substrate and an object (eg, a template) to a predetermined alignment position, followed by processing the substrate on which the imprint resist has been dispensed to manufacture an article. Thus, energy is applied to the substrate to cure the resist and form a pattern on the substrate corresponding to the pattern on the template. This procedure is repeated to align the object and substrate before the resist is cured by the applied energy.

已經描述了許多實施方式。然而,將理解的是,在不脫離本發明的精神和範圍的情況下,可以做出各種修改。因此,其它實施方式在所附申請專利範圍的範圍內。 A number of implementations have been described. However, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other implementations are within the scope of the appended claims.

本發明的實施例可以透過經由網路或儲存媒體向系統或設備提供實現上述實施例的一或多個功能並利 用系統或設備的電腦中的一或多個處理器來讀取並執行的程式來執行。此外,本發明的實施例可以由實現一或多個功能的電路(例如,特殊應用積體電路(ASIC))來執行。 The embodiments of the present invention can implement one or more functions of the above-mentioned embodiments and utilize Executed by programs that are read and executed by one or more processors in the computer of the system or device. Additionally, embodiments of the invention may be implemented by circuitry (eg, an application specific integrated circuit (ASIC)) that performs one or more functions.

本發明的實施例還可以透過一種系統或設備的電腦來實現,所述系統或設備可以讀取並執行記錄在儲存媒體(也可以更完整地稱為「非暫態電腦可讀取儲存媒體」)上的電腦可執行指令(例如,一或多個程式)來執行一或多個上述實施例的功能,和/或包含一或多個電路(例如,特殊應用積體電路(ASIC)),以執行上述一或多個實施例中的一或多個功能,並透過所述系統或設備的電腦執行的方法,例如從儲存媒體中讀取並執行電腦可執行指令,以執行上述一或多個實施例中的一或多個功能和/或控制一或多個電路以執行上述一或多個實施例中的一或多個功能。所述電腦可以包含一或多個處理器(例如,中央處理單元(CPU)、微處理單元(MPU)),並且可以包含單獨的電腦或單獨的處理器的網路,以讀取並執行電腦可執行指令。可以例如從網路或儲存媒體將電腦可執行指令提供給電腦。所述儲存媒體可以包含例如硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、分佈式計算系統的儲存、光學碟(諸如光碟(CD))、數位多功能光碟(DVD)或藍光光碟(BD)TM)、快閃記憶體裝置、記憶卡等中的一或多個。 Embodiments of the present invention can also be implemented by a computer of a system or device that can read and execute the ) on computer-executable instructions (eg, one or more programs) to perform the functions of one or more of the above-described embodiments, and/or include one or more circuits (eg, an application-specific integrated circuit (ASIC)), To perform one or more functions in the above-mentioned one or more embodiments, and through the computer-executed method of the system or device, for example, reading and executing computer-executable instructions from a storage medium to perform the above-mentioned one or more One or more functions in one embodiment and/or control one or more circuits to perform one or more functions in one or more embodiments above. The computer may include one or more processors (e.g., central processing unit (CPU), microprocessing unit (MPU)), and may include individual computers or networks of individual processors to read and execute computer Executable instructions. Computer-executable instructions may be provided to a computer, for example, from a network or a storage medium. The storage media may include, for example, hard disks, random access memory (RAM), read only memory (ROM), storage for distributed computing systems, optical disks such as compact disks (CDs), digital versatile disks (DVDs), ) or one or more of Blu-ray Disc (BD) ), flash memory device, memory card, etc.

在參考說明書時,闡述了具體細節以便提供對所揭露的範例的透徹理解。在其它情況下,沒有詳細描述眾所皆知的方法、程序、元件和電路,以免不必要地延 長本發明。 When referring to the specification, specific details are set forth in order to provide a thorough understanding of the disclosed examples. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily delay long the present invention.

應當理解,如果在本文中將元件或部件稱為在另一元件或部件「之上」、「相對」、「連接至」或「耦接至」另一元件或部件,則其可以直接在之上、相對、連接或耦接至另一元件或部件,或者可以存在中間元件或部件。相反,如果元件被稱為「直接在另一元件或部件之上」、「直接連接至」或「直接耦接至」另一元件或部件,則不存在中間元件或中間部件。如果使用的話,用語「和/或」包含一或多個相關列出項目的任何和所有組合。 It will be understood that if an element or component is referred to as being "on," "opposite," "connected to" or "coupled to" another element or component herein, it can be directly thereon. On, opposite, connected or coupled to another element or component, or intervening elements or components may be present. In contrast, if an element is referred to as being "directly on," "directly connected to" or "directly coupled to" another element or component, there are no intervening elements or components present. If used, the term "and/or" includes any and all combinations of one or more of the associated listed items.

為了便於描述,在本文中可以使用諸如「在...之下」、「在...下面」、「在...下方」、「低於」、「在...上方」、「高於」、「鄰近」、「遠離」等空間相對用語,以描述一個元件或特徵與另一或多個元件或特徵的關係,如各個附圖所示。然而,應當理解,除了圖中所描繪的方位之外,空間相對用語還意圖涵蓋裝置在使用或操作中的不同方位。例如,如果附圖中的裝置被翻轉,則被描述為在其它元件或特徵「在...之下」或「下方」的元件將被定向為在其它元件或特徵「之上」。因此,諸如「在...之下」的相對空間用語可以包含之上和之下兩個方位。所述裝置可以用其它方式定向(旋轉90°或以其它定向),並且在此使用的空間相對描述語應對應地解釋。類似地,在適用的情況下,相對空間用語「近側」和「遠側」也可以互換。 For ease of description, terms such as "under", "below", "below", "below", "above", "higher" may be used herein Spatially relative terms such as ", "adjacent", and "distant" are used to describe the relationship between one element or feature and another or more elements or features, as shown in the drawings. It will be understood, however, that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, a spatially relative term such as "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly. Similarly, the relative spatial terms "proximal" and "distal" are also interchangeable where applicable.

如本文所用,用語「大約」是指例如在10%以內、5%以內或以下。在一些實施例中,用語「大約」可以表示在測量誤差內。 As used herein, the term "about" means, for example, within 10%, within 5%, or less. In some embodiments, the term "about" can mean within a measurement error.

本文中可以使用第一、第二、第三等用語來描述各種元件、部件、區域、部件和/或部分。應該理解,這些元件、部件、區域、部件和/或部分不應受這些用語的限制。這些用語僅用於將一個元件、部件、區域、部件或部分與另一元件、部件、區域、部件或部分區分。因此,以下討論的第一元件、部件、區域、部件或部分可以被稱為第二元件、部件、區域、部件或部分,而不背離本文的教示。 The terms first, second, third, etc. may be used herein to describe various elements, components, regions, components and/or sections. It should be understood that these elements, components, regions, components and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, section or section from another element, component, region, section or section. Thus, a first element, component, region, component or section discussed below could be termed a second element, component, region, component or section without departing from the teachings herein.

本文所使用的用語僅是出於描述特定實施例的目的,而不是限制性的。如本文所使用的,單數形式的「一個」、「一種」和「所述」也意圖包含複數形式,除非上下文另有明確指出。應當進一步理解的是,當在本說明書中使用用語「包含」和/或「包括」時,指定存在所述特徵、整數、步驟、操作、元件和/或部件,但是不排除沒有明確說明的一或多個其它特徵、整數、步驟、操作、元件、部件和/或其群組的存在或增加。 The terminology used herein is for the purpose of describing particular embodiments only and is not limiting. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should be further understood that when the word "comprising" and/or "comprises" is used in this specification, it specifies the presence of said features, integers, steps, operations, elements and/or parts, but does not exclude an unspecified one. or the presence or addition of multiple other features, integers, steps, operations, elements, parts and/or groups thereof.

以上僅說明了本發明的原理。根據本文的教示,對所描述的範例性實施例的各種修改和變更對於本領域技術人員將是顯而易見的。 The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described exemplary embodiments will be apparent to those skilled in the art in view of the teachings herein.

在描述的圖式中顯示的範例實施例時,為了清楚起見採用特定用語。然而,此專利說明書的揭露內容 不意於限於如此選擇的特定用語,並且應當理解,每個特定元件包含以類似方式操作的所有技術等效物。 In describing example embodiments shown in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification It is not intended to be limited to the specific terms so selected, and it is to be understood that each specific element encompasses all technical equivalents that operate in a similar manner.

102:基板 102: Substrate

108:模板 108:Template

134:可聚合材料 134: Polymerizable material

158:感測器 158: sensor

302:模板對準標記 302: template alignment mark

304:基板對準標記 304: Substrate alignment mark

Claims (20)

一種控制其上支撐有基板的可移動平台的位置的方法,所述方法包含: 從感測器獲取表示所述基板相對於物體上的標記的位置的第一位置資訊; 基於所獲取的第一位置來產生對準預測資訊,所產生的對準預測資訊包含至少一個參數值; 基於所獲取的第一位置資訊和所產生的對準預測資訊來產生包含所述至少一個參數值的第一軌跡資訊; 基於所產生的對準預測資訊、所述第一軌跡資訊以及第二位置資訊來產生第二軌跡資訊,其中所述第二位置資訊表示所述可移動平台的位置; 基於所述第二軌跡資訊來產生輸出控制訊號;以及 基於所產生的輸出訊號來控制所述可移動平台以接近目標位置。A method of controlling the position of a movable platform having a substrate supported thereon, the method comprising: obtaining first position information from a sensor representing a position of the substrate relative to a marking on the object; generating alignment prediction information based on the obtained first position, the generated alignment prediction information including at least one parameter value; generating first trajectory information comprising the at least one parameter value based on the acquired first position information and the generated alignment prediction information; generating second trajectory information based on the generated alignment prediction information, the first trajectory information, and second location information, wherein the second location information represents a location of the movable platform; generating an output control signal based on the second trajectory information; and The movable platform is controlled to approach a target location based on the generated output signal. 如請求項1的方法,還包含: 基於表示所述基板相對於所述物體上的所述標記的所述位置的所述感測器來確定誤差值,所述物體係按照所述第二軌跡資訊來移動;以及 基於係在預定範圍內的所述誤差值來產生經更新的輸出控制訊號;以及 基於所述經更新的輸出控制訊號來控制所述可移動平台以接近所述目標位置。As in the method of request item 1, further comprising: determining an error value based on the sensor representing the position of the substrate relative to the marking on the object that is moving in accordance with the second trajectory information; and generating an updated output control signal based on the error value being within a predetermined range; and The movable platform is controlled to approach the target location based on the updated output control signal. 如請求項1的方法,還包含: 在所述可移動平台已經根據所述輸出控制訊號移動之後,基於透過影像擷取裝置獲取的經更新的第一位置資訊來更新所述對準預測資訊和包含在其中的所述至少一個參數值。As in the method of request item 1, further comprising: after the movable platform has moved according to the output control signal, updating the alignment prediction information and the at least one parameter value contained therein based on the updated first position information obtained through the image capture device . 如請求項1的方法,其中所述對準預測資訊為第一前饋訊號,並且所產生的第一軌跡資訊為透過獲取所獲取的第一位置資訊與所述前饋對準預測資訊之間的差異而產生的第一回饋訊號。The method according to claim 1, wherein the alignment prediction information is a first feed-forward signal, and the generated first trajectory information is between the first position information obtained by acquiring and the feed-forward alignment prediction information The first feedback signal generated by the difference. 如請求項4的方法,其中所產生的第二軌跡資訊為第二回饋訊號。The method according to claim 4, wherein the generated second track information is a second feedback signal. 如請求項1的方法,還包含: 響應於基於表示所述基板相對於在所述對準預測資訊的終點位置處的所述物體上的所述標記的所述位置的所述感測器來確定誤差值在預定範圍之外,產生包含基於經更新的第一位置資訊確定的經更新的至少一個參數值的新對準預測資訊;以及 調整用於產生所述對準預測資訊;所述第一軌跡資訊;以及所述第二軌跡資訊的一或多個控制項;以及 將所述新對準預測資訊與所述第二軌跡資訊結合以產生經更新的輸出控制訊號;以及 基於所述經更新的輸出控制訊號來控制所述可移動平台。As in the method of request item 1, further comprising: In response to determining, based on the sensor representing the position of the substrate relative to the marker on the object at an end position of the alignment prediction information, an error value to be outside a predetermined range, generating new alignment prediction information comprising updated at least one parameter value determined based on the updated first position information; and adjusting one or more controls used to generate the alignment prediction information; the first trajectory information; and the second trajectory information; and combining the new alignment prediction information with the second trajectory information to generate an updated output control signal; and The movable platform is controlled based on the updated output control signal. 如請求項1的方法,其中所述輸出控制訊號係進一步基於第三前饋控制訊號和所述第二軌跡資訊的組合。The method of claim 1, wherein the output control signal is further based on a combination of a third feedforward control signal and the second trajectory information. 如請求項1的方法,其中所述至少一個參數包含下列各者中的一或多者:用於沿著所確定的軌跡啟動所述平台的移動(a)所需的位置值,(b)所需的速度值,(c)所需的加速度值;(d)所需的旋轉值,以及(e)所需的起始時間。The method of claim 1, wherein said at least one parameter comprises one or more of: a position value required to initiate movement of said platform (a) along the determined trajectory, (b) The desired velocity value, (c) the desired acceleration value; (d) the desired rotation value, and (e) the desired start time. 如請求項1的方法,其中所述對準預測資訊包含:第一前饋控制訊號;第二前饋控制訊號;以及第三前饋控制訊號; 其中所述第一軌跡資訊的產生還基於所述第一前饋控制訊號; 其中所述第二軌跡資訊的產生還基於所述第二前饋控制訊號; 其中所述輸出控制訊號的產生還基於所述第三前饋控制訊號。The method according to claim 1, wherein the alignment prediction information includes: a first feedforward control signal; a second feedforward control signal; and a third feedforward control signal; Wherein the generation of the first trajectory information is also based on the first feedforward control signal; Wherein the generation of the second trajectory information is also based on the second feedforward control signal; Wherein the generation of the output control signal is also based on the third feedforward control signal. 如請求項1的方法,其中前饋控制群組包含所述第一前饋控制訊號;所述第二前饋控制訊號;以及所述第三前饋控制訊號;以及 其中所述前饋控制群組中的所述控制訊號之至少一者係基於所述前饋控制群組中的其它控制訊號中的一個或兩個。The method of claim 1, wherein a feedforward control group includes said first feedforward control signal; said second feedforward control signal; and said third feedforward control signal; and Wherein at least one of the control signals in the feedforward control group is based on one or two of the other control signals in the feedforward control group. 一種用於控制壓印微影模板相對於基板的對準的壓印微影系統,所述系統包含: 平台,其配置成保持所述基板,並且所述平台是可移動的,從而可以改變所述平台的位置;以及 感測器,其配置成感測所述基板相對於所述壓印微影模板的位置;以及 與所述平台和所述感測器進行通訊的至少一個控制器,其配置成基於具有接觸所述模板的液體壓印抗蝕劑的所述基板來: 從感測器獲取表示所述基板相對於物體上的標記的位置的第一位置資訊; 基於所獲取的第一位置來產生對準預測資訊,所產生的對準預測資訊包含至少一個參數值; 基於所獲取的第一位置資訊和所產生的對準預測資訊來產生包含所述至少一個參數值的第一軌跡資訊; 基於所產生的對準預測資訊、所述第一軌跡資訊以及第二位置資訊來產生第二軌跡資訊,其中所述第二位置資訊表示所述可移動平台的位置; 基於所述第二軌跡資訊來產生輸出控制訊號;以及 基於所產生的輸出訊號來控制所述可移動平台以接近目標位置。An imprint lithography system for controlling the alignment of an imprint lithography template relative to a substrate, the system comprising: a platform configured to hold the substrate, and the platform is movable such that the position of the platform can be changed; and a sensor configured to sense a position of the substrate relative to the imprint lithography template; and at least one controller in communication with the platform and the sensor configured to, based on the substrate having the liquid imprint resist contacting the template: obtaining first position information from a sensor representing a position of the substrate relative to a marking on the object; generating alignment prediction information based on the obtained first position, the generated alignment prediction information including at least one parameter value; generating first trajectory information comprising the at least one parameter value based on the acquired first position information and the generated alignment prediction information; generating second trajectory information based on the generated alignment prediction information, the first trajectory information, and second location information, wherein the second location information represents a location of the movable platform; generating an output control signal based on the second trajectory information; and The movable platform is controlled to approach a target location based on the generated output signal. 如請求項11的系統,其中所述至少一個控制器還配置成: 基於表示所述基板相對於所述物體上的所述標記的所述位置的所述感測器來確定誤差值,所述物體係按照所述第二軌跡資訊來移動;以及 基於係在預定範圍內的所述誤差值來產生經更新的輸出控制訊號;以及 基於所述經更新的輸出控制訊號來控制所述可移動平台以接近所述目標位置。The system of claim 11, wherein the at least one controller is further configured to: determining an error value based on the sensor representing the position of the substrate relative to the marking on the object that is moving in accordance with the second trajectory information; and generating an updated output control signal based on the error value being within a predetermined range; and The movable platform is controlled to approach the target location based on the updated output control signal. 如請求項11的系統,其中所述至少一個控制器還配置成: 在所述可移動平台已經根據所述輸出控制訊號移動之後,基於透過影像擷取裝置獲取的經更新的第一位置資訊來更新所述對準預測資訊和包含在其中的所述至少一個參數值。The system of claim 11, wherein the at least one controller is further configured to: after the movable platform has moved according to the output control signal, updating the alignment prediction information and the at least one parameter value contained therein based on the updated first position information obtained through the image capture device . 如請求項11的系統,其中所述對準預測資訊為第一前饋訊號,並且所產生的第一軌跡資訊為透過獲取所獲取的第一位置資訊與所述前饋對準預測資訊之間的差異而產生的第一回饋訊號。The system according to claim 11, wherein the alignment prediction information is a first feed-forward signal, and the generated first trajectory information is between the first position information obtained by acquiring and the feed-forward alignment prediction information The first feedback signal generated by the difference. 如請求項14的系統,其中所產生的第二軌跡資訊為第二回饋訊號。The system according to claim 14, wherein the generated second trajectory information is a second feedback signal. 如請求項11的系統,其中所述至少一個控制器還配置成: 響應於基於表示所述基板相對於在所述對準預測資訊的終點位置處的所述物體上的所述標記的所述位置的所述感測器來確定誤差值在預定範圍之外,產生包含基於經更新的第一位置資訊確定的經更新的至少一個參數值的新對準預測資訊;以及 將所述新對準預測資訊與所述第二軌跡資訊結合以產生經更新的輸出控制訊號;以及 基於所述經更新的輸出控制訊號來控制所述可移動平台。The system of claim 11, wherein the at least one controller is further configured to: In response to determining, based on the sensor representing the position of the substrate relative to the marker on the object at an end position of the alignment prediction information, an error value to be outside a predetermined range, generating new alignment prediction information comprising updated at least one parameter value determined based on the updated first position information; and combining the new alignment prediction information with the second trajectory information to generate an updated output control signal; and The movable platform is controlled based on the updated output control signal. 如請求項16的系統,其中所述輸出控制訊號係進一步基於第三前饋控制訊號和所述第二軌跡資訊的組合。The system of claim 16, wherein said output control signal is further based on a combination of a third feedforward control signal and said second trajectory information. 如請求項11的系統,其中所述至少一個參數包含下列各者中的一或多者:用於沿著所確定的軌跡啟動所述平台的移動(a)所需的位置值,(b)所需的速度值,(c)所需的加速度值;(d)所需的旋轉值,以及(e)所需的起始時間。The system of claim 11, wherein said at least one parameter comprises one or more of: a position value required to initiate movement of said platform (a) along the determined trajectory, (b) The desired velocity value, (c) the desired acceleration value; (d) the desired rotation value, and (e) the desired start time. 一種製造物品的方法,其包含使用如請求項1所述的控制可移動平台的方法,所述製造物品的方法還包含: 在所述基板上分配壓印抗蝕劑,所述壓印抗蝕劑為液體; 使所述壓印抗蝕劑與所述物體接觸,所述物體在其上具有與所述壓印抗蝕劑接觸的圖案; 處理其上已分配有所述壓印抗蝕劑的所述基板,以製造所述物品。A method of manufacturing an item, which includes using the method of controlling a movable platform as described in Claim 1, and the method of manufacturing an item further includes: dispensing an imprint resist on the substrate, the imprint resist being a liquid; contacting the imprint resist with the object having a pattern thereon in contact with the imprint resist; The substrate on which the imprint resist has been dispensed is processed to fabricate the article. 如請求項19的製造方法,其中處理所述基板還包含: 向所述基板施加能量以固化所述壓印抗蝕劑,並在所述基板上形成與所述物體上的所述圖案對應的圖案; 其中當所述物體與所述壓印抗蝕劑接觸時,重複執行控制所述可移動平台的所述方法,使得在透過所施加的能量使所述抗蝕劑固化之前,使所述物體和所述基板對準。The manufacturing method according to claim 19, wherein processing the substrate further comprises: applying energy to the substrate to cure the imprint resist and form a pattern on the substrate corresponding to the pattern on the object; wherein said method of controlling said movable stage is repeated while said object is in contact with said imprinted resist such that said object and The substrates are aligned.
TW109136284A 2019-12-12 2020-10-20 Method of controlling a position of a moveable stage, imprint lithography system, and method of manufacturing articles TWI794664B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/712,739 US11422460B2 (en) 2019-12-12 2019-12-12 Alignment control in nanoimprint lithography using feedback and feedforward control
US16/712,739 2019-12-12

Publications (2)

Publication Number Publication Date
TW202122936A TW202122936A (en) 2021-06-16
TWI794664B true TWI794664B (en) 2023-03-01

Family

ID=76316959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136284A TWI794664B (en) 2019-12-12 2020-10-20 Method of controlling a position of a moveable stage, imprint lithography system, and method of manufacturing articles

Country Status (6)

Country Link
US (1) US11422460B2 (en)
JP (1) JP2023506342A (en)
KR (1) KR20220093169A (en)
CN (1) CN114667485A (en)
TW (1) TWI794664B (en)
WO (1) WO2021118698A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050102723A1 (en) * 2003-10-13 2005-05-12 Asml Netherlands B.V. Method of operating a lithographic processing machine, control system, lithographic apparatus, lithographic processing cell, and computer program
CN101154056A (en) * 2006-09-29 2008-04-02 富士胶片株式会社 Description point data acquiring method and device, description method and device
TW201702752A (en) * 2015-04-03 2017-01-16 Asml荷蘭公司 Inspection apparatus for measuring properties of a target structure, methods of operating an optical system, method of manufacturing devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427944B2 (en) 1993-06-30 2003-07-22 株式会社安川電機 Trajectory tracking positioning control method
US5459624A (en) 1993-10-26 1995-10-17 International Business Machines Corporation Activator control method and apparatus for positioning a transducer using a phase plane trajectory trough function for a direct access storage device with estimated velocity and position states
JP3501304B2 (en) 1994-08-05 2004-03-02 株式会社安川電機 Trajectory tracking positioning control method
US6236895B1 (en) 1998-09-02 2001-05-22 Cirrus Logic, Inc. Reference estimator in a discrete-time sliding mode controller
US6185467B1 (en) 1998-09-02 2001-02-06 Cirrus Logic, Inc. Adaptive discrete-time sliding mode controller
US6798611B1 (en) 1998-09-02 2004-09-28 Cirrus Logic, Inc. Disk storage system employing a discrete-time sliding mode controller for servo control
JP3821642B2 (en) 1999-11-17 2006-09-13 富士通株式会社 Head positioning control method and apparatus for disk device
MY164487A (en) 2002-07-11 2017-12-29 Molecular Imprints Inc Step and repeat imprint lithography processes
US20060082922A1 (en) 2004-10-15 2006-04-20 Teng-Yuan Shih Trajectories-based seek
US7442029B2 (en) 2005-05-16 2008-10-28 Asml Netherlands B.V. Imprint lithography
JP4290177B2 (en) 2005-06-08 2009-07-01 キヤノン株式会社 Mold, alignment method, pattern forming apparatus, pattern transfer apparatus, and chip manufacturing method
JP4819577B2 (en) 2006-05-31 2011-11-24 キヤノン株式会社 Pattern transfer method and pattern transfer apparatus
NL1036290A1 (en) 2007-12-19 2009-06-22 Asml Netherlands Bv Lithographic apparatus.
US8470188B2 (en) 2008-10-02 2013-06-25 Molecular Imprints, Inc. Nano-imprint lithography templates
US7719782B1 (en) 2009-01-07 2010-05-18 International Business Machines Corporation Fast forward magnetic tape cartridge at first mount
US9142235B1 (en) 2009-10-27 2015-09-22 Western Digital Technologies, Inc. Disk drive characterizing microactuator by injecting sinusoidal disturbance and evaluating feed-forward compensation values
US8508881B1 (en) 2011-05-26 2013-08-13 Western Digital Technologies, Inc. Disk drive employing system inversion for tuning seek to settle servo loop
JP5545601B2 (en) 2011-11-07 2014-07-09 信越化学工業株式会社 Phosphor highly-filled wavelength conversion sheet, method for manufacturing light-emitting semiconductor device using the same, and light-emitting semiconductor device
US8737013B2 (en) 2011-11-16 2014-05-27 Western Digital Technologies, Inc. Disk drive selecting disturbance signal for feed-forward compensation
US9142234B1 (en) 2012-06-08 2015-09-22 Western Digital Technologies, Inc. Disk drive employing model-based feed-forward compensation during seek settling
US8929022B1 (en) 2012-12-19 2015-01-06 Western Digital Technologies, Inc. Disk drive detecting microactuator degradation by evaluating frequency component of servo signal
US9053724B1 (en) 2013-08-19 2015-06-09 Western Digital Technologies, Inc. Disk drive actuating first head microactuator while sensing signal from second head microactuator
US9418689B2 (en) 2014-10-09 2016-08-16 Western Digital Technologies, Inc. Data storage device generating an operating seek time profile as a function of a base seek time profile
US9208815B1 (en) 2014-10-09 2015-12-08 Western Digital Technologies, Inc. Data storage device dynamically reducing coast velocity during seek to reduce power consumption
US9111575B1 (en) 2014-10-23 2015-08-18 Western Digital Technologies, Inc. Data storage device employing adaptive feed-forward control in timing loop to compensate for vibration
JP6436067B2 (en) 2015-11-19 2018-12-12 オムロン株式会社 Control device, control method, information processing program, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050102723A1 (en) * 2003-10-13 2005-05-12 Asml Netherlands B.V. Method of operating a lithographic processing machine, control system, lithographic apparatus, lithographic processing cell, and computer program
CN101154056A (en) * 2006-09-29 2008-04-02 富士胶片株式会社 Description point data acquiring method and device, description method and device
TW201702752A (en) * 2015-04-03 2017-01-16 Asml荷蘭公司 Inspection apparatus for measuring properties of a target structure, methods of operating an optical system, method of manufacturing devices

Also Published As

Publication number Publication date
US11422460B2 (en) 2022-08-23
WO2021118698A1 (en) 2021-06-17
CN114667485A (en) 2022-06-24
KR20220093169A (en) 2022-07-05
US20210181622A1 (en) 2021-06-17
JP2023506342A (en) 2023-02-16
TW202122936A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US10216103B2 (en) Imprint method, imprint apparatus, and method of manufacturing article
JP6497849B2 (en) Imprint apparatus and article manufacturing method
US11347144B2 (en) Overlay improvement in nanoimprint lithography
US11175598B2 (en) Imprint apparatus and method of manufacturing article
JP6942491B2 (en) Imprinting equipment and manufacturing method of goods
JP7071484B2 (en) Nano-manufacturing method with distortion correction in imprint system
KR102272038B1 (en) Adaptive chucking system
JP6650993B2 (en) Alignment control in imprint lithography based on real-time system identification
TWI794664B (en) Method of controlling a position of a moveable stage, imprint lithography system, and method of manufacturing articles
KR102410234B1 (en) Information processing apparatus, computer program, lithography apparatus, lithography system, and method of manufacturing article
JP2019029663A (en) Real-time correction of distortion of template in nanoimprint lithography
US11815811B2 (en) Magnification ramp scheme to mitigate template slippage
US11604408B2 (en) Adaptive feedforward and feedback control for controlled viscosity alignment and field-to-field related friction variation
US20220128901A1 (en) System and Method for Shaping a Film with a Scaled Calibration Measurement Parameter
US11815861B2 (en) Feedback control device that suppresses disturbance vibration using machine learning, article manufacturing method, and feedback control method
US20230152687A1 (en) Method for improving accuracy of imprint force application in imprint lithography
JP2023064048A (en) Apparatus and method for optimizing actuator forces used for distortion correction
KR20220090427A (en) Method for improving accuracy of imprint force application in imprint lithography
JPWO2021118698A5 (en)