TWI794062B - Method for preparing semiconductor device structure - Google Patents

Method for preparing semiconductor device structure Download PDF

Info

Publication number
TWI794062B
TWI794062B TW111110906A TW111110906A TWI794062B TW I794062 B TWI794062 B TW I794062B TW 111110906 A TW111110906 A TW 111110906A TW 111110906 A TW111110906 A TW 111110906A TW I794062 B TWI794062 B TW I794062B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
gate structure
spacer
gate
Prior art date
Application number
TW111110906A
Other languages
Chinese (zh)
Other versions
TW202327087A (en
Inventor
陳昱頻
黃崇勳
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/562,210 external-priority patent/US20230207637A1/en
Priority claimed from US17/562,362 external-priority patent/US11646353B1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI794062B publication Critical patent/TWI794062B/en
Publication of TW202327087A publication Critical patent/TW202327087A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Abstract

A method for manufacturing semiconductor device structure includes providing a substrate having a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; forming a first well region in the substrate and between the first gate structure and the second gate structure; forming a conductive contact within a trench between the first gate structure and the second gate structure; forming a first structure in the first well region, wherein the first structure tapers away from a bottom portion of the conductive contact.

Description

半導體元件結構的製備方法Fabrication method of semiconductor device structure

本申請案主張美國第17/562,362號及第17/562,210號專利申請案之優先權(即優先權日為「2021年12月27日」),其內容以全文引用之方式併入本文中。This application claims priority to US Patent Application Nos. 17/562,362 and 17/562,210 (ie, the priority date is "December 27, 2021"), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種半導體結構,特別是關於一種包括具有銳角的矽化鈷結構的半導體元件結構。The present disclosure relates to a semiconductor structure, and more particularly to a semiconductor device structure including a cobalt silicide structure with an acute angle.

隨著積體電路占用面積的減少,接觸(contact)和閘極結構之間的距離也相應地減少,將可能導致源極/汲極的洩漏。氧化矽或氮化矽可做為防止金屬矽化物在半導體元件的接觸側表面上形成。然而,氧化矽或氮化矽可能會造成接觸電阻的增加,因此對半導體元件的性能產生不利的影響。As the area occupied by the integrated circuit decreases, the distance between the contact and the gate structure decreases accordingly, which may lead to source/drain leakage. Silicon oxide or silicon nitride can be used to prevent metal silicide from forming on the contact side surface of the semiconductor device. However, silicon oxide or silicon nitride may cause an increase in contact resistance, thereby adversely affecting the performance of semiconductor devices.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above "prior art" description is only to provide background technology, and does not acknowledge that the above "prior art" description discloses the subject of this disclosure, and does not constitute the prior art of this disclosure, and any description of the above "prior art" shall not form part of this case.

本揭露的一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一第一井區以及一第一結構。該基底具有一第一表面和與該第一表面相對的一第二表面。該第一閘極結構設置在該第一表面上。該第二閘極結構設置在該第一表面上。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構設置在該第一井區中。該第一結構的形狀具有一銳角。One aspect of the present disclosure provides a semiconductor device structure. The semiconductor element structure includes a base, a first gate structure, a second gate structure, a first well region and a first structure. The base has a first surface and a second surface opposite to the first surface. The first gate structure is disposed on the first surface. The second gate structure is disposed on the first surface. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is disposed in the first well region. The shape of the first structure has an acute angle.

本揭露的另一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一導電接觸、一第一井區以及一第一結構。該基底具有一表面。該第一閘極結構設置在該表面上。該第二閘極結構設置在該表面上。該導電接觸位於該第一閘極結構和該第二閘極結構之間。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構嵌入在該第一井區內,並從該導電接觸的一底部逐漸縮小。該第一結構包括矽化鈷。Another aspect of the disclosure provides a semiconductor device structure. The semiconductor device structure includes a base, a first gate structure, a second gate structure, a conductive contact, a first well region and a first structure. The base has a surface. The first gate structure is disposed on the surface. The second gate structure is disposed on the surface. The conductive contact is located between the first gate structure and the second gate structure. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is embedded in the first well region and gradually narrows from a bottom of the conductive contact. The first structure includes cobalt silicide.

本揭露的另一個方面提供一種半導體元件結構的製備方法。該製備方法包括:提供一基底,該基底具有一表面;在該表面上形成一第一閘極結構;在該表面上形成一第二閘極結構;在該基底中並在該第一閘極結構和該第二閘極結構之間形成一第一井區;在該第一閘極結構和該第二閘極結構之間的一溝槽內形成一導電接觸;以及在該第一井區中形成一第一結構,其中該第一結構從該導電接觸的一底部逐漸縮小。Another aspect of the disclosure provides a method for fabricating a semiconductor device structure. The preparation method includes: providing a substrate, the substrate has a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; in the substrate and on the first gate forming a first well region between the structure and the second gate structure; forming a conductive contact in a trench between the first gate structure and the second gate structure; and forming a conductive contact in the first well region A first structure is formed, wherein the first structure tapers from a bottom of the conductive contact.

本揭露的實施例揭露一種在基底中具有金屬矽化物的半導體元件結構。上述金屬矽化物不存在於該半導體元件結構的閘極結構之間的溝槽側壁。因此降低半導體元件結構中的接觸電阻。此外,該半導體元件結構包括氮化鈦層。氮化鈦層做為形成金屬矽化物的擴散阻障層。氮化鈦層的厚度可調,以防止金屬矽化物形成在半導體元件結構的閘極結構之間的溝槽側壁上,並防止接觸電阻增加。在一個比較的例示中,在半導體元件結構的閘極結構之間的溝槽側壁上形成氧化矽/氮化矽。氧化矽/氮化矽具有較大的接觸電阻,因此增加了閘極結構和金屬矽化物之間的接觸電阻。與比較例相比,在本揭露的實施例中,可以調整氮化鈦的厚度,以防止金屬矽化物在半導體元件結構的閘極結構之間的溝槽側壁上形成,防止接觸電阻增加,因此可以提高半導體元件結構的性能。Embodiments of the disclosure disclose a semiconductor device structure with a metal silicide in a substrate. The aforementioned metal silicide does not exist on the trench sidewalls between the gate structures of the semiconductor device structure. The contact resistance in the structure of the semiconductor component is thus reduced. In addition, the semiconductor element structure includes a titanium nitride layer. The titanium nitride layer acts as a diffusion barrier layer for forming metal silicide. The thickness of the titanium nitride layer is adjustable to prevent metal silicide from forming on the trench sidewall between the gate structures of the semiconductor element structure and to prevent the contact resistance from increasing. In a comparative example, silicon oxide/silicon nitride is formed on trench sidewalls between gate structures of semiconductor device structures. Silicon oxide/silicon nitride has a higher contact resistance, thus increasing the contact resistance between the gate structure and the metal silicide. Compared with the comparative example, in the embodiment of the present disclosure, the thickness of titanium nitride can be adjusted to prevent metal silicide from forming on the sidewall of the trench between the gate structures of the semiconductor device structure and prevent the contact resistance from increasing, so The performance of the semiconductor element structure can be improved.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been broadly summarized above, so that the following detailed description of the present disclosure can be better understood. Other technical features and advantages constituting the subject matter of the claims of the present disclosure will be described below. Those skilled in the art of the present disclosure should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the disclosure defined by the appended claims.

現在用具體的語言來描述附圖中說明的本揭露的實施例,或實例。應理解的是,在此不打算限制本揭露的範圍。對所描述的實施例的任何改變或修改,以及對本文所描述的原理的任何進一步應用,都應被認為是與本揭露內容有關的技術領域的普通技術人員通常會做的。參考數字可以在整個實施例中重複,但這並不旨在一個實施例的特徵適用於另一個實施例,即使它們共用相同的參考數位。Embodiments, or examples, of the present disclosure illustrated in the drawings will now be described in specific language. It should be understood that no limitation of the scope of the present disclosure is intended herein. Any changes or modifications to the described embodiments, and any further applications of the principles described herein, are considered to be within the ordinary skill of the art to which this disclosure pertains. Reference numerals may be repeated throughout the embodiments, but there is no intention that features of one embodiment apply to another, even if they share the same reference numeral.

應理解的是,儘管術語第一、第二、第三等可用於描述各種元素、元件、區域、層或部分。可用於描述各種元素、部件、區域、層或部分,但這些元素、部件、區域、層或部分不受這些術語的限制。相反,這些術語只是用來區分一個元素、元件、區域、層或部分與另一個區域、層或部分。因此,下面討論的第一個元素、元件、區域、層或部分可以被稱為第二個元素、元件、區域、層或部分而不偏離本發明概念的教導。It will be understood that although the terms first, second, third etc. may be used to describe various elements, elements, regions, layers or sections. can be used to describe various elements, components, regions, layers or sections but these elements, components, regions, layers or sections should not be limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the inventive concept.

本文使用的術語僅用於描述特定的實施例,並不打算局限於本發明的概念。正如本文所使用的,單數形式的"一"、"一個"和"該"旨在包括複數形式,除非上下文明確指出。應進一步理解,術語”包括”和”包含”在本說明書中使用時,指出了所述特徵、整數、步驟、操作、元素或元件的存在,但不排除存在或增加一個或複數個其他特徵、整數、步驟、操作、元素、元件或其組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concepts. As used herein, the singular forms "a", "an" and "the" are intended to include plural forms unless the context clearly dictates otherwise. It should be further understood that when the terms "comprising" and "comprising" are used in this specification, they point out the existence of said features, integers, steps, operations, elements or elements, but do not exclude the existence or addition of one or more other features, An integer, step, operation, element, component, or group thereof.

請參考圖1A和圖1B。圖1A是半導體元件結構1的佈局的俯視示意圖。該佈局包括閘極區101和源極/汲極區102。圖1B是半導體元件結構1沿圖1A中所示的虛線A-A'的剖視圖。Please refer to FIG. 1A and FIG. 1B . FIG. 1A is a schematic top view of the layout of the semiconductor device structure 1 . The layout includes a gate region 101 and a source/drain region 102 . FIG. 1B is a cross-sectional view of the semiconductor device structure 1 along the dotted line AA' shown in FIG. 1A .

參照圖1A,接觸區103與閘極區101間隔距離L,當半導體元件結構1的尺寸減小時,距離L需要相應減小,因為,當半導體元件結構1的閘極長度減小時,半導體元件結構1的閾值電壓(threshold voltage)變得難以控制,這可能引起意外的電流洩漏。在習用製程中,矽化鈷是在接觸(contact)的側壁上形成。該矽化鈷可以是橢圓形。形成在接觸側壁上的矽化鈷可能導致電流洩漏。為了防止矽化鈷在接觸的側壁上形成,在接觸的側壁上形成一層氮化矽。雖然氮化矽層可以防止矽化鈷在接觸的側壁上形成,但它會增加接觸電阻。本文揭露的方法消除了氮化矽層。矽化鈷是金字塔形的。矽化鈷允許在不引起電流洩漏的情況下減少長度L,並且還能降低接觸電阻。1A, the distance L between the contact region 103 and the gate region 101, when the size of the semiconductor element structure 1 is reduced, the distance L needs to be reduced accordingly, because, when the gate length of the semiconductor element structure 1 is reduced, the semiconductor element structure The threshold voltage (threshold voltage) of 1 becomes difficult to control, which may cause unintended current leakage. In conventional processes, cobalt silicide is formed on the sidewalls of the contacts. The cobalt silicide may be oval. Cobalt silicide formed on the sidewall of the contact may cause current leakage. To prevent cobalt silicide from forming on the sidewalls of the contacts, a layer of silicon nitride is formed on the sidewalls of the contacts. Although the silicon nitride layer prevents cobalt silicide from forming on the sidewalls of the contact, it increases contact resistance. The method disclosed herein eliminates the silicon nitride layer. Cobalt silicide is pyramidal. Cobalt silicide allows reducing the length L without causing current leakage and also reduces contact resistance.

參照圖1B,半導體元件結構1可包括基底10、閘極結構11、汲極區12、源極區13、矽化金屬結構14、間隙子15和16、輕度摻雜汲極(LDD)區17、暈區18和導電接觸19c。為了簡潔起見,圖1B中省略了半導體元件結構1的一些元素。Referring to FIG. 1B, the semiconductor device structure 1 may include a substrate 10, a gate structure 11, a drain region 12, a source region 13, a silicide metal structure 14, spacers 15 and 16, and a lightly doped drain (LDD) region 17. , halo region 18 and conductive contact 19c. For the sake of brevity, some elements of the semiconductor device structure 1 are omitted in FIG. 1B .

基底10可以具有表面10s。閘極結構11形成在表面10s上。汲極區12形成在表面10s之下。源極區13形成在表面10s之下。矽化金屬結構14形成在表面10s之下。矽化金屬結構14可以是金字塔形。矽化金屬結構14可以是圓錐形。在一些實施例中,矽化金屬結構14的剖面可以是三角形。導電接觸19c包括側壁19s1和19s2。導電接觸19c的側壁19s1和19s2不含矽化金屬結構14。矽化金屬結構14與導電接觸19c的側壁19s1和19s2間隔開。The substrate 10 may have a surface 10s. A gate structure 11 is formed on the surface 10s. The drain region 12 is formed below the surface 10s. Source region 13 is formed below surface 10s. A metal silicide structure 14 is formed under the surface 10s. The metal silicide structure 14 may be pyramid-shaped. The metal silicide structure 14 may be conical. In some embodiments, the cross section of the metal silicide structure 14 may be triangular. The conductive contact 19c includes sidewalls 19s1 and 19s2. The sidewalls 19s1 and 19s2 of the conductive contact 19c do not contain the metal silicide structure 14 . The suicide metal structure 14 is spaced apart from the sidewalls 19s1 and 19s2 of the conductive contact 19c.

虛線顯示了透過導電接觸19c並從汲極區12指向源極區13的電流路徑19p。使用矽化金屬結構14,可降低導電接觸19c的電阻。The dashed line shows the current path 19p through the conductive contact 19c and from the drain region 12 to the source region 13 . Using the metal silicide structure 14, the resistance of the conductive contact 19c can be reduced.

隨著半導體元件結構1的縮小,汲極區12和源極區13之間的距離也相應縮小,這使得在閘極結構11兩端的接面(junction)的載子(carrier)在一大電場的作用下加速前進。在一些實施例中,在汲極區12和閘極結構11的一端的接面附近形成了LDD區17。在一些實施例中,另一個LDD區17形成在源極區13和閘極結構11的另一端之間的接面附近。LDD區17可以減少接面處的載子數量,因此減少半導體元件結構1的熱載子效應。在一些實施例中,LDD區17與閘極結構11相鄰,使用具有與汲極區12和源極區13相同導電類型的不同摻雜物材料形成。Along with the shrinkage of the semiconductor device structure 1, the distance between the drain region 12 and the source region 13 is also reduced accordingly, which makes the carrier (carrier) at the junction (junction) at both ends of the gate structure 11 in a large electric field under the action of accelerating forward. In some embodiments, an LDD region 17 is formed near the junction of the drain region 12 and one end of the gate structure 11 . In some embodiments, another LDD region 17 is formed near the junction between the source region 13 and the other end of the gate structure 11 . The LDD region 17 can reduce the number of carriers at the junction, thus reducing the hot carrier effect of the semiconductor device structure 1 . In some embodiments, LDD region 17 is adjacent to gate structure 11 and formed using a different dopant material having the same conductivity type as drain region 12 and source region 13 .

在一些實施例中,暈區18是形成在汲極區12和源極區13旁邊的一摻雜區域。在一些實施例中,暈區18在基底10中形成的比LDD區17更深。暈區18的形成是為了提高半導體元件結構1的閾值電壓。暈區18可以減少半導體元件結構1的短通道效應。在一些實施例中,暈區18是使用與基底10相同導電類型的摻雜物材料形成。In some embodiments, halo region 18 is a doped region formed beside drain region 12 and source region 13 . In some embodiments, halo region 18 is formed deeper in substrate 10 than LDD region 17 . The halo region 18 is formed to increase the threshold voltage of the semiconductor device structure 1 . The halo region 18 can reduce the short channel effect of the semiconductor element structure 1 . In some embodiments, halo region 18 is formed using a dopant material of the same conductivity type as substrate 10 .

圖2A是剖視圖,例示本揭露一些實施例之半導體元件結構。參照圖2A,半導體元件結構2可包括基底20、閘極結構21a和21b、結構23、間隙子24和25以及層28和29。基底20可以具有表面(或上表面)20s1和表面(或下表面)20s2。表面20s1與表面20s2相對。在本揭露內容中,表面20s1也可稱為主動面。在本揭露內容中,表面20s2也可稱為後側表面。FIG. 2A is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure. Referring to FIG. 2A , the semiconductor device structure 2 may include a substrate 20 , gate structures 21 a and 21 b , a structure 23 , spacers 24 and 25 , and layers 28 and 29 . The substrate 20 may have a surface (or upper surface) 20s1 and a surface (or lower surface) 20s2. The surface 20s1 is opposed to the surface 20s2. In this disclosure, the surface 20s1 may also be called an active surface. In this disclosure, the surface 20s2 may also be referred to as a rear side surface.

基底20可以是一半導體基底,如一塊狀(bulk)半導體、一絕緣體上的半導體(SOI)基底,或類似基底。在一些實施例中,基底20包括一第一導電類型。在一些實施例中,該第一導電類型是p型。在一些實施例中,p型摻雜物包括硼(B)、其他第III族元素,或其任何組合。在一些實施例中,該第一導電類型是n型。在一些實施例中,n型摻雜物包括砷(As)、磷(P)、其他第V族元素,或其任何組合。Substrate 20 may be a semiconductor substrate, such as a bulk semiconductor, a semiconductor-on-insulator (SOI) substrate, or the like. In some embodiments, the substrate 20 includes a first conductivity type. In some embodiments, the first conductivity type is p-type. In some embodiments, the p-type dopant includes boron (B), other Group III elements, or any combination thereof. In some embodiments, the first conductivity type is n-type. In some embodiments, the n-type dopant includes arsenic (As), phosphorus (P), other Group V elements, or any combination thereof.

閘極結構21a和21b形成在表面20s1上。間隙子24可包括兩個部分24a和24b。在一些實施例中,間隙子24的部分24a形成在閘極結構21a上。在一些實施例中,間隙子24的部分24b形成在閘極結構21b上。半導體元件結構2包括間隙子25。間隙子25包括形成在間隙子24的部分24a和24b上的部分25a和25b。間隙子25包括在基底20和間隙子24之間的部分25c和25d。在一些實施例中,間隙子25的部分25a形成在間隙子24的部分24a上。在一些實施例中,間隙子25的部分25b形成在間隙子24的部分24b上。Gate structures 21a and 21b are formed on surface 20s1. Spacer 24 may include two portions 24a and 24b. In some embodiments, portion 24a of spacer 24 is formed on gate structure 21a. In some embodiments, portion 24b of spacer 24 is formed on gate structure 21b. The semiconductor component structure 2 includes spacers 25 . Spacer 25 includes portions 25 a and 25 b formed on portions 24 a and 24 b of spacer 24 . The spacer 25 includes portions 25c and 25d between the base 20 and the spacer 24 . In some embodiments, portion 25a of spacer 25 is formed on portion 24a of spacer 24 . In some embodiments, portion 25b of spacer 25 is formed on portion 24b of spacer 24 .

在基底20中形成井區22。井區22形成在表面20s1之下。井區22形成在閘極結構21a和21b之間。在一些實施例中,井區22包括一第二導電類型,與基底20的第一導電類型不同。在基底20中形成結構23。在一些實施例中,在井區22中形成結構23。在一些實施例中,結構23嵌入在井區22內。A well region 22 is formed in the substrate 20 . A well region 22 is formed below the surface 20s1. Well region 22 is formed between gate structures 21a and 21b. In some embodiments, the well region 22 includes a second conductivity type different from the first conductivity type of the substrate 20 . Structure 23 is formed in substrate 20 . In some embodiments, structure 23 is formed in well region 22 . In some embodiments, structure 23 is embedded within well region 22 .

在一些實施例中,間隙子24的部分24a從閘極結構21a連續延伸到井區22。在一些實施例中,間隙子24的部分24b從閘極結構21b連續延伸到井區22。在一些實施例中,間隙子25的部分25c和25d被基底20和間隙子24封裝(encapsulated)。In some embodiments, portion 24a of spacer 24 extends continuously from gate structure 21a to well region 22 . In some embodiments, portion 24b of spacer 24 extends continuously from gate structure 21b to well region 22 . In some embodiments, portions 25c and 25d of spacer 25 are encapsulated by substrate 20 and spacer 24 .

在基底20中形成井區26。在一些實施例中,井區26形成在表面20s1之下。在一些實施例中,井區26嵌入在基底20內。在一些實施例中,井區26包括一第二導電類型,與基底20的第一導電類型不同。在一些實施例中,間隙子24的部分24a與井區26接觸。在一些實施例中,間隙子24的部分24a從閘極結構21a連續延伸到基底20的井區26。在一些實施例中,井區26與井區22間隔開。Well region 26 is formed in substrate 20 . In some embodiments, well region 26 is formed below surface 20s1. In some embodiments, well region 26 is embedded within substrate 20 . In some embodiments, well region 26 includes a second conductivity type different from the first conductivity type of substrate 20 . In some embodiments, portion 24 a of spacer 24 is in contact with well region 26 . In some embodiments, portion 24 a of spacer 24 extends continuously from gate structure 21 a to well region 26 of substrate 20 . In some embodiments, well region 26 is spaced apart from well region 22 .

在基底20中形成井區27。在一些實施例中,井區27形成在表面20s1之下。在一些實施例中,井區27嵌入在基底20內。在一些實施例中,井區27包括該第二導電類型,與基底20的第一導電類型不同。在一些實施例中,間隙子24的部分24b與井區27接觸。在一些實施例中,間隙子24的部分24b從閘極結構21b連續延伸到基底20的井區27。在一些實施例中,井區27與井區22間隔開。A well region 27 is formed in the substrate 20 . In some embodiments, well region 27 is formed below surface 20s1. In some embodiments, well region 27 is embedded within substrate 20 . In some embodiments, well region 27 includes the second conductivity type, which is different from the first conductivity type of substrate 20 . In some embodiments, portion 24b of spacer 24 is in contact with well region 27 . In some embodiments, portion 24b of spacer 24 extends continuously from gate structure 21b to well region 27 of substrate 20 . In some embodiments, well region 27 is spaced apart from well region 22 .

在間隙子25上形成層28。在一些實施例中,結構23與層28接觸。在一些實施例中,層28的垂直表面28s不含結構23。在一些實施例中,結構23與層28的垂直表面28s1間隔開。在一些實施例中,層28包括金屬氧化物。在一些實施例中,層28包括金屬氮化物。在一些實施例中,層28包括金屬矽化物。在一些實施例中,層28包括氮化鈦。在一些實施例中,可以根據需求調整層28的厚度。Layer 28 is formed on spacer 25 . In some embodiments, structure 23 is in contact with layer 28 . In some embodiments, vertical surface 28s of layer 28 is free of structures 23 . In some embodiments, structure 23 is spaced apart from vertical surface 28s1 of layer 28 . In some embodiments, layer 28 includes a metal oxide. In some embodiments, layer 28 includes a metal nitride. In some embodiments, layer 28 includes metal suicide. In some embodiments, layer 28 includes titanium nitride. In some embodiments, the thickness of layer 28 can be adjusted as desired.

在層28上形成層29。在一些實施例中,層28做為阻障層,以隔離層29和基底20和間隙子25。層29包括設置在閘極結構21a和21b之間的導電接觸29c。導電接觸29c可設置在閘極結構21a和21b之間的溝槽內。結構23設置在導電接觸29c的下方。在一些實施例中,層28覆蓋導電接觸29c的三個側壁。層28形成在導電接觸29c的側壁上。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。Layer 29 is formed on layer 28 . In some embodiments, layer 28 acts as a barrier layer to isolate layer 29 from substrate 20 and spacers 25 . Layer 29 includes a conductive contact 29c disposed between gate structures 21a and 21b. A conductive contact 29c may be disposed within the trench between gate structures 21a and 21b. Structure 23 is disposed below conductive contact 29c. In some embodiments, layer 28 covers three sidewalls of conductive contact 29c. Layer 28 is formed on the sidewalls of conductive contact 29c. In some embodiments, layer 29 includes a metallic material. In some embodiments, layer 29 includes tungsten.

圖2B是圖2A中所示的虛線矩形A的放大圖。在一些實施例中,結構23的剖面具有銳角23A。在一些實施例中,結構23可以是金字塔形。在一些實施例中,結構23向基底20的表面20s2逐漸縮小。在一些實施例中,層28的垂直表面28s1不含結構23。在一些實施例中,結構23與層28的垂直表面28s1間隔開。FIG. 2B is an enlarged view of the dotted rectangle A shown in FIG. 2A. In some embodiments, the cross-section of structure 23 has an acute angle 23A. In some embodiments, structure 23 may be pyramid-shaped. In some embodiments, the structure 23 tapers toward the surface 20s2 of the substrate 20 . In some embodiments, vertical surface 28s1 of layer 28 is free of structures 23 . In some embodiments, structure 23 is spaced apart from vertical surface 28s1 of layer 28 .

在一些實施例中,結構23包括金屬矽化物。在一些實施例中,結構23包括矽化鈷。在一些實施例中,結構23的剖面23C1比結構23的剖面23C2更靠近表面20s1。結構23的剖面23C1具有長度L1。結構23的剖面23C2具有長度L2。在一些實施例中,長度L2與長度L1不同。在一些實施例中,長度L1大於長度L2。In some embodiments, structure 23 includes a metal silicide. In some embodiments, structure 23 includes cobalt suicide. In some embodiments, cross-section 23C1 of structure 23 is closer to surface 20s1 than cross-section 23C2 of structure 23 . Section 23C1 of structure 23 has a length L1. Section 23C2 of structure 23 has a length L2. In some embodiments, length L2 is different from length L1. In some embodiments, length L1 is greater than length L2.

在一些實施例中,層28包括嵌入在基底20內的底部28b。在一些實施例中,結構23與層28的底部28b接觸。在一些實施例中,層29的底部29b與層28的底部28b接觸。結構23從層28的底部28b逐漸縮小。結構23從導電接觸29c的底部29b逐漸縮小。In some embodiments, layer 28 includes a base 28b embedded within substrate 20 . In some embodiments, structure 23 is in contact with bottom 28b of layer 28 . In some embodiments, bottom 29b of layer 29 is in contact with bottom 28b of layer 28 . Structure 23 tapers from bottom 28b of layer 28 . Structure 23 tapers from bottom 29b of conductive contact 29c.

圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.

參照圖3A,可提供基底20。閘極結構21a可形成在基底201的表面20s1上。閘極結構21b可形成在基底20的表面20s1上。可在基底20中形成井區22。在一些實施例中,井區22可形成在閘極結構21a和21b之間。閘極結構21a和21b上可形成間隙子24。在間隙子上可形成間隙子25。在基底20中可形成井區26。在一些實施例中,井區26可形成在基底201的表面20s1之下。Referring to Figure 3A, a substrate 20 may be provided. The gate structure 21a may be formed on the surface 20s1 of the substrate 201 . The gate structure 21b may be formed on the surface 20s1 of the substrate 20 . Well region 22 may be formed in substrate 20 . In some embodiments, well region 22 may be formed between gate structures 21a and 21b. Spacers 24 may be formed on the gate structures 21a and 21b. A spacer 25 may be formed on the spacer. A well region 26 may be formed in substrate 20 . In some embodiments, the well region 26 may be formed under the surface 20s1 of the substrate 201 .

在一些實施例中,間隙子24的一部分與井區26接觸。在一些實施例中,間隙子24的一部分嵌入在井區26中。井區27可形成在基底20中。井區27可形成在基底201的表面20s1之下。在一些實施例中,間隙子24的一部分與井區27接觸。在一些實施例中,間隙子24的一部分嵌入在井區27中。在一些實施例中,基底20具有凹部20r。凹部20r凹陷在表面20s1之下。在一些實施例中,在閘極結構21a和21b之間形成溝槽29t,溝槽29t由間隙子25和基底20的凹部20r界定。In some embodiments, a portion of spacer 24 is in contact with well region 26 . In some embodiments, a portion of spacer 24 is embedded in well region 26 . Well region 27 may be formed in substrate 20 . The well region 27 may be formed under the surface 20s1 of the substrate 201 . In some embodiments, a portion of spacer 24 is in contact with well region 27 . In some embodiments, a portion of spacer 24 is embedded in well region 27 . In some embodiments, the base 20 has a recess 2Or. The recess 20r is recessed below the surface 20s1. In some embodiments, a trench 29 t is formed between the gate structures 21 a and 21 b , the trench 29 t is bounded by the spacer 25 and the recess 20 r of the substrate 20 .

參照圖3B,可在間隙子25上形成層28'。層28'可藉由化學氣相沉積(CVD)、電漿增強CVD(PECVD)、可流動CVD(FCVD)、旋塗、濺鍍或類似方法形成。層28'也形成在基底20的凹部20r和溝槽29t的側壁上。在一些實施例中,層28'包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28'包括氮化鈦。Referring to FIG. 3B , a layer 28 ′ may be formed on the spacer 25 . Layer 28' may be formed by chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), flowable CVD (FCVD), spin coating, sputtering, or the like. The layer 28 ′ is also formed on the recess 20 r of the substrate 20 and the sidewalls of the trench 29 t. In some embodiments, layer 28' includes one of titanium, titanium nitride, tantalum, tantalum nitride, silicon oxide, silicon nitride, or similar materials. In some embodiments, layer 28' includes titanium nitride.

參照圖3C,層28'的一部分被移除,而形成在溝槽29t的側壁29s上的層28'的部分則被保留。在一些實施例中,形成在間隙子25上的層28'被移除。在一些實施例中,形成在基底20的凹部20r上的層28'的一部分被移除。層28'的該部分可藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾蝕刻、濕蝕刻或類似的技術。在一些實施例中,層28'做為防止圖2A中所示的結構23在溝槽29t的側壁29s上形成。Referring to FIG. 3C, a portion of layer 28' is removed, while a portion of layer 28' formed on sidewall 29s of trench 29t remains. In some embodiments, layer 28' formed on spacer 25 is removed. In some embodiments, a portion of layer 28' formed on recess 2Or of substrate 20 is removed. This portion of layer 28' can be removed by, for example, etching techniques. In some embodiments, etching techniques include dry etching, wet etching, or similar techniques. In some embodiments, layer 28' acts to prevent formation of structure 23 shown in FIG. 2A on sidewall 29s of trench 29t.

參照圖3D,在間隙子25和基底20的凹部20r上形成層30。在一些實施例中,層30形成在溝槽29t的底部。在一些實施例中,層30可藉由例如物理氣相沉積(PVD)形成。藉由CVD形成的層28'的沉積濃度與藉由PVD形成的層30不同。藉由CVD形成的層28'的晶體密度與藉由PVD形成的層30的不同。在一些實施例中,層30包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層30包括氮化鈦。Referring to FIG. 3D , a layer 30 is formed on the spacer 25 and the recess 20r of the substrate 20 . In some embodiments, layer 30 is formed at the bottom of trench 29t. In some embodiments, layer 30 may be formed by, for example, physical vapor deposition (PVD). Layer 28' formed by CVD is deposited at a different concentration than layer 30 formed by PVD. The crystalline density of layer 28' formed by CVD is different from that of layer 30 formed by PVD. In some embodiments, layer 30 includes one of titanium, titanium nitride, tantalum, tantalum nitride, silicon oxide, silicon nitride, or similar materials. In some embodiments, layer 30 includes titanium nitride.

參照圖3F,在層30上形成層32。層32與層30接觸。層32的一部分形成在溝槽29t內。層32的一部分填滿溝槽29t。在一些實施例中,層32包括金屬材料。在一些實施例中,層32包括鈷。在一些實施例中,層32是藉由電漿增強的原子層沉積(ALD)形成。Referring to FIG. 3F , layer 32 is formed on layer 30 . Layer 32 is in contact with layer 30 . A portion of layer 32 is formed within trench 29t. A portion of layer 32 fills trench 29t. In some embodiments, layer 32 includes a metallic material. In some embodiments, layer 32 includes cobalt. In some embodiments, layer 32 is formed by plasma enhanced atomic layer deposition (ALD).

參照圖3G,對圖3F所示的結構進行一熱製程。在一些實施例中,層30做為擴散阻障層,用於在基底20中形成結構23。在一些實施例中,層30做為矽化物相變層。在該熱製程中,層32的材料與基底20的材料相互作用,結構23從層30向井區22逐漸形成。Referring to FIG. 3G, a thermal process is performed on the structure shown in FIG. 3F. In some embodiments, layer 30 acts as a diffusion barrier layer for forming structure 23 in substrate 20 . In some embodiments, layer 30 functions as a silicide phase change layer. During this thermal process, the material of layer 32 interacts with the material of substrate 20 , and structure 23 is gradually formed from layer 30 to well region 22 .

結構23與層30接觸。在一些實施例中,結構23不在層28'的垂直表面28's上。在一些實施例中,結構23不與層28'接觸。在一些實施例中,結構23不與層32接觸。結構23形成在井區22中。在一些實施例中,結構23從表面20s1逐漸縮小。Structure 23 is in contact with layer 30 . In some embodiments, structures 23 are not on vertical surfaces 28's of layer 28'. In some embodiments, structure 23 is not in contact with layer 28'. In some embodiments, structure 23 is not in contact with layer 32 . Structure 23 is formed in well region 22 . In some embodiments, structures 23 taper from surface 20s1.

參照圖3H,層32被移除。層32是藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾式蝕刻、濕式蝕刻或類似方法。在一些實施例中,層30的一部分被保留在間隙子25和基底20的凹部20r上。在一些實施例中,層28'的一部分被保留在溝槽29t的側壁29s上。Referring to Figure 3H, layer 32 is removed. Layer 32 is removed by, for example, etching techniques. In some embodiments, etching techniques include dry etching, wet etching, or the like. In some embodiments, a portion of layer 30 is retained on spacer 25 and recess 20 r of substrate 20 . In some embodiments, a portion of layer 28' is retained on sidewall 29s of trench 29t.

參照圖3I,在圖3H所示的結構上可形成層28。在一些實施例中,層28形成在層30的剩餘部分和層28'的剩餘部分上。在一些實施例中,層28可藉由化學氣相沉積(CVD)形成。在一些實施例中,層28包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28包括氮化鈦。層28的厚度可以根據需求進行調整。在一些實施例中,層28和層28'的總厚度可以在約1至5奈米(nm)的範圍內。在一些實施例中,層28和層30的總厚度可以30在大約1至5奈米的範圍內。在一些實施例中,層28和層28'的總厚度可以是約3奈米。在一些實施例中,層28和層30的總厚度可以是約3奈米。Referring to FIG. 3I, layer 28 may be formed on the structure shown in FIG. 3H. In some embodiments, layer 28 is formed over the remainder of layer 30 and the remainder of layer 28'. In some embodiments, layer 28 may be formed by chemical vapor deposition (CVD). In some embodiments, layer 28 includes one of titanium, titanium nitride, tantalum, tantalum nitride, silicon oxide, silicon nitride, or similar materials. In some embodiments, layer 28 includes titanium nitride. The thickness of layer 28 can be adjusted as desired. In some embodiments, the combined thickness of layers 28 and 28' may be in the range of about 1 to 5 nanometers (nm). In some embodiments, the total thickness 30 of layers 28 and 30 may be in the range of approximately 1 to 5 nanometers. In some embodiments, the combined thickness of layer 28 and layer 28' may be about 3 nanometers. In some embodiments, the combined thickness of layers 28 and 30 may be about 3 nanometers.

參照圖3J,可以在層28上形成層29。在一些實施例中,層28做為阻障層,以防止層29滲透到基底20中。在一些實施例中,層29可以藉由化學氣相沉積(CVD)形成。層29也在溝槽29t內形成。在一些實施例中,在溝槽29t內形成的層29是導電接觸29c。導電接觸29c形成在閘極結構21a和21b之間。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。Referring to FIG. 3J , layer 29 may be formed on layer 28 . In some embodiments, layer 28 acts as a barrier layer to prevent penetration of layer 29 into substrate 20 . In some embodiments, layer 29 may be formed by chemical vapor deposition (CVD). Layer 29 is also formed within trench 29t. In some embodiments, layer 29 formed within trench 29t is conductive contact 29c. A conductive contact 29c is formed between gate structures 21a and 21b. In some embodiments, layer 29 includes a metallic material. In some embodiments, layer 29 includes tungsten.

圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.

圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J的階段與前面所述相同。圖3E是在圖3D的階段之後進行。參照圖3E,在層30上進行一非晶化植入(PAI)31。在PAI之後,層30的結構被降解(degraded)。在一些實施例中,層30成為非晶化(amorphous)。之後,圖3F、圖3G、圖3H、圖3I和圖3J的階段跟隨圖3E的階段。在一些實施例中,圖3E的階段可以是選擇性的。藉由實施圖3E的階段,層32的非晶原子可以更容易遷移到基底20中以形成結構23。The stages of Figures 3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J are the same as previously described. Figure 3E is performed after the stage of Figure 3D. Referring to FIG. 3E , an amorphization implant (PAI) 31 is performed on layer 30 . After PAI, the structure of layer 30 is degraded. In some embodiments, layer 30 becomes amorphous. Thereafter, the stages of Figures 3F, 3G, 3H, 3I and 3J follow the stages of Figure 3E. In some embodiments, the stages of Figure 3E may be optional. By implementing the stage of FIG. 3E , the amorphous atoms of layer 32 can more easily migrate into substrate 20 to form structure 23 .

圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3F, 3G, 3K, 3L and 3M illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.

圖3A、圖3B、圖3C、圖3D、圖3F和圖3G的階段與前面所述相同。圖3K、圖3L和圖3M在圖3G的階段之後進行。The stages of Figures 3A, 3B, 3C, 3D, 3F and 3G are the same as previously described. Figures 3K, 3L and 3M follow the stage of Figure 3G.

參照圖3K,層28'、層30和層32可被完全去除,而間隙子25和基底20的凹部20r被曝露出。層28'、層30和層32是藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾式蝕刻、濕式蝕刻或類似方法。Referring to FIG. 3K, layer 28', layer 30, and layer 32 may be completely removed, leaving spacer 25 and recess 20r of substrate 20 exposed. Layer 28', layer 30, and layer 32 are removed by, for example, etching techniques. In some embodiments, etching techniques include dry etching, wet etching, or the like.

參照圖3L,可在圖3K所示的結構上形成層28。在一些實施例中,層28可形成在間隙子25和基底20的凹部20r上。在一些實施例中,層28形成在溝槽29t的側壁29s上。在一些實施例中,層28可藉由化學氣相沉積(CVD)形成。在一些實施例中,層28包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28包括氮化鈦。在一些實施例中,層28的厚度可根據需求進行調整。在一些實施例中,層28的厚度可以在約1至5奈米的範圍內。在一些實施例中,層28的厚度可以是約3奈米。Referring to FIG. 3L, layer 28 may be formed on the structure shown in FIG. 3K. In some embodiments, layer 28 may be formed on spacer 25 and recess 20 r of substrate 20 . In some embodiments, layer 28 is formed on sidewalls 29s of trench 29t. In some embodiments, layer 28 may be formed by chemical vapor deposition (CVD). In some embodiments, layer 28 includes one of titanium, titanium nitride, tantalum, tantalum nitride, silicon oxide, silicon nitride, or similar materials. In some embodiments, layer 28 includes titanium nitride. In some embodiments, the thickness of layer 28 can be adjusted as desired. In some embodiments, layer 28 may have a thickness in the range of about 1 to 5 nanometers. In some embodiments, layer 28 may be about 3 nanometers thick.

參照圖3M,可以在層28上形成層29。在一些實施例中,層28做為阻障層,以防止層29滲透到基底20中。在一些實施例中,層29可藉由化學氣相沉積(CVD)形成。層29也在溝槽29t內形成。在一些實施例中,在溝槽29t內形成的層29是導電接觸29c。導電接觸29c形成在閘極結構21a和21b之間。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。Referring to FIG. 3M , layer 29 may be formed on layer 28 . In some embodiments, layer 28 acts as a barrier layer to prevent penetration of layer 29 into substrate 20 . In some embodiments, layer 29 may be formed by chemical vapor deposition (CVD). Layer 29 is also formed within trench 29t. In some embodiments, layer 29 formed within trench 29t is conductive contact 29c. A conductive contact 29c is formed between gate structures 21a and 21b. In some embodiments, layer 29 includes a metallic material. In some embodiments, layer 29 includes tungsten.

圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3E, 3F, 3G, 3K, 3L, and 3M illustrate various fabrication stages of semiconductor device structures according to some embodiments of the present disclosure.

圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G的階段與之前所述相同。圖3K、圖3L和圖3M也與前面所述相同。圖3K、圖3L和圖3M是在圖3G的階段之後進行。The stages of Fig. 3A, Fig. 3B, Fig. 3C, Fig. 3D, Fig. 3E, Fig. 3F, Fig. 3G are the same as previously described. Figure 3K, Figure 3L and Figure 3M are also the same as previously described. Figures 3K, 3L and 3M are performed after the stage of Figure 3G.

圖4是流程圖,例示本揭露各個方面之半導體元件結構的製備方法40。FIG. 4 is a flowchart illustrating a method 40 of fabricating a semiconductor device structure according to various aspects of the present disclosure.

製備方法40從操作S41開始,其中提供一基底。該基底具有一表面。The manufacturing method 40 starts with operation S41, wherein a substrate is provided. The base has a surface.

製備方法40繼續進行操作S42,其中形成一第一閘極結構。該第一閘極結構是在該表面上形成。The manufacturing method 40 continues with operation S42, wherein a first gate structure is formed. The first gate structure is formed on the surface.

製備方法40繼續進行操作S43,其中形成一第二閘極結構。該第二閘極結構是在該表面上形成。The manufacturing method 40 continues with operation S43, wherein a second gate structure is formed. The second gate structure is formed on the surface.

製備方法40繼續進行操作S44,其中在該基底中形成一第一井區。該第一井區形成在該第一閘極結構和該第二閘極結構之間。The manufacturing method 40 continues with operation S44, wherein a first well region is formed in the substrate. The first well region is formed between the first gate structure and the second gate structure.

製備方法40繼續進行操作S45,其中在一溝槽內形成一導電接觸。該溝槽形成在該第一閘極結構和該第二閘極結構之間。The manufacturing method 40 continues with operation S45 , wherein a conductive contact is formed in a trench. The trench is formed between the first gate structure and the second gate structure.

製備方法40繼續進行操作S46,其中在該第一井區中形成一第一結構。該第一結構從該導電接觸的一底部逐漸縮小。The manufacturing method 40 continues with operation S46, wherein a first structure is formed in the first well region. The first structure tapers gradually from a bottom of the conductive contact.

製備方法40僅僅是一個例示,並不旨在將本揭露內容限制在申請專利範圍中明確提到的範圍之外。可在製備方法40的每個操作之前、期間或之後提供額外的操作,所述的一些操作可以被替換、消除或重新組織,用於該製備方法的其他實施例。在一些實施例中,製備方法40還可包括圖4中未描繪的操作。The preparation method 40 is only an illustration, and is not intended to limit the present disclosure beyond the scope explicitly mentioned in the patent claims. Additional operations may be provided before, during, or after each operation of manufacturing method 40, and some of the operations described may be replaced, eliminated, or reorganized for other embodiments of the manufacturing method. In some embodiments, preparation method 40 may also include operations not depicted in FIG. 4 .

圖5A和圖5B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。5A and 5B are flow charts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.

參照圖5A,製備方法50從操作S51A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 5A , the manufacturing method 50 begins with operation S51A, in which a substrate is provided. The base has a surface.

製備方法50繼續進行操作S51B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The manufacturing method 50 continues with operation S51B, wherein a first gate structure and a second gate structure are formed. The first and the second gate structures are formed on the surface of the substrate.

製備方法50繼續進行操作S51C,其中在該第一和該第二閘極結構上形成一間隙子。The fabrication method 50 continues with operation S51C, wherein a spacer is formed on the first and the second gate structures.

製備方法50繼續進行操作S51D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S51D對應於圖3A的階段。The fabrication method 50 continues with operation S51D, wherein a trench is formed between the first and the second gate structures. Operation S51D corresponds to the stage of FIG. 3A.

製備方法50繼續進行操作S51E,其中在該基底和該間隙子上形成一第一層。操作S51E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The manufacturing method 50 continues with operation S51E, wherein a first layer is formed on the substrate and the spacer. Operation S51E corresponds to the stage of FIG. 3B. In some embodiments, the first layer includes titanium nitride.

製備方法50繼續進行操作S51F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S51F對應於圖3C的階段。Manufacturing method 50 continues with operation S51F, wherein the portion of the first layer not formed on the sidewall of the trench is removed. Operation S51F corresponds to the stage of FIG. 3C.

參照圖5B,操作S51G在操作S51F之後。製備方法50繼續進行操作S51G,其中在該基底和該間隙子上形成一第二層。操作S51G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 5B , operation S51G follows operation S51F. The manufacturing method 50 continues with operation S51G, wherein a second layer is formed on the substrate and the spacer. Operation S51G corresponds to the stage of FIG. 3D. In some embodiments, the second layer includes titanium nitride.

製備方法50繼續進行操作S51H,其中在該第二層上形成一第三層。操作S51H對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The manufacturing method 50 continues with operation S51H, wherein a third layer is formed on the second layer. Operation S51H corresponds to the stage of FIG. 3F. In some embodiments, the third layer includes cobalt.

製備方法50繼續進行操作S51I,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸變小。操作S51I對應於圖3G的階段。The manufacturing method 50 continues with operation S51I, wherein a first structure is formed in the substrate. The first structure tapers from the surface of the substrate. Operation S51I corresponds to the stage of FIG. 3G.

製備方法50繼續進行操作S51J,其中該第三層,和該第一和該第二層的一部分被移除。操作S51J對應於圖3H的階段。The manufacturing method 50 continues with operation S51J, wherein the third layer, and portions of the first and second layers are removed. Operation S51J corresponds to the stage of FIG. 3H.

製備方法50繼續進行操作S51K,其中在該第一和該第二層的保留部分上形成一第四層。操作S51K對應於圖3I的階段。在一些實施例中,該第四層包括氮化鈦。The manufacturing method 50 proceeds to operation S51K, wherein a fourth layer is formed on the remaining portions of the first and second layers. Operation S51K corresponds to the stage of FIG. 3I. In some embodiments, the fourth layer includes titanium nitride.

製備方法50繼續進行操作S51L,其中在該第四層上形成一第五層。操作S51L對應於圖3J的階段。在一些實施例中,該第五層包括鎢。The manufacturing method 50 continues with operation S51L, wherein a fifth layer is formed on the fourth layer. Operation S51L corresponds to the stage of FIG. 3J . In some embodiments, the fifth layer includes tungsten.

製備方法50僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確提到的範圍之外。可以在製備方法50的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法50還可包括圖5A和圖5B中未描繪的操作。The preparation method 50 is only an illustration, and is not intended to limit the content of the present disclosure beyond the scope explicitly mentioned in the patent claims. Additional operations may be provided before, during, or after each operation of manufacturing method 50, and some of the operations described may be replaced, eliminated, or reorganized for additional embodiments of the manufacturing method. In some embodiments, preparation method 50 may also include operations not depicted in FIGS. 5A and 5B .

圖6A和圖6B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。6A and 6B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.

參照圖6A,製備方法60從操作S61A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 6A, the manufacturing method 60 begins with operation S61A, in which a substrate is provided. The base has a surface.

製備方法60繼續進行操作S61B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The manufacturing method 60 continues with operation S61B, wherein a first gate structure and a second gate structure are formed. The first and the second gate structures are formed on the surface of the substrate.

製備方法60繼續進行操作S61C,其中在該第一和該第二閘極結構上形成一間隙子。The fabrication method 60 continues with operation S61C, wherein a spacer is formed on the first and the second gate structures.

製備方法60繼續進行操作S61D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S61D對應於圖3A的階段。Fabrication method 60 continues with operation S61D, wherein a trench is formed between the first and second gate structures. Operation S61D corresponds to the stage of FIG. 3A.

製備方法60繼續進行操作S61E,其中在該基底和該間隙子上形成一第一層。操作S61E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The manufacturing method 60 continues with operation S61E, wherein a first layer is formed on the substrate and the spacer. Operation S61E corresponds to the stage of FIG. 3B. In some embodiments, the first layer includes titanium nitride.

製備方法60繼續進行操作S61F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S61F對應於圖3C的階段。Manufacturing method 60 continues with operation S61F, wherein the portion of the first layer not formed on the sidewall of the trench is removed. Operation S61F corresponds to the stage of FIG. 3C.

參照圖6B,操作S61G在操作S61F之後。製備方法60繼續進行操作S61G,其中在該基底和該間隙子上形成一第二層。操作S61G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 6B , operation S61G follows operation S61F. The manufacturing method 60 continues with operation S61G, wherein a second layer is formed on the substrate and the spacer. Operation S61G corresponds to the stage of FIG. 3D. In some embodiments, the second layer includes titanium nitride.

製備方法60繼續進行操作S61H,其中對該第二層執行一非晶化植入。操作S61H對應於圖3E的階段。Fabrication method 60 continues with operation S61H, wherein an amorphization implant is performed on the second layer. Operation S61H corresponds to the stage of FIG. 3E.

製備方法60繼續進行操作S61I,其中在該第二層上形成一第三層。操作S61I對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The manufacturing method 60 continues with operation S61I, wherein a third layer is formed on the second layer. Operation S61I corresponds to the stage of FIG. 3F. In some embodiments, the third layer includes cobalt.

製備方法60繼續進行操作S61J,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸變小。操作S61J對應於圖3G的階段。The manufacturing method 60 continues with operation S61J, wherein a first structure is formed in the substrate. The first structure tapers from the surface of the substrate. Operation S61J corresponds to the stage of FIG. 3G.

製備方法60繼續進行操作S61K,其中該第三層,和第一和第二層的一部分被移除。操作S61K對應於圖3H的階段。Manufacturing method 60 continues with operation S61K, wherein the third layer, and portions of the first and second layers are removed. Operation S61K corresponds to the stage of FIG. 3H.

製備方法60繼續進行操作S61L,其中在該第一和該第二層的保留部分上形成一第四層。操作S61L對應於圖3I的階段。在一些實施例中,該第四層包括氮化鈦。Manufacturing method 60 continues with operation S61L, wherein a fourth layer is formed on the remaining portions of the first and second layers. Operation S61L corresponds to the stage of FIG. 3I. In some embodiments, the fourth layer includes titanium nitride.

製備方法60繼續進行操作S61M,其中在該第四層上形成一第五層。操作S61M對應於圖3J的階段。在一些實施例中,該第五層包括鎢。Manufacturing method 60 continues with operation S61M, wherein a fifth layer is formed on the fourth layer. Operation S61M corresponds to the stage of Fig. 3J. In some embodiments, the fifth layer includes tungsten.

製備方法60僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法60的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法60還可包括圖6A和圖6B中未描繪的操作。The preparation method 60 is just an example, and is not intended to limit the content of the present disclosure beyond the scope explicitly stated in the patent claims. Additional operations may be provided before, during, or after each operation of manufacturing method 60, and some of the operations described may be replaced, eliminated, or reorganized for additional embodiments of the manufacturing method. In some embodiments, preparation method 60 may also include operations not depicted in FIGS. 6A and 6B .

圖7A和圖7B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。7A and 7B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.

參照圖7A,製備方法70從操作S71A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 7A, the manufacturing method 70 begins with operation S71A, in which a substrate is provided. The base has a surface.

製備方法70繼續進行操作S71B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The manufacturing method 70 continues with operation S71B, wherein a first gate structure and a second gate structure are formed. The first and the second gate structures are formed on the surface of the substrate.

製備方法70繼續進行操作S71C,其中在該第一和該第二閘極結構上形成一間隙子。The fabrication method 70 continues with operation S71C, wherein a spacer is formed on the first and the second gate structures.

製備方法70繼續進行操作S71D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S71D對應於圖3A的階段。The fabrication method 70 continues with operation S71D, wherein a trench is formed between the first and the second gate structures. Operation S71D corresponds to the stage of FIG. 3A.

製備方法70繼續進行操作S71E,其中在該基底和該間隙子上形成一第一層。操作S71E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The manufacturing method 70 continues with operation S71E, wherein a first layer is formed on the substrate and the spacer. Operation S71E corresponds to the stage of FIG. 3B. In some embodiments, the first layer includes titanium nitride.

製備方法70繼續進行操作S71F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S71F與圖3C的階段相對應。Manufacturing method 70 continues with operation S71F, wherein the portion of the first layer not formed on the sidewall of the trench is removed. Operation S71F corresponds to the stage of FIG. 3C.

參照圖7B,操作S71G在操作S71F之後。製備方法70繼續進行操作S71G,其中在該基底和該間隙子上形成一第二層。操作S71G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 7B , operation S71G follows operation S71F. The manufacturing method 70 continues with operation S71G, wherein a second layer is formed on the substrate and the spacer. Operation S71G corresponds to the stage of FIG. 3D. In some embodiments, the second layer includes titanium nitride.

製備方法70繼續進行操作S71H,其中在該第二層上形成一第三層。操作S71H對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The manufacturing method 70 continues with operation S71H, wherein a third layer is formed on the second layer. Operation S71H corresponds to the stage of FIG. 3F. In some embodiments, the third layer includes cobalt.

製備方法70繼續進行操作S71I,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸縮小。操作S71I對應於圖3G的階段。The manufacturing method 70 continues with operation S71I, wherein a first structure is formed in the substrate. The first structure tapers from the surface of the substrate. Operation S71I corresponds to the stage of FIG. 3G.

製備方法70繼續進行操作S71J,其中該第一、該第二和該第三層被移除。操作S71J對應於圖3K的階段。The manufacturing method 70 continues with operation S71J, wherein the first, the second and the third layers are removed. Operation S71J corresponds to the stage of FIG. 3K.

製備方法70繼續進行操作S71K,其中在該基底和該間隙子上形成一第四層。操作S71K對應於圖3L的階段。在一些實施例中,該第四層包括氮化鈦。The manufacturing method 70 continues with operation S71K, wherein a fourth layer is formed on the substrate and the spacer. Operation S71K corresponds to the stage of FIG. 3L. In some embodiments, the fourth layer includes titanium nitride.

製備方法70繼續進行操作S71L,其中在該第四層上形成一第五層。操作S71L對應於圖3M的階段。在一些實施例中,該第五層包括鎢。Manufacturing method 70 continues with operation S71L, wherein a fifth layer is formed on the fourth layer. Operation S71L corresponds to the stage of FIG. 3M. In some embodiments, the fifth layer includes tungsten.

製備方法70僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法70的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法70還可包括圖7A和圖7B中未描繪的操作。The preparation method 70 is only an example, and is not intended to limit the content of the present disclosure beyond the scope explicitly stated in the patent claims. Additional operations may be provided before, during, or after each operation of the manufacturing method 70, and some of the operations described may be replaced, eliminated, or reorganized for additional embodiments of the manufacturing method. In some embodiments, preparation method 70 may also include operations not depicted in FIGS. 7A and 7B .

圖8A和圖8B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。8A and 8B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.

參照圖8A,製備方法80從操作S81A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 8A, the manufacturing method 80 begins with operation S81A, in which a substrate is provided. The base has a surface.

製備方法80繼續進行操作S81B,其中一第一閘極結構和一第二閘極結構形成在基底上。該第一和該第二閘極結構是在該表面上形成。The fabrication method 80 continues with operation S81B, wherein a first gate structure and a second gate structure are formed on the substrate. The first and the second gate structures are formed on the surface.

製備方法80繼續進行操作S81C,其中在該第一和該第二閘極結構上形成一間隙子。The fabrication method 80 continues with operation S81C, wherein a spacer is formed on the first and the second gate structures.

製備方法80繼續進行操作S81D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S81D對應於圖3A的階段。The fabrication method 80 continues with operation S81D, wherein a trench is formed between the first and the second gate structures. Operation S81D corresponds to the stage of FIG. 3A.

製備方法80繼續進行操作S81E,其中在該基底和該間隙子上形成一第一層。操作S81E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The manufacturing method 80 continues with operation S81E, wherein a first layer is formed on the substrate and the spacer. Operation S81E corresponds to the stage of FIG. 3B. In some embodiments, the first layer includes titanium nitride.

製備方法80繼續進行操作S81F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S81F與圖3C的階段相對應。Manufacturing method 80 continues with operation S81F, wherein the portion of the first layer not formed on the sidewall of the trench is removed. Operation S81F corresponds to the stage of FIG. 3C.

參照圖8B,操作S81G在操作S81F之後。製備方法80繼續進行操作S81G,其中在該基底和該間隙子上形成一第二層。操作S81G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 8B , operation S81G follows operation S81F. The manufacturing method 80 continues with operation S81G, wherein a second layer is formed on the substrate and the spacer. Operation S81G corresponds to the stage of FIG. 3D. In some embodiments, the second layer includes titanium nitride.

製備方法80繼續進行操作S81H,其中在該第二層上進行一非晶化植入。操作S81H對應於圖3E的階段。Fabrication method 80 continues with operation S81H, wherein an amorphization implant is performed on the second layer. Operation S81H corresponds to the stage of FIG. 3E.

製備方法80繼續進行操作S81I,其中在該第二層上形成一第三層。操作S81I對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The manufacturing method 80 continues with operation S81I, wherein a third layer is formed on the second layer. Operation S81I corresponds to the stage of FIG. 3F. In some embodiments, the third layer includes cobalt.

製備方法80繼續進行操作S81J,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸縮小。操作S81J對應於圖3G的階段。The manufacturing method 80 continues with operation S81J, wherein a first structure is formed in the substrate. The first structure tapers from the surface of the substrate. Operation S81J corresponds to the stage of FIG. 3G.

製備方法80繼續進行操作S81K,其中該第一、該第二和該第三層被移除。操作S81K對應於圖3K的階段。The manufacturing method 80 continues with operation S81K, wherein the first, the second and the third layers are removed. Operation S81K corresponds to the stage of FIG. 3K.

製備方法80繼續進行操作S81L,其中在該基底和該間隙子上形成一第四層。操作S81L對應於圖3L的階段。在一些實施例中,該第四層包括氮化鈦。The manufacturing method 80 continues with operation S81L, wherein a fourth layer is formed on the substrate and the spacer. Operation S81L corresponds to the stage of FIG. 3L. In some embodiments, the fourth layer includes titanium nitride.

製備方法80繼續進行操作S81M,其中在該第四層上形成一第五層。操作S81M對應於圖3M的階段。在一些實施例中,該第五層包括鎢。The manufacturing method 80 continues with operation S81M, wherein a fifth layer is formed on the fourth layer. Operation S81M corresponds to the stage of FIG. 3M. In some embodiments, the fifth layer includes tungsten.

製備方法80僅僅是一個例示,並不旨在將本揭露內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法80的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法80還可包括圖8A和圖8B中未描繪的操作。The preparation method 80 is merely an illustration, and is not intended to limit the present disclosure beyond what is expressly stated in the claims. Additional operations may be provided before, during, or after each operation of manufacturing method 80, and some of the operations described may be replaced, eliminated, or reorganized for additional embodiments of the manufacturing method. In some embodiments, preparation method 80 may also include operations not depicted in FIGS. 8A and 8B .

圖9A是俯視示意圖,例示本揭露一些比較實施例之半導體元件結構1'的閘極101'和源極/汲極102'的佈局。9A is a schematic top view illustrating the layout of the gate 101 ′ and the source/drain 102 ′ of the semiconductor device structure 1 ′ of some comparative embodiments of the present disclosure.

參照圖9A,接觸區103'與閘極區101'相隔距離L'。當半導體元件結構1的尺寸減小時,距離L'需要相應減小,因為當半導體元件結構1的閘極長度減小時,半導體元件結構1的閾值電壓變得難以控制,這可能導致意外的電流洩漏。在習用製程中,矽化鈷被形成在接觸的側壁上。該矽化鈷可以是橢圓形。形成在接觸側壁上的矽化鈷可能導致電流洩漏。為了防止矽化鈷在接觸的側壁上形成,在接觸的側壁上形成一層氮化矽。雖然氮化矽層可以防止矽化鈷在接觸的側壁上形成,但它會增加接觸電阻。本文揭露的方法消除了氮化矽層。矽化鈷是金字塔形。矽化鈷允許在不引起電流洩漏的情況下減少長度L',還能降低接觸電阻。Referring to FIG. 9A, the contact region 103' is separated from the gate region 101' by a distance L'. When the size of the semiconductor element structure 1 is reduced, the distance L' needs to be reduced accordingly, because when the gate length of the semiconductor element structure 1 is reduced, the threshold voltage of the semiconductor element structure 1 becomes difficult to control, which may cause unexpected current leakage . In a conventional process, cobalt silicide is formed on the sidewalls of the contacts. The cobalt silicide may be oval. Cobalt silicide formed on the sidewall of the contact may cause current leakage. To prevent cobalt silicide from forming on the sidewalls of the contacts, a layer of silicon nitride is formed on the sidewalls of the contacts. Although the silicon nitride layer prevents cobalt silicide from forming on the sidewalls of the contact, it increases contact resistance. The method disclosed herein eliminates the silicon nitride layer. Cobalt silicide is pyramidal. Cobalt silicide allows reducing the length L' without causing current leakage and also reduces contact resistance.

圖9B是剖視圖,例示本揭露一些比較實施例之半導體元件結構沿圖9A所示的虛線B-B'的剖視圖。FIG. 9B is a cross-sectional view illustrating semiconductor device structures of some comparative embodiments of the present disclosure along the dotted line BB′ shown in FIG. 9A .

參照圖9B,半導體元件結構1'可包括基底10'、閘極結構11'、導電接觸19c'、汲極區12'、源極區13'、矽化金屬結構14'、間隙子15'和16'、輕摻雜汲極(LDD)區17'和暈區18'。基底10'可以具有表面10s'。閘極結構11'形成在表面10s'上。汲極區12'形成在表面10s'之下。源極區13'形成在表面10s之下。矽化金屬結構14'形成在表面10s之下'。矽化金屬結構14'具有彎曲/圓形的輪廓。在一些實施例中,矽化金屬結構14'是橢圓的。Referring to FIG. 9B, the semiconductor device structure 1' may include a substrate 10', a gate structure 11', a conductive contact 19c', a drain region 12', a source region 13', a metal silicide structure 14', spacers 15' and 16 ', lightly doped drain (LDD) region 17' and halo region 18'. The substrate 10' may have a surface 10s'. A gate structure 11' is formed on the surface 10s'. A drain region 12' is formed below the surface 10s'. A source region 13' is formed below the surface 10s. A metal silicide structure 14' is formed below the surface 10s'. The metal silicide structure 14' has a curved/circular profile. In some embodiments, the metal suicide structure 14' is elliptical.

參照圖9B,矽化金屬結構14'的部分14a'形成在導電接觸19c'的側壁19s1'上,而矽化金屬結構14'的部分14b'形成在導電接觸19c'的側壁19s2'上。由於部分14a'、導電接觸19c'和閘極結構11'之間的實際距離小於距離L',因此增加從導電接觸19c'到閘極結構11'的電流洩漏。因此,半導體元件結構1'的性能可能受到不利影響。Referring to FIG. 9B, a portion 14a' of the metal silicide structure 14' is formed on the sidewall 19s1' of the conductive contact 19c', and a portion 14b' of the metal silicide structure 14' is formed on the sidewall 19s2' of the conductive contact 19c'. Since the actual distance between portion 14a', conductive contact 19c' and gate structure 11' is less than distance L', current leakage from conductive contact 19c' to gate structure 11' is increased. Consequently, the performance of the semiconductor element structure 1' may be adversely affected.

從汲極區12'指向源極區13'的電流路徑19p'用虛線表示。當比較圖9B所示的半導體元件結構1'與圖1B所示的半導體元件結構1時,圖9B所示的矽化金屬結構(矽化鈷)14'是橢圓形,而圖1B所示的矽化金屬結構(矽化鈷)14是金字塔形。如前所述,矽化鈷14'比矽化鈷14更容易引起洩漏電流。當縮小半導體元件的尺寸時,優選使用矽化鈷14而不是矽化鈷14'。The current path 19p' from the drain region 12' to the source region 13' is indicated by a dotted line. When comparing the semiconductor device structure 1' shown in FIG. 9B with the semiconductor device structure 1 shown in FIG. 1B, the metal silicide structure (cobalt silicide) 14' shown in FIG. Structure (cobalt silicide) 14 is pyramidal. As mentioned above, cobalt silicide 14 ′ is more likely to cause leakage current than cobalt silicide 14 . When reducing the size of semiconductor devices, it is preferable to use cobalt silicide 14 instead of cobalt silicide 14'.

本揭露的一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一第一井區以及一第一結構。該基底具有一第一表面和與該第一表面相對的一第二表面。該第一閘極結構設置在該第一表面上。該第二閘極結構設置在該第一表面上。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構設置在該第一井區中。該第一結構的形狀具有一銳角。One aspect of the present disclosure provides a semiconductor device structure. The semiconductor element structure includes a base, a first gate structure, a second gate structure, a first well region and a first structure. The base has a first surface and a second surface opposite to the first surface. The first gate structure is disposed on the first surface. The second gate structure is disposed on the first surface. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is disposed in the first well region. The shape of the first structure has an acute angle.

本揭露的另一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一導電接觸、一第一井區以及一第一結構。該基底具有一表面。該第一閘極結構設置在該表面上。該第二閘極結構設置在該表面上。該導電接觸位於該第一閘極結構和該第二閘極結構之間。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構嵌入在該第一井區內,並從該導電接觸的一底部逐漸縮小。該第一結構包括矽化鈷。Another aspect of the disclosure provides a semiconductor device structure. The semiconductor device structure includes a base, a first gate structure, a second gate structure, a conductive contact, a first well area and a first structure. The base has a surface. The first gate structure is disposed on the surface. The second gate structure is disposed on the surface. The conductive contact is located between the first gate structure and the second gate structure. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is embedded in the first well region and gradually narrows from a bottom of the conductive contact. The first structure includes cobalt silicide.

本揭露的另一個方面提供一種半導體元件結構的製備方法。該製備方法包括:提供一基底,該基底具有一表面;在該表面上形成一第一閘極結構;在該表面上形成一第二閘極結構;在該基底中並在該第一閘極結構和該第二閘極結構之間形成一第一井區;在該第一閘極結構和該第二閘極結構之間的一溝槽內形成一導電接觸;以及在該第一井區中形成一第一結構,其中該第一結構從該導電接觸的一底部逐漸縮小。Another aspect of the disclosure provides a method for fabricating a semiconductor device structure. The preparation method includes: providing a substrate, the substrate has a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; in the substrate and on the first gate forming a first well region between the structure and the second gate structure; forming a conductive contact in a trench between the first gate structure and the second gate structure; and forming a conductive contact in the first well region A first structure is formed, wherein the first structure tapers from a bottom of the conductive contact.

本揭露的實施例揭露一種在基底中具有金屬矽化物的半導體元件結構。上述金屬矽化物不存在於該半導體元件結構的閘極結構之間的溝槽側壁。因此降低半導體元件結構中的接觸電阻。此外,該半導體元件結構包括氮化鈦層。氮化鈦層做為形成金屬矽化物的擴散阻障層。氮化鈦層的厚度可調,以防止金屬矽化物形成在半導體元件結構的閘極結構之間的溝槽側壁上,並防止接觸電阻增加。在一個比較的例示中,在半導體元件結構的閘極結構之間的溝槽側壁上形成氧化矽/氮化矽。氧化矽/氮化矽具有較大的接觸電阻,因此增加了閘極結構和金屬矽化物之間的接觸電阻。與比較例相比,在本揭露的實施例中,可以調整氮化鈦的厚度,以防止金屬矽化物在半導體元件結構的閘極結構之間的溝槽側壁上形成,防止接觸電阻增加,因此可以提高半導體元件結構的性能。Embodiments of the disclosure disclose a semiconductor device structure with a metal silicide in a substrate. The aforementioned metal silicide does not exist on the trench sidewalls between the gate structures of the semiconductor device structure. The contact resistance in the structure of the semiconductor component is thus reduced. In addition, the semiconductor element structure includes a titanium nitride layer. The titanium nitride layer acts as a diffusion barrier layer for forming metal silicide. The thickness of the titanium nitride layer is adjustable to prevent metal silicide from forming on the trench sidewall between the gate structures of the semiconductor element structure and to prevent the contact resistance from increasing. In a comparative example, silicon oxide/silicon nitride is formed on trench sidewalls between gate structures of semiconductor device structures. Silicon oxide/silicon nitride has a higher contact resistance, thus increasing the contact resistance between the gate structure and the metal silicide. Compared with the comparative example, in the embodiment of the present disclosure, the thickness of titanium nitride can be adjusted to prevent metal silicide from forming on the sidewall of the trench between the gate structures of the semiconductor device structure and prevent the contact resistance from increasing, so The performance of the semiconductor element structure can be improved.

雖然已詳述本揭露及其優點,然而應理解可以進行其他變化、取代與替代而不脫離揭露專利範圍所界定之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the present disclosure and its advantages have been described in detail, it should be understood that other changes, substitutions and substitutions can be made hereto without departing from the spirit and scope of the present disclosure as defined by the disclosed claims. For example, many of the processes described above can be performed in different ways and replaced by other processes or combinations thereof.

再者,本揭露案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解以根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包括於本揭露案之揭露專利範圍內。Furthermore, the scope of the disclosure is not limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that they can use existing or future developed processes, machinery, manufacturing, A composition of matter, means, method, or step. Accordingly, such processes, machinery, manufacture, material composition, means, methods, or steps are included in the scope of the patent disclosure of this disclosure.

1:半導體元件結構 1':半導體元件結構 2:半導體元件結構 10:基底 10s:表面 10s':表面 10':基底 11:閘極結構 11':閘極結構 12:汲極區 12':汲極區 13:源極區 13':源極區 14:矽化金屬結構 14':矽化金屬結構 14a':部分 14b':部分 15:間隙子 15':間隙子 16:間隙子 16':間隙子 17:輕度摻雜汲極(LDD)區 17':輕摻雜汲極(LDD)區 18:暈區 18':暈區 19:導電接觸 19c':導電接觸 19p:電流路徑 19p':電流路徑 19s1:側壁 19s1':側壁 19s2:側壁 19s2':側壁 20:基底 20r:凹部 20s1:表面 20s2:表面 21a:閘極結構 21b:閘極結構 22:井區 23:結構 23A:銳角 23C1:剖面 23C2:剖面 24:間隙子 24a:部分 24b:部分 25:間隙子 25a:部分 25b:部分 25c:部分 25d:部分 26:井區 26a:部分 26b:部分 27:井區 28:層 28b:底部 28s1:垂直表面 28':層 28's:垂直表面 29:層 29b:底部 29c:導電接觸 29s:側壁 29t:溝槽 30:層 31:非晶化植入 32:層 40:製備方法 50:製備方法 60:製備方法 70:製備方法 80:製備方法 101:閘極區 101':閘極 102:源極/汲極區 102':源極/汲極 103:接觸區 103':接觸區 A:虛線矩形 A-A':虛線 B-B':虛線 L1:長度 L2:長度 L':距離 S41:操作 S42:操作 S43:操作 S44:操作 S45:操作 S46:操作 S51A:操作 S51B:操作 S51C:操作 S51D:操作 S51E:操作 S51F:操作 S51G:操作 S51H:操作 S51I:操作 S51J:操作 S51K:操作 S51L:操作 S61A:操作 S61B:操作 S61C:操作 S61D:操作 S61E:操作 S61F:操作 S61G:操作 S61H:操作 S61I:操作 S61J:操作 S61K:操作 S61L:操作 S61M:操作 S71A:操作 S71B:操作 S71C:操作 S71D:操作 S71E:操作 S71F:操作 S71G:操作 S71H:操作 S71I:操作 S71J:操作 S71K:操作 S71L:操作 S81A:操作 S81B:操作 S81C:操作 S81D:操作 S81E:操作 S81F:操作 S81G:操作 S81H:操作 S81I:操作 S81J:操作 S81K:操作 S81L:操作 S81M:操作 1: Semiconductor element structure 1': Semiconductor device structure 2: Semiconductor element structure 10: Base 10s: surface 10s': surface 10': base 11:Gate structure 11': gate structure 12: Drain area 12': Drain area 13: Source area 13': source region 14: Metal silicide structure 14': metal silicide structure 14a': part 14b': part 15: spacer 15': spacer 16: spacer 16': spacer 17: Lightly doped drain (LDD) region 17': Lightly doped drain (LDD) region 18: halo area 18': halo area 19: Conductive contact 19c': Conductive contact 19p: current path 19p': current path 19s1: side wall 19s1': side wall 19s2: side wall 19s2': side wall 20: base 20r: concave part 20s1: Surface 20s2: Surface 21a:Gate structure 21b:Gate structure 22: Well area 23: Structure 23A: acute angle 23C1: Profile 23C2: Profile 24: spacer 24a: part 24b: part 25: spacer 25a: part 25b: part 25c: part 25d: part 26: well area 26a: part 26b: part 27: well area 28: layer 28b: bottom 28s1: Vertical surfaces 28': layers 28's: vertical surface 29: layers 29b: Bottom 29c: Conductive contact 29s: side wall 29t: Groove 30: layers 31: Amorphization Implantation 32: layer 40: Preparation method 50: Preparation method 60: Preparation method 70: Preparation method 80: Preparation method 101: gate area 101': Gate 102: source/drain region 102': source/drain 103: Contact area 103': contact area A: dotted rectangle A-A': dotted line BB': dotted line L1: Length L2: Length L': distance S41: Operation S42: Operation S43: Operation S44: Operation S45: Operation S46: Operation S51A: Operation S51B: Operation S51C: Operation S51D: Operation S51E: Operation S51F: Operation S51G: Operation S51H: Operation S51I: Operation S51J: Operation S51K: Operation S51L: Operation S61A: Operation S61B: Operation S61C: Operation S61D: Operation S61E: Operation S61F: Operation S61G: Operation S61H: Operation S61I: Operation S61J: Operation S61K: Operation S61L: Operation S61M: Operation S71A: Operation S71B: Operation S71C: Operation S71D: Operation S71E: Operation S71F: Operation S71G: Operation S71H: Operation S71I: Operation S71J: Operation S71K: Operation S71L: Operation S81A: Operation S81B: Operation S81C: Operation S81D: Operation S81E: Operation S81F: Operation S81G: Operation S81H: Operation S81I: Operation S81J: Operation S81K: Operation S81L: Operation S81M: Operation

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1A是俯視示意圖,例示本揭露一些實施例之半導體元件結構的閘極和源極/汲極區的佈局。 圖1B是剖視圖,例示本揭露一些實施例之半導體元件結構沿圖1A所示的虛線A-A'的剖視圖。 圖2A是剖視圖,例示本揭露一些實施例之半導體元件結構。 圖2B是放大圖,例示本揭露一些實施例之圖2A中所示的虛線矩形A。 圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖4是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖5A和圖5B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖6A和圖6B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖7A和圖7B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖8A和圖8B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖9A是俯視示意圖,例示本揭露一些比較實施例之半導體元件結構的閘極和源極/汲極區的佈局。 圖9B是剖視圖,例示本揭露一些比較實施例之半導體元件結構沿圖9A所示的虛線B-B'的剖視圖。 The disclosure content of the present application can be understood more comprehensively when referring to the embodiments and the patent scope of the application for combined consideration of the drawings, and the same reference numerals in the drawings refer to the same components. FIG. 1A is a schematic top view illustrating the layout of gate and source/drain regions of a semiconductor device structure according to some embodiments of the present disclosure. FIG. 1B is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure along the dotted line AA′ shown in FIG. 1A . FIG. 2A is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure. FIG. 2B is an enlarged view illustrating the dashed rectangle A shown in FIG. 2A of some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3F, 3G, 3K, 3L and 3M illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3K, 3L, and 3M illustrate various fabrication stages of semiconductor device structures according to some embodiments of the present disclosure. FIG. 4 is a flowchart illustrating a method of fabricating a semiconductor device structure according to various aspects of the present disclosure. 5A and 5B are flow charts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 6A and 6B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 7A and 7B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 8A and 8B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 9A is a schematic top view illustrating the layout of the gate and source/drain regions of the semiconductor device structures of some comparative embodiments of the present disclosure. FIG. 9B is a cross-sectional view illustrating semiconductor device structures of some comparative embodiments of the present disclosure along the dotted line BB′ shown in FIG. 9A .

2:半導體元件結構 2: Semiconductor element structure

20:基底 20: base

20s1:表面 20s1: Surface

20s2:表面 20s2: Surface

21a:閘極結構 21a:Gate structure

21b:閘極結構 21b:Gate structure

22:井區 22: Well area

23:結構 23: Structure

24:間隙子 24: spacer

24a:部分 24a: part

24b:部分 24b: part

25:間隙子 25: spacer

25a:部分 25a: part

25b:部分 25b: part

25c:部分 25c: part

25d:部分 25d: part

26:井區 26: well area

27:井區 27: well area

28:層 28: layer

28s1:垂直表面 28s1: Vertical surfaces

29:層 29: layers

29c:導電接觸 29c: Conductive contact

A:虛線矩形 A: dotted rectangle

Claims (12)

一種半導體元件結構的製備方法,包括:提供一基底,該基底具有一表面;在該表面上形成一第一閘極結構;在該表面上形成一第二閘極結構;在該基底中並在該第一閘極結構和該第二閘極結構之間形成一第一井區;在該第一閘極結構該和該第二閘極結構之間的一溝槽內形成一導電接觸;在該第一井區中形成一第一結構,其中該第一結構從該導電接觸的一底部逐漸縮小;在該第一閘極結構和該第二閘極結構上形成一第一間隙子;在該第一間隙子上形成一第二間隙子;藉由化學氣相沉積(CVD)在該第二間隙子上形成一第一層;以及去除該第一層中該溝槽側壁以外的部分。 A method for preparing a semiconductor element structure, comprising: providing a substrate, the substrate has a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; A first well region is formed between the first gate structure and the second gate structure; a conductive contact is formed in a trench between the first gate structure and the second gate structure; A first structure is formed in the first well region, wherein the first structure gradually shrinks from a bottom of the conductive contact; a first spacer is formed on the first gate structure and the second gate structure; forming a second spacer on the first spacer; forming a first layer on the second spacer by chemical vapor deposition (CVD); and removing the part of the first layer other than the trench sidewall. 如請求項1所述的製備方法,更包括在該基底和該第二間隙子上形成一第二層。 The manufacturing method as claimed in claim 1, further comprising forming a second layer on the substrate and the second spacer. 如請求項1所述的製備方法,更包括對該第二層執行一植入。 The manufacturing method as claimed in claim 1, further comprising performing an implantation on the second layer. 如請求項1所述的製備方法,更包括在該第二層上形成一第三層。 The preparation method as claimed in claim 1, further comprising forming a third layer on the second layer. 如請求項3所述的製備方法,更包括在該第二層上形成一第三層。 The preparation method as claimed in claim 3 further includes forming a third layer on the second layer. 如請求項4所述的製備方法,更包括藉由一熱製程形成該第一結構。 The manufacturing method as claimed in claim 4, further comprising forming the first structure by a thermal process. 如請求項6所述的製備方法,更包括去除該第一層、該第二層和該第三層。 The preparation method according to claim 6, further comprising removing the first layer, the second layer and the third layer. 如請求項7所述的製備方法,更包括在該基底和該第二間隙子上形成一第四層。 The manufacturing method as claimed in claim 7, further comprising forming a fourth layer on the substrate and the second spacer. 如請求項8所述的製備方法,更包括在該第四層上形成一第五層。 The manufacturing method as claimed in claim 8, further comprising forming a fifth layer on the fourth layer. 如請求項7所述的製備方法,其中在該第一層的一垂直表面上不含該第一結構。 The preparation method as claimed in claim 7, wherein the first structure is not present on a vertical surface of the first layer. 如請求項7所述的製備方法,其中該第三層被移除,該第一層和該第二層的一部分被保留。 The preparation method as claimed in item 7, wherein the third layer is removed, and a part of the first layer and the second layer are retained. 如請求項7所述的製備方法,其中該第一層、該第二層和該第三層被移除。 The preparation method as claimed in item 7, wherein the first layer, the second layer and the third layer are removed.
TW111110906A 2021-12-27 2022-03-23 Method for preparing semiconductor device structure TWI794062B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/562,210 2021-12-27
US17/562,210 US20230207637A1 (en) 2021-12-27 2021-12-27 Method for manufacturing semiconductor device structure
US17/562,362 2021-12-27
US17/562,362 US11646353B1 (en) 2021-12-27 2021-12-27 Semiconductor device structure

Publications (2)

Publication Number Publication Date
TWI794062B true TWI794062B (en) 2023-02-21
TW202327087A TW202327087A (en) 2023-07-01

Family

ID=86689377

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111110895A TWI833182B (en) 2021-12-27 2022-03-23 Semiconductor device structure
TW111110906A TWI794062B (en) 2021-12-27 2022-03-23 Method for preparing semiconductor device structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111110895A TWI833182B (en) 2021-12-27 2022-03-23 Semiconductor device structure

Country Status (2)

Country Link
CN (1) CN116364535A (en)
TW (2) TWI833182B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180197916A1 (en) * 2013-09-02 2018-07-12 Sony Corporation Semiconductor device structure useful for bulk transistor and method of manufacturing same
TW202207295A (en) * 2020-08-14 2022-02-16 台灣積體電路製造股份有限公司 Semiconductor structure and method for manufacturing thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059526B1 (en) * 2012-11-22 2019-12-26 삼성전자주식회사 Method of forming semiconductor device having embedded stressor and related device
WO2015053600A1 (en) * 2013-10-11 2015-04-16 주식회사 세미콘라이트 Semiconductor light emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180197916A1 (en) * 2013-09-02 2018-07-12 Sony Corporation Semiconductor device structure useful for bulk transistor and method of manufacturing same
TW202207295A (en) * 2020-08-14 2022-02-16 台灣積體電路製造股份有限公司 Semiconductor structure and method for manufacturing thereof

Also Published As

Publication number Publication date
TW202327101A (en) 2023-07-01
CN116364535A (en) 2023-06-30
TWI833182B (en) 2024-02-21
TW202327087A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
JP6329294B2 (en) Transistor with high boron-doped germanium concentration
JP5571693B2 (en) In situ formed drain and source regions including strain-inducing alloys and graded dopant profiles
TWI292595B (en) Semiconductor device having a retrograde dopant profile in a channel region and method for fabricating the same
CN110085676B (en) Tunneling field effect transistor with semiconductor fin structure
US7315051B2 (en) Method of forming a source/drain and a transistor employing the same
TWI325181B (en) Metal-oxide-semiconductor device having improved performance and reliability
TWI293777B (en) Asymmetric recessed gate mosfet and method for manufacturing the same
TWI414067B (en) Superjunction power mosfet
JP2004504711A (en) High-speed trench double diffusion metal oxide semiconductor
US20100090274A1 (en) Trench mosfet with shallow trench contact
TW201926570A (en) Semiconductor device
KR20110038652A (en) Cmos device comprising mos transistors with recessed drain and source areas and non-conformal metal silicide regions
JP2006066611A (en) Semiconductor device
JP3692039B2 (en) Manufacturing method of field effect control type transistor
CN110047908B (en) Semiconductor device and method for manufacturing the same
TWI525713B (en) Non-planar transistor fin fabrication
WO2012041064A1 (en) Semiconductor structure and manufacturing method thereof
TWI794062B (en) Method for preparing semiconductor device structure
JP4537014B2 (en) Method for forming an integrated circuit transistor having an isolated punch-through prevention film
KR20070098452A (en) Semiconductor device increased channel area and method for manufacturing the same
TWI476932B (en) Self-aligned contact structure trench jfet
US20230207637A1 (en) Method for manufacturing semiconductor device structure
TW202042400A (en) Field-effect transistors with diffusion blocking spacer sections
US11646353B1 (en) Semiconductor device structure
US20130292747A1 (en) Semiconductor device and method for fabricating the same