TWI794062B - Method for preparing semiconductor device structure - Google Patents
Method for preparing semiconductor device structure Download PDFInfo
- Publication number
- TWI794062B TWI794062B TW111110906A TW111110906A TWI794062B TW I794062 B TWI794062 B TW I794062B TW 111110906 A TW111110906 A TW 111110906A TW 111110906 A TW111110906 A TW 111110906A TW I794062 B TWI794062 B TW I794062B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- substrate
- gate structure
- spacer
- gate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 claims abstract description 84
- 125000006850 spacer group Chemical group 0.000 claims description 67
- 238000002360 preparation method Methods 0.000 claims description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 11
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 52
- 229910021332 silicide Inorganic materials 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 33
- 239000002184 metal Substances 0.000 description 33
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 29
- 229910017052 cobalt Inorganic materials 0.000 description 29
- 239000010941 cobalt Substances 0.000 description 29
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 28
- 229910052581 Si3N4 Inorganic materials 0.000 description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 125000005843 halogen group Chemical group 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 102220585514 T cell receptor gamma constant 1_S71D_mutation Human genes 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 206010010144 Completed suicide Diseases 0.000 description 4
- 102220563778 DALR anticodon-binding domain-containing protein 3_S81G_mutation Human genes 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000005280 amorphization Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 102200045137 rs104894342 Human genes 0.000 description 4
- 102220223196 rs146238336 Human genes 0.000 description 4
- 102200081497 rs1553259790 Human genes 0.000 description 4
- 102220257196 rs1553408276 Human genes 0.000 description 4
- 102220053041 rs543765307 Human genes 0.000 description 4
- 102220039196 rs75994611 Human genes 0.000 description 4
- 102200038213 rs767568897 Human genes 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 102220619039 28S ribosomal protein S12, mitochondrial_S61E_mutation Human genes 0.000 description 3
- 102220473546 ELAV-like protein 1_S81K_mutation Human genes 0.000 description 3
- 102220534918 Importin subunit alpha-6_S61D_mutation Human genes 0.000 description 3
- 102220624297 Interferon alpha-8_S81D_mutation Human genes 0.000 description 3
- 102220537037 Paired box protein Pax-2_S61I_mutation Human genes 0.000 description 3
- 102220497604 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1_S71E_mutation Human genes 0.000 description 3
- 102220583387 Protein fem-1 homolog B_S71I_mutation Human genes 0.000 description 3
- 102220578855 Tyrosine-protein phosphatase non-receptor type substrate 1_S61L_mutation Human genes 0.000 description 3
- 102220589231 WW domain-containing transcription regulator protein 1_S51D_mutation Human genes 0.000 description 3
- 102200079006 c.152C>T Human genes 0.000 description 3
- 102220417888 c.152G>T Human genes 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 102220226098 rs1064793491 Human genes 0.000 description 3
- 102220074265 rs180177184 Human genes 0.000 description 3
- 102220343545 rs375739887 Human genes 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 102220605052 Histone H4-like protein type G_S61A_mutation Human genes 0.000 description 2
- 102220585559 T cell receptor gamma constant 1_S51A_mutation Human genes 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 102220085619 rs140512665 Human genes 0.000 description 2
- 102220047964 rs587783194 Human genes 0.000 description 2
- 102220184129 rs778408190 Human genes 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本申請案主張美國第17/562,362號及第17/562,210號專利申請案之優先權(即優先權日為「2021年12月27日」),其內容以全文引用之方式併入本文中。This application claims priority to US Patent Application Nos. 17/562,362 and 17/562,210 (ie, the priority date is "December 27, 2021"), the contents of which are incorporated herein by reference in their entirety.
本揭露關於一種半導體結構,特別是關於一種包括具有銳角的矽化鈷結構的半導體元件結構。The present disclosure relates to a semiconductor structure, and more particularly to a semiconductor device structure including a cobalt silicide structure with an acute angle.
隨著積體電路占用面積的減少,接觸(contact)和閘極結構之間的距離也相應地減少,將可能導致源極/汲極的洩漏。氧化矽或氮化矽可做為防止金屬矽化物在半導體元件的接觸側表面上形成。然而,氧化矽或氮化矽可能會造成接觸電阻的增加,因此對半導體元件的性能產生不利的影響。As the area occupied by the integrated circuit decreases, the distance between the contact and the gate structure decreases accordingly, which may lead to source/drain leakage. Silicon oxide or silicon nitride can be used to prevent metal silicide from forming on the contact side surface of the semiconductor device. However, silicon oxide or silicon nitride may cause an increase in contact resistance, thereby adversely affecting the performance of semiconductor devices.
上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above "prior art" description is only to provide background technology, and does not acknowledge that the above "prior art" description discloses the subject of this disclosure, and does not constitute the prior art of this disclosure, and any description of the above "prior art" shall not form part of this case.
本揭露的一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一第一井區以及一第一結構。該基底具有一第一表面和與該第一表面相對的一第二表面。該第一閘極結構設置在該第一表面上。該第二閘極結構設置在該第一表面上。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構設置在該第一井區中。該第一結構的形狀具有一銳角。One aspect of the present disclosure provides a semiconductor device structure. The semiconductor element structure includes a base, a first gate structure, a second gate structure, a first well region and a first structure. The base has a first surface and a second surface opposite to the first surface. The first gate structure is disposed on the first surface. The second gate structure is disposed on the first surface. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is disposed in the first well region. The shape of the first structure has an acute angle.
本揭露的另一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一導電接觸、一第一井區以及一第一結構。該基底具有一表面。該第一閘極結構設置在該表面上。該第二閘極結構設置在該表面上。該導電接觸位於該第一閘極結構和該第二閘極結構之間。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構嵌入在該第一井區內,並從該導電接觸的一底部逐漸縮小。該第一結構包括矽化鈷。Another aspect of the disclosure provides a semiconductor device structure. The semiconductor device structure includes a base, a first gate structure, a second gate structure, a conductive contact, a first well region and a first structure. The base has a surface. The first gate structure is disposed on the surface. The second gate structure is disposed on the surface. The conductive contact is located between the first gate structure and the second gate structure. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is embedded in the first well region and gradually narrows from a bottom of the conductive contact. The first structure includes cobalt silicide.
本揭露的另一個方面提供一種半導體元件結構的製備方法。該製備方法包括:提供一基底,該基底具有一表面;在該表面上形成一第一閘極結構;在該表面上形成一第二閘極結構;在該基底中並在該第一閘極結構和該第二閘極結構之間形成一第一井區;在該第一閘極結構和該第二閘極結構之間的一溝槽內形成一導電接觸;以及在該第一井區中形成一第一結構,其中該第一結構從該導電接觸的一底部逐漸縮小。Another aspect of the disclosure provides a method for fabricating a semiconductor device structure. The preparation method includes: providing a substrate, the substrate has a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; in the substrate and on the first gate forming a first well region between the structure and the second gate structure; forming a conductive contact in a trench between the first gate structure and the second gate structure; and forming a conductive contact in the first well region A first structure is formed, wherein the first structure tapers from a bottom of the conductive contact.
本揭露的實施例揭露一種在基底中具有金屬矽化物的半導體元件結構。上述金屬矽化物不存在於該半導體元件結構的閘極結構之間的溝槽側壁。因此降低半導體元件結構中的接觸電阻。此外,該半導體元件結構包括氮化鈦層。氮化鈦層做為形成金屬矽化物的擴散阻障層。氮化鈦層的厚度可調,以防止金屬矽化物形成在半導體元件結構的閘極結構之間的溝槽側壁上,並防止接觸電阻增加。在一個比較的例示中,在半導體元件結構的閘極結構之間的溝槽側壁上形成氧化矽/氮化矽。氧化矽/氮化矽具有較大的接觸電阻,因此增加了閘極結構和金屬矽化物之間的接觸電阻。與比較例相比,在本揭露的實施例中,可以調整氮化鈦的厚度,以防止金屬矽化物在半導體元件結構的閘極結構之間的溝槽側壁上形成,防止接觸電阻增加,因此可以提高半導體元件結構的性能。Embodiments of the disclosure disclose a semiconductor device structure with a metal silicide in a substrate. The aforementioned metal silicide does not exist on the trench sidewalls between the gate structures of the semiconductor device structure. The contact resistance in the structure of the semiconductor component is thus reduced. In addition, the semiconductor element structure includes a titanium nitride layer. The titanium nitride layer acts as a diffusion barrier layer for forming metal silicide. The thickness of the titanium nitride layer is adjustable to prevent metal silicide from forming on the trench sidewall between the gate structures of the semiconductor element structure and to prevent the contact resistance from increasing. In a comparative example, silicon oxide/silicon nitride is formed on trench sidewalls between gate structures of semiconductor device structures. Silicon oxide/silicon nitride has a higher contact resistance, thus increasing the contact resistance between the gate structure and the metal silicide. Compared with the comparative example, in the embodiment of the present disclosure, the thickness of titanium nitride can be adjusted to prevent metal silicide from forming on the sidewall of the trench between the gate structures of the semiconductor device structure and prevent the contact resistance from increasing, so The performance of the semiconductor element structure can be improved.
上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been broadly summarized above, so that the following detailed description of the present disclosure can be better understood. Other technical features and advantages constituting the subject matter of the claims of the present disclosure will be described below. Those skilled in the art of the present disclosure should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the disclosure defined by the appended claims.
現在用具體的語言來描述附圖中說明的本揭露的實施例,或實例。應理解的是,在此不打算限制本揭露的範圍。對所描述的實施例的任何改變或修改,以及對本文所描述的原理的任何進一步應用,都應被認為是與本揭露內容有關的技術領域的普通技術人員通常會做的。參考數字可以在整個實施例中重複,但這並不旨在一個實施例的特徵適用於另一個實施例,即使它們共用相同的參考數位。Embodiments, or examples, of the present disclosure illustrated in the drawings will now be described in specific language. It should be understood that no limitation of the scope of the present disclosure is intended herein. Any changes or modifications to the described embodiments, and any further applications of the principles described herein, are considered to be within the ordinary skill of the art to which this disclosure pertains. Reference numerals may be repeated throughout the embodiments, but there is no intention that features of one embodiment apply to another, even if they share the same reference numeral.
應理解的是,儘管術語第一、第二、第三等可用於描述各種元素、元件、區域、層或部分。可用於描述各種元素、部件、區域、層或部分,但這些元素、部件、區域、層或部分不受這些術語的限制。相反,這些術語只是用來區分一個元素、元件、區域、層或部分與另一個區域、層或部分。因此,下面討論的第一個元素、元件、區域、層或部分可以被稱為第二個元素、元件、區域、層或部分而不偏離本發明概念的教導。It will be understood that although the terms first, second, third etc. may be used to describe various elements, elements, regions, layers or sections. can be used to describe various elements, components, regions, layers or sections but these elements, components, regions, layers or sections should not be limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the inventive concept.
本文使用的術語僅用於描述特定的實施例,並不打算局限於本發明的概念。正如本文所使用的,單數形式的"一"、"一個"和"該"旨在包括複數形式,除非上下文明確指出。應進一步理解,術語”包括”和”包含”在本說明書中使用時,指出了所述特徵、整數、步驟、操作、元素或元件的存在,但不排除存在或增加一個或複數個其他特徵、整數、步驟、操作、元素、元件或其組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concepts. As used herein, the singular forms "a", "an" and "the" are intended to include plural forms unless the context clearly dictates otherwise. It should be further understood that when the terms "comprising" and "comprising" are used in this specification, they point out the existence of said features, integers, steps, operations, elements or elements, but do not exclude the existence or addition of one or more other features, An integer, step, operation, element, component, or group thereof.
請參考圖1A和圖1B。圖1A是半導體元件結構1的佈局的俯視示意圖。該佈局包括閘極區101和源極/汲極區102。圖1B是半導體元件結構1沿圖1A中所示的虛線A-A'的剖視圖。Please refer to FIG. 1A and FIG. 1B . FIG. 1A is a schematic top view of the layout of the semiconductor device structure 1 . The layout includes a
參照圖1A,接觸區103與閘極區101間隔距離L,當半導體元件結構1的尺寸減小時,距離L需要相應減小,因為,當半導體元件結構1的閘極長度減小時,半導體元件結構1的閾值電壓(threshold voltage)變得難以控制,這可能引起意外的電流洩漏。在習用製程中,矽化鈷是在接觸(contact)的側壁上形成。該矽化鈷可以是橢圓形。形成在接觸側壁上的矽化鈷可能導致電流洩漏。為了防止矽化鈷在接觸的側壁上形成,在接觸的側壁上形成一層氮化矽。雖然氮化矽層可以防止矽化鈷在接觸的側壁上形成,但它會增加接觸電阻。本文揭露的方法消除了氮化矽層。矽化鈷是金字塔形的。矽化鈷允許在不引起電流洩漏的情況下減少長度L,並且還能降低接觸電阻。1A, the distance L between the
參照圖1B,半導體元件結構1可包括基底10、閘極結構11、汲極區12、源極區13、矽化金屬結構14、間隙子15和16、輕度摻雜汲極(LDD)區17、暈區18和導電接觸19c。為了簡潔起見,圖1B中省略了半導體元件結構1的一些元素。Referring to FIG. 1B, the semiconductor device structure 1 may include a
基底10可以具有表面10s。閘極結構11形成在表面10s上。汲極區12形成在表面10s之下。源極區13形成在表面10s之下。矽化金屬結構14形成在表面10s之下。矽化金屬結構14可以是金字塔形。矽化金屬結構14可以是圓錐形。在一些實施例中,矽化金屬結構14的剖面可以是三角形。導電接觸19c包括側壁19s1和19s2。導電接觸19c的側壁19s1和19s2不含矽化金屬結構14。矽化金屬結構14與導電接觸19c的側壁19s1和19s2間隔開。The
虛線顯示了透過導電接觸19c並從汲極區12指向源極區13的電流路徑19p。使用矽化金屬結構14,可降低導電接觸19c的電阻。The dashed line shows the
隨著半導體元件結構1的縮小,汲極區12和源極區13之間的距離也相應縮小,這使得在閘極結構11兩端的接面(junction)的載子(carrier)在一大電場的作用下加速前進。在一些實施例中,在汲極區12和閘極結構11的一端的接面附近形成了LDD區17。在一些實施例中,另一個LDD區17形成在源極區13和閘極結構11的另一端之間的接面附近。LDD區17可以減少接面處的載子數量,因此減少半導體元件結構1的熱載子效應。在一些實施例中,LDD區17與閘極結構11相鄰,使用具有與汲極區12和源極區13相同導電類型的不同摻雜物材料形成。Along with the shrinkage of the semiconductor device structure 1, the distance between the
在一些實施例中,暈區18是形成在汲極區12和源極區13旁邊的一摻雜區域。在一些實施例中,暈區18在基底10中形成的比LDD區17更深。暈區18的形成是為了提高半導體元件結構1的閾值電壓。暈區18可以減少半導體元件結構1的短通道效應。在一些實施例中,暈區18是使用與基底10相同導電類型的摻雜物材料形成。In some embodiments,
圖2A是剖視圖,例示本揭露一些實施例之半導體元件結構。參照圖2A,半導體元件結構2可包括基底20、閘極結構21a和21b、結構23、間隙子24和25以及層28和29。基底20可以具有表面(或上表面)20s1和表面(或下表面)20s2。表面20s1與表面20s2相對。在本揭露內容中,表面20s1也可稱為主動面。在本揭露內容中,表面20s2也可稱為後側表面。FIG. 2A is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure. Referring to FIG. 2A , the
基底20可以是一半導體基底,如一塊狀(bulk)半導體、一絕緣體上的半導體(SOI)基底,或類似基底。在一些實施例中,基底20包括一第一導電類型。在一些實施例中,該第一導電類型是p型。在一些實施例中,p型摻雜物包括硼(B)、其他第III族元素,或其任何組合。在一些實施例中,該第一導電類型是n型。在一些實施例中,n型摻雜物包括砷(As)、磷(P)、其他第V族元素,或其任何組合。
閘極結構21a和21b形成在表面20s1上。間隙子24可包括兩個部分24a和24b。在一些實施例中,間隙子24的部分24a形成在閘極結構21a上。在一些實施例中,間隙子24的部分24b形成在閘極結構21b上。半導體元件結構2包括間隙子25。間隙子25包括形成在間隙子24的部分24a和24b上的部分25a和25b。間隙子25包括在基底20和間隙子24之間的部分25c和25d。在一些實施例中,間隙子25的部分25a形成在間隙子24的部分24a上。在一些實施例中,間隙子25的部分25b形成在間隙子24的部分24b上。
在基底20中形成井區22。井區22形成在表面20s1之下。井區22形成在閘極結構21a和21b之間。在一些實施例中,井區22包括一第二導電類型,與基底20的第一導電類型不同。在基底20中形成結構23。在一些實施例中,在井區22中形成結構23。在一些實施例中,結構23嵌入在井區22內。A
在一些實施例中,間隙子24的部分24a從閘極結構21a連續延伸到井區22。在一些實施例中,間隙子24的部分24b從閘極結構21b連續延伸到井區22。在一些實施例中,間隙子25的部分25c和25d被基底20和間隙子24封裝(encapsulated)。In some embodiments,
在基底20中形成井區26。在一些實施例中,井區26形成在表面20s1之下。在一些實施例中,井區26嵌入在基底20內。在一些實施例中,井區26包括一第二導電類型,與基底20的第一導電類型不同。在一些實施例中,間隙子24的部分24a與井區26接觸。在一些實施例中,間隙子24的部分24a從閘極結構21a連續延伸到基底20的井區26。在一些實施例中,井區26與井區22間隔開。Well
在基底20中形成井區27。在一些實施例中,井區27形成在表面20s1之下。在一些實施例中,井區27嵌入在基底20內。在一些實施例中,井區27包括該第二導電類型,與基底20的第一導電類型不同。在一些實施例中,間隙子24的部分24b與井區27接觸。在一些實施例中,間隙子24的部分24b從閘極結構21b連續延伸到基底20的井區27。在一些實施例中,井區27與井區22間隔開。A
在間隙子25上形成層28。在一些實施例中,結構23與層28接觸。在一些實施例中,層28的垂直表面28s不含結構23。在一些實施例中,結構23與層28的垂直表面28s1間隔開。在一些實施例中,層28包括金屬氧化物。在一些實施例中,層28包括金屬氮化物。在一些實施例中,層28包括金屬矽化物。在一些實施例中,層28包括氮化鈦。在一些實施例中,可以根據需求調整層28的厚度。
在層28上形成層29。在一些實施例中,層28做為阻障層,以隔離層29和基底20和間隙子25。層29包括設置在閘極結構21a和21b之間的導電接觸29c。導電接觸29c可設置在閘極結構21a和21b之間的溝槽內。結構23設置在導電接觸29c的下方。在一些實施例中,層28覆蓋導電接觸29c的三個側壁。層28形成在導電接觸29c的側壁上。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。
圖2B是圖2A中所示的虛線矩形A的放大圖。在一些實施例中,結構23的剖面具有銳角23A。在一些實施例中,結構23可以是金字塔形。在一些實施例中,結構23向基底20的表面20s2逐漸縮小。在一些實施例中,層28的垂直表面28s1不含結構23。在一些實施例中,結構23與層28的垂直表面28s1間隔開。FIG. 2B is an enlarged view of the dotted rectangle A shown in FIG. 2A. In some embodiments, the cross-section of
在一些實施例中,結構23包括金屬矽化物。在一些實施例中,結構23包括矽化鈷。在一些實施例中,結構23的剖面23C1比結構23的剖面23C2更靠近表面20s1。結構23的剖面23C1具有長度L1。結構23的剖面23C2具有長度L2。在一些實施例中,長度L2與長度L1不同。在一些實施例中,長度L1大於長度L2。In some embodiments,
在一些實施例中,層28包括嵌入在基底20內的底部28b。在一些實施例中,結構23與層28的底部28b接觸。在一些實施例中,層29的底部29b與層28的底部28b接觸。結構23從層28的底部28b逐漸縮小。結構23從導電接觸29c的底部29b逐漸縮小。In some embodiments,
圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.
參照圖3A,可提供基底20。閘極結構21a可形成在基底201的表面20s1上。閘極結構21b可形成在基底20的表面20s1上。可在基底20中形成井區22。在一些實施例中,井區22可形成在閘極結構21a和21b之間。閘極結構21a和21b上可形成間隙子24。在間隙子上可形成間隙子25。在基底20中可形成井區26。在一些實施例中,井區26可形成在基底201的表面20s1之下。Referring to Figure 3A, a
在一些實施例中,間隙子24的一部分與井區26接觸。在一些實施例中,間隙子24的一部分嵌入在井區26中。井區27可形成在基底20中。井區27可形成在基底201的表面20s1之下。在一些實施例中,間隙子24的一部分與井區27接觸。在一些實施例中,間隙子24的一部分嵌入在井區27中。在一些實施例中,基底20具有凹部20r。凹部20r凹陷在表面20s1之下。在一些實施例中,在閘極結構21a和21b之間形成溝槽29t,溝槽29t由間隙子25和基底20的凹部20r界定。In some embodiments, a portion of
參照圖3B,可在間隙子25上形成層28'。層28'可藉由化學氣相沉積(CVD)、電漿增強CVD(PECVD)、可流動CVD(FCVD)、旋塗、濺鍍或類似方法形成。層28'也形成在基底20的凹部20r和溝槽29t的側壁上。在一些實施例中,層28'包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28'包括氮化鈦。Referring to FIG. 3B , a
參照圖3C,層28'的一部分被移除,而形成在溝槽29t的側壁29s上的層28'的部分則被保留。在一些實施例中,形成在間隙子25上的層28'被移除。在一些實施例中,形成在基底20的凹部20r上的層28'的一部分被移除。層28'的該部分可藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾蝕刻、濕蝕刻或類似的技術。在一些實施例中,層28'做為防止圖2A中所示的結構23在溝槽29t的側壁29s上形成。Referring to FIG. 3C, a portion of layer 28' is removed, while a portion of layer 28' formed on
參照圖3D,在間隙子25和基底20的凹部20r上形成層30。在一些實施例中,層30形成在溝槽29t的底部。在一些實施例中,層30可藉由例如物理氣相沉積(PVD)形成。藉由CVD形成的層28'的沉積濃度與藉由PVD形成的層30不同。藉由CVD形成的層28'的晶體密度與藉由PVD形成的層30的不同。在一些實施例中,層30包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層30包括氮化鈦。Referring to FIG. 3D , a
參照圖3F,在層30上形成層32。層32與層30接觸。層32的一部分形成在溝槽29t內。層32的一部分填滿溝槽29t。在一些實施例中,層32包括金屬材料。在一些實施例中,層32包括鈷。在一些實施例中,層32是藉由電漿增強的原子層沉積(ALD)形成。Referring to FIG. 3F ,
參照圖3G,對圖3F所示的結構進行一熱製程。在一些實施例中,層30做為擴散阻障層,用於在基底20中形成結構23。在一些實施例中,層30做為矽化物相變層。在該熱製程中,層32的材料與基底20的材料相互作用,結構23從層30向井區22逐漸形成。Referring to FIG. 3G, a thermal process is performed on the structure shown in FIG. 3F. In some embodiments,
結構23與層30接觸。在一些實施例中,結構23不在層28'的垂直表面28's上。在一些實施例中,結構23不與層28'接觸。在一些實施例中,結構23不與層32接觸。結構23形成在井區22中。在一些實施例中,結構23從表面20s1逐漸縮小。
參照圖3H,層32被移除。層32是藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾式蝕刻、濕式蝕刻或類似方法。在一些實施例中,層30的一部分被保留在間隙子25和基底20的凹部20r上。在一些實施例中,層28'的一部分被保留在溝槽29t的側壁29s上。Referring to Figure 3H,
參照圖3I,在圖3H所示的結構上可形成層28。在一些實施例中,層28形成在層30的剩餘部分和層28'的剩餘部分上。在一些實施例中,層28可藉由化學氣相沉積(CVD)形成。在一些實施例中,層28包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28包括氮化鈦。層28的厚度可以根據需求進行調整。在一些實施例中,層28和層28'的總厚度可以在約1至5奈米(nm)的範圍內。在一些實施例中,層28和層30的總厚度可以30在大約1至5奈米的範圍內。在一些實施例中,層28和層28'的總厚度可以是約3奈米。在一些實施例中,層28和層30的總厚度可以是約3奈米。Referring to FIG. 3I,
參照圖3J,可以在層28上形成層29。在一些實施例中,層28做為阻障層,以防止層29滲透到基底20中。在一些實施例中,層29可以藉由化學氣相沉積(CVD)形成。層29也在溝槽29t內形成。在一些實施例中,在溝槽29t內形成的層29是導電接觸29c。導電接觸29c形成在閘極結構21a和21b之間。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。Referring to FIG. 3J ,
圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.
圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J的階段與前面所述相同。圖3E是在圖3D的階段之後進行。參照圖3E,在層30上進行一非晶化植入(PAI)31。在PAI之後,層30的結構被降解(degraded)。在一些實施例中,層30成為非晶化(amorphous)。之後,圖3F、圖3G、圖3H、圖3I和圖3J的階段跟隨圖3E的階段。在一些實施例中,圖3E的階段可以是選擇性的。藉由實施圖3E的階段,層32的非晶原子可以更容易遷移到基底20中以形成結構23。The stages of Figures 3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J are the same as previously described. Figure 3E is performed after the stage of Figure 3D. Referring to FIG. 3E , an amorphization implant (PAI) 31 is performed on
圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3F, 3G, 3K, 3L and 3M illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure.
圖3A、圖3B、圖3C、圖3D、圖3F和圖3G的階段與前面所述相同。圖3K、圖3L和圖3M在圖3G的階段之後進行。The stages of Figures 3A, 3B, 3C, 3D, 3F and 3G are the same as previously described. Figures 3K, 3L and 3M follow the stage of Figure 3G.
參照圖3K,層28'、層30和層32可被完全去除,而間隙子25和基底20的凹部20r被曝露出。層28'、層30和層32是藉由,例如,蝕刻技術去除。在一些實施例中,蝕刻技術包括乾式蝕刻、濕式蝕刻或類似方法。Referring to FIG. 3K, layer 28',
參照圖3L,可在圖3K所示的結構上形成層28。在一些實施例中,層28可形成在間隙子25和基底20的凹部20r上。在一些實施例中,層28形成在溝槽29t的側壁29s上。在一些實施例中,層28可藉由化學氣相沉積(CVD)形成。在一些實施例中,層28包括鈦、氮化鈦、鉭、氮化鉭、氧化矽、氮化矽或類似材料中的一種。在一些實施例中,層28包括氮化鈦。在一些實施例中,層28的厚度可根據需求進行調整。在一些實施例中,層28的厚度可以在約1至5奈米的範圍內。在一些實施例中,層28的厚度可以是約3奈米。Referring to FIG. 3L,
參照圖3M,可以在層28上形成層29。在一些實施例中,層28做為阻障層,以防止層29滲透到基底20中。在一些實施例中,層29可藉由化學氣相沉積(CVD)形成。層29也在溝槽29t內形成。在一些實施例中,在溝槽29t內形成的層29是導電接觸29c。導電接觸29c形成在閘極結構21a和21b之間。在一些實施例中,層29包括金屬材料。在一些實施例中,層29包括鎢。Referring to FIG. 3M ,
圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。3A, 3B, 3C, 3D, 3E, 3F, 3G, 3K, 3L, and 3M illustrate various fabrication stages of semiconductor device structures according to some embodiments of the present disclosure.
圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G的階段與之前所述相同。圖3K、圖3L和圖3M也與前面所述相同。圖3K、圖3L和圖3M是在圖3G的階段之後進行。The stages of Fig. 3A, Fig. 3B, Fig. 3C, Fig. 3D, Fig. 3E, Fig. 3F, Fig. 3G are the same as previously described. Figure 3K, Figure 3L and Figure 3M are also the same as previously described. Figures 3K, 3L and 3M are performed after the stage of Figure 3G.
圖4是流程圖,例示本揭露各個方面之半導體元件結構的製備方法40。FIG. 4 is a flowchart illustrating a
製備方法40從操作S41開始,其中提供一基底。該基底具有一表面。The
製備方法40繼續進行操作S42,其中形成一第一閘極結構。該第一閘極結構是在該表面上形成。The
製備方法40繼續進行操作S43,其中形成一第二閘極結構。該第二閘極結構是在該表面上形成。The
製備方法40繼續進行操作S44,其中在該基底中形成一第一井區。該第一井區形成在該第一閘極結構和該第二閘極結構之間。The
製備方法40繼續進行操作S45,其中在一溝槽內形成一導電接觸。該溝槽形成在該第一閘極結構和該第二閘極結構之間。The
製備方法40繼續進行操作S46,其中在該第一井區中形成一第一結構。該第一結構從該導電接觸的一底部逐漸縮小。The
製備方法40僅僅是一個例示,並不旨在將本揭露內容限制在申請專利範圍中明確提到的範圍之外。可在製備方法40的每個操作之前、期間或之後提供額外的操作,所述的一些操作可以被替換、消除或重新組織,用於該製備方法的其他實施例。在一些實施例中,製備方法40還可包括圖4中未描繪的操作。The
圖5A和圖5B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。5A and 5B are flow charts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.
參照圖5A,製備方法50從操作S51A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 5A , the
製備方法50繼續進行操作S51B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The
製備方法50繼續進行操作S51C,其中在該第一和該第二閘極結構上形成一間隙子。The
製備方法50繼續進行操作S51D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S51D對應於圖3A的階段。The
製備方法50繼續進行操作S51E,其中在該基底和該間隙子上形成一第一層。操作S51E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The
製備方法50繼續進行操作S51F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S51F對應於圖3C的階段。
參照圖5B,操作S51G在操作S51F之後。製備方法50繼續進行操作S51G,其中在該基底和該間隙子上形成一第二層。操作S51G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 5B , operation S51G follows operation S51F. The
製備方法50繼續進行操作S51H,其中在該第二層上形成一第三層。操作S51H對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The
製備方法50繼續進行操作S51I,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸變小。操作S51I對應於圖3G的階段。The
製備方法50繼續進行操作S51J,其中該第三層,和該第一和該第二層的一部分被移除。操作S51J對應於圖3H的階段。The
製備方法50繼續進行操作S51K,其中在該第一和該第二層的保留部分上形成一第四層。操作S51K對應於圖3I的階段。在一些實施例中,該第四層包括氮化鈦。The
製備方法50繼續進行操作S51L,其中在該第四層上形成一第五層。操作S51L對應於圖3J的階段。在一些實施例中,該第五層包括鎢。The
製備方法50僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確提到的範圍之外。可以在製備方法50的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法50還可包括圖5A和圖5B中未描繪的操作。The
圖6A和圖6B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。6A and 6B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.
參照圖6A,製備方法60從操作S61A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 6A, the
製備方法60繼續進行操作S61B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The
製備方法60繼續進行操作S61C,其中在該第一和該第二閘極結構上形成一間隙子。The
製備方法60繼續進行操作S61D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S61D對應於圖3A的階段。
製備方法60繼續進行操作S61E,其中在該基底和該間隙子上形成一第一層。操作S61E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The
製備方法60繼續進行操作S61F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S61F對應於圖3C的階段。
參照圖6B,操作S61G在操作S61F之後。製備方法60繼續進行操作S61G,其中在該基底和該間隙子上形成一第二層。操作S61G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 6B , operation S61G follows operation S61F. The
製備方法60繼續進行操作S61H,其中對該第二層執行一非晶化植入。操作S61H對應於圖3E的階段。
製備方法60繼續進行操作S61I,其中在該第二層上形成一第三層。操作S61I對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The
製備方法60繼續進行操作S61J,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸變小。操作S61J對應於圖3G的階段。The
製備方法60繼續進行操作S61K,其中該第三層,和第一和第二層的一部分被移除。操作S61K對應於圖3H的階段。
製備方法60繼續進行操作S61L,其中在該第一和該第二層的保留部分上形成一第四層。操作S61L對應於圖3I的階段。在一些實施例中,該第四層包括氮化鈦。
製備方法60繼續進行操作S61M,其中在該第四層上形成一第五層。操作S61M對應於圖3J的階段。在一些實施例中,該第五層包括鎢。
製備方法60僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法60的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法60還可包括圖6A和圖6B中未描繪的操作。The
圖7A和圖7B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。7A and 7B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.
參照圖7A,製備方法70從操作S71A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 7A, the
製備方法70繼續進行操作S71B,其中形成一第一閘極結構和一第二閘極結構。該第一和該第二閘極結構形成在該基底的該表面上。The
製備方法70繼續進行操作S71C,其中在該第一和該第二閘極結構上形成一間隙子。The
製備方法70繼續進行操作S71D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S71D對應於圖3A的階段。The
製備方法70繼續進行操作S71E,其中在該基底和該間隙子上形成一第一層。操作S71E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The
製備方法70繼續進行操作S71F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S71F與圖3C的階段相對應。
參照圖7B,操作S71G在操作S71F之後。製備方法70繼續進行操作S71G,其中在該基底和該間隙子上形成一第二層。操作S71G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 7B , operation S71G follows operation S71F. The
製備方法70繼續進行操作S71H,其中在該第二層上形成一第三層。操作S71H對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The
製備方法70繼續進行操作S71I,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸縮小。操作S71I對應於圖3G的階段。The
製備方法70繼續進行操作S71J,其中該第一、該第二和該第三層被移除。操作S71J對應於圖3K的階段。The
製備方法70繼續進行操作S71K,其中在該基底和該間隙子上形成一第四層。操作S71K對應於圖3L的階段。在一些實施例中,該第四層包括氮化鈦。The
製備方法70繼續進行操作S71L,其中在該第四層上形成一第五層。操作S71L對應於圖3M的階段。在一些實施例中,該第五層包括鎢。
製備方法70僅僅是一個例示,並不旨在將本揭露的內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法70的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法70還可包括圖7A和圖7B中未描繪的操作。The
圖8A和圖8B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。8A and 8B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure.
參照圖8A,製備方法80從操作S81A開始,其中提供一基底。該基底具有一表面。Referring to FIG. 8A, the
製備方法80繼續進行操作S81B,其中一第一閘極結構和一第二閘極結構形成在基底上。該第一和該第二閘極結構是在該表面上形成。The
製備方法80繼續進行操作S81C,其中在該第一和該第二閘極結構上形成一間隙子。The
製備方法80繼續進行操作S81D,其中在該第一和該第二閘極結構之間形成一溝槽。操作S81D對應於圖3A的階段。The
製備方法80繼續進行操作S81E,其中在該基底和該間隙子上形成一第一層。操作S81E對應於圖3B的階段。在一些實施例中,該第一層包括氮化鈦。The
製備方法80繼續進行操作S81F,其中該第一層未形成在該溝槽側壁上的部分被移除。操作S81F與圖3C的階段相對應。
參照圖8B,操作S81G在操作S81F之後。製備方法80繼續進行操作S81G,其中在該基底和該間隙子上形成一第二層。操作S81G對應於圖3D的階段。在一些實施例中,該第二層包括氮化鈦。Referring to FIG. 8B , operation S81G follows operation S81F. The
製備方法80繼續進行操作S81H,其中在該第二層上進行一非晶化植入。操作S81H對應於圖3E的階段。
製備方法80繼續進行操作S81I,其中在該第二層上形成一第三層。操作S81I對應於圖3F的階段。在一些實施例中,該第三層包括鈷。The
製備方法80繼續進行操作S81J,其中在該基底中形成一第一結構。該第一結構從該基底的該表面逐漸縮小。操作S81J對應於圖3G的階段。The
製備方法80繼續進行操作S81K,其中該第一、該第二和該第三層被移除。操作S81K對應於圖3K的階段。The
製備方法80繼續進行操作S81L,其中在該基底和該間隙子上形成一第四層。操作S81L對應於圖3L的階段。在一些實施例中,該第四層包括氮化鈦。The
製備方法80繼續進行操作S81M,其中在該第四層上形成一第五層。操作S81M對應於圖3M的階段。在一些實施例中,該第五層包括鎢。The
製備方法80僅僅是一個例示,並不旨在將本揭露內容限制在申請專利範圍中明確敘述的範圍之外。可以在製備方法80的每個操作之前、期間或之後提供額外的操作,並且所述的一些操作可以被替換、消除或重新組織以用於該製備方法的額外實施例。在一些實施例中,製備方法80還可包括圖8A和圖8B中未描繪的操作。The
圖9A是俯視示意圖,例示本揭露一些比較實施例之半導體元件結構1'的閘極101'和源極/汲極102'的佈局。9A is a schematic top view illustrating the layout of the
參照圖9A,接觸區103'與閘極區101'相隔距離L'。當半導體元件結構1的尺寸減小時,距離L'需要相應減小,因為當半導體元件結構1的閘極長度減小時,半導體元件結構1的閾值電壓變得難以控制,這可能導致意外的電流洩漏。在習用製程中,矽化鈷被形成在接觸的側壁上。該矽化鈷可以是橢圓形。形成在接觸側壁上的矽化鈷可能導致電流洩漏。為了防止矽化鈷在接觸的側壁上形成,在接觸的側壁上形成一層氮化矽。雖然氮化矽層可以防止矽化鈷在接觸的側壁上形成,但它會增加接觸電阻。本文揭露的方法消除了氮化矽層。矽化鈷是金字塔形。矽化鈷允許在不引起電流洩漏的情況下減少長度L',還能降低接觸電阻。Referring to FIG. 9A, the contact region 103' is separated from the gate region 101' by a distance L'. When the size of the semiconductor element structure 1 is reduced, the distance L' needs to be reduced accordingly, because when the gate length of the semiconductor element structure 1 is reduced, the threshold voltage of the semiconductor element structure 1 becomes difficult to control, which may cause unexpected current leakage . In a conventional process, cobalt silicide is formed on the sidewalls of the contacts. The cobalt silicide may be oval. Cobalt silicide formed on the sidewall of the contact may cause current leakage. To prevent cobalt silicide from forming on the sidewalls of the contacts, a layer of silicon nitride is formed on the sidewalls of the contacts. Although the silicon nitride layer prevents cobalt silicide from forming on the sidewalls of the contact, it increases contact resistance. The method disclosed herein eliminates the silicon nitride layer. Cobalt silicide is pyramidal. Cobalt silicide allows reducing the length L' without causing current leakage and also reduces contact resistance.
圖9B是剖視圖,例示本揭露一些比較實施例之半導體元件結構沿圖9A所示的虛線B-B'的剖視圖。FIG. 9B is a cross-sectional view illustrating semiconductor device structures of some comparative embodiments of the present disclosure along the dotted line BB′ shown in FIG. 9A .
參照圖9B,半導體元件結構1'可包括基底10'、閘極結構11'、導電接觸19c'、汲極區12'、源極區13'、矽化金屬結構14'、間隙子15'和16'、輕摻雜汲極(LDD)區17'和暈區18'。基底10'可以具有表面10s'。閘極結構11'形成在表面10s'上。汲極區12'形成在表面10s'之下。源極區13'形成在表面10s之下。矽化金屬結構14'形成在表面10s之下'。矽化金屬結構14'具有彎曲/圓形的輪廓。在一些實施例中,矽化金屬結構14'是橢圓的。Referring to FIG. 9B, the semiconductor device structure 1' may include a
參照圖9B,矽化金屬結構14'的部分14a'形成在導電接觸19c'的側壁19s1'上,而矽化金屬結構14'的部分14b'形成在導電接觸19c'的側壁19s2'上。由於部分14a'、導電接觸19c'和閘極結構11'之間的實際距離小於距離L',因此增加從導電接觸19c'到閘極結構11'的電流洩漏。因此,半導體元件結構1'的性能可能受到不利影響。Referring to FIG. 9B, a
從汲極區12'指向源極區13'的電流路徑19p'用虛線表示。當比較圖9B所示的半導體元件結構1'與圖1B所示的半導體元件結構1時,圖9B所示的矽化金屬結構(矽化鈷)14'是橢圓形,而圖1B所示的矽化金屬結構(矽化鈷)14是金字塔形。如前所述,矽化鈷14'比矽化鈷14更容易引起洩漏電流。當縮小半導體元件的尺寸時,優選使用矽化鈷14而不是矽化鈷14'。The
本揭露的一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一第一井區以及一第一結構。該基底具有一第一表面和與該第一表面相對的一第二表面。該第一閘極結構設置在該第一表面上。該第二閘極結構設置在該第一表面上。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構設置在該第一井區中。該第一結構的形狀具有一銳角。One aspect of the present disclosure provides a semiconductor device structure. The semiconductor element structure includes a base, a first gate structure, a second gate structure, a first well region and a first structure. The base has a first surface and a second surface opposite to the first surface. The first gate structure is disposed on the first surface. The second gate structure is disposed on the first surface. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is disposed in the first well region. The shape of the first structure has an acute angle.
本揭露的另一個方面提供一種半導體元件結構。該半導體元件結構包括一基底、一第一閘極結構、一第二閘極結構、一導電接觸、一第一井區以及一第一結構。該基底具有一表面。該第一閘極結構設置在該表面上。該第二閘極結構設置在該表面上。該導電接觸位於該第一閘極結構和該第二閘極結構之間。該第一井區位於該基底中,並在該第一閘極結構和該第二閘極結構之間。該第一結構嵌入在該第一井區內,並從該導電接觸的一底部逐漸縮小。該第一結構包括矽化鈷。Another aspect of the disclosure provides a semiconductor device structure. The semiconductor device structure includes a base, a first gate structure, a second gate structure, a conductive contact, a first well area and a first structure. The base has a surface. The first gate structure is disposed on the surface. The second gate structure is disposed on the surface. The conductive contact is located between the first gate structure and the second gate structure. The first well region is located in the substrate and between the first gate structure and the second gate structure. The first structure is embedded in the first well region and gradually narrows from a bottom of the conductive contact. The first structure includes cobalt silicide.
本揭露的另一個方面提供一種半導體元件結構的製備方法。該製備方法包括:提供一基底,該基底具有一表面;在該表面上形成一第一閘極結構;在該表面上形成一第二閘極結構;在該基底中並在該第一閘極結構和該第二閘極結構之間形成一第一井區;在該第一閘極結構和該第二閘極結構之間的一溝槽內形成一導電接觸;以及在該第一井區中形成一第一結構,其中該第一結構從該導電接觸的一底部逐漸縮小。Another aspect of the disclosure provides a method for fabricating a semiconductor device structure. The preparation method includes: providing a substrate, the substrate has a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; in the substrate and on the first gate forming a first well region between the structure and the second gate structure; forming a conductive contact in a trench between the first gate structure and the second gate structure; and forming a conductive contact in the first well region A first structure is formed, wherein the first structure tapers from a bottom of the conductive contact.
本揭露的實施例揭露一種在基底中具有金屬矽化物的半導體元件結構。上述金屬矽化物不存在於該半導體元件結構的閘極結構之間的溝槽側壁。因此降低半導體元件結構中的接觸電阻。此外,該半導體元件結構包括氮化鈦層。氮化鈦層做為形成金屬矽化物的擴散阻障層。氮化鈦層的厚度可調,以防止金屬矽化物形成在半導體元件結構的閘極結構之間的溝槽側壁上,並防止接觸電阻增加。在一個比較的例示中,在半導體元件結構的閘極結構之間的溝槽側壁上形成氧化矽/氮化矽。氧化矽/氮化矽具有較大的接觸電阻,因此增加了閘極結構和金屬矽化物之間的接觸電阻。與比較例相比,在本揭露的實施例中,可以調整氮化鈦的厚度,以防止金屬矽化物在半導體元件結構的閘極結構之間的溝槽側壁上形成,防止接觸電阻增加,因此可以提高半導體元件結構的性能。Embodiments of the disclosure disclose a semiconductor device structure with a metal silicide in a substrate. The aforementioned metal silicide does not exist on the trench sidewalls between the gate structures of the semiconductor device structure. The contact resistance in the structure of the semiconductor component is thus reduced. In addition, the semiconductor element structure includes a titanium nitride layer. The titanium nitride layer acts as a diffusion barrier layer for forming metal silicide. The thickness of the titanium nitride layer is adjustable to prevent metal silicide from forming on the trench sidewall between the gate structures of the semiconductor element structure and to prevent the contact resistance from increasing. In a comparative example, silicon oxide/silicon nitride is formed on trench sidewalls between gate structures of semiconductor device structures. Silicon oxide/silicon nitride has a higher contact resistance, thus increasing the contact resistance between the gate structure and the metal silicide. Compared with the comparative example, in the embodiment of the present disclosure, the thickness of titanium nitride can be adjusted to prevent metal silicide from forming on the sidewall of the trench between the gate structures of the semiconductor device structure and prevent the contact resistance from increasing, so The performance of the semiconductor element structure can be improved.
雖然已詳述本揭露及其優點,然而應理解可以進行其他變化、取代與替代而不脫離揭露專利範圍所界定之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the present disclosure and its advantages have been described in detail, it should be understood that other changes, substitutions and substitutions can be made hereto without departing from the spirit and scope of the present disclosure as defined by the disclosed claims. For example, many of the processes described above can be performed in different ways and replaced by other processes or combinations thereof.
再者,本揭露案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解以根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包括於本揭露案之揭露專利範圍內。Furthermore, the scope of the disclosure is not limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that they can use existing or future developed processes, machinery, manufacturing, A composition of matter, means, method, or step. Accordingly, such processes, machinery, manufacture, material composition, means, methods, or steps are included in the scope of the patent disclosure of this disclosure.
1:半導體元件結構 1':半導體元件結構 2:半導體元件結構 10:基底 10s:表面 10s':表面 10':基底 11:閘極結構 11':閘極結構 12:汲極區 12':汲極區 13:源極區 13':源極區 14:矽化金屬結構 14':矽化金屬結構 14a':部分 14b':部分 15:間隙子 15':間隙子 16:間隙子 16':間隙子 17:輕度摻雜汲極(LDD)區 17':輕摻雜汲極(LDD)區 18:暈區 18':暈區 19:導電接觸 19c':導電接觸 19p:電流路徑 19p':電流路徑 19s1:側壁 19s1':側壁 19s2:側壁 19s2':側壁 20:基底 20r:凹部 20s1:表面 20s2:表面 21a:閘極結構 21b:閘極結構 22:井區 23:結構 23A:銳角 23C1:剖面 23C2:剖面 24:間隙子 24a:部分 24b:部分 25:間隙子 25a:部分 25b:部分 25c:部分 25d:部分 26:井區 26a:部分 26b:部分 27:井區 28:層 28b:底部 28s1:垂直表面 28':層 28's:垂直表面 29:層 29b:底部 29c:導電接觸 29s:側壁 29t:溝槽 30:層 31:非晶化植入 32:層 40:製備方法 50:製備方法 60:製備方法 70:製備方法 80:製備方法 101:閘極區 101':閘極 102:源極/汲極區 102':源極/汲極 103:接觸區 103':接觸區 A:虛線矩形 A-A':虛線 B-B':虛線 L1:長度 L2:長度 L':距離 S41:操作 S42:操作 S43:操作 S44:操作 S45:操作 S46:操作 S51A:操作 S51B:操作 S51C:操作 S51D:操作 S51E:操作 S51F:操作 S51G:操作 S51H:操作 S51I:操作 S51J:操作 S51K:操作 S51L:操作 S61A:操作 S61B:操作 S61C:操作 S61D:操作 S61E:操作 S61F:操作 S61G:操作 S61H:操作 S61I:操作 S61J:操作 S61K:操作 S61L:操作 S61M:操作 S71A:操作 S71B:操作 S71C:操作 S71D:操作 S71E:操作 S71F:操作 S71G:操作 S71H:操作 S71I:操作 S71J:操作 S71K:操作 S71L:操作 S81A:操作 S81B:操作 S81C:操作 S81D:操作 S81E:操作 S81F:操作 S81G:操作 S81H:操作 S81I:操作 S81J:操作 S81K:操作 S81L:操作 S81M:操作 1: Semiconductor element structure 1': Semiconductor device structure 2: Semiconductor element structure 10: Base 10s: surface 10s': surface 10': base 11:Gate structure 11': gate structure 12: Drain area 12': Drain area 13: Source area 13': source region 14: Metal silicide structure 14': metal silicide structure 14a': part 14b': part 15: spacer 15': spacer 16: spacer 16': spacer 17: Lightly doped drain (LDD) region 17': Lightly doped drain (LDD) region 18: halo area 18': halo area 19: Conductive contact 19c': Conductive contact 19p: current path 19p': current path 19s1: side wall 19s1': side wall 19s2: side wall 19s2': side wall 20: base 20r: concave part 20s1: Surface 20s2: Surface 21a:Gate structure 21b:Gate structure 22: Well area 23: Structure 23A: acute angle 23C1: Profile 23C2: Profile 24: spacer 24a: part 24b: part 25: spacer 25a: part 25b: part 25c: part 25d: part 26: well area 26a: part 26b: part 27: well area 28: layer 28b: bottom 28s1: Vertical surfaces 28': layers 28's: vertical surface 29: layers 29b: Bottom 29c: Conductive contact 29s: side wall 29t: Groove 30: layers 31: Amorphization Implantation 32: layer 40: Preparation method 50: Preparation method 60: Preparation method 70: Preparation method 80: Preparation method 101: gate area 101': Gate 102: source/drain region 102': source/drain 103: Contact area 103': contact area A: dotted rectangle A-A': dotted line BB': dotted line L1: Length L2: Length L': distance S41: Operation S42: Operation S43: Operation S44: Operation S45: Operation S46: Operation S51A: Operation S51B: Operation S51C: Operation S51D: Operation S51E: Operation S51F: Operation S51G: Operation S51H: Operation S51I: Operation S51J: Operation S51K: Operation S51L: Operation S61A: Operation S61B: Operation S61C: Operation S61D: Operation S61E: Operation S61F: Operation S61G: Operation S61H: Operation S61I: Operation S61J: Operation S61K: Operation S61L: Operation S61M: Operation S71A: Operation S71B: Operation S71C: Operation S71D: Operation S71E: Operation S71F: Operation S71G: Operation S71H: Operation S71I: Operation S71J: Operation S71K: Operation S71L: Operation S81A: Operation S81B: Operation S81C: Operation S81D: Operation S81E: Operation S81F: Operation S81G: Operation S81H: Operation S81I: Operation S81J: Operation S81K: Operation S81L: Operation S81M: Operation
參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1A是俯視示意圖,例示本揭露一些實施例之半導體元件結構的閘極和源極/汲極區的佈局。 圖1B是剖視圖,例示本揭露一些實施例之半導體元件結構沿圖1A所示的虛線A-A'的剖視圖。 圖2A是剖視圖,例示本揭露一些實施例之半導體元件結構。 圖2B是放大圖,例示本揭露一些實施例之圖2A中所示的虛線矩形A。 圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3H、圖3I和圖3J例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖3A、圖3B、圖3C、圖3D、圖3E、圖3F、圖3G、圖3K、圖3L和圖3M例示本揭露一些實施例之半導體元件結構的各個製備階段。 圖4是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖5A和圖5B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖6A和圖6B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖7A和圖7B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖8A和圖8B是流程圖,例示本揭露各個方面之半導體元件結構的製備方法。 圖9A是俯視示意圖,例示本揭露一些比較實施例之半導體元件結構的閘極和源極/汲極區的佈局。 圖9B是剖視圖,例示本揭露一些比較實施例之半導體元件結構沿圖9A所示的虛線B-B'的剖視圖。 The disclosure content of the present application can be understood more comprehensively when referring to the embodiments and the patent scope of the application for combined consideration of the drawings, and the same reference numerals in the drawings refer to the same components. FIG. 1A is a schematic top view illustrating the layout of gate and source/drain regions of a semiconductor device structure according to some embodiments of the present disclosure. FIG. 1B is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure along the dotted line AA′ shown in FIG. 1A . FIG. 2A is a cross-sectional view illustrating the semiconductor device structure of some embodiments of the present disclosure. FIG. 2B is an enlarged view illustrating the dashed rectangle A shown in FIG. 2A of some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I and 3J illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3F, 3G, 3K, 3L and 3M illustrate various stages of fabrication of semiconductor device structures according to some embodiments of the present disclosure. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3K, 3L, and 3M illustrate various fabrication stages of semiconductor device structures according to some embodiments of the present disclosure. FIG. 4 is a flowchart illustrating a method of fabricating a semiconductor device structure according to various aspects of the present disclosure. 5A and 5B are flow charts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 6A and 6B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 7A and 7B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 8A and 8B are flowcharts illustrating methods of fabricating semiconductor device structures according to various aspects of the present disclosure. 9A is a schematic top view illustrating the layout of the gate and source/drain regions of the semiconductor device structures of some comparative embodiments of the present disclosure. FIG. 9B is a cross-sectional view illustrating semiconductor device structures of some comparative embodiments of the present disclosure along the dotted line BB′ shown in FIG. 9A .
2:半導體元件結構 2: Semiconductor element structure
20:基底 20: base
20s1:表面 20s1: Surface
20s2:表面 20s2: Surface
21a:閘極結構 21a:Gate structure
21b:閘極結構 21b:Gate structure
22:井區 22: Well area
23:結構 23: Structure
24:間隙子 24: spacer
24a:部分 24a: part
24b:部分 24b: part
25:間隙子 25: spacer
25a:部分 25a: part
25b:部分 25b: part
25c:部分 25c: part
25d:部分 25d: part
26:井區 26: well area
27:井區 27: well area
28:層 28: layer
28s1:垂直表面 28s1: Vertical surfaces
29:層 29: layers
29c:導電接觸 29c: Conductive contact
A:虛線矩形 A: dotted rectangle
Claims (12)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/562,362 US11646353B1 (en) | 2021-12-27 | 2021-12-27 | Semiconductor device structure |
US17/562,210 US20230207637A1 (en) | 2021-12-27 | 2021-12-27 | Method for manufacturing semiconductor device structure |
US17/562,210 | 2021-12-27 | ||
US17/562,362 | 2021-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI794062B true TWI794062B (en) | 2023-02-21 |
TW202327087A TW202327087A (en) | 2023-07-01 |
Family
ID=86689377
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111110895A TWI833182B (en) | 2021-12-27 | 2022-03-23 | Semiconductor device structure |
TW111110906A TWI794062B (en) | 2021-12-27 | 2022-03-23 | Method for preparing semiconductor device structure |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111110895A TWI833182B (en) | 2021-12-27 | 2022-03-23 | Semiconductor device structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116364535A (en) |
TW (2) | TWI833182B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180197916A1 (en) * | 2013-09-02 | 2018-07-12 | Sony Corporation | Semiconductor device structure useful for bulk transistor and method of manufacturing same |
TW202207295A (en) * | 2020-08-14 | 2022-02-16 | 台灣積體電路製造股份有限公司 | Semiconductor structure and method for manufacturing thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102059526B1 (en) * | 2012-11-22 | 2019-12-26 | 삼성전자주식회사 | Method of forming semiconductor device having embedded stressor and related device |
WO2015053600A1 (en) * | 2013-10-11 | 2015-04-16 | 주식회사 세미콘라이트 | Semiconductor light emitting diode |
-
2022
- 2022-03-23 TW TW111110895A patent/TWI833182B/en active
- 2022-03-23 TW TW111110906A patent/TWI794062B/en active
- 2022-12-14 CN CN202211610276.2A patent/CN116364535A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180197916A1 (en) * | 2013-09-02 | 2018-07-12 | Sony Corporation | Semiconductor device structure useful for bulk transistor and method of manufacturing same |
TW202207295A (en) * | 2020-08-14 | 2022-02-16 | 台灣積體電路製造股份有限公司 | Semiconductor structure and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116364535A (en) | 2023-06-30 |
TW202327101A (en) | 2023-07-01 |
TWI833182B (en) | 2024-02-21 |
TW202327087A (en) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6329294B2 (en) | Transistor with high boron-doped germanium concentration | |
JP5571693B2 (en) | In situ formed drain and source regions including strain-inducing alloys and graded dopant profiles | |
TWI292595B (en) | Semiconductor device having a retrograde dopant profile in a channel region and method for fabricating the same | |
CN110085676B (en) | Tunneling field effect transistor with semiconductor fin structure | |
US7315051B2 (en) | Method of forming a source/drain and a transistor employing the same | |
TWI325181B (en) | Metal-oxide-semiconductor device having improved performance and reliability | |
TWI414067B (en) | Superjunction power mosfet | |
JP2004504711A (en) | High-speed trench double diffusion metal oxide semiconductor | |
US20100090274A1 (en) | Trench mosfet with shallow trench contact | |
TW201926570A (en) | Semiconductor device | |
KR20110038652A (en) | Cmos device comprising mos transistors with recessed drain and source areas and non-conformal metal silicide regions | |
JP2006066611A (en) | Semiconductor device | |
JP3692039B2 (en) | Manufacturing method of field effect control type transistor | |
CN110047908B (en) | Semiconductor device and method for manufacturing the same | |
TWI525713B (en) | Non-planar transistor fin fabrication | |
WO2012041064A1 (en) | Semiconductor structure and manufacturing method thereof | |
TW202002019A (en) | Method of fabricating semiconductor device | |
TWI794062B (en) | Method for preparing semiconductor device structure | |
TWI476932B (en) | Self-aligned contact structure trench jfet | |
JP4537014B2 (en) | Method for forming an integrated circuit transistor having an isolated punch-through prevention film | |
KR100832017B1 (en) | Semiconductor device increased channel area and method for manufacturing the same | |
US20230207637A1 (en) | Method for manufacturing semiconductor device structure | |
US8349677B2 (en) | Semiconductor device and method for manufacturing the same | |
TW202042400A (en) | Field-effect transistors with diffusion blocking spacer sections | |
US11646353B1 (en) | Semiconductor device structure |