TWI793965B - 管路判斷裝置 - Google Patents

管路判斷裝置 Download PDF

Info

Publication number
TWI793965B
TWI793965B TW111100770A TW111100770A TWI793965B TW I793965 B TWI793965 B TW I793965B TW 111100770 A TW111100770 A TW 111100770A TW 111100770 A TW111100770 A TW 111100770A TW I793965 B TWI793965 B TW I793965B
Authority
TW
Taiwan
Prior art keywords
pipeline
outer diameter
pipe
name
measurement data
Prior art date
Application number
TW111100770A
Other languages
English (en)
Other versions
TW202328631A (zh
Inventor
張元溪
Original Assignee
和旺昌噴霧股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和旺昌噴霧股份有限公司 filed Critical 和旺昌噴霧股份有限公司
Priority to TW111100770A priority Critical patent/TWI793965B/zh
Priority to CN202211003939.4A priority patent/CN116448036A/zh
Priority to US18/055,008 priority patent/US20230220958A1/en
Application granted granted Critical
Publication of TWI793965B publication Critical patent/TWI793965B/zh
Publication of TW202328631A publication Critical patent/TW202328631A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
    • G06F17/175Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method of multidimensional data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Pipeline Systems (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

一種管路判斷裝置,包含:記憶單元、處理單元以及通訊介面,處理單元連接記憶單元及通訊介面。記憶單元儲存複數管路名稱、複數參考管路外徑值及對應參考管路外徑值之管路名稱排序。處理單元接收管路之外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路名稱排序,依據對應與外徑量測數據相同之參考管路外徑值之管路名稱排序產生至少一符合外徑量測數據之管路名稱。通訊介面輸出符合外徑量測數據之管路名稱。

Description

管路判斷裝置
本發明有關一種管路判斷裝置。
民生及工業都需要使用管路系統來輸送流體,而不同的流體通常會使用不同的管路來進行輸送,為了製造、裝配及更換管路的便利性,各國對應各種管路(包含:材質、標稱管徑、平均外徑、外徑公差、管壁厚度、厚度公差、近似內徑、工作壓力上限等),制定管路規範(例如:美規ASTM、日規JIS、德規DIN、台規CNS)。管路系統是重要的基礎設施,為了製造及裝配管路的相容性及便利性,各國管路規範按照相同標稱管徑(外徑)進一步制定不同管厚及內徑的管路規格。
監測管路及其輸送物料的狀態已是必要事項,以裝設方式區分,監測管路裝置包含嵌入式及外扣式,嵌入式監測管路裝置的準確度較高,但裝設的時期受到限制且裝設成本較高;外扣式監測管路裝置具有可在任何時期規劃且裝設成本較低的優點,成為監測管路技術的主要發展趨勢。
外扣式監測管路裝置通常需要管路的材質、外徑、管厚、內徑等資料。然而各國管路規範管路的平均外徑、外徑公差、管壁厚度及近似內徑並不相同,以標稱管徑1吋管的平均外徑為例:台規外徑34 mm、日規外徑 32 mm、美規外徑 33.4 mm、德規外徑 32 mm尺寸,不同管徑名稱的管路規格的差異影響監測的準確度。
新建管路系統較容易取得正確的管路名稱及其材質、尺寸等規格資料,因管路系統的設計者、施工者和使用者對管路資料的需求與交流並不相同,例如:設計者或施工者認為使用者不需要管路的厚度、內徑等資料,設計者或施工者未將管路資料交付使用者,導致後續使用者確認管路資料的困難。對於大多數既有的管路系統,雖然使用者可使用皮尺等量測工具獲得管路的外徑,同一外徑的管路又因不同國家規範而區分多種不同管路名稱的規格,若不知正確的管路名稱,則使用者無從根據量測所得的外徑數據來查知該管路的管厚、內徑等其他規格資料,導致使用者裝設外扣式量測裝置往往需要反覆試誤及修正。即使量測裝置能輸出結果,若輸入的參數與實際情形有出入,則其數據的準確度將大受影響。
在工業領域,十幾年前一條生產線的管路系統上大約裝設數十個各式監測裝置,隨著工業4.0的潮流,同一條生產線的管路系統上需要裝設數百甚至上千個各式監測裝置,不可能要求使用者具備判斷管路的知識與設定每一個監測裝置的技能,而需要使用者量測與輸入的參數越多,越容易發生量測誤差及輸入錯漏的問題,影響監測的可靠度。
目前還未有解決上述種種問題的裝置或方法,因此,亟需有關自動判斷有關管路的名稱甚至進一步包含各種相關規格資料的技術,來提高裝設外扣式監測管路裝置的便利性及監測管路的準確度。
為解決上述問題,本發明提供一種管路判斷裝置,包含:記憶單元、處理單元以及通訊介面,處理單元連接記憶單元及通訊介面。記憶單元儲存複數管路名稱、複數參考管路外徑值及對應參考管路外徑值之管路名稱排序,其中管路名稱排序係將參考外徑值分別輸入依據管路名稱之基準外徑及外徑公差所建立之外徑值機率函數所得之符合機率,對應參考管路外徑值按照符合機率由高至低排序管路名稱而成。處理單元接收管路之外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路名稱排序,依據對應與外徑量測數據相同之參考管路外徑值之管路名稱排序產生至少一符合外徑量測數據之管路名稱。通訊介面輸出符合外徑量測數據之管路名稱。
於一實施例,上述外徑值機率函數選自常態分佈函數、截斷常態分佈函數、均勻分佈函數、截斷偏態分佈函數、卜瓦松分佈函數、偏態分佈函數、三角分佈函數及U形分佈函數之一種或數種或其組合。
於一實施例,上述處理單元擷取對應上述與上述外徑量測數據相同之參考管路外徑值之上述管路名稱排序第一之上述管路名稱產生符合上述外徑量測數據之上述管路名稱。
於一實施例,若上述處理單元比對上述外徑量測數據與上述參考管路外徑值之結果皆不相同,則上述處理單元產生新增管路名稱之通知訊息;上述通訊介面輸出通知訊息,以提示使用者新增管路名稱。
於一實施例,上述管路判斷裝置進一步包含:殼體及扣具,其中上述記憶單元、上述處理單元及上述通訊介面設置於殼體,扣具將殼體可拆卸地固定於上述管路之外表面。
於一實施例,上述管路判斷裝置進一步包含:外徑量測單元,連接上述處理單元,具有感測器及可夾持上述管路之外表面之夾件;當夾件夾持上述管路之外表面時,感測器可量測上述管路之曲度或外徑而產生上述外徑量測數據。
於一實施例,上述感測器係角度位移感測器或線性位移感測器。
於一實施例,上述管路判斷裝置進一步包含:超音波探頭,連接上述處理單元;其中上述記憶單元儲存上述管路名稱之管壁厚度及管厚公差,當上述超音波探頭裝設於上述管路之外表面時,超音波探頭可沿上述管路之徑向發射感測訊號且接收上述管路之管壁反射訊號;上述處理單元依據管壁反射訊號產生管路之管厚量測數據,自上述符合外徑量測數據之管路名稱中選出管壁厚度符合管厚量測數據之上述管路名稱;通訊介面傳輸符合管厚量測數據之上述管路名稱。
於一實施例,上述管路判斷裝置進一步包含:電阻量測元件,連接上述處理單元,具有二電極,其中上述記憶單元儲存上述管路名稱之管材電阻值;當二電極裝設於上述管路之外表面時,電阻量測元件可產生上述管路之電阻量測數據;上述處理單元自符合上述外徑量測數據之上述管路名稱中選出管材電阻值符合電阻量測數據之上述管路名稱;上述通訊介面傳輸符合電阻量測數據之上述管路名稱。
於一實施例,上述管路判斷裝置,進一步包含:硬度量測元件,連接上述處理單元,具有可伸縮之測頭,其中上述記憶單元儲存上述管路名稱之管材硬度值;當測頭壓合上述管路之外表面時,硬度量測元件可產生上述管路之硬度量測數據;上述處理單元自符合上述外徑量測數據之上述管路名稱中選出管材硬度值符合硬度量測數據之上述管路名稱;上述通訊介面傳輸符合硬度量測數據之上述管路名稱。
於本發明之管路判斷裝置,依據各種管路名稱的基準外徑及外徑公差建置外徑值機率函數及計算參考外徑值對各管路名稱的外徑值機率函數的符合機率,記憶單元儲存各種管路名稱及對應參考外徑值的管路名稱排序,處理單元比對外徑量測數據及參考外徑值即可產生符合外徑量測數據的管路名稱,通訊介面輸出符合外徑量測數據的管路名稱,供使用者據以查找管路的管厚、內徑等規格資料,有效解決使用者查找、測試管路規格的問題;本發明之管路判斷裝置可進一步組合外徑量測、超音波探頭、電阻量測、硬度量測等可自動量測管路外徑、管路厚度、管材性質的元件,使用者不需量測及輸入外徑及管厚等參數,處理單元可產生更準確的管路名稱、管路規格及管路流量且自我判斷裝置及管路異常狀態,大幅降低設定操作外扣式監測裝置的技術門檻,提高監測管路的準確度及效率。
以下配合圖式及元件符號對本發明的實施方式做更詳細的說明,俾使熟習本發明所屬技術領域中之通常知識者在研讀本說明書後可據以實施本發明。
本發明之管路判斷裝置之具體實施方式可以是裝設於管路上的單機式裝置或是連接管路感測器的遠端監控電腦或伺服器。圖1為本發明之管路判斷裝置第一實施例之方塊圖。如圖1所示,管路判斷裝置1包含:記憶單元11、處理單元12、通訊介面13以及電能單元(未圖示),處理單元12分別連接記憶單元11及通訊介面13。記憶單元11為非揮發性記憶體,例如:唯讀記憶體、固態硬碟等,處理單元12為包含微處理器、微控制器、動態隨機存取記憶體及周邊電路的晶片組(若管路判斷裝置1為單機式裝置,處理單元12可使用例如:arduino, 8051, STM32晶片),通訊介面13為包含感測器訊號連接埠(例如:SPI、I2C、或類比電子訊號)的對外通訊電路 (例如:RJ45或RS-232/422/485)及/或顯示器(例如:液晶顯示器、LED顯示器等)。電能單元為電池及/或可連接外部電源的變壓/整流電路及電源連接線路,可提供管路判斷裝置運作所需電能。
記憶單元11儲存複數管路名稱、複數參考管路外徑值及對應參考管路外徑值之管路名稱排序,其中管路名稱包含標稱管徑、國家規範,管路名稱排序係將參考外徑值分別輸入依據各管路名稱的基準外徑及外徑公差所建立的外徑值機率函數所得的符合機率,對應參考管路外徑值按照符合機率由高至低排序管路名稱而成。使用單機式的管路判斷裝置建立管路名稱排序的方法包含下列步驟: 步驟1:記憶單元11儲存已知的管路名稱、各管路名稱的基準外徑及外徑公差及外徑值機率函數(例如:常態分佈函數)。 步驟2:技術人員將參考管路外徑值範圍(例如:1 mm至100 mm)及外徑解析度(例如:0.1 mm)經由通訊介面13輸入處理單元12。 步驟3:處理單元12依據參考管路外徑值範圍及外徑解析度產生參考管路外徑數列(例如:1.0, 1.1, 1.2...48.1,48.2,48.3...99.8, 99.9, 100),依據管路名稱的基準外徑及外徑公差產生全部管路名稱的有效外徑範圍(例如:基準外徑作為平均值,外徑公差乘比例係數作為標準差,有效外徑範圍=平均值±標準差),接著處理單元12可執行步驟3-1或步驟3-2,其中 步驟3-1:將參考管路外徑數列的每一參考管路外徑值依序比對全部管路名稱的有效外徑範圍,將參考管路外徑值落入有效外徑範圍的管路名稱設為備選管路,依序將各參考管路外徑值、各參考管路外徑值的備選管路的平均值及標準差輸入外徑值機率函數產生各參考外徑值的複數備選管路的符合機率,按符合機率由高至低排序備選管路,將各參考管路外徑的備選管路的管路名稱排序對應該參考管路外徑值儲存於記憶單元11; 步驟3-2:將參考管路外徑數列的每一參考管路外徑值、全部管路名稱的平均值及標準差代入外徑值機率函數產生各參考外徑值的全部管路名稱的符合機率,選取符合機率高於機率閾值(例如:0.01、0.05、或0.1)的管路名稱,按符合機率高由高至低排序經選取的管路名稱,將經選取各參考管路外徑的管路名稱排序對應該參考管路外徑值儲存於記憶單元11。
若有進一步管路外徑分佈資訊,不同管路名稱可設定使用不同外徑值機率函數來運算符合機率,管路的外徑值機率函數選自常態分佈函數、截斷常態分佈函數、均勻分佈函數、截斷偏態分佈函數、卜瓦松分佈函數、偏態分佈函數、三角分佈函數及U形分佈函數之一種或數種或其組合。視單機式管路判斷裝置的記憶單元11的大小,技術人員於完成全部參考管路外徑值的管路名稱排序後,可經由處理單元12刪除外徑值機率函數及各管路名稱的基準外徑及外徑公差,或進一步儲存各管路名稱的管壁厚度及誤差範圍、管路材質等規格資料,便利使用者查找各管路名稱的規格資料。
實作方式可將記憶單元11區分數個記憶區,包含:管路名稱排序記憶區及管路規格記憶區,其中管路名稱排序記憶區按全部參考管路外徑值儲存對應各參考管路外徑值的管路名稱排序,管路規格記憶區儲存各管路名稱的管路規格。管路名稱排序記憶區例示如表1,管路規格記憶區例示如表2。 表1
參考管路外徑值 (mm) 排序 管路名稱 管路規格儲存位址
48.1 1 2 1-1/2”-CNS-4053-UPVC 1-1/2”-CNS-1302-UPVC 0x0100 0x0200
48.2 1 2 3 1-1/2”-ASTM-D1785-sch40 1-1/2”-CNS-1302-UPVC 1-1/2”-CNS-4053-UPVC 0x0500 0x0100 0x0200
48.3 1 2 3 1-1/2”-ASTM-D1785-sch40 1-1/2”-CNS-1302-UPVC 1-1/2”-CNS-4053-UPVC 0x0500 0x0100 0x0200
表2
管路名稱 管路規格
標稱管徑 國家規範 管路材質 基準外徑 (mm) 外徑公差 (mm) 管壁厚度 (mm) 管厚公差 (mm) 儲存位址
1-1/2” CNS1302 UPVC 48 ±0.4 3.1 +0.8~0.0 0x0100
CNS4053 UPVC 48 ±0.3 3.7 +0.6~0.0 0x0200
JISk6743 UPVC 48 ±0.3 3.7 +0.8~0.0 0x0300
DIN8062 SDR11 UPVC 50 ±0.2 4.6 +0.7~0.0 0x0400
ASTMD1785 sch40 UPVC 48.26 ±0.15 3.68 ±0.51~0.0 0x0500
值得說明的是,由於各國管路規範的管路名稱及其管路規格數量繁多且不斷增修,使用者可經由本發明的管路判斷裝置內建的輸入單元(例如按鍵、觸控螢幕等,未圖示)或外部的輸入裝置(例如:電腦、行動通訊裝置等,未圖示)經由通訊介面13傳輸新增或變更的管路名稱、參考管路外徑值及對應參考管路外徑值之管路名稱之排序資料至處理單元12,處理單元12再修改或增補記憶單元11儲存的資料。
使用不同外徑值機率函數產生表1所列參考管路外徑48.2 mm的管路名稱的排序的運算流程例示如下:以截斷常態分佈函數為例,各管路的外徑值的截斷常態分佈函數g i(x)=
Figure 02_image001
*
Figure 02_image003
,其中平均值μ為基準外徑;標準差σ為J倍的外徑公差,J的取值範圍[1/6,1],通常J設為1/2;在正負公差數值相同的情形下,值域範圍定義為k倍的標準差,k的取值範圍[2,6],下限值a=μ-k*σ,上限值b=μ+k*σ,ϕ(x)為機率密度函數(probability density function),Φ(x)為累積分佈函數(cumulative distribution function),機率密度函數及累積分佈函數的算式可參閱數學及統計學教科書。可能符合特定參考管路外徑值的管路(定義為備選管路)數量設定為n,各備選管路(1-n)的機率分佈函數f i(x)=π i* g i(x),π i為權重因子,無調整條件下π i=1/n,所有備選管路的機率函數積分總值必須是1(
Figure 02_image005
=1)。對應特定參考管路外徑值的任一備選管路的符合機率p i=f i(x)/F(x),其中F(x)=
Figure 02_image007
備選管路包含:1-1/2”-CNS-1302-UPVC、1-1/2”-CNS-4053-UPVC、1-1/2”-ASTM-D1785-sch40,各備選管路的符合機率運算流程如下: 1.備選管路1-1/2”-CNS-1302-UPVC在參考管路外徑值48.2 mm的分布函數機率值: 平均值μ=48 標準差0.2(J*外徑公差0.4,J取1/2,σ=0.4/2) 有效外徑範圍x=[48±0.6](取值範圍k*σ,k取3) 截斷常態分佈函數g 1(x=48.2)=1.2133 備選管路的分佈函數機率值f 1(x=48.2)=π 1*g 1(x=48.2) =0.404(π 1=1/備選管路的數量n,n=3) 2.備選管路1-1/2”-CNS-4053-UPVC在參考管路外徑值48.2 mm的分佈函數機率值: 平均值μ=48 標準差0.1(J*外徑公差0.3,J取1/3,σ=0.3/3) 有效外徑範圍x=[48±0.3](取值範圍k*σ,k取3) 截斷常態分佈函數g 2(x=48.2)=0.541 備選管路的分佈函數機率值f 2(x=48.2)=π 2*g 2(x=48.2) =0.180(π 2=1/3) 3.備選管路1-1/2”-ASTM-D1785-sch40在參考管路外徑值48.2 mm的分佈函數機率值: 平均值μ=48.26 有效外徑範圍x=[48.26-0.15,48.26+0.15] 均勻分佈函數g 3(x=48.2)=1/0.3(採均勻分布機率) 備選管路的分佈函數機率值f 3(x=48.2)=π 3*g 3(x=48.2) =1.111(π 2=1/3) 4.備選管路的分佈函數機率值總和及各備選管路的符合機率: 備選管路分佈函數機率值總和F(x=48.2)=f 1(x=48.2)+f 2(x=48.2)+f 3(x=48.2)=1.695 備選管路1-1/2”-CNS-1302-UPVC對應參考管路外徑值48.2 mm的符合機率值p 1(x=48.2)= f 1(x=48.2)/F(x=48.2)=0.404/1.695==0.238 備選管路1-1/2”-CNS-4053-UPVC對應參考管路外徑值48.2 mm的符合機率值p 2(x=48.2)= f 2(x=48.2)/F(x=48.2)=0.180/1.695=0.106 備選管路1-1/2”-ASTM-D1785-sch40對應參考管路外徑值48.2 mm的符合機率值p 3(x=48.2)= f 3(x=48.2)/F(x=48.2)=1.111/1.695=0.655 5.按符合機率由高至低排序對應參考管路外徑值48.2 mm的管路名稱: 排序1:1-1/2”- ASTM-D1785-sch40, 排序2:1-1/2”- CNS-1302-UPVC, 排序3:1-1/2”-CNS-4053-UPVC。
若考慮外徑量測數據的不確定度,對應參考管路外徑值運算各備選管路的符合機率可採用機率函數在不確定度的區間積分機率。再次以表1所列參考管路外徑值48.2 mm及其備選管路為例,預設外徑量測數據在參考外徑值的量測不確定度為±0.05 mm,各備選管路的符合機率運算流程及排序如下: 1.備選管路1-1/2”-CNS-1302-UPVC在分在參考管路外徑值48.2 mm且量測不確定度±0.05 mm的分佈函數機率值: 平均值μ=48 標準差0.2(J*外徑公差0.4,J取1/2,σ=0.4/2) 有效外徑範圍x=[48±0.6](取值範圍k*σ,k取3) 計算截斷常態分佈函數g 1(x)在x介於48.15至48.25的機率=0.121 備選管路分佈機率f 1(x)=π 1*g 1(x)=0.040(π1=1/備選管路的數量n,n=3) 2.備選管路規格1-1/2”-CNS-4053-UPVC在參考管路外徑值48.2 mm且量測不確定度±0.05 mm的分佈函數的機率值: 平均值μ=48 標準差0.1(J*外徑公差0.3,J取1/3,σ=0.3/3) 有效外徑範圍x=[48±0.3](取值範圍k*σ,k取3) 計算截斷常態分佈函數g 2(x)在x介於48.15至48.25的機率=0.061 備選管路的分佈機率f 2(x)=π 2*g 2(x) =0.020(π2=1/3) 3.備選管路1-1/2”-ASTM-D1785-sch40在參考管路外徑值48.2 mm且量測不確定度±0.15 mm的分佈函數的機率值: 平均值μ=48.26 有效外徑範圍x=[48.26-0.15,48.26+0.15] 計算均勻分布機率g 3(x)在x介於48.15至48.25的機率=0.333 備選管路的分佈機率f 3(x)=π 3*g 3(x) =0.111(π2=1/3) 4.備選管路的分佈函數機率值總和及各備選管路的符合機率: 備選管路的分佈函數機率值總和F(x)=0.040+0.020+0.111=0.171 備選管路1-1/2”-CNS-1302-UPVC對應參考管路外徑值48.2 mm且量測不確定度±0.05的符合機率值p 1(x)= f 1(x)/F(x)=0.040/0.171=0.234 備選管路1-1/2”-CNS-4053-UPVC對應參考管路外徑值48.2 mm且量測不確定度±0.05 mm的符合機率值p 2(x)= f 2(x)/F(x)=0.020/0.171=0.117 備選管路1-1/2”-ASTM-D1785-sch40對應參考管路外徑值48.2 mm的符合機率值p 3(x)= f 3(x)/F(x)=0.111/0.171=0.649 5.按符合機率由高至低排序對應參考管路外徑值48.2 mm且量測不確定度±0.05 mm的管路名稱: 排序1:1-1/2”-ASTM-D1785-sch40 排序2:1-1/2”-CNS-1302-UPVC, 排序3:1-1/2”-CNS-4053-UPVC。
處理單元12自使用者或感測器接收管路的外徑量測數據(例如:48.2 mm),比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同的參考外徑值的管路名稱排序,依據對應與外徑量測數據相同之參考管路外徑值的管路名稱排序產生至少一符合外徑量測數據的管路名稱,例如:排序第一的管路名稱、排序第一至第三的管路名稱、排序全部的管路名稱。通訊介面13輸出(經由有線或無線網路傳送管路名稱至使用者的電腦裝置或以顯示器顯示管路名稱)符合外徑量測數據的管路名稱,供使用者辨識、選擇或進一步的處理運用。若處理單元12查無符合外徑量測數據的管路名稱,處理單元12產生新增管路規格的通知頁面,通訊介面13輸出通知頁面,以提示使用者新增管路名稱;於使用者經由通訊介面13(例如:具有觸控功能之螢幕面板)或輸入單元(例如:按鍵、鍵盤等,未圖示)輸入新增之管路名稱,處理單元12將該外徑量測數據改寫為新增之參考外徑值,並將新增之參考外徑值對應新增之管路名稱儲存至記憶單元11。
本發明提供另一管路判斷裝置,包含:處理單元、記憶單元及通訊介面,記憶單元儲存複數管路名稱、複數參考管路外徑值、對應參考管路外徑值之管路名稱之符合機率,其中管路名稱之符合機率係將參考外徑值分別輸入依據管路名稱之基準外徑及外徑公差所建立之外徑值機率函數所得之符合機率而得;處理單元連接記憶單元,接收管路之外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路名稱之符合機率,依據對應與外徑量測數據相同之參考管路外徑值之管路名稱之符合機率產生至少一符合外徑量測數據之管路名稱;以及通訊介面,連接處理單元,輸出符合外徑量測數據之管路名稱。
如上述建立管路名稱排序的方法的步驟3-1及步驟3-2,處理單元可計算參考管路外徑值落入有效外徑範圍的備選管路的符合機率或全部管路名稱的符合機率,再以機率閾值(0.01、0.05或0.1)排除符合機率過低的管路名稱,將符合機率高於機率閾值的管路名稱及符合機率對應該參考管路外徑值儲存於記憶單元。若考慮特定區域或特定產業會使用特定規格的管路,為了提高判斷管路名稱的效率及準確度,本實施例之記憶單元可對應參考管路外徑值進一步儲存管路名稱之權重因子;處理單元選出對應與外徑量測數據相同之參考外徑值之管路名稱之符合機率,依據對應與外徑量測數據相同之參考管路外徑值之管路名稱之符合機率及權重因子產生至少一符合外徑量測數據之管路名稱。
若處理單元查無符合外徑量測數據的管路名稱,處理單元產生新增管路名稱的通知頁面,通訊介面輸出通知頁面,以提示使用者新增管路名稱;於使用者經由通訊介面或輸入單元輸入新增之管路名稱或同步輸入新增之管路名稱及其管路規格,處理單元將該外徑量測數據改寫為新增之參考外徑值,並將新增之參考外徑值對應新增之管路名稱或新增之管路名稱及其規格儲存至記憶單元。
承上述備選管路的分佈機率函數及表1及表2所示的參考管路外徑值,記憶單元儲存對應參考管路外徑的符合機率及權重因子如表3。 表3
參考管路外徑值 (mm) 管路名稱 符合機率*權重因子 管路規格儲存位址
48.2 1-1/2”- ASTM-D1785-sch40    1-1/2”- CNS-1302-UPVC  1-1/2”-CNS-4053-UPVC 0.649*a 1   0.238*a 20.117*a 3 0x0500       0x0100       0x0200
表4
權重因子 使用地區 產業
a 1=a 11*a 12 台灣 a 11<1 美國 a 11>1 半導體 a 12>1 其他 a 12=1
a 2=a 21*a 22 台灣 a 21=1 美國 a 21<1 半導體 a 22=1 其他 a 22=1
a 3=a 31*a 32 台灣 a 31>1 美國 a 31<1 半導體 a 32=1 其他 a 32=1
各權重因子的預設值為1,處理單元接收外徑量測數據後,可產生「其他資訊」的欄位訊息,通訊介面輸出「其他資訊」的欄位,供使用者輸入例如:使用地區、產業等資訊;若使用者未輸入任何資訊,則處理單元按原儲存的對應參考管路外徑值的管路規格的符合機率最高值或由高至低產生符合外徑量測數據的管路名稱;若使用者輸入其他資訊,則處理單元對應其他資訊變更權重因子的數值,計算管路名稱的符合機率及權重因子的乘積產生調整後的管路名稱符合機率,依據調整後的管路名稱機率產生符合外徑量測數據的管路名稱。藉由對應使用地區及產業等其他資訊的權重因子調整管路名稱符合機率,可進一步提高判斷管路的效率及準確度。
圖2A為本發明之管路判斷裝置第二實施例之立體圖,圖2B為圖2A所示管路判斷裝置的I-I’段剖視圖。如圖2A所示,管路判斷裝置2包含:殼體20、扣具21、外徑量測單元22、記憶單元、處理單元、通訊介面及電能單元(未圖示),其中記憶單元、處理單元、通訊介面及電能單元設置於殼體20。扣具21包含承載台211、位於承載台211二側的固定座212及U型螺絲213,殼體20及外徑量測單元22裝設於承載台211內。使用者選擇適合管路200, 200’外徑尺寸的U型螺絲213穿過管路200及固定座212的開孔,以螺母(未圖示)鎖固U型螺絲213及固定座212,即可將管路判斷裝置2固定於管路200, 200’的外表面上。
如圖2B所示,外徑量測單元22,包含:夾件221、擋塊222、二彈簧223及線性位移感測器224,其中夾件221具有軸部221a、倒V型側壁221b及感應塊221c,軸部221a嵌入承載台211的導溝,倒V型側壁221b的二側分別形成槽孔,倒V型側壁的中央形成通孔,以具有磁感性的金屬材料或磁鐵製成的感應塊221c設置於軸部221a嵌入承載台211的一側;擋塊222的一端卡合於承載台211的限位槽,擋塊222的另一端穿過夾件221與倒V型側壁221b中央的通孔齊平,二彈簧223的二端分別固定於承載台211與倒V型側壁221b的槽孔;線性位移感測器224(例如:磁致伸縮位移感測器)裝設於承載台211鄰近感應塊221c的位置且連接處理單元。值得說明的是,彈簧223的數量不限二個,於其他實施例,可使用單一彈簧223,分別固定於承載台211與倒V型側壁221b與感應塊221c相距較遠的槽孔,將線性位移感測器224裝設於倒V型側壁221b與感應塊221c相距較近的槽孔,同樣可達到量測管路外徑的功用。
管路判斷裝置2裝設於管路200,200’前,彈簧223的彈力將夾件221的倒V型側壁221b推頂至凸出承載台211的位置。管路判斷裝置2裝設於管路200,200’時,將倒V型側壁抵接管路200, 200’的外表面,隨著管路200,200’的外徑大小不同,管路200,200’的外表面會抵接倒V型側壁221b的不同位置(即管路的外徑越大,管路的外表面抵接倒V型側壁的位置會越接近倒V型開口處),以U型螺絲213及螺母迫緊管路200,200’與固定座212,使夾件221朝向承載台211內移動(軸部221a沿承載台211的導溝移動而凸出承載台211的表面,倒V型側壁221b退縮至承載台211內)至擋塊222擋止管路200的外表面,彈簧223的彈力確保管路200,200’的外表面與倒V型側壁221b沒有間隙,線性位移感測器224可自動量測裝設於軸部221a的感應塊221c移動距離(徑向位移,定義為外徑量測數據)。因管路200,200’的管徑大小與推動夾件221徑向移動的距離有線性對應關係,線性位移感測器224可儲存夾件221徑向移動距離對管路外徑的轉換資料,當線性位移感測器224量測出夾件221的徑向移動距離,即可產生外徑量測數據。處理單元接收外徑量測單元22的外徑量測數據後,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同的參考外徑值的管路名稱排序,依據對應與外徑量測數據相同之參考管路外徑值的管路名稱排序產生至少一符合外徑量測數據的管路名稱;通訊介面輸出符合外徑量測數據的管路名稱,供使用者辨識、選擇或進一步的處理運用。若記憶單元進一步儲存對應各管路名稱的管路規格(包含:管路材質、管壁厚度等),處理單元可同步產生符合外徑量測數據的管路名稱及對應之管路規格,通訊介面輸出符合外徑量測數據的管路名稱及對應之管路規格,供使用者直接處理運用。
圖3A為本發明之管路判斷裝置第三實施例之立體圖,圖3B為圖3A所示管路判斷裝置沿管路徑向剖視圖。如圖3A所示,管路判斷裝置3包含:殼體30、扣具31、外徑量測單元32、記憶單元、處理單元、通訊介面及電能單元(未圖示),其中記憶單元、處理單元、通訊介面及電能單元設置於殼體30。扣具31包含承載台311、位於承載台311二側的固定座312及U型螺絲313(一側未圖示),殼體30及外徑量測單元32裝設於承載台311內。使用者選擇適合管路300, 300’外徑尺寸的U型螺絲313穿過管路300, 300’及固定座312的開孔,以螺母(未圖示)鎖固U型螺絲313及固定座312,即可將管路判斷裝置3固定於管路300, 300’的外表面上。
如圖3B所示,外徑量測單元32連接處理單元,包含:夾件321及角度位移感測器322,夾件321具有二側臂,二側臂的一端以齒輪相嚙合(定義成頂點O),二側臂的另一端可隨管路300, 300’的外徑尺寸開闔。將二側臂抵接管路300, 300’的外表面(定義為斜向切點P),以U型螺絲313及螺母迫緊管路300, 300’與固定座312,使管路300, 300’上方外表面緊抵外徑量測單元32的底面(定義為垂直切點Q),角度位移感測器322可自動量測側臂張開的角度(頂點O至一側斜向切點P的連線與頂點O至垂直切點Q的連線之間的夾角Θ,定義成曲度)而產生外徑量測數據。因為管路300, 300’外表面的半徑r是頂點O經垂直切點Q至圓心C的距離的正弦值(r=
Figure 02_image009
*sinΘ),其中
Figure 02_image009
的長度為頂點O至垂直切點Q之間的距離L與半徑r的和,記憶單元預儲存頂點O至垂直切點Q之間的距離L,處理單元自外徑量測單元32接收管路外徑曲度數據,即可由算式r=L*sinΘ/(1-sinΘ)獲得管路300, 300’ 外表面的半徑r及外徑2r,進而按第一實施例所述的步驟產生及輸出符合外徑量測數據的管路名稱;通訊介面輸出符合外徑量測數據的管路名稱,供使用者辨識、選擇或進一步的處理運用。
圖4A為本發明之管路判斷裝置第四實施例之立體圖,圖4B為圖4A所示管路判斷裝置的I-I’剖視圖。如圖4A所示,管路判斷裝置4包含:殼體、扣具41、外徑量測單元42、記憶單元、處理單元、通訊介面及電能單元(未圖示),其中記憶單元、處理單元及通訊介面設置於殼體。扣具41包含承載台411、位於承載台411二側的固定座412及U型螺絲413,殼體裝設於承載台411內,外徑量測單元42的一側連接承載台411的凸緣411a。使用者選擇適合管路400, 400’外徑尺寸的U型螺絲413穿過管路400, 400’及固定座412的開孔,以螺母(未圖示)鎖固U型螺絲413及固定座412,即可將管路判斷裝置4固定於管路400, 400’的外表面上。
如圖4B所示,外徑量測單元42包含:夾件421及光學位移感測器422,其中夾件421具有L型底座421a、二支臂421b、調整螺絲421c及光學刻度尺421d,光學刻度尺421d設置於支臂421b內,光學位移感測器422設置於承載台411表面鄰近光學刻度尺421d的位置且連接處理單元。於本實施例,將管路400,400’放置於L型底座421a上,使旋轉調整螺絲421c,使殼體40與L型底座421a夾合管路400, 400’上下外表面,再以螺母(未圖示)迫緊鎖固U型螺絲413及固定座412,即可將管路判斷裝置4裝設於管路400,400’。在旋轉調整螺絲使殼體40和L型底座421b夾合管路400,400’上下外表面的過程,光學位移感測器422和光學刻度尺421d隨著承載台411沿管路400,400’的徑向位移,光學刻度尺421d有對應位移距離的光學刻度,光學位移感測器422擷取光學刻度尺421d上的刻度影像即可產生外徑量測數據;處理單元自外徑量測單元42接收外徑量測數據,進而按第一實施例所述的步驟產生符合外徑量測數據的管路名稱;通訊介面輸出符合外徑量測數據的管路名稱,供使用者辨識、選擇或進一步的處理運用。
上述管路判斷裝置可結合其他感測器,進一步提高判斷管路的準確度。於本發明之管路判斷裝置另一實施例,管路判斷裝置包含:記憶單元、處理單元、通訊介面、電阻量測元件及電能單元,其中處理單元分別連接記憶單元、通訊介面及電阻量測元件,記憶單元儲存管路名稱、管路名稱之排序及管材電阻值,各種管材電阻值可由公開技術資訊獲得。於本實施例,電阻量測元件具有二電極,其構造及功能類似現有可測量電流/電阻/電壓的數位式三用電表,當二電極裝設於管路的外表面時,電阻量測元件可產生管路的電阻量測數據。處理單元如第一實施例所述產生符合外徑量測數據的管路名稱,接收電阻量測單元的電阻量測數據,自符合外徑量測數據的管路名稱中選出管材電阻值符合電阻量測數據的管路名稱;通訊介面傳輸符合外徑量測數據及電阻量測數據的管路名稱。藉由量測管路材質電阻,管路判斷裝置可明確區分外徑相同但材質不同的管路規格(例如:PVC管及不銹鋼管)。若處理單元查無管材電阻值符合電阻量測厚度的管路名稱,主要原因是電極未接觸管路的表面或其他元件異常,處理單元產生檢查訊號,通訊介面通知使用者檢查管路判斷裝置或新增管路名稱及其規格。
於本發明之管路判斷裝置另一實施例,管路判斷裝置包含:記憶單元、處理單元、通訊介面、硬度量測元件及電能單元,其中處理單元分別連接記憶單元、通訊介面及硬度量測元件,記憶單元儲存管路名稱、管路名稱之排序及管材硬度值,管材硬度與材質及管厚有關(金屬硬度高於塑料,厚管硬度高於薄管),各種管材硬度值可由公開技術資訊或預先進行樣品實測獲得。於本實施例,硬度量測元件具有可伸縮之測頭,其構造及功能類似現有可測量產品硬度的數位式硬度計,當測頭壓合管路之外表面時,硬度量測元件可產生管路之硬度量測數據。處理單元如第一實施例所述產生符合外徑量測數據的管路名稱,接收硬度量測單元的硬度量測數據,自符合外徑量測數據的管路名稱中選出管材硬度值符合硬度量測數據的管路名稱;通訊介面傳輸符合外徑量測數據及硬度量測數據的管路名稱。藉由量測管路材質硬度,管路判斷裝置可明確區分外徑相同但材質或厚度不同的管路規格(例如:PVC管與不銹鋼管、厚管與薄管)。若處理單元查無管材硬度值符合硬度量測厚度的管路名稱,主要原因是測頭未接觸管路的表面或其他元件異常,處理單元產生檢查訊號,通訊介面通知使用者檢查管路判斷裝置或新增管路名稱及其規格。
圖5A為本發明之管路判斷裝置第五實施例沿管路軸向剖視圖,圖5B為圖5A所示管路判斷裝置之量測管厚訊號圖。如圖5A所示,管路判斷裝置5裝設於管路500的外表面,包含:記憶單元51、處理單元52、通訊介面53、超音波探頭54、超音波耦合層55及電能單元(未圖示),處理單元52分別連接記憶單元51、通訊介面53及超音波探頭54,超音波耦合層55夾置於超音波探頭54與管路500上方外表面。記憶單元51、處理單元52及通訊介面53的構造功能如第一實施例所述,超音波探頭54包含發射及接收超音波訊號的壓電材料層541及可減少超音波能量耗損的聲阻匹配層542。
於超音波訊號通過介質傳輸的過程,二種介質的介面越無空隙,二介質的介面反射超音波越弱,超音波耦合層55的材質(例如:矽油、矽膠、橡膠等)可大幅降低超音波探頭54與管路外表面的空隙,以提高超音波訊號通過管路管壁501的能量比例;管壁501的材質與管路500內的氣體或液體的聲阻差異大,相鄰超音波探頭54的管路內表面500a的氣體或液體的介面會反射一定比例的超音波感測訊號。當處理單元52自使用者或外徑量測元件(如圖2A, 2B, 3A, 3B, 4A, 4B所示)接收管路外徑量測數據,比對外徑量測數據與參考管路外徑值,選出與外徑量測數據相同的參考外徑值及對應參考管路外徑值的管路名稱的排序,產生至少一符合外徑量測數據的管路名稱。
於本實施例,記憶單元51儲存管路名稱的管壁厚度及管厚公差,處理單元52預設管路材質的聲速Vp(可選擇特定材質的聲速或常見管路材質聲速的平均值)、超音波反射訊號最小閾值Rmin及超音波反射訊號最大閾值Rmax。處理單元52產生至少一符合外徑量測數據的管路名稱後,控制超音波探頭54沿管路500的徑向(如圖5A中Y軸方向)發射感測訊號S(如圖5A中實線箭頭記號所示)且接收聲阻匹配層542與超音波耦合層55的介面的反射訊號R1、超音波耦合層55與管路500外表面的介面的反射訊號R2及管路內表面500a與管路500內氣體或液體的介面的反射訊號R3(如圖5A中虛線箭頭記號所示)。
接著,如圖5A及5B所示,處理單元52預設超音波探頭54發射感測訊號的起始時間點為T0,發射感測訊號約數微秒(例如5-15微秒)後切換超音波探頭54接收反射訊號;在時序上反射訊號R1, R2密接而與反射訊號R3有極小的時間差(1-10微秒),因此反射訊號R1, R2與反射訊號R3可區分成相鄰的二群連續波形訊號;處理單元52比對超音波探頭54接收到的訊號與超音波反射訊號最小閾值Rmin,若出現大於超音波反射訊號最小閾值Rmin峰值的連續波形訊號,則判定為反射訊號;處理單元52解析二群連續波形訊號,定義第一群連續波形訊號為反射訊號R1,R2,第二群連續波形訊號為反射訊號R3,且定義第一群連續波形訊號的最高峰值出現時間點為超音波探頭54接收反射訊號R2的時間點T1及第二群連續波形訊號的最高峰值出現時間點為超音波探頭54接收反射訊號R3的時間點T2,進而產生感測訊號S及反射訊號R3沿管路500徑向往返的飛行時間(T0至T2);感測訊號S及反射訊號R1R2沿管路徑向往返的距離(壓電材料層541至超音波耦合層55的距離的2倍)及聲速可經由理論計算或預先實測獲得,亦即感測訊號S及反射訊號R1R2往返的飛行時間(T0至T1)為已知數據,處理單元52以感測訊號S及反射訊號R3往返(壓電材料層541至管壁501的距離的2倍)的飛行時間(T0至T2)扣除預設感測訊號S及反射訊號R1,R2往返的飛行時間(T0至T1)獲得感測訊號S及反射訊號R3往返管壁501的飛行時間(T1至T2),依據預設的管材聲速Vp與超音波訊號往返管壁501的飛行時間(T1至T2)的乘積的1/2產生管路500的管厚量測數據d(d=(Vp*(T2-T1))/2),自符合外徑量測數據的管路名稱中選出管壁厚度符合管厚量測數據的管路名稱;通訊介面53傳輸符合管厚量測數據的管路名稱。申請人申請台灣第110110056號發明專利申請案揭露有關超音波的感測訊號、反射訊號、反射訊號最小閾值、反射訊號最大閾值及飛行時間等技術內容併入本案。
以11-1/2”-ASTM-D1785規範的三種不同管路名稱及其管厚規格如表5。 表5
管路名稱 基準外徑 (mm) 外徑公差 (mm) 管壁厚度 (mm) 管厚公差 (mm)
1-1/2”-ASTM-D1785-sch40 48.26 ±0.15 3.68 +0.51~0.0
1-1/2”-ASTM-D1785-sch80 48.26 ±0.15 5.08 +0.61~0.0
1-1/2”-ASTM-D1785-sch120 48.26 ±0.15 5.72 +0.68~0.0
若處理單元52產生的外徑量測數據是48.0 mm且管厚量測數據是4.0 mm,則處理單元52選出1-1/2”-ASTM-UPVC-sch 40作為符合外徑量測數據及管厚量測數據的管路名稱。若處理單元52查無管壁厚度符合管厚量測數據的管路名稱,主要原因包含:新管路規格、超音波探頭54未貼合管路500的表面(超過超音波反射訊號最小閾值的反射訊號R2來自管路500與超音波耦合層55的介面)、管壁磨損或其他元件異常,例如:處理單元52產生的外徑量測數據是48.0 mm且管壁量測數據是8.0 mm,則處理單元52產生檢查訊號,通訊介面53通知使用者檢查管路500及管路判斷裝置5或新增管路名稱及其管路規格。
於管路500輸送液體發生異常的情況,若處理單元52判斷第一群連續波形訊號,即反射訊號R1,R2的最高峰值大於超音波反射訊號最大閾值Rmax(如圖5B所示),表示沿管路500的徑向傳輸的途徑在相對超音波探頭54的管路內表面500b之前有異常的空氣介面(包含:超音波耦合層55與管路500外表面未密合、管路500空管或大量氣泡或大量固形物)反射感測訊號,處理單元52產生代表超音波探頭54或管路500輸送流體發生異常的警告訊號;通訊介面53輸出警告訊號通知使用者檢查管路判斷裝置5及管路。藉由利用及解析超音波訊號,管路判斷裝置5除可量測管厚及進一步確認管路名稱及其規格,還具有自我檢查安裝狀態及監測流體管路狀態之功能。
上述管路判斷裝置可結合量測流量的超音波感測器而構成具有判斷管路及監測管路流體功能的流量計。圖6A為本發明之時差式流量計之一實施例之剖視圖,圖6B為圖6A所示流量計之第一超音波探頭之剖視示意圖,圖6C為6B所示流量計之第一超音波探頭之發射及接收訊號圖。如圖6A所示,本發明提供一種具有判斷管路及監測管路流體功能的流量計6,包含:可拆卸地固定於管路600外表面的夾具60、裝設於夾具60內的記憶單元61、處理單元62、通訊介面63、第一超音波探頭64、第二超音波探頭65、第三超音波探頭66、複數超音波耦合層67及電能單元(未圖示),處理單元62分別連接記憶單元61、通訊介面63、第一超音波探頭64、第二超音波探頭65及第三超音波探頭66,第一超音波探頭64、第二超音波探頭65及第三超音波探頭66沿管路600的軸向(圖6中X軸所示方向)一側排列,複數超音波耦合層67分別夾置於第一超音波探頭64、第二超音波探頭65及第三超音波探頭66與管路600的外表面。
記憶單元61儲存複數管路名稱及管路規格(包含管壁厚度及管厚公差)、複數參考管路外徑值及對應參考管路外徑值的管路名稱的排序,其中管路名稱之排序係將該等參考外徑值分別輸入依據管路名稱之基準外徑及外徑公差所建立之外徑值機率函數所得之符合機率,對應參考管路外徑值按照符合機率由高至低排序管路名稱而成;處理單元62預設管路材質的聲速Vp(可選擇特定材質的聲速或常見管路材質聲速的平均值)、參考流體聲速Vf0(可選水、油、溶劑等常見流體的聲速或平均聲速)、管路第一內表面600a與管路內流體介面反射訊號的最小閾值(可經由預先實測多種流體的訊號強度獲得,定義為第一時段反射訊號最小閾值Rmin1)、管路內流體與管路第二內表面600b的介面反射訊號的最小閾值(可經由預先實測多種流體的訊號強度獲得,定義為第二時段反射訊號最小閾值Rmin2)等參數。
於管路600輸送流體的情況,處理單元62如上述實施例之步驟選出符合外徑量測數據及管厚量測數據之管路名稱後,依據符合外徑量測數據及管厚量測數據之管路名稱的內徑(基準外徑扣除2倍管壁厚度或外徑量測數據扣除2倍管厚量測數據)及預設的參考流體聲速Vf0設定第一感測訊號S1及管路第二內表面600b的反射訊號沿管路600的徑向往返管路600內徑的飛行時間閾值Tth(介於管路第一內表面600a反射訊號的飛行時間及管路第二內表面600反射訊號的飛行時間,例如:Tth=N*管路內徑/Vf0,1<N<2),依據飛行時間閾值Tth將第一超音波探頭64接收反射訊號的時域區分成第一時段及第二時段。
接著如圖6B所示,處理單元62控制控制第一超音波探頭64的壓電材料層641沿管路600的徑向(如圖6B中Y軸方向)發射第一感測訊號S1(如圖6B中實線箭頭記號所示)且接收第一反射訊號,其中第一反射訊號包含聲阻匹配層642與超音波耦合層67的介面的反射訊號R1、超音波耦合層67與管路600外表面的介面的反射訊號R2、及管路第一內表面600a與管路內流體的介面的反射訊號R3、管路內流體與管路第二內表面600b的介面反射訊號R4及管路600外表面與環境空氣的介面的反射訊號R5(如圖6B中虛線箭頭記號所示)。
如圖6B及6C所示,若處理單元62判斷第一時段的連續波形訊號的峰值大於第一時段反射訊號最小閾值Rmin1且第二時段的連續波形訊號的峰值大於第二時段反射訊號最小閾值Rmin2,則解析第一時段的二群連續波形訊號的第一峰值及第二峰值與第二時段連續波形訊號的第三峰值及第四峰值出現時間點,分別定義第一超音波探頭發射第一感測訊號S1的時間點為T0、第一峰值至第四峰值出現的時間點為反射訊號R1,R2的接收時點T1、反射訊號R3的接收時點T2、反射訊號R4的接收時間點T3、反射訊號R5的接收時間點T4及結束接收反射訊號的時間點T5,依據反射訊號R3的接收時點T2與反射訊號R4的接收時點T3產生第一感測訊號S1及第一反射訊號徑向往返管路600內徑的飛行時間(T3-T2),依據符合外徑量測數據及管厚量測數據之管路名稱的內徑與超音波訊號徑向往返管路內徑的飛行時間(T3-T2)產生實測流體聲速Vf1(Vf1=2*內徑/(T3-T2));處理單元62可將飛行時間閾值Tth及實測流體聲速Vf1儲存於記憶單元61,以提高計算流量的效率。
值得一提的是,由於時間序上反射訊號R4與反射訊號R5的區隔較反射訊號R1,R2與反射訊號R3的區隔明顯,處理單元62可利用第一感測訊號S1及第一反射訊號往返徑向相對第一超音波探頭64的管壁的飛行時間(T4-T3)來計算管厚量測數據(管厚d=預設管材聲速vp*(T4-T3)/2),來產生符合外徑量測數據及管厚量測數據之管路名稱。
接著如圖6A所示,處理單元62控制第二超音波探頭65朝管路600斜向(徑向與軸向之間)發射第二感測訊號,第三超音波探頭66接收管路第二內表面600b反射第二感測訊號之第二反射訊號,第三超音波探頭66朝管路600斜向發射第三感測訊號,第二超音波探頭65接收管路第二內表面600b反射第三感測訊號之第三反射訊號;處理單元62預設第二感測訊號與第三感測訊號於管路600內流體的傳播方向與管路600徑向之夾角Θ,計算第二感測訊號至第二反射訊號之順流飛行時間與第三感測訊號至第三反射訊號之逆流飛行時間及順逆流飛行時間差,依據第二感測訊號及第三感測訊號的飛行路徑長度(飛行路徑長度=2*管路內徑/cos Θ)、順逆流飛行時間差及實測流體聲速Vf1產生流體之流速(流體流速=實測流體聲速Vf1 2*順逆流飛行時間差/2*飛行路徑長度*sin Θ),依據管路600之內徑產生管路600徑向截面積,依據管路600徑向截面積及流體之流速產生管路600內流體之流量(流體流量=流體流速*管路徑向截面積);通訊介面63輸出(以顯示器顯示)管路600內流體之流速及流量。
藉由記憶單元61儲存管路名稱、其排序及規格、處理單元62自動判斷管路名稱及規格、產生管路內徑及實測流體聲速等技術手段,使用者於裝設本發明之流量計時不需輸入管路厚度、管路內徑、流體種類等參數,即可進行量測流量,大幅降低設定操作流量計的技術門檻,提高量測流量的效率及準確度,且本發明之流量計具有自我判斷及通知流量計及管路異常狀態的功能,有效避免量測錯誤及監測空窗。值得說明的是,量測流量的超音波探頭的排列方式及數量不限於圖6A所示V形排列,現有Z形、N形及W形排列的超音波探頭量測流量的方法皆適用於本發明之流量計的技術內容。
本發明之流量計可組合上述任一種外徑量測單元,圖7A,7B及7C示意本發明之流量計之其他實施例。圖7A為本發明之時差式流量計之另一實施例之剖視圖。如圖7A所示,流量計7包含:可拆卸地固定於管路700外表面的夾具70、裝設於夾具70內的記憶單元71、處理單元72、通訊介面73、外徑量測單元74、第一超音波探頭75、第二超音波探頭76、複數超音波耦合層77及電能單元(未圖示)處理單元72分別連接記憶單元71、通訊介面73、外徑量測單元74、第一超音波探頭75及第二超音波探頭76,超音波耦合層77分別夾置於第一超音波探頭75、第二超音波探頭76與管路700外表面,記憶單元71儲存複數參考管路外徑值、對應參考管路外徑值之管路內徑及預設流體聲速。
流量計7裝設於管路700的外表面後,使用者開啟流量計7,外徑量測單元74可自動量測管路的曲度或外徑而產生外徑量測數據;處理單元72接收外徑量測單元74產生的外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路內徑,依據對應外徑量測數據的管路內徑產生管路徑向截面積(管路徑向截面積=π*管路內徑2),控制第一超音波探頭75朝沿與管路700斜向(徑向與軸向之間)發射第一感測訊號,控制第二超音波探頭76接收相對第一超音波探頭75及第二超音波探頭76的管路內表面700b反射第一感測訊號之第二反射訊號,控制第二超音波探頭76朝管路700斜向發射第二感測訊號,控制第一超音波探頭75接收管路內表面700b反射第二感測訊號之第二反射訊號;處理單元72預設第一感測訊號與第二感測訊號於管路700內流體的傳播方向與管路700徑向之夾角Θ,計算第一感測訊號至第一反射訊號與第二感測訊號至第二反射訊號通過管路流體的順逆流飛行時間差,依據對應外徑量測數據的管路內徑及夾角Θ產生飛行路徑長度(飛行路徑長度=2*管路內徑/cos Θ),依據飛行時間差、飛行路徑長度及與預設流體聲速產生流體之流速(流體流速=預設流體聲速*順逆流飛行時間差/2*飛行路徑長度*sin Θ),依據流體流速及管路徑向截面積產生管路700內流體之流量(流體流量=流體流速*管路徑向截面積);通訊介面73輸出(以顯示器顯示)管路700內流體之流速及/或流量。
於本實施例,技術人員使用處理單元72依照上述方法將全部參考管路外徑值分別輸入管路外徑值機率函數產生對應參考外徑值的全部管路名稱的符合機率後,可選擇僅將符合機率最高的管路名稱的管路內徑(計算式:管路內徑=參考管路外徑值-2*管路規格的管壁厚度)或符合機率高於機率閾值的全部管路名稱的管路內徑的平均值對應該參考管路外徑值儲存至記憶單元71,而不儲存管路名稱、外徑值機率函數、管路名稱排序、符合機率等函數及參數,可節省記憶單元71的資料儲存量,且提高處理單元72計算管路內流體流速及流體流量的效率。記憶單元71對應參考管路外徑值儲存管路內徑例示如表6。 表6
參考管路外徑值(mm) 管路內徑(mm) 儲存位址
48.1 40.7 0x0200
48.2 40.84 0x0500
48.3 40.94 0x0500
若處理單元72查無符合外徑量測數據的管路內徑,處理單元72產生新增管路內徑的通知頁面,通訊介面73輸出通知頁面,以提示使用者新增管路內徑;於使用者經由通訊介面73或輸入單元輸入新增之管路內徑,處理單元72將該外徑量測數據改寫為新增之參考外徑值,並將新增之參考外徑值對應新增之管路內徑儲存至記憶單元71。
圖7B為本發明之都卜勒式流量計之一實施例之剖視圖。如圖7B所示,流量計7’包含:可拆卸地固定於管路700外表面的夾具70、裝設於夾具70內的記憶單元71、處理單元72、通訊介面73、外徑量測單元74、超音波探頭75’、超音波耦合層77及電能單元(未圖示),處理單元72分別連接記憶單元71、通訊介面73、外徑量測單元74及超音波探頭75’,超音波耦合層77夾置於超音波探頭75’與管路700外表面,記憶單元71儲存複數參考管路外徑值、對應參考管路外徑值之管路內徑及預設流體聲速。
管路內液體的固體微粒或氣泡(雜質)會散射超音波訊號,因此時差式超音波流量計不適合量測含有一定比例雜質的液體的流速及流量。都卜勒式超音波流量計是利用流體雜質反射超音波訊號與原感測訊號的頻率或相位差計算雜質移動速度,進而產生流體流速及流量。於本實施例,處理單元72接收外徑量測單元74產生的外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路內徑,依據對應外徑量測數據的管路內徑產生管路徑向截面積後,控制超音波探頭75’ 朝管路700斜向(徑向與軸向之間)發射感測訊號及接收管路700內流體雜質反射感測訊號的反射訊號;處理單元72預設感測訊號於管路700內流體的傳播方向與管路軸向之夾角Φ,解析感測訊號的頻率ft及反射訊號的頻率fr,依據預設流體聲速、感測訊號及反射訊號的頻率差(fr-ft)及夾角Φ產生管路內流體的流速(流體流速=預設流體聲速*(fr-ft)/(2*ft*cos Φ),依據管路徑向截面積及流體流速產生管路內流體的流量。
圖7C為本發明之都卜勒式流量計之另一實施例之剖視圖。如圖7C所示,流量計7”包含:可拆卸地固定於管路700外表面的夾具70、裝設於夾具70內的記憶單元71、處理單元72、通訊介面73、外徑量測單元74、第一超音波探頭75”、第二超音波探頭76”、複數超音波耦合層77及電能單元(未圖示)處理單元72分別連接記憶單元71、通訊介面73、外徑量測單元74及第一超音波探頭75”,超音波耦合層77分別夾置於第一超音波探頭75”、第二超音波探頭76”與管路700外表面,記憶單元71儲存複數參考管路外徑值及對應參考管路外徑值之管路內徑。
於本實施例,處理單元72接收外徑量測單元74產生的外徑量測數據,比對外徑量測數據與參考管路外徑值,選出對應與外徑量測數據相同之參考外徑值之管路內徑,依據對應外徑量測數據的管路內徑產生管路徑向截面積,控制第一超音波探頭75”沿管路700的徑向發射第一感測訊號且接收第一反射訊號,依據第一感測訊號的發射時間點及第一反射訊號的接收時點產生第一感測訊號及第一反射訊號徑向往返管路700內徑的飛行時間,依據對應外徑量測數據之管路內徑與超音波訊號徑向往返管路內徑的飛行時間產生實測流體聲速(處理單元72產生實測流體聲速之步驟如上述實施例及圖6B、6C所示),控制第二超音波探頭76” 朝管路700斜向(徑向與軸向之間)發射感測訊號及接收管路700內流體雜質反射感測訊號的反射訊號;處理單元72預設感測訊號於管路700內流體的傳播方向與管路軸向之夾角Φ,解析第二感測訊號的頻率ft及第二反射訊號的頻率fr,依據實測流體聲速、第二感測訊號及第二反射訊號的頻率差(fr-ft)及夾角產生管路內流體的流速(流體流速=實測流體聲速*(fr-ft)/(2*ft*cos Φ),依據管路徑向截面積及流體流速產生管路內流體的流量。藉由外徑量測單元可自動量測管路外徑之功能,使用者於裝設本發明之流量計時不需輸入管路外徑、管路內徑等參數,即可進行量測流量,進一步降低設定操作各式流量計的技術門檻,且提高量測流量的效率及準確度。
本發明之管路判斷裝置可設置於經由網路監控多數管路的遠端電腦裝置,建構物聯網架構的管路監控系統。圖8為本發明之管路監控系統之方塊圖。如圖8所示,管路監測系統8包含管路判斷裝置81及終端裝置82,其中管路判斷裝置81包含:記憶單元811、處理單元812、以及通訊介面813,其中記憶單元811儲存複數管路名稱及依據管路名稱之外徑基準及外徑公差建立之管路外徑值機率函數;處理單元812連接記憶單元811及通訊介面813;通訊介面813經由網路800連接終端裝置82。處理單元812自終端裝置82或使用者接收管路的外徑測量數據,將管路的外徑測量數據輸入管路外徑值機率函數產生各管路名稱之符合機率,按照各管路名稱之符合機率由高至低排序全部或部分之管路名稱,依據經排序的管路產生至少一符合外徑量測數據的管路名稱;通訊介面813輸出符合外徑量測數據的管路名稱。
於本實施例,管路判斷裝置81設置於區域或無線網路的伺服器,記憶單元811是伺服器的硬碟,處理單元812是伺服器的中央處理器,通訊介面813包含可接收/傳輸資料的通訊電路,裝端裝置82包含但不限於可裝設於管路的現有超音波探頭及流量計、使用者的電腦。記憶單元811儲存的管路名稱及其管路規格、對應各管路名稱的管路外徑值機率函數可參上列表1,2及說明,其中各管路外徑值機率函數選自常態分佈函數、截斷常態分佈函數、截斷偏態分佈函數、卜瓦松分佈函數、偏態分佈函數、均勻分佈函數、三角分佈函數及U形分佈函數之一種或數種或其組合。各管路製造商按不同國家標準的管路規範所製造的管路外徑及管厚的分布範圍可能是常態分布或均一分布或單偏分布,例如:CNS的管路的外徑及管厚分布較接近常態分佈,ASTM的管路的外徑及管厚分布較接近均一分布,DIN的管路的外徑及管厚較接近單偏分布;因此,記憶單元811儲存對應不同管路名稱的管路外徑值機率函數可相同或不同,處理單元812接收外徑量測數據、將比對外徑量測數據與管路名稱的有效外徑範圍產生備選管路,將外徑量測數據與備選管路的平均值及標準差輸入外徑值機率函數產生備選管路的符合機率,按備選管路的符合機率由高至低產生符合外徑量測數據的管路名稱的運算流程如同第一實施例以單一參考管路外徑值運算管路名稱符合機率所述。
處理單元812可產生全部符合外徑量測數據的管路名稱,經由通訊介面813輸出給使用者運用,若符合外徑量測數據的管路名稱及其管路規格是直接供終端裝置82運用,使用者可在處理單元812預設機率閾值(例如:0.01、0.05、0.1),處理單元812將外徑量測數據輸入各管路外徑值機率函數獲得各管路名稱的符合機率,排除管路名稱的符合機率小於機率閾值之管路名稱,再排序管路名稱符合機率大於機率閾值的管路名稱;或處理單元812僅選取管路名稱符合機率排序第一的管路名稱及其管路規格,通訊介面813經由網路800輸出管路名稱及其管路規格至終端裝置82,供全時量測與即時監控之用。
特定地區或特定產業會使用特定規範及特定材質的管路規格,以地區而言:在美國較常使用ASTM管路,在台灣較常使用CNS管路;以產業而言:半導體產業較常使用ASTM管路及塑料管路,食品業較常使用無縫鋼管等。為了進一步提升判斷管路規格及監測管路的效率及準確度,記憶單元811可儲存管路使用資料與權重因子轉換表,而各管路的外徑值機率函數包含權重因子,當使用者經由通訊介面813輸入管路使用資料(使用地區、使用產業等),處理單元812依據管路使用資料與權重因子轉換表查找對應管路使用資料的權重因子,調整管路之外徑值機率函數之權重因子,再將管路之外徑測量數據輸入經調整之管路之外徑值機率函數產生管路名稱符合機率及符合外徑量測數據的管路名稱、其排序及規格,通訊介面813傳輸符合外徑量測數據的管路名稱、其排序及規格至有需求的終端裝置82。
如上所述,於本發明之管路判斷裝置,依據各種管路名稱的基準外徑及外徑公差建置管路的外徑值機率函數及計算參考外徑值對各管路的外徑值機率函數的符合機率,記憶單元儲存各種管路名稱及對應參考外徑值的管路名稱排序,處理單元比對外徑量測數據及參考外徑值即可產生符合外徑量測數據的管路名稱,通訊介面輸出符合外徑量測數據的管路名稱,有效解決使用者查找、測試管路規格的問題;本發明之管路判斷裝置進一步組合外徑量測、超音波探頭、電阻量測、硬度量測等可自動量測管路外徑、管路厚度、管材性質及管路流量的元件,使用者不需量測及輸入外徑及管厚等參數,處理單元可產生更準確的管路名稱及其規格與管路流量且自我判斷裝置及管路異常狀態,大幅降低設定操作外扣式裝置的技術門檻,提高量測流量的效率及準確度;結合本發明之管路判斷裝置及終端裝置可建置物聯網架構的管路監控系統,有效避免量測及輸入錯誤及監測空窗,達成全時量測與即時監控之目標。
上述實施例僅例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項專業之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾、組合與改變。因此,舉凡所屬技術領域中具有此項專業知識者,在未脫離本發明所揭示之精神與技術原理下所完成之一切等效修飾、組合或改變,仍應由本發明之申請專利範圍所涵蓋。
1,2,3,4,5,81:管路判斷裝置 6,7,7’,7”:流量計 8:管路監測系統 11,51,61,71,811:記憶單元 12,52,62,72,812:處理單元 13,53,63,73,813:通訊介面 20,30,40:殼體 21,31,41:扣具 22,32,42,74:外徑量測單元 54,75’:超音波探頭 55,67,77:超音波耦合層 60,70:夾具 64,75,75”:第一超音波探頭 65,76,76”:第二超音波探頭 66:第三超音波探頭 82:終端裝置 200,200’, 300,300’,400,400’ ,500,600,700:管路 211,311,411:承載台 212,312,412:固定座 213,313,413:U型螺絲 221,321,421:夾件 221a:軸部 221b:倒V型側壁 221c:感應塊 222:擋塊 223:彈簧 224:線性位移感測器 322:角度位移感測器 411a:凸緣 421a:L型底座 421b:支臂 421c:調整螺絲 421d:光學刻度尺 422:光學位移感測器 500a,500b,700b:管路內表面 501:管壁 541,641:壓電材料層 542,642:聲阻匹配層 600a:管路第一內表面 600b:管路第二內表面 800:網路 C:圓心 L:距離 O:頂點 P:斜向切點 Q:垂直切點 r:半徑 R1, R2, R3, R4, R5:反射訊號 Rmin:超音波反射訊號最小閾值 Rmax:超音波反射訊號最大閾值 Rmin1:第一時段反射訊號最小閾值 Rmin2:第二時段反射訊號最小閾值 S:感測訊號 S1:第一感測訊號 T0,T1,T2,T3,T4,T5:時間點 Tth:飛行時間閾值 Θ, Φ:夾角
圖1為本發明之管路判斷裝置第一實施例之方塊圖; 圖2A為本發明之管路判斷裝置第二實施例之立體圖,圖2B為圖2A所示管路判斷裝置的I-I’段剖視圖; 圖3A為本發明之管路判斷裝置第三實施例之立體圖,圖3B為圖3A所示管路判斷裝置沿管路徑向剖視圖; 圖4A為本發明之管路判斷裝置第四實施例之立體圖,圖4B為圖4A所示管路判斷裝置的I-I’剖視圖; 圖5A為本發明之管路判斷裝置第五實施例沿管路軸向剖視圖,圖5B為圖5A所示管路判斷裝置之量測管厚訊號圖; 圖6A為本發明之時差式流量計之一實施例之剖視圖,圖6B為圖6A所示流量計之第一超音波探頭之剖視示意圖,圖6C為6B所示流量計之第一超音波探頭之發射及接收訊號圖; 圖7A為本發明之時差式流量計之另一實施例之剖視圖,圖7B為本發明之都卜勒式流量計之一實施例之剖視圖,圖7C為本發明之都卜勒式流量計之另一實施例之剖視圖;以及 圖8為本發明之管路監控系統之方塊圖。
1:管路判斷裝置
11:記憶單元
12:處理單元
13:通訊介面

Claims (9)

  1. 一種管路判斷裝置,包含:記憶單元,儲存複數管路名稱、複數參考管路外徑值及對應該等參考管路外徑值之該等管路名稱排序,其中該等管路名稱排序係將該等參考外徑值分別輸入依據該等管路名稱之基準外徑及外徑公差所建立之外徑值機率函數所得之符合機率,對應該參考管路外徑值按照該等符合機率由高至低排序該等管路名稱而成;外徑量測單元,具有感測器及可夾持管路之外表面之夾件,當該夾件夾持該管路之外表面時,該感測器可量測該管路之曲度或外徑而產生外徑量測數據;處理單元,連接該記憶單元及該外徑量測單元,接收該管路之該外徑量測數據,比對該外徑量測數據與該等參考管路外徑值,選出對應與該外徑量測數據相同之該參考外徑值之該等管路名稱排序,依據對應與該外徑量測數據相同之該參考管路外徑值之該等管路名稱排序產生至少一符合該外徑量測數據之管路名稱;以及通訊介面,連接該處理單元,輸出符合該外徑量測數據之該管路名稱。
  2. 如請求項1所述管路判斷裝置,其中該外徑值機率函數選自常態分佈函數、截斷常態分佈函數、均勻分佈函數、截斷偏態分佈函數、卜瓦松分佈函數、偏態分佈函數、三角分佈函數及U形分佈函數之一種或數種或其組合。
  3. 如請求項1所述管路判斷裝置,其中該處理單元擷取對應與該外徑量測數據相同之該參考管路外徑值之該等管路名稱排序第一之該管路名稱產生符合該外徑量測數據之該管路名稱。
  4. 如請求項1所述管路判斷裝置,若該處理單元比對該外徑量測數據與該等參考管路外徑值之結果皆不相同,則該處理單元產生新增管路名稱之通知訊息;該通訊介面輸出該通知訊息,以提示使用者新增管路名稱。
  5. 如請求項1所述管路判斷裝置,進一步包含:殼體及扣具,其中該記憶單元、該處理單元及該通訊介面設置於該殼體,該扣具可將該殼體可拆卸地固定於該管路之外表面。
  6. 如請求項1所述管路判斷裝置,其中該感測器係角度位移感測器或線性位移感測器。
  7. 如請求項1所述管路判斷裝置,進一步包含:超音波探頭,連接該處理單元;其中該記憶單元儲存該等管路名稱之管壁厚度及管厚公差,當該超音波探頭裝設於該管路之外表面時,該超音波探頭可沿該管路之徑向發射感測訊號且接收該管路之管壁反射訊號;該處理單元依據該管壁反射訊號產生該管路之管厚量測數據,自符合該外徑量測數據之該管路名稱中選出該管壁厚度符合該管厚量測數據之該管路名稱;該通訊介面傳輸符合該管厚量測數據之該管路名稱。
  8. 如請求項1所述管路判斷裝置,進一步包含:電阻量測元件,連接該處理單元,具有二電極,其中該記憶單元儲存該等管路名稱之管材電阻值;當該二電極裝設於該管路之外表面時,該電阻量測元件可產生該管路之電阻量測數據;該處理單元自符合該外徑量測數據之該管路名稱中選出該管材電阻值符合該電阻量測數據之該管路名稱;該通訊介面傳輸符合該電阻量測數據之該管路名稱。
  9. 如請求項1所述管路判斷裝置,進一步包含:硬度量測元件,連接該處理單元,具有可伸縮之測頭,其中該記憶單元儲存該等管路名稱之管材硬度值;當該測頭壓合該管路之外表面時,該硬度量測元件可產生該管路 之硬度量測數據;該處理單元自符合該外徑量測數據之該管路名稱中選出該管材硬度值符合該硬度量測數據之該管路名稱;該通訊介面傳輸符合該硬度量測數據之該管路名稱。
TW111100770A 2022-01-07 2022-01-07 管路判斷裝置 TWI793965B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW111100770A TWI793965B (zh) 2022-01-07 2022-01-07 管路判斷裝置
CN202211003939.4A CN116448036A (zh) 2022-01-07 2022-08-18 管路判断装置
US18/055,008 US20230220958A1 (en) 2022-01-07 2022-11-14 Devices of Determining Pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111100770A TWI793965B (zh) 2022-01-07 2022-01-07 管路判斷裝置

Publications (2)

Publication Number Publication Date
TWI793965B true TWI793965B (zh) 2023-02-21
TW202328631A TW202328631A (zh) 2023-07-16

Family

ID=86689427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111100770A TWI793965B (zh) 2022-01-07 2022-01-07 管路判斷裝置

Country Status (3)

Country Link
US (1) US20230220958A1 (zh)
CN (1) CN116448036A (zh)
TW (1) TWI793965B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116734944B (zh) * 2023-08-15 2023-11-14 福建省计量科学研究院(福建省眼镜质量检验站) 一种探头固定装置、探头组件及管道外径测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521626A (zh) * 2020-05-13 2020-08-11 南京华宝工程检测有限公司 一种压力管道焊接质量的x射线检测方法
CN113052220A (zh) * 2021-03-16 2021-06-29 洛阳城市建设勘察设计院有限公司郑州工程分公司 直埋供热管道研究用密封性强度检测系统、终端、介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521626A (zh) * 2020-05-13 2020-08-11 南京华宝工程检测有限公司 一种压力管道焊接质量的x射线检测方法
CN113052220A (zh) * 2021-03-16 2021-06-29 洛阳城市建设勘察设计院有限公司郑州工程分公司 直埋供热管道研究用密封性强度检测系统、终端、介质

Also Published As

Publication number Publication date
US20230220958A1 (en) 2023-07-13
TW202328631A (zh) 2023-07-16
CN116448036A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
RU2590318C2 (ru) Проверка температуры ультразвуковых расходомеров
CN102047081B (zh) 具有双重流量测量的声学流量计的系统和方法
RU2546855C1 (ru) Определение времени задержки для ультразвуковых расходомеров
EP2687828A1 (en) Ultrasonic wedge and method for determining the speed of sound in same
CN103776516B (zh) 具有上游压力换能器的超声流量计量系统
US9279707B2 (en) Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths
CN104040299B (zh) 流量计的管线内验证方法
US20160313160A1 (en) Apparatus and method for determining concentrations of components of a gas mixture
US9140594B2 (en) Ultrasonic, flow measuring device
TWI793965B (zh) 管路判斷裝置
AU2014254365B2 (en) Verification of a meter sensor for a vibratory meter
RU2612727C2 (ru) Устройство для согласования ультразвуковых сигналов
TWI828519B (zh) 管路判斷裝置
CN202158878U (zh) 用于燃油终端结算的超声波流量测量的装置
CN110530439A (zh) 一种多声路超声测流管段体
TWI782450B (zh) 管路液體之監測裝置
CN110131591A (zh) 管道泄漏的定位方法、装置和设备
Ullmann Gas quality measurement of gas mixtures containing hydrogen with ultrasonic flow meters-experiences, challenges and perspectives
CN100593761C (zh) 超声计量系统以及用于检测波形中的峰值选择误差的方法
GB2345974A (en) Testing fluid meters
Beeson Ultrasonic meters improve NorAms custody transfer
CN115900896A (zh) 一种时差法超声波流量计的参数标定及验证试验方法
Lunkin Diagnosis of sensors on the controlled plants
Andrea et al. Review of the technologies used in fiscal oil measurements in Brazil