TWI793609B - Spectrum integration calibration method and multi-spectrum spectrometer - Google Patents

Spectrum integration calibration method and multi-spectrum spectrometer Download PDF

Info

Publication number
TWI793609B
TWI793609B TW110118175A TW110118175A TWI793609B TW I793609 B TWI793609 B TW I793609B TW 110118175 A TW110118175 A TW 110118175A TW 110118175 A TW110118175 A TW 110118175A TW I793609 B TWI793609 B TW I793609B
Authority
TW
Taiwan
Prior art keywords
sub
spectrum
wavelength
spectrometer
spectral
Prior art date
Application number
TW110118175A
Other languages
Chinese (zh)
Other versions
TW202246739A (en
Inventor
安振基
張原賓
劉曜達
Original Assignee
盛翊興有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛翊興有限公司 filed Critical 盛翊興有限公司
Priority to TW110118175A priority Critical patent/TWI793609B/en
Publication of TW202246739A publication Critical patent/TW202246739A/en
Application granted granted Critical
Publication of TWI793609B publication Critical patent/TWI793609B/en

Links

Images

Abstract

A spectrum integration calibration method includes: providing a multi-spectrum spectrometer including a plurality of sub-spectrometers configured to respectively measure a plurality of sub-spectra in different wavelength ranges; measuring a spectrum of at least one wavelength calibrator by the multi-spectrum spectrometer and respectively calibrating detecting wavelengths of the sub-spectrometers by a plurality of known feature wavelengths of the spectrum of the at least one wavelength calibrator; and measuring a spectrum of at least one standard reflector by the multi-spectrum spectrometer and obtaining a spectral intensity equivalent of each of the sub-spectrometer by a known reflectance of the at least one standard reflector. A multi-spectrum spectrometer is also provided.

Description

光譜整合校正方法及多光譜光譜儀Spectral integration calibration method and multi-spectral spectrometer

本發明是有關於一種光學校正方法與光譜儀,且特別是有關於一種光譜整合校正方法及多光譜光譜儀。The invention relates to an optical correction method and a spectrometer, and in particular to a spectrum integration correction method and a multispectral spectrometer.

對於採用單一光偵測器的光譜儀而言,受限於光偵測器的材料,其波長感測範圍較為受限,無法廣泛地感測各種不同的波長。因此,可採用具有多個不同的光偵測器的光譜儀來分別感測不同的波長範圍。For a spectrometer using a single photodetector, limited by the material of the photodetector, its wavelength sensing range is relatively limited, and it cannot widely sense various wavelengths. Therefore, a spectrometer with multiple different photodetectors can be used to sense different wavelength ranges respectively.

採用多個不同的光偵測器來分別感測不同的波長範圍可以得到多個不同波長範圍的光譜,然而這些光譜卻難以整合成一個光譜。首先,不同的光偵測器的光譜響應不同,因此若是硬把兩個光譜合併起來,會有無法定量整合的問題。此外,當採用切換光路控制反射鏡作不同的光偵測器的偵測切換時,無法即時(real-time)監控待測物而達到光譜輸入訊號的即時分配。Using a plurality of different photodetectors to sense different wavelength ranges respectively can obtain a plurality of spectra of different wavelength ranges, but it is difficult to integrate these spectra into one spectrum. First of all, different photodetectors have different spectral responses, so if the two spectra are combined forcibly, there will be problems that cannot be quantitatively integrated. In addition, when the optical path is switched to control the reflector to switch between different photodetectors, it is impossible to monitor the object under test in real-time to achieve real-time distribution of spectral input signals.

本發明提供一種光譜整合校正方法,其可將光譜儀調校成可將多個子光譜良好地整合。The invention provides a spectrum integration correction method, which can adjust the spectrometer to integrate multiple sub-spectrums well.

本發明提供一種多光譜光譜儀,其可將多個子光譜良好地整合成一個光譜。The invention provides a multi-spectrum spectrometer, which can well integrate multiple sub-spectrums into one spectrum.

本發明的一實施例提出一種光譜整合校正方法,包括:提供一多光譜光譜儀,多光譜光譜儀包括多個子光譜儀,用以分別量測多個不同波長範圍的子光譜;利用多光譜光譜儀量測至少一波長校正件的光譜,並利用至少一波長校正件的光譜的多個已知特徵波長,分別校正這些子光譜儀的偵測波長;以及利用多光譜光譜儀量測至少一標準反射件的光譜,並利用至少一標準反射件的已知反射率獲得這些子光譜儀各別的光譜強度當量。An embodiment of the present invention proposes a spectral integration correction method, including: providing a multi-spectral spectrometer, the multi-spectral spectrometer includes a plurality of sub-spectrometers for respectively measuring a plurality of sub-spectra in different wavelength ranges; using the multi-spectral spectrometer to measure at least A spectrum of a wavelength calibration component, and using a plurality of known characteristic wavelengths of the spectrum of at least one wavelength calibration component to calibrate the detection wavelengths of these sub-spectrometers respectively; and using a multispectral spectrometer to measure the spectrum of at least one standard reflector, and The respective spectral intensity equivalents of the sub-spectrometers are obtained using the known reflectance of at least one standard reflector.

本發明的一實施例提出一種多光譜光譜儀,用以量測一待測物的光譜。多光譜光譜儀包括一光源、一分光元件、多個子光譜儀及一控制器。光源用以提供一照明光束,以照射待測物,其中待測物將照明光束反射成一訊號光。分光元件配置於訊號光的路徑上,且將訊號光分成多個子光束。這些子光譜儀分別配置於這些子光束的傳遞路徑上,以測得多個波長範圍不同的子光譜。控制器電性連接至這些子光譜儀,用以將這些子光譜轉換成相同的光譜強度當量後整合成一個光譜。An embodiment of the present invention provides a multispectral spectrometer for measuring the spectrum of an object to be measured. The multi-spectrum spectrometer includes a light source, a light splitting element, multiple sub-spectrometers and a controller. The light source is used to provide an illumination beam to irradiate the object under test, wherein the object under test reflects the illumination beam into a signal light. The light splitting element is arranged on the path of the signal light, and divides the signal light into multiple sub-beams. These sub-spectrometers are respectively arranged on the transmission paths of the sub-beams to measure multiple sub-spectra with different wavelength ranges. The controller is electrically connected to these sub-spectrometers, and is used to convert these sub-spectra into the same spectral intensity equivalent and then integrate them into a spectrum.

在本發明的實施例的光譜整合校正方法中,由於利用波長校正件和標準反射件來校正多個子光譜儀的波長及其所獲得的多個子光譜的光譜強度當量,因此可將多光譜光譜儀調校成可將多個子光譜良好地整合。在本發明的實施例的多光譜光譜儀中,由於控制器將這些子光譜轉換成相同的光譜強度當量後整合成一個光譜,因此可將多個子光譜良好地整合成一個光譜。In the spectral integration correction method of the embodiment of the present invention, since the wavelength of the multiple sub-spectrometers and the spectral intensity equivalents of the multiple sub-spectrums obtained by using the wavelength calibration piece and the standard reflection piece are corrected, the multi-spectral spectrometer can be calibrated into a good integration of multiple sub-spectra. In the multispectral spectrometer of the embodiment of the present invention, since the controller converts these sub-spectra into the same spectral intensity equivalent and then integrates them into one spectrum, multiple sub-spectra can be well integrated into one spectrum.

圖1為本發明的一實施例的多光譜光譜儀的剖面示意圖。請參照圖1,本實施例的多光譜光譜儀100用以量測一待測物50的光譜。多光譜光譜儀100包括至少一光源110(圖1中是以兩個光源110為例,但本發明不以此為限)、一分光元件121、多個子光譜儀130及一控制器140。光源110用以提供一照明光束112,以照射待測物50,而待測物50將照明光束112反射成一訊號光52。在本實施例中,光源110例如為鎢絲燈、鹵素燈、其他黑體輻射源或其他適當的具有連續光譜的光源。FIG. 1 is a schematic cross-sectional view of a multispectral spectrometer according to an embodiment of the present invention. Please refer to FIG. 1 , the multispectral spectrometer 100 of this embodiment is used to measure the spectrum of an object 50 to be tested. The multispectral spectrometer 100 includes at least one light source 110 (two light sources 110 are taken as an example in FIG. 1 , but the present invention is not limited thereto), a spectroscopic element 121 , multiple sub-spectrometers 130 and a controller 140 . The light source 110 is used for providing an illumination beam 112 to illuminate the object under test 50 , and the object under test 50 reflects the illumination beam 112 into a signal light 52 . In this embodiment, the light source 110 is, for example, a tungsten filament lamp, a halogen lamp, other black body radiation sources or other suitable light sources with continuous spectrum.

分光元件121配置於訊號光52的路徑上,且將訊號光52分成多個子光束53。在本實施例中,多光譜光譜儀100更包括一Y型光纖120,而分光元件121為Y型光纖120的入光端。Y型光纖120包括至少二條子光纖122,這些子光纖122在一端(即在圖1中分光元件121所在位置的一端)靠在一起,而在另一端是分開的。來自待測物50的訊號光52照射於這些子光纖122的一端,而分別進入這些子光纖122中。The light splitting element 121 is disposed on the path of the signal light 52 and divides the signal light 52 into a plurality of sub-beams 53 . In this embodiment, the multispectral spectrometer 100 further includes a Y-shaped fiber 120 , and the light splitting element 121 is the light-incident end of the Y-shaped fiber 120 . The Y-shaped optical fiber 120 includes at least two sub-fibers 122, and these sub-fibers 122 are close together at one end (ie, the end where the optical splitting element 121 is located in FIG. 1 ) and separated at the other end. The signal light 52 from the object under test 50 irradiates one end of the sub-fibers 122 and enters into the sub-fibers 122 respectively.

這些子光譜儀130分別配置於這些子光束53的傳遞路徑上,以測得多個波長範圍不同的子光譜。在本實施例中,這些子光纖122分別連接至不同的這些子光譜儀130,而使得這些子光譜儀130能夠分別量測到這些子光束53。The sub-spectrometers 130 are respectively arranged on the transmission paths of the sub-beams 53 to measure a plurality of sub-spectra with different wavelength ranges. In this embodiment, the sub-fibers 122 are respectively connected to different sub-spectrometers 130 , so that the sub-spectrometers 130 can respectively measure the sub-beams 53 .

在另一實施例中,分光元件121也可以是一分光鏡或一分光稜鏡,以將訊號光52分成兩道子光束53,而這兩道子光束53再分別經由兩個光纖傳遞至兩個子光譜儀130。In another embodiment, the light splitting element 121 can also be a beam splitter or a beam splitter to split the signal light 52 into two sub-beams 53, and the two sub-beams 53 are transmitted to the two sub-beams through two optical fibers respectively. spectrometer 130.

在本實施例中,控制器140電性連接至這些子光譜儀130,用以將這些子光譜轉換成相同的光譜強度當量後整合成一個光譜。在一實施例中,控制器140例如為中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器140的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制器140來執行這些程式碼。或者,在一實施例中,控制器140的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器140的各功能。In this embodiment, the controller 140 is electrically connected to these sub-spectrometers 130 for converting these sub-spectra into the same spectral intensity equivalent and then integrating them into a spectrum. In one embodiment, the controller 140 is, for example, a central processing unit (central processing unit, CPU), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), a programmable controller, a programmable The present invention is not limited to a logic device (programmable logic device, PLD) or other similar devices or a combination of these devices. In addition, in one embodiment, each function of the controller 140 may be implemented as a plurality of program codes. These program codes are stored in a memory, and are executed by the controller 140 . Alternatively, in one embodiment, each function of the controller 140 may be implemented as one or more circuits. The present invention does not limit the implementation of the functions of the controller 140 by means of software or hardware.

在本實施例的多光譜光譜儀100中,由於控制器140將這些子光譜轉換成相同的光譜強度當量後整合成一個光譜,因此可將多個子光譜良好地整合成一個光譜。如此一來,有助於讓使用者便於從單一一個波長範圍較廣的光譜判讀待測物50的特性。In the multispectral spectrometer 100 of this embodiment, since the controller 140 converts these sub-spectra into the same spectral intensity equivalent and then integrates them into one spectrum, multiple sub-spectra can be well integrated into one spectrum. In this way, it is helpful for the user to easily interpret the characteristics of the object under test 50 from a single spectrum with a wide wavelength range.

在本實施例中,多光譜光譜儀100更包括一半積分球150,用以覆蓋待測物50,其中光源110與分光元件121設置於半積分球150的球殼上。此外,在本實施例中,多光譜光譜儀更包括一準直透鏡160,設置於半積分球150的球殼上,其中準直透鏡160用以將訊號光52準直地傳遞至分光元件121,且盡量地將訊號光束52平均地分配至不同的子光纖122。In this embodiment, the multispectral spectrometer 100 further includes a half integrating sphere 150 for covering the object 50 to be tested, wherein the light source 110 and the light splitting element 121 are disposed on the spherical shell of the half integrating sphere 150 . In addition, in this embodiment, the multi-spectral spectrometer further includes a collimating lens 160, which is arranged on the spherical shell of the half integrating sphere 150, wherein the collimating lens 160 is used to transmit the signal light 52 to the spectroscopic element 121 in a collimated manner, And try to evenly distribute the signal beams 52 to different sub-fibers 122 .

以下內容將介紹如何將多光譜光譜儀100校正成可將多個子光譜良好地整合成一個光譜的光譜整合校正方法。The following content will introduce how to calibrate the multispectral spectrometer 100 into a spectrum integration calibration method that can well integrate multiple sub-spectra into one spectrum.

圖2為本發明的一實施例的光譜整合校正方法的流程圖。請參照圖1與圖2,本實施例的光譜整合校正方法可用以校正圖1的多光譜光譜儀100及其各種可能的變化實施例的多光譜光譜儀。光譜整合校正方法包括下列步驟。首先,執行步驟S110,提供多光譜光譜儀100,多光譜光譜儀100包括多個子光譜儀130,用以分別量測多個不同波長範圍的子光譜。接著,執行步驟S120,利用多光譜光譜儀100量測至少一波長校正件60的光譜,並利用至少一波長校正件60的光譜的多個已知特徵波長,分別校正這些子光譜儀130的偵測波長。波長校正件60可放置於待測物50的位置,以取代待測物50,並供這些子光譜儀量測波長校正件60的光譜。FIG. 2 is a flowchart of a spectrum integration correction method according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 2 , the spectral integration calibration method of this embodiment can be used to calibrate the multispectral spectrometer 100 in FIG. 1 and the multispectral spectrometer in various possible variant embodiments. The spectral integration correction method includes the following steps. Firstly, step S110 is executed to provide a multi-spectral spectrometer 100 , which includes a plurality of sub-spectrometers 130 for respectively measuring a plurality of sub-spectra in different wavelength ranges. Next, step S120 is executed, using the multi-spectral spectrometer 100 to measure the spectrum of at least one wavelength calibrator 60, and using a plurality of known characteristic wavelengths of the spectrum of the at least one wavelength calibrator 60 to calibrate the detection wavelengths of these sub-spectrometers 130 respectively . The wavelength calibrator 60 can be placed at the position of the object under test 50 to replace the object under test 50 , and is used for these sub-spectrometers to measure the spectrum of the wavelength calibrator 60 .

圖3是圖1的波長校正件60的吸收光譜圖。請參照圖1至圖3,波長校正件60是一個標準件,其特徵波長為已知,而特徵波長例如為吸收光譜的波峰的波長,或者為反射光譜的波谷的波長。這些子光譜儀130所直接測得的例如是反射光譜,但反射光譜可藉由控制器140簡單地轉換成吸收光譜,例如是利用一歸一化的數值或較高的數值減去各波長的反射光譜強度。而特徵波長可以從吸收光譜來看,也可以從反射光譜來看。當子光譜儀130的影像感測器(例如是一維或二維感測陣列)的某一像素感測到特徵波長的波谷(當採用反射光譜來校正時)或波峰(當採用吸收光譜來校正時),則可將此像素位置定義為光譜中特徵波長的位置,因此便能夠校正光譜的橫軸(即波長)。FIG. 3 is an absorption spectrum diagram of the wavelength correction member 60 of FIG. 1 . Referring to FIGS. 1 to 3 , the wavelength calibration component 60 is a standard component whose characteristic wavelength is known, and the characteristic wavelength is, for example, the wavelength of the peak of the absorption spectrum, or the wavelength of the trough of the reflection spectrum. What these sub-spectrometers 130 directly measure is, for example, the reflectance spectrum, but the reflectance spectrum can be simply converted into an absorption spectrum by the controller 140, for example, using a normalized value or a higher value to subtract the reflectance of each wavelength spectral intensity. The characteristic wavelength can be viewed from the absorption spectrum or the reflection spectrum. When a certain pixel of the image sensor (such as a one-dimensional or two-dimensional sensing array) of the sub-spectrometer 130 senses the trough (when using the reflection spectrum to correct) or the peak (when using the absorption spectrum to correct) of the characteristic wavelength ), then this pixel position can be defined as the position of the characteristic wavelength in the spectrum, so the horizontal axis of the spectrum (ie wavelength) can be corrected.

在本實施例中,校正這些子光譜儀130的偵測波長更包括根據這些已知特徵波長作數值內插法計算,並利用計算所得的數值來校正這些子光譜儀130的偵測波長,以使這些子光譜儀130的波長刻度大小一致。如此一來,不同的子光譜儀130的橫軸的刻度(即波長的刻度)便能夠大小一致,以利於將來將多個子光譜整合成一個單一的光譜,而從短波長至長波長均有一致的波長刻度。In this embodiment, correcting the detection wavelengths of these sub-spectrometers 130 further includes performing numerical interpolation calculations based on these known characteristic wavelengths, and using the calculated values to correct the detection wavelengths of these sub-spectrometers 130, so that these The wavelength scales of the sub-spectrometers 130 are consistent in size. In this way, the scales of the horizontal axes of different sub-spectrometers 130 (that is, the scale of wavelength) can be of the same size, so as to facilitate the integration of multiple sub-spectrums into a single spectrum in the future, and there is a consistent range from short wavelength to long wavelength. wavelength scale.

在一實施例中,可採用多個不同的波長校正件60來校正不同波段的波長。舉例而言,上述至少一波長校正件60包括一第一波長校正件及一第二波長校正件,該第一波長校正件的最大特徵波長大於該第二波長校正件的最大特徵波長。其中,第一波長校正件可用來校正較長波長的波段中的波長,而第二波長校正件可以用來校正較短波長的波段中的波長。第一波長校正件的材料可包括油狀有機物,而第二波長校正件的材料可包括稀土金屬,但本發明不限制第一波長校正件與第二波長校正件的材料,只要是在多光譜光譜儀100的偵測範圍內具有特徵波長的材料所形成的標準件皆可用來作為波長校正件60。波長校正件60的校正標準可追溯至所屬領域中具有通常知識者所熟知的NIST標準,其中NIST的全名為「National Institute of Standards and Technology」。In an embodiment, a plurality of different wavelength calibration elements 60 can be used to calibrate wavelengths of different bands. For example, the above-mentioned at least one wavelength calibrating element 60 includes a first wavelength calibrating element and a second wavelength calibrating element, the maximum characteristic wavelength of the first wavelength calibrating element is greater than the maximum characteristic wavelength of the second wavelength calibrating element. Wherein, the first wavelength correction element can be used to correct the wavelength in the longer wavelength band, and the second wavelength correction element can be used to correct the wavelength in the shorter wavelength band. The material of the first wavelength calibrator may include oily organic matter, and the material of the second wavelength calibrator may include rare earth metals, but the present invention does not limit the materials of the first wavelength calibrator and the second wavelength calibrator, as long as they are multispectral Standard parts formed of materials with characteristic wavelengths within the detection range of the spectrometer 100 can be used as the wavelength calibration part 60 . The calibration standard of the wavelength calibrator 60 can be traced back to the NIST standard known to those skilled in the art, where the full name of NIST is "National Institute of Standards and Technology".

然後,執行步驟S130,利用多光譜光譜儀100量測至少一標準反射件70的光譜,並利用至少一標準反射件70的已知反射率獲得這些子光譜儀130各別的光譜強度當量。圖4A與圖4B分別為圖1的多光譜光譜儀的兩個子光譜儀所測得的本機反射板的反射子光譜。從圖4A與圖4B可知,兩個子光譜除了波長範圍不一樣之外,縱軸的光譜強度的刻度大小也不一樣。此時,若把兩個子光譜硬是拼湊起來,則無法形成一個從900奈米至2400奈米的連續光譜,而是會形成中間有段差且在約1600奈米以後光譜強度因為相對變小很多而幾乎看不見的奇怪且不正常的光譜形狀。此時,可讓這些子光譜儀130量測標準反射件70,而標準反射件70在各波長的反射率均為已知,因此可將兩個子光譜的光譜強度都調到相同的當量。舉例而言,可將兩個子光譜的至少其中之一的光譜強度乘以適當的倍數,例如兩個子光譜中對應到標準反射件70的99%的反射率的光譜強度應該是要一致的,因此將兩個光譜強度的至少其中之一乘以一適當的倍數,而將兩個光譜強度調成一致,也就是調成相同的光譜強度當量。在一實施例中,標準反射件70的材料例如為金屬,但本發明不以此為限。Then, step S130 is executed, using the multi-spectral spectrometer 100 to measure the spectrum of at least one standard reflector 70 , and using the known reflectance of the at least one standard reflector 70 to obtain respective spectral intensity equivalents of the sub-spectrometers 130 . FIG. 4A and FIG. 4B are reflection sub-spectra of the local reflector measured by the two sub-spectrometers of the multi-spectral spectrometer in FIG. 1 . It can be seen from FIG. 4A and FIG. 4B that, in addition to the wavelength ranges of the two sub-spectrums being different, the scales of the spectral intensity on the vertical axis are also different. At this time, if the two sub-spectra are put together, a continuous spectrum from 900 nanometers to 2400 nanometers will not be formed, but there will be a step difference in the middle and the spectral intensity will be much smaller after about 1600 nanometers. And almost invisible strange and abnormal spectral shape. At this time, these sub-spectrometers 130 can be used to measure the standard reflector 70, and the reflectance of the standard reflector 70 at each wavelength is known, so the spectral intensities of the two sub-spectra can be adjusted to the same equivalent. For example, the spectral intensity of at least one of the two sub-spectra can be multiplied by an appropriate multiple, for example, the spectral intensities corresponding to the 99% reflectance of the standard reflector 70 in the two sub-spectra should be consistent , so at least one of the two spectral intensities is multiplied by an appropriate multiple, and the two spectral intensities are adjusted to be consistent, that is, to be adjusted to the same spectral intensity equivalent. In one embodiment, the material of the standard reflector 70 is, for example, metal, but the invention is not limited thereto.

圖5A、圖5B、圖5C及圖5D分別為圖2的實施例中的第一標準反射件、第二標準反射件、第三標準反射件及第四標準反射件的反射光譜。請參照圖1、圖2及圖5A至圖5D,上述至少一標準反射件70包括一第一標準反射件及一第二標準反射件,第一標準反射件的反射率大於第二標準反射件的反射率。光譜整合校正方法更包括根據第一標準反射件的已知反射率推算反射率為百分之百時所對應的光譜強度,且根據第二標準反射件的已知反射率推算反射率為零時所對應的光譜強度。具體而言,在圖5A的第一標準反射件的反射光譜中,有一高原區的反射率約為0.99,因此當子光譜儀130量測到具有此高原區的光譜時,可把高原區的光譜強度視為反射率為0.99,並線性地推算出反射率為1時所對應的光譜強度,例如將高原區的光譜強度除以0.99再乘以1,以得到反射率為1時所對應的光譜強度。5A , 5B , 5C and 5D are reflection spectra of the first standard reflector, the second standard reflector, the third standard reflector and the fourth standard reflector in the embodiment of FIG. 2 . Please refer to Fig. 1, Fig. 2 and Fig. 5A to Fig. 5D, above-mentioned at least one standard reflector 70 comprises a first standard reflector and a second standard reflector, the reflectivity of the first standard reflector is greater than the second standard reflector reflectivity. The spectral integration correction method further includes calculating the spectral intensity corresponding to the reflectance of 100% based on the known reflectance of the first standard reflector, and calculating the corresponding spectral intensity when the reflectance is zero based on the known reflectance of the second standard reflector. spectral intensity. Specifically, in the reflectance spectrum of the first standard reflector in Fig. 5A, there is a plateau region whose reflectivity is about 0.99, so when the sub-spectrometer 130 measures the spectrum with this plateau region, the spectrum of the plateau region can be Intensity is regarded as a reflectance of 0.99, and the corresponding spectral intensity is calculated linearly when the reflectance is 1. For example, the spectral intensity of the plateau area is divided by 0.99 and then multiplied by 1 to obtain the corresponding spectrum when the reflectance is 1. strength.

另一方面,第二標準反射件的反射率約為0.02,因此子光譜儀130中量測到的第二標準反射件的反射光譜的強度可視為0.02,然後再線性地推算出反射率為0時所對應的光譜強度,如此便可校正出子光譜儀130的絕對歸零基線的強度位置,且修正了暗雜訊歸零背景值。On the other hand, the reflectance of the second standard reflector is about 0.02, so the intensity of the reflection spectrum of the second standard reflector measured in the sub-spectrometer 130 can be regarded as 0.02, and then linearly deduced when the reflectance is 0 Corresponding spectral intensity, in this way, the intensity position of the absolute zero baseline of the sub-spectrometer 130 can be corrected, and the dark noise zero background value can be corrected.

在本實施例中,上述至少一標準反射件70可更包括一第三標準反射件,第三標準反射件的反射率介於第一標準反射件的反射率與第二標準反射件的反射率之間,且光譜整合校正方法更包括根據第三標準反射件的已知反射率推算反射率為一中間值時所對應的光譜強度,其中此中間值介於0與百分之百之間。舉例而言,第三標準反射件的反射率隨著波長的變化約從0.72變化到0.86,因此可把子光譜儀130所測得的第三標準反射件的光譜訊號強度依對應的波長的不同分別視為從0.72至0.86,然後再線性推算出反射率為0.75的刻度線所在的位置。In this embodiment, the above-mentioned at least one standard reflector 70 may further include a third standard reflector, the reflectivity of the third standard reflector is between the reflectivity of the first standard reflector and the reflectivity of the second standard reflector In between, and the spectral integration correction method further includes estimating the spectral intensity corresponding to an intermediate value of the reflectance according to the known reflectance of the third standard reflector, wherein the intermediate value is between 0 and 100%. For example, the reflectivity of the third standard reflector changes from about 0.72 to 0.86 with the change of the wavelength, so the spectral signal intensity of the third standard reflector measured by the sub-spectrometer 130 can be divided according to the corresponding wavelength. It is considered to be from 0.72 to 0.86, and then linearly calculate the position of the scale line whose reflectivity is 0.75.

同理,上述至少一標準反射件70可更包括一第四標準反射件,第四標準反射件的反射率隨著波長的變化約從0.48變化到0.56,因此可把子光譜儀130所測得的第三標準反射件的光譜訊號強度依對應的波長的不同分別視為從0.48至0.56,然後再線性推算出反射率為0.5的刻度線所在的位置。In the same way, the above-mentioned at least one standard reflector 70 may further include a fourth standard reflector, and the reflectivity of the fourth standard reflector varies from 0.48 to 0.56 with the change of wavelength, so the measured value of the sub-spectrometer 130 can be The spectral signal intensity of the third standard reflector is considered to be from 0.48 to 0.56 according to the corresponding wavelength, and then the position of the scale line with a reflectivity of 0.5 is calculated linearly.

上述的標準反射件70的數量並不限制,數量較多時可將縱軸(即反射率)校正得更為準確。校正了標準反射件70的反射率之後,可用內插法或外推法來推算出反射率從0到1之間的每一個刻度所對應的光譜強度,也就是校正了從0到1之間的每一個刻度。此外,由於子光譜儀130的影像感測器的光譜響應強度與實際的反射率大小可能呈現非線性的變化,且不同的子光譜儀130的影像感測器由於材料可能不同而導致上述的非線性的變化呈現不同的情形,因此採用數量較多的不同反射率的標準反射件70(例如對應至圖5C的第三標準反射件或對應至圖5D的第四標準反射件,其具有較接近中等程度的反射率)有助於校正這些非線性的變化,而能更精確地採用內插法或外推法來推算出反射率從0到1之間的每一個刻度所對應的光譜強度。如此一來便能夠確認測試樣品訊號的靈敏度的絕對定量變化。The number of the above-mentioned standard reflectors 70 is not limited, and the vertical axis (ie reflectivity) can be calibrated more accurately when the number is large. After correcting the reflectance of the standard reflector 70, interpolation or extrapolation can be used to calculate the spectral intensity corresponding to each scale of the reflectance from 0 to 1, that is, to correct the spectral intensity between 0 and 1. every tick. In addition, since the spectral response intensity and the actual reflectance of the image sensor of the sub-spectrometer 130 may show nonlinear changes, and the image sensors of different sub-spectrometers 130 may be different due to the material, resulting in the above-mentioned nonlinear The change presents different situations, so a larger number of standard reflectors 70 with different reflectivities (for example, corresponding to the third standard reflector of FIG. 5C or corresponding to the fourth standard reflector of FIG. The reflectance) helps to correct these nonlinear changes, and interpolation or extrapolation can be used more accurately to calculate the spectral intensity corresponding to each scale of the reflectance from 0 to 1. In this way, absolute quantitative changes in the sensitivity of the test sample signal can be confirmed.

標準反射件70的校正標準符合所屬領域中具有通常知識者所熟知的NIST標準與NVLAP校正(NVLAP calibration)標準,其中NVLAP的全名為「National Voluntary Laboratory Accreditation Program」。The calibration standard of the standard reflector 70 complies with the NIST standard and the NVLAP calibration (NVLAP calibration) standard well known to those skilled in the art. The full name of NVLAP is "National Voluntary Laboratory Accreditation Program".

之後,執行步驟S140,根據這些子光譜儀130各別的光譜強度當量將這些子光譜儀130所分別測得的多個子光譜轉換成相同的光譜強度當量後整合。也就是說,根據步驟S130中校正好的反射率將多個子光譜以相同的反射率刻度標準結合成一個單一的光譜,則此單一的光譜便是一個完整的從短波長至長波長的良好光譜。Afterwards, step S140 is executed, according to the respective spectral intensity equivalents of the sub-spectrometers 130 , the multiple sub-spectra measured by the sub-spectrometers 130 are converted into the same spectral intensity equivalents and then integrated. That is to say, according to the corrected reflectance in step S130, multiple sub-spectra are combined into a single spectrum with the same reflectance scale standard, then this single spectrum is a complete good spectrum from short wavelength to long wavelength .

圖6為經圖2的光譜整合校正方法校正好的圖1的多光譜光譜儀量測一樣本時所得到的經整合後的光譜。由圖6可知,圖1的多光譜光譜儀100所獲得的經整合後的光譜為一從短波長至長波長的良好光譜,且多光譜光譜儀100可據此輸出校正報告。此外,多光譜光譜儀100可將上述校正值儲存於內建儲存器或傳遞至伺服器以供參考。這樣的一個樣本也可以用來被其他的多光譜光譜儀100量測以獲得光譜,而從此光譜就可以快速地確認其他的多光譜光譜儀是否有校正好。FIG. 6 is an integrated spectrum obtained when the multispectral spectrometer in FIG. 1 measures a sample after being calibrated by the spectrum integration correction method in FIG. 2 . It can be seen from FIG. 6 that the integrated spectrum obtained by the multispectral spectrometer 100 in FIG. 1 is a good spectrum from short wavelength to long wavelength, and the multispectral spectrometer 100 can output a calibration report accordingly. In addition, the multispectral spectrometer 100 can store the above calibration values in a built-in memory or transmit them to a server for reference. Such a sample can also be used to be measured by other multispectral spectrometers 100 to obtain spectra, and from the spectra, it can be quickly confirmed whether other multispectral spectrometers are well calibrated.

此外,圖2的步驟S120與步驟S130所更正好的波長及反射率資料可以透過控制器140儲存在一個儲存器內,待多光譜光譜儀100出廠後,便能夠直接採用儲存器內所儲存的資料來執行步驟S140,以透過控制器140來將多個子光譜轉換成相同的光譜強度當量後整合成一個單一的、波長範圍較廣且良好的光譜。In addition, the corrected wavelength and reflectance data in steps S120 and S130 in FIG. 2 can be stored in a memory through the controller 140. After the multispectral spectrometer 100 leaves the factory, the data stored in the memory can be directly used. Step S140 is executed to convert multiple sub-spectra into the same spectral intensity equivalent through the controller 140 and then integrate them into a single good spectrum with a wide wavelength range.

綜上所述,在本發明的實施例的光譜整合校正方法中,由於利用波長校正件和標準反射件來校正多個子光譜儀的波長及其所獲得的多個子光譜的光譜強度當量,因此可將多光譜光譜儀調校成可將多個子光譜良好地整合。在本發明的實施例的多光譜光譜儀中,由於控制器將這些子光譜轉換成相同的光譜強度當量後整合成一個光譜,因此可將多個子光譜良好地整合成一個光譜。To sum up, in the spectral integration correction method of the embodiment of the present invention, since the wavelength of the multiple sub-spectrometers and the spectral intensity equivalents of the multiple sub-spectrums obtained by using the wavelength calibration piece and the standard reflection piece are corrected, the The multispectral spectrometer is tuned to provide good integration of multiple sub-spectra. In the multispectral spectrometer of the embodiment of the present invention, since the controller converts these sub-spectra into the same spectral intensity equivalent and then integrates them into one spectrum, multiple sub-spectra can be well integrated into one spectrum.

50:待測物 52:訊號光 53:子光束 60:波長校正件 70:標準反射件 100:多光譜光譜儀 110:光源 112:照明光束 120:Y型光纖 121:分光元件 122:子光纖 130:子光譜儀 140:控制器 150:半積分球 160:準直透鏡 S110、S120、S130、S140:步驟 50: The object to be tested 52: signal light 53: sub-beam 60:Wavelength correction piece 70: Standard reflector 100: Multispectral spectrometer 110: light source 112: Lighting beam 120:Y type optical fiber 121: Light splitting element 122: sub-fiber 130: sub-spectrometer 140: Controller 150: Half integrating sphere 160: collimating lens S110, S120, S130, S140: steps

圖1為本發明的一實施例的多光譜光譜儀的剖面示意圖。 圖2為本發明的一實施例的光譜整合校正方法的流程圖。 圖3是圖1的波長校正件的吸收光譜圖。 圖4A與圖4B分別為圖1的多光譜光譜儀的兩個子光譜儀所測得的本機反射板的反射子光譜。 圖5A、圖5B、圖5C及圖5D分別為圖2的實施例中的第一標準反射件、第二標準反射件、第三標準反射件及第四標準反射件的反射光譜。 圖6為經圖2的光譜整合校正方法校正好的圖1的多光譜光譜儀量測一樣本時所得到的經整合後的光譜。 FIG. 1 is a schematic cross-sectional view of a multispectral spectrometer according to an embodiment of the present invention. FIG. 2 is a flowchart of a spectrum integration correction method according to an embodiment of the present invention. FIG. 3 is an absorption spectrum diagram of the wavelength correction member of FIG. 1 . FIG. 4A and FIG. 4B are reflection sub-spectra of the local reflector measured by the two sub-spectrometers of the multi-spectral spectrometer in FIG. 1 . 5A , 5B , 5C and 5D are reflection spectra of the first standard reflector, the second standard reflector, the third standard reflector and the fourth standard reflector in the embodiment of FIG. 2 . FIG. 6 is an integrated spectrum obtained when the multispectral spectrometer in FIG. 1 measures a sample after being calibrated by the spectrum integration correction method in FIG. 2 .

50:待測物 52:訊號光 53:子光束 60:波長校正件 70:標準反射件 100:多光譜光譜儀 110:光源 112:照明光束 120:Y型光纖 121:分光元件 122:子光纖 130:子光譜儀 140:控制器 150:半積分球 160:準直透鏡 50: The object to be tested 52: signal light 53: sub-beam 60:Wavelength correction piece 70: Standard reflector 100: Multispectral spectrometer 110: light source 112: Lighting beam 120: Y type optical fiber 121: Light splitting element 122: sub-fiber 130: sub-spectrometer 140: Controller 150: Half integrating sphere 160: collimating lens

Claims (9)

一種光譜整合校正方法,包括:提供一多光譜光譜儀,該多光譜光譜儀包括多個子光譜儀,用以分別量測多個不同波長範圍的子光譜;利用該多光譜光譜儀量測至少一波長校正件的光譜,並利用該至少一波長校正件的光譜的多個已知特徵波長,分別校正該些子光譜儀的偵測波長;利用該多光譜光譜儀量測至少一標準反射件的光譜,並利用該至少一標準反射件的已知反射率獲得該些子光譜儀各別的光譜強度當量;以及根據該些子光譜儀各別的光譜強度當量將該些子光譜儀所分別測得的多個子光譜轉換成相同的光譜強度當量後整合。 A spectral integration correction method, comprising: providing a multi-spectral spectrometer, the multi-spectral spectrometer includes a plurality of sub-spectrometers for respectively measuring a plurality of sub-spectra in different wavelength ranges; using the multi-spectral spectrometer to measure at least one wavelength calibration component Spectrum, and using multiple known characteristic wavelengths of the spectrum of the at least one wavelength calibration member, respectively correct the detection wavelengths of the sub-spectrometers; use the multi-spectral spectrometer to measure the spectrum of at least one standard reflector, and use the at least The known reflectance of a standard reflector obtains the respective spectral intensity equivalents of these sub-spectrometers; Spectral intensity equivalents are post-integrated. 如請求項1所述的光譜整合校正方法,其中校正該些子光譜儀的偵測波長更包括根據該些已知特徵波長作數值內插法計算,並利用計算所得的數值來校正該些子光譜儀的偵測波長,以使該些子光譜儀的波長刻度大小一致。 The spectral integration correction method as described in Claim 1, wherein correcting the detection wavelengths of the sub-spectrometers further includes performing numerical interpolation calculations based on the known characteristic wavelengths, and using the calculated values to calibrate the sub-spectrometers The detection wavelength, so that the wavelength scales of these sub-spectrometers have the same size. 如請求項1所述的光譜整合校正方法,其中該至少一標準反射件包括一第一標準反射件及一第二標準反射件,該第一標準反射件的反射率大於該第二標準反射件的反射率,該光譜整合校正方法更包括根據該第一標準反射件的已知反射率推算反射率為百分之百時所對應的光譜強度,且根據該第二標準反射件的已知反射率推算反射率為零時所對應的光譜強度。 The spectrum integration correction method as described in claim 1, wherein the at least one standard reflector includes a first standard reflector and a second standard reflector, and the reflectivity of the first standard reflector is greater than that of the second standard reflector The spectral integration correction method further includes calculating the spectral intensity corresponding to 100% reflectance according to the known reflectance of the first standard reflector, and calculating the reflectance according to the known reflectance of the second standard reflector The corresponding spectral intensity when the rate is zero. 如請求項3所述的光譜整合校正方法,其中該至少一標準反射件更包括一第三標準反射件,該第三標準反射件的反射率介於該第一標準反射件的反射率與該第二標準反射件的反射率之間,且該光譜整合校正方法更包括根據該第三標準反射件的已知反射率推算反射率為一中間值時所對應的光譜強度,其中該中間值介於0與百分之百之間。 The spectrum integration correction method as described in claim 3, wherein the at least one standard reflector further includes a third standard reflector, the reflectivity of the third standard reflector is between the reflectivity of the first standard reflector and the reflectivity of the first standard reflector between the reflectances of the second standard reflector, and the spectral integration correction method further includes calculating the spectral intensity corresponding to a reflectance of an intermediate value based on the known reflectance of the third standard reflector, wherein the intermediate value is between Between 0 and 100 percent. 如請求項1所述的光譜整合校正方法,其中該至少一波長校正件包括一第一波長校正件及一第二波長校正件,該第一波長校正件的最大特徵波長大於該第二波長校正件的最大特徵波長。 The spectral integration correction method as described in Claim 1, wherein the at least one wavelength correction element includes a first wavelength correction element and a second wavelength correction element, and the maximum characteristic wavelength of the first wavelength correction element is greater than that of the second wavelength correction element The maximum characteristic wavelength of the component. 一種多光譜光譜儀,用以量測一待測物的光譜,該多光譜光譜儀包括:一光源,用以提供一照明光束,以照射該待測物,其中該待測物將該照明光束反射成一訊號光;一分光元件,配置於該訊號光的路徑上,且將該訊號光分成多個子光束;多個子光譜儀,分別配置於該些子光束的傳遞路徑上,以測得多個波長範圍不同的子光譜;以及一控制器,電性連接至該些子光譜儀,用以將該些子光譜轉換成相同的光譜強度當量後整合成一個光譜。 A multispectral spectrometer is used to measure the spectrum of an object to be measured, and the multispectrum spectrometer includes: a light source for providing an illumination beam to illuminate the object to be measured, wherein the object to be measured reflects the illumination beam into a Signal light; a light splitting element is arranged on the path of the signal light, and the signal light is divided into multiple sub-beams; multiple sub-spectrometers are respectively arranged on the transmission paths of the sub-beams to measure multiple sub-spectra; and a controller, electrically connected to the sub-spectrometers, for converting the sub-spectra into the same spectral intensity equivalent and integrating them into a spectrum. 如請求項6所述的多光譜光譜儀,更包括一半積分球,用以覆蓋該待測物,其中該光源與該分光元件設置於該半積分球的球殼上。 The multi-spectral spectrometer according to Claim 6 further includes a half integrating sphere for covering the object to be measured, wherein the light source and the light splitting element are arranged on the spherical shell of the half integrating sphere. 如請求項7所述的多光譜光譜儀,更包括一準直透鏡,設置於該半積分球的球殼上,其中該準直透鏡用以將該訊號光準直地傳遞至該分光元件。 The multi-spectral spectrometer as described in Claim 7 further includes a collimating lens disposed on the spherical shell of the semi-integrating sphere, wherein the collimating lens is used to transmit the signal light to the spectroscopic element in a collimated manner. 如請求項8所述的多光譜光譜儀,其中該分光元件為Y型光纖的入光端。 The multispectral spectrometer as claimed in item 8, wherein the light splitting element is the light incident end of a Y-shaped optical fiber.
TW110118175A 2021-05-20 2021-05-20 Spectrum integration calibration method and multi-spectrum spectrometer TWI793609B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110118175A TWI793609B (en) 2021-05-20 2021-05-20 Spectrum integration calibration method and multi-spectrum spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110118175A TWI793609B (en) 2021-05-20 2021-05-20 Spectrum integration calibration method and multi-spectrum spectrometer

Publications (2)

Publication Number Publication Date
TW202246739A TW202246739A (en) 2022-12-01
TWI793609B true TWI793609B (en) 2023-02-21

Family

ID=85793770

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118175A TWI793609B (en) 2021-05-20 2021-05-20 Spectrum integration calibration method and multi-spectrum spectrometer

Country Status (1)

Country Link
TW (1) TWI793609B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW536619B (en) * 2001-07-06 2003-06-11 Praxair Technology Inc Emission spectrometer having a charge coupled device detector
US20190041269A1 (en) * 2017-08-02 2019-02-07 Samsung Electronics Co., Ltd. Spectrum measurement apparatus and method, and calibration method of spectrum measurement apparatus
TW201928334A (en) * 2017-12-27 2019-07-16 國立臺灣大學 Spectral-image correlation-based confocal profilometric system and method
JP2020159867A (en) * 2019-03-27 2020-10-01 国立研究開発法人物質・材料研究機構 Spectroscopic measurement device and spectroscopic measurement program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW536619B (en) * 2001-07-06 2003-06-11 Praxair Technology Inc Emission spectrometer having a charge coupled device detector
US20190041269A1 (en) * 2017-08-02 2019-02-07 Samsung Electronics Co., Ltd. Spectrum measurement apparatus and method, and calibration method of spectrum measurement apparatus
TW201928334A (en) * 2017-12-27 2019-07-16 國立臺灣大學 Spectral-image correlation-based confocal profilometric system and method
JP2020159867A (en) * 2019-03-27 2020-10-01 国立研究開発法人物質・材料研究機構 Spectroscopic measurement device and spectroscopic measurement program

Also Published As

Publication number Publication date
TW202246739A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
KR102117734B1 (en) High accuracy imaging colorimeter by special designed pattern closed-loop calibration assisted by spectrograph
US20170219433A1 (en) Spectroscopic measurement method and spectroscopic measurement device
Wang et al. A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
KR101604424B1 (en) Apparatus for Measuring Luminance and Chrominance Distribution
US8680993B2 (en) System and apparatus for gloss correction in color measurements
WO2012132380A1 (en) Optical characteristics measuring apparatus and method
WO2015072223A1 (en) Gloss evaluation method and gloss evaluation device
KR20120103480A (en) Spectral characteristic measurement method and spectral characteristic measurement apparatus
EP1914529B1 (en) Method for analyzing the apparent colour and the gonio reflectance of an object
JP6080410B2 (en) Spectral colorimeter
TWI793609B (en) Spectrum integration calibration method and multi-spectrum spectrometer
JPWO2019244458A1 (en) Optical property measuring device
JP2009281929A (en) Reference light source for correcting photometric device and system for correcting photometric device
Firago et al. Diffuse Reflectance Spectrophotometers Based on C12880MA and C11708MA Mini-Spectrometers Hamamatsu
JP2010048640A (en) Absolute spectroradiometer
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
CN115372270A (en) Spectrum integration correction method and multispectral spectrometer
KR20240056522A (en) How to calibrate a spectrometer device
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
WO2020003673A1 (en) Spectral sensitivity measurement method for image sensors, inspection method for spectral sensitivity measurement devices, and spectral sensitivity measurement device
JP2013088263A (en) Spectroscopic instrument calibration method
JP2018205084A (en) Optical measuring device and optical measurement method
JP2002206967A (en) Photometer and colorimeter
Wang et al. Fast and high-accuracy spectral measurements of LED by linear CCD sensor and software calibration