TWI792227B - Optical engine module and projector - Google Patents

Optical engine module and projector Download PDF

Info

Publication number
TWI792227B
TWI792227B TW110109746A TW110109746A TWI792227B TW I792227 B TWI792227 B TW I792227B TW 110109746 A TW110109746 A TW 110109746A TW 110109746 A TW110109746 A TW 110109746A TW I792227 B TWI792227 B TW I792227B
Authority
TW
Taiwan
Prior art keywords
light
module
light source
source module
substrate
Prior art date
Application number
TW110109746A
Other languages
Chinese (zh)
Other versions
TW202238244A (en
Inventor
周彥伊
楊立誠
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110109746A priority Critical patent/TWI792227B/en
Publication of TW202238244A publication Critical patent/TW202238244A/en
Application granted granted Critical
Publication of TWI792227B publication Critical patent/TWI792227B/en

Links

Images

Abstract

An optical engine module includes a first light source module, a second light source module, and a controller. The first light source module includes a plurality of solid state light emitters. The solid state light emitters are configured to emit different color lights. The second light source module is configured to emit fluorescent light. The controller is configured to: driving the first light source module in a first light emitting mode, in which the color lights are configured to be mixed to produce a first white light; and driving the first light source module and the second light source module in a second light emitting mode, in which the color lights and the fluorescent light are configured to be mixed to produce a second white light.

Description

光機模組及投影機Optical-mechanical module and projector

本揭露是有關於一種光機模組以及投影機。This disclosure relates to an optical-mechanical module and a projector.

近年來,光學投影機已經被應用於許多領域之中,且應用範圍也日漸擴大,例如從消費性產品到高科技設備。各種的光學投影機也被廣泛應用於學校、家庭和商業場合,以將信號源所提供的顯示圖案放大,並顯示在投影屏幕上。In recent years, optical projectors have been used in many fields, and the range of applications is expanding day by day, from consumer products to high-tech equipment. Various optical projectors are also widely used in schools, homes and commercial occasions to amplify the display pattern provided by the signal source and display it on the projection screen.

對於目前利用螢光獲得各種色光的投影機來說,在螢光通過彩色濾光片之後通常會遇到兩個狀況。第一個狀況是光利用率較低。若未來彩色濾光片須符合顏色更純色的規範,則光利用率會更低。第二個狀況是光利用率越低代表更多的光將轉換成廢熱,這也會降低螢光色輪在投影機中的效率。For the current projectors that use fluorescent light to obtain various colors, two situations are usually encountered after the fluorescent light passes through the color filter. The first situation is low light utilization. If the color filter in the future must conform to the specification of more pure color, the light utilization efficiency will be lower. The second is that lower light utilization means more light will be converted into waste heat, which also reduces the efficiency of the fluorescent color wheel in the projector.

因此,如何提出一種可解決上述問題的光機模組與投影機,已成為當前重要的研發課題之一。Therefore, how to propose an optical-mechanical module and a projector that can solve the above-mentioned problems has become one of the current important research and development topics.

有鑑於此,本揭露之一目的在於提出一種可有解決上述問題的光機模組以及投影機。In view of this, one purpose of the present disclosure is to provide an optical-mechanical module and a projector that can solve the above-mentioned problems.

為了達到上述目的,依據本揭露之一實施方式,一種光機模組包含第一光源模組、第二光源模組以及控制器。第一光源模組包含複數個固態光發射器。固態光發射器分別配置以產生不同色光。第二光源模組配置以產生螢光。控制器配置以:於第一發光模式中驅動第一光源模組,其中色光配置以混光出第一白光;以及於第二發光模式中驅動第一光源模組與第二光源模組,其中色光與螢光配置以混光出第二白光。In order to achieve the above object, according to an embodiment of the present disclosure, an optical-mechanical module includes a first light source module, a second light source module, and a controller. The first light source module includes a plurality of solid-state light emitters. The solid state light emitters are individually configured to produce different colors of light. The second light source module is configured to generate fluorescent light. The controller is configured to: drive the first light source module in the first lighting mode, wherein the color light is configured to mix light to produce the first white light; and drive the first light source module and the second light source module in the second lighting mode, wherein Chromatic light and fluorescent light are configured to mix light to produce a second white light.

於本揭露的一或多個實施方式中,光機模組進一步包含帶通濾波元件。固態光發射器中之至少兩者與第二光源模組光耦合至帶通濾波元件。In one or more embodiments of the present disclosure, the optomechanical module further includes a band-pass filter element. At least two of the solid state light emitters and the second light source module are optically coupled to the bandpass filter element.

於本揭露的一或多個實施方式中,固態光發射器為雷射二極體,並分別具有不同之發光頻譜。帶通濾波元件具有反射頻譜。反射頻譜位於固態光發射器的發光頻譜中之相鄰兩者之間。In one or more embodiments of the present disclosure, the solid-state light emitters are laser diodes, which have different emission spectra. A bandpass filter element has a reflection spectrum. The reflection spectrum is located between adjacent two in the emission spectrum of the solid state light emitter.

於本揭露的一或多個實施方式中,螢光的發光頻譜涵蓋反射頻譜。In one or more embodiments of the present disclosure, the emission spectrum of the fluorescent light covers the reflection spectrum.

於本揭露的一或多個實施方式中,固態光發射器中之前述至少兩者包含綠光雷射二極體以及紅光雷射二極體。In one or more embodiments of the present disclosure, at least two of the aforementioned solid-state light emitters include a green laser diode and a red laser diode.

於本揭露的一或多個實施方式中,固態光發射器中之前述至少兩者包含綠光雷射二極體、紅光雷射二極體藍光雷射二極體。In one or more embodiments of the present disclosure, at least two of the aforementioned solid-state light emitters include a green laser diode, a red laser diode and a blue laser diode.

於本揭露的一或多個實施方式中,第二光源模組包含發光單元以及波長轉換材料。波長轉換材料配置以將發光單元所發射之光轉換成螢光。In one or more embodiments of the present disclosure, the second light source module includes a light emitting unit and a wavelength conversion material. The wavelength conversion material is configured to convert the light emitted by the light emitting unit into fluorescent light.

於本揭露的一或多個實施方式中,發光單元與固態光發射器中之一者為藍光雷射二極體。In one or more embodiments of the present disclosure, one of the light emitting unit and the solid state light emitter is a blue laser diode.

於本揭露的一或多個實施方式中,第二光源模組以固態光發射器中之一者作為發光單元。In one or more implementations of the present disclosure, the second light source module uses one of the solid-state light emitters as a light emitting unit.

於本揭露的一或多個實施方式中,第二光源模組進一步包含基板。波長轉換材料設置於基板上。In one or more embodiments of the present disclosure, the second light source module further includes a substrate. The wavelength converting material is disposed on the substrate.

於本揭露的一或多個實施方式中,基板為反射式基板。In one or more embodiments of the present disclosure, the substrate is a reflective substrate.

於本揭露的一或多個實施方式中,光機模組進一步包含分色鏡。分色鏡位於發光單元與基板之間。分色鏡配置以供發光單元所發射之光通過,並配置以反射螢光。In one or more embodiments of the present disclosure, the optomechanical module further includes a dichroic mirror. The dichroic mirror is located between the light emitting unit and the substrate. The dichroic mirror is configured to allow the light emitted by the light emitting unit to pass through, and configured to reflect fluorescent light.

於本揭露的一或多個實施方式中,基板為透射式基板。In one or more embodiments of the present disclosure, the substrate is a transmissive substrate.

於本揭露的一或多個實施方式中,光機模組進一步包含反射器。波長轉換材料與基板位於發光單元與反射器之間。反射器配置以反射螢光。In one or more embodiments of the present disclosure, the optomechanical module further includes a reflector. The wavelength conversion material and the substrate are located between the light emitting unit and the reflector. The reflector is configured to reflect fluorescent light.

於本揭露的一或多個實施方式中,基板具有缺口。缺口配置以供發光單元所發射之光通過。In one or more embodiments of the present disclosure, the substrate has a notch. The notch is configured for the light emitted by the light emitting unit to pass through.

為了達到上述目的,依據本揭露之一實施方式,一種投影機包含前述光機模組以及投影模組。投影模組配置以:於第一發光模式中,基於第一時序依序處理色光;以及於第二發光模式中,基於第二時序依序處理色光與螢光。In order to achieve the above object, according to an embodiment of the present disclosure, a projector includes the aforementioned optical-mechanical module and a projection module. The projection module is configured to: in the first lighting mode, sequentially process the colored light based on the first timing; and in the second lighting mode, sequentially process the colored light and the fluorescent light based on the second timing.

於本揭露的一或多個實施方式中,投影機進一步包含均勻器。第一光源模組與第二光源模組係各別獨立地光耦合至均勻器。In one or more embodiments of the present disclosure, the projector further includes a homogenizer. The first light source module and the second light source module are respectively and independently optically coupled to the homogenizer.

綜上所述,於本揭露的光機模組與投影機中,可產生不同色光之第一光源模組與可產生螢光之第二光源模組經由控制器的控制,即可對應於第一發光模式與第二發光模式分別混光出第一白光與第二白光。藉此,本揭露的光機模組與投影機即可針對各種發光模式取得各自的最大效益。To sum up, in the optical-mechanical module and projector disclosed in this disclosure, the first light source module capable of producing different colored lights and the second light source module capable of producing fluorescent light can correspond to the first light source module through the control of the controller. The first light emitting mode and the second light emitting mode are respectively mixed to emit the first white light and the second white light. In this way, the light-mechanical module and the projector disclosed in the present disclosure can obtain respective maximum benefits for various light-emitting modes.

以上所述僅係用以闡述本揭露所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本揭露之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above description is only used to explain the problems to be solved by the present disclosure, the technical means to solve the problems, and the effects thereof, etc. The specific details of the present disclosure will be introduced in detail in the following implementation methods and related drawings.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。The following will disclose multiple implementations of the present disclosure with diagrams, and for the sake of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. That is to say, in some embodiments of the present disclosure, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some well-known structures and components will be shown in a simple and schematic manner in the drawings.

請參照第1圖至第3圖。第1圖為繪示根據本揭露一實施方式之投影機100的立體圖。第2圖為繪示根據本揭露一實施方式之光機模組110與均勻器120的示意圖。第3圖為繪示根據本揭露一實施方式之光機模組110所包含元件的功能方塊。如第1圖至第3圖所示,於本實施方式中,投影機100包含光機模組110、均勻器120、投影模組130以及殼體140。光機模組110、均勻器120與投影模組130設置於殼體140內。光機模組110包含第一光源模組111、第二光源模組112以及控制器113。第一光源模組111包含複數個固態光發射器111a、111b、111c。固態光發射器111a分別配置以產生不同色光。舉例來說,固態光發射器111a配置以產生紅光R,固態光發射器111b配置以產生綠光G,固態光發射器111c配置以產生藍光B。第二光源模組112配置以產生螢光P。控制器113配置以:於第一發光模式中驅動第一光源模組111,其中色光(即紅光R、綠光G與藍光B)配置以混光出第一白光;以及於第二發光模式中驅動第一光源模組111與第二光源模組112,其中色光與螢光P配置以混光出第二白光。Please refer to pictures 1 to 3. FIG. 1 is a perspective view illustrating a projector 100 according to an embodiment of the present disclosure. FIG. 2 is a schematic diagram illustrating an optomechanical module 110 and a homogenizer 120 according to an embodiment of the present disclosure. FIG. 3 shows the functional blocks of components included in the optomechanical module 110 according to an embodiment of the present disclosure. As shown in FIGS. 1 to 3 , in this embodiment, the projector 100 includes an optical-mechanical module 110 , a homogenizer 120 , a projection module 130 and a casing 140 . The optical machine module 110 , the homogenizer 120 and the projection module 130 are disposed in the casing 140 . The optical machine module 110 includes a first light source module 111 , a second light source module 112 and a controller 113 . The first light source module 111 includes a plurality of solid state light emitters 111a, 111b, 111c. The solid state light emitters 111a are respectively configured to generate light of different colors. For example, solid state light emitter 111a is configured to generate red light R, solid state light emitter 111b is configured to generate green light G, and solid state light emitter 111c is configured to generate blue light B. The second light source module 112 is configured to generate fluorescent light P. The controller 113 is configured to: drive the first light source module 111 in the first light emitting mode, wherein the color lights (ie red light R, green light G and blue light B) are configured to mix light to produce first white light; and in the second light emitting mode The first light source module 111 and the second light source module 112 are driven, wherein the color light and fluorescent light P are configured to mix light to produce a second white light.

請參照第4圖,其為繪示根據本揭露一實施方式之投影機100於第一發光模式中的運作示意圖。如第4圖所示,當投影機100以第一發光模式運作時,光機模組110的控制器113僅驅動第一光源模組111依序發射紅光R、綠光G與藍光B。紅光R、綠光G與藍光B經由均勻器120而抵達投影模組130。均勻器120配置以均勻化紅光R、綠光G與藍光B。投影模組130配置於第一發光模式中,基於第一時序依序處理紅光R、綠光G與藍光B。具體來說,投影模組130配置於第一發光模式中,依序將紅光R、綠光G與藍光B分別投影至預定位置。Please refer to FIG. 4 , which is a schematic diagram illustrating the operation of the projector 100 in the first light-emitting mode according to an embodiment of the present disclosure. As shown in FIG. 4 , when the projector 100 operates in the first light-emitting mode, the controller 113 of the light-mechanical module 110 only drives the first light source module 111 to emit red light R, green light G and blue light B sequentially. The red light R, green light G and blue light B reach the projection module 130 through the homogenizer 120 . The homogenizer 120 is configured to homogenize the red light R, the green light G and the blue light B. The projection module 130 is configured in the first light emitting mode, and sequentially processes the red light R, the green light G and the blue light B based on the first timing. Specifically, the projection module 130 is configured in the first lighting mode, and sequentially projects the red light R, the green light G, and the blue light B to predetermined positions respectively.

請參照第5圖,其為繪示根據本揭露一實施方式之投影機100於第二發光模式中的運作示意圖。如第5圖所示,當投影機100以第二發光模式運作時,光機模組110的控制器113會驅動第一光源模組111與第二光源模組112依序發射紅光R、綠光G、藍光B與螢光P。均勻器120配置以均勻化紅光R、綠光G、藍光B與螢光P。投影模組130配置於第二發光模式中,基於第二時序依序處理紅光R、綠光G、藍光B與螢光P。具體來說,投影模組130配置於第二發光模式中,依序將紅光R、綠光G、藍光B與螢光P分別投影至預定位置。由以上說明可知,當投影機100以第一發光模式運作時,由於使用了紅光R、綠光G與藍光B進行混光,因此可表現出高彩度。當投影機100以第二發光模式運作時,由於額外使用了螢光P進行混光,因此不僅可增加亮度,還可提高效率(於下文中將搭配表一與表二詳細說明)。Please refer to FIG. 5 , which is a schematic diagram illustrating the operation of the projector 100 in the second light-emitting mode according to an embodiment of the present disclosure. As shown in FIG. 5, when the projector 100 operates in the second light-emitting mode, the controller 113 of the optical-mechanical module 110 will drive the first light source module 111 and the second light source module 112 to sequentially emit red light R, Green light G, blue light B and fluorescent P. The homogenizer 120 is configured to homogenize the red light R, the green light G, the blue light B and the fluorescent light P. The projection module 130 is configured in the second light emitting mode, and sequentially processes the red light R, the green light G, the blue light B and the fluorescent light P based on the second sequence. Specifically, the projection module 130 is configured in the second light emitting mode, and sequentially projects the red light R, the green light G, the blue light B and the fluorescent light P to predetermined positions respectively. From the above description, it can be seen that when the projector 100 operates in the first light emitting mode, it can display high chromaticity because it uses the red light R, the green light G and the blue light B to mix light. When the projector 100 operates in the second light-emitting mode, since the fluorescent light P is additionally used for light mixing, not only the brightness but also the efficiency can be increased (details will be described in conjunction with Table 1 and Table 2 below).

於一些實施方式中,如第2圖所示,均勻器120包含擴散片121以及積分柱122。前述紅光R、綠光G、藍光B與螢光P係依序經由擴散片121與積分柱122而抵達投影模組130。In some embodiments, as shown in FIG. 2 , the homogenizer 120 includes a diffuser 121 and an integrating column 122 . The aforementioned red light R, green light G, blue light B and fluorescent light P sequentially pass through the diffusion sheet 121 and the integrating column 122 to reach the projection module 130 .

於一些實施方式中,投影模組130包含數位微型反射鏡元件(Digital Micromirror Device, DMD),但本揭露並不以此為限。In some embodiments, the projection module 130 includes a digital micromirror device (Digital Micromirror Device, DMD), but the disclosure is not limited thereto.

於一些實施方式中,固態光發射器111a、111b、111c分別為紅光R雷射二極體、綠光G雷射二極體以及藍光B雷射二極體,但本揭露並不以此為限。In some embodiments, the solid-state light emitters 111a, 111b, and 111c are red R laser diodes, green G laser diodes, and blue B laser diodes, respectively, but this disclosure does not rely on this limit.

如第2圖所示,於一些實施方式中,第二光源模組112包含發光單元112a、波長轉換材料112b以及基板112c。波長轉換材料112b設置於基板112c上。波長轉換材料112b配置以將發光單元112a所發射之光轉換成螢光P。舉例來說,發光單元112a配置以發射藍光B。波長轉換材料112b配置以將藍光B轉換成黃色螢光P。As shown in FIG. 2 , in some embodiments, the second light source module 112 includes a light emitting unit 112a, a wavelength conversion material 112b and a substrate 112c. The wavelength conversion material 112b is disposed on the substrate 112c. The wavelength conversion material 112b is configured to convert the light emitted by the light emitting unit 112a into fluorescent light P. For example, the light emitting unit 112a is configured to emit blue light B. As shown in FIG. The wavelength converting material 112b is configured to convert blue light B into yellow fluorescent P.

於一些實施方式中,發光單元112a藍光雷射二極體,而波長轉換材料112b包含YAG螢光粉或氮化物螢光粉,但本揭露並不以此為限。In some embodiments, the light emitting unit 112a is a blue laser diode, and the wavelength converting material 112b includes YAG phosphor or nitride phosphor, but the present disclosure is not limited thereto.

如第2圖所示,於本實施方式中,光機模組110進一步包含分色鏡114以及反射器115。分色鏡114位於第二光源模組112的發光單元112a與波長轉換材料112b之間,且波長轉換材料112b位於分色鏡114與基板112c之間。於一些實施方式中,如第2圖所示,分色鏡114由玻璃基板以及設置於其表面之分色層所組成。分色鏡114配置以供發光單元112a所發射的光線通過,使得此光線抵達波長轉換材料112b而被其轉換成螢光P。於本實施方式中,基板112c為反射式基板,因此螢光P會被反射回分色鏡114。分色鏡114還配置將螢光P反射至反射器115。反射器115配置以將螢光P再反射至均勻器120。藉由前述光學配置,可以使光路設計緊湊,以有效地縮減光機模組110於投影機100內所佔用之空間。As shown in FIG. 2 , in this embodiment, the optical-mechanical module 110 further includes a dichroic mirror 114 and a reflector 115 . The dichroic mirror 114 is located between the light emitting unit 112a of the second light source module 112 and the wavelength conversion material 112b, and the wavelength conversion material 112b is located between the dichroic mirror 114 and the substrate 112c. In some embodiments, as shown in FIG. 2 , the dichroic mirror 114 is composed of a glass substrate and a dichroic layer disposed on its surface. The dichroic mirror 114 is configured to allow the light emitted by the light emitting unit 112 a to pass through, so that the light reaches the wavelength conversion material 112 b and is converted into fluorescent light P by the light. In this embodiment, the substrate 112c is a reflective substrate, so the fluorescent light P will be reflected back to the dichroic mirror 114 . The dichroic mirror 114 is also configured to reflect the fluorescent light P to the reflector 115 . The reflector 115 is configured to reflect the fluorescent light P to the homogenizer 120 again. With the aforementioned optical configuration, the optical path design can be made compact, so as to effectively reduce the space occupied by the optical engine module 110 in the projector 100 .

於一些實施方式中,反射器115為反射鏡或另一分色鏡,但本揭露並不以此為限。In some embodiments, the reflector 115 is a mirror or another dichroic mirror, but the present disclosure is not limited thereto.

於一些實施方式中,基板112c可以是轉動式基板或固定式基板。In some embodiments, the substrate 112c may be a rotating substrate or a fixed substrate.

藉由前述光學配置,本實施方式的光機模組110與應用其之投影機100即可針對各種發光模式取得各自的最大效益。以下配合下表一與表二的實驗數據進行說明。With the aforementioned optical configuration, the optical-mechanical module 110 of this embodiment and the projector 100 using it can obtain respective maximum benefits for various light-emitting modes. The following description will be made in conjunction with the experimental data in Table 1 and Table 2 below.

下表一為採用一組第一光源模組111之光機模組A與採用兩組第一光源模組111之光機模組B於實驗中檢測出的數據: 表一   光機模組A 光機模組B 總亮度(lm) 7770 15540 螢光亮度佔比(%) 0 0 效率(%) 100 100 The following table 1 shows the data detected in the experiment of the optical mechanical module A using a set of first light source modules 111 and the optical mechanical module B using two sets of first light source modules 111: Table 1 Optomechanical Module A Optomechanical module B Total brightness (lm) 7770 15540 Proportion of fluorescent brightness (%) 0 0 efficiency(%) 100 100

下表二為本實施方式之採用一組第一光源模組111與一組第二光源模組112的光機模組110於實驗中檢測出的數據: 表二   本實施方式之光機模組110 總亮度(lm) 8016 10337 13571 15969 19914 螢光亮度佔比(%) 52 41 59 50 59 效率(%) 106.7 105.6 105.7 105.7 105.6 Table 2 below shows the data detected in the experiment of the optomechanical module 110 using a set of first light source modules 111 and a set of second light source modules 112 in this embodiment: Table 2 The optical machine module 110 of this embodiment Total brightness (lm) 8016 10337 13571 15969 19914 Proportion of fluorescent brightness (%) 52 41 59 50 59 efficiency(%) 106.7 105.6 105.7 105.7 105.6

需說明的是,表二中各實施方式之光機模組110的效率係以表一中之光機模組A與光機模組B的效率作為基礎而換算出的,其中表一與表二中的效率是指光源將所消耗之電能轉換成光的效率,通常以光通量(lm/流明)與消耗功率瓦特(Watt)的比值來表示。由上表一與表二可知,本實施方式之光機模組110(即採用一組第一光源模組111與一組第二光源模組112)相較於僅採用一組或兩組第一光源模組111之光機模組A、B在亮度介於約7000lm至約20000lm之範圍內具有較佳的效率表現(高約5至6%)。另外,由上表一與表二還可知,本實施方式之光機模組110的螢光亮度佔比為約40%至約70%,且總亮度可比光機模組B提升約25%至約30%。It should be noted that the efficiencies of the optical-mechanical module 110 in each embodiment in Table 2 are converted based on the efficiencies of the optical-mechanical module A and the optical-mechanical module B in Table 1, where Table 1 and Table 1 The efficiency in the second refers to the efficiency of the light source to convert the consumed electrical energy into light, usually expressed by the ratio of luminous flux (lm/lumen) to power consumption in watts (Watt). From Table 1 and Table 2 above, it can be seen that the optomechanical module 110 of this embodiment (i.e. using a set of first light source modules 111 and a set of second light source modules 112) is compared with only one or two sets of second light source modules. The light engine modules A and B of a light source module 111 have better efficiency performance (about 5 to 6% higher) in the range of brightness from about 7000lm to about 20000lm. In addition, it can be seen from the above Tables 1 and 2 that the fluorescent brightness of the optomechanical module 110 in this embodiment accounts for about 40% to about 70%, and the total brightness can be increased by about 25% to about 25% compared with the optomechanical module B. About 30%.

請參照第6圖,其為繪示根據本揭露另一實施方式之光機模組210與均勻器120的示意圖。如第6圖所示,於本實施方式中,光機模組210包含第一光源模組111、第二光源模組212以及反射器214、215,其中第一光源模組111相同於第2圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。第二光源模組212包含發光單元112a、波長轉換材料112b以及基板212c,其中發光單元112a、波長轉換材料112b相同於第2圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。本實施方式相較於第2圖所示之實施方式的差異處,在於本實施方式之第二光源模組212的基板212c為透射式基板,且波長轉換材料112b與基板212c位於發光單元112a與反射器214之間。藉此,基板212c配置以供發光單元112a所發射的光線通過,使得此光線抵達波長轉換材料112b而被其轉換成螢光P。螢光P接著依序被反射器214、215反射而抵達均勻器120。藉由此光學配置,同樣可以使光路設計緊湊,以有效地縮減光機模組210於投影機100內所佔用之空間。Please refer to FIG. 6 , which is a schematic diagram illustrating an optical-mechanical module 210 and a homogenizer 120 according to another embodiment of the present disclosure. As shown in Figure 6, in this embodiment, the optomechanical module 210 includes a first light source module 111, a second light source module 212, and reflectors 214, 215, wherein the first light source module 111 is the same as the second light source module The implementation manner shown in the figure is therefore not described in detail here, and reference may be made to the aforementioned related introductions. The second light source module 212 includes a light-emitting unit 112a, a wavelength conversion material 112b, and a substrate 212c. The light-emitting unit 112a and the wavelength conversion material 112b are the same as those shown in FIG. introduce. The difference between this embodiment and the embodiment shown in FIG. 2 is that the substrate 212c of the second light source module 212 in this embodiment is a transmissive substrate, and the wavelength conversion material 112b and the substrate 212c are located between the light emitting unit 112a and the between the reflectors 214. Accordingly, the substrate 212c is configured to allow the light emitted by the light emitting unit 112a to pass through, so that the light reaches the wavelength conversion material 112b and is converted into fluorescent light P by the light. The fluorescent light P is then reflected by the reflectors 214 and 215 in sequence and reaches the homogenizer 120 . With this optical configuration, the optical path design can also be made compact, so as to effectively reduce the space occupied by the optical engine module 210 in the projector 100 .

於一些實施方式中,反射器214、215中之至少一者為反射鏡或分色鏡,但本揭露並不以此為限。In some implementations, at least one of the reflectors 214, 215 is a mirror or a dichroic mirror, but the present disclosure is not limited thereto.

請參照第7圖,其為繪示根據本揭露另一實施方式之光機模組310與均勻器120的示意圖。如第7圖所示,於本實施方式中,光機模組310包含第一光源模組111、第二光源模組112、分色鏡114以及帶通濾波元件315,其中第一光源模組111、第二光源模組112與分色鏡114相同於第2圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。本實施方式相較於第2圖所示之實施方式的差異處,在於本實施方式係以帶通濾波元件315取代第2圖中之反射器115。另外,相較於第2圖所示之實施方式中各別獨立地光耦合至均勻器120之第一光源模組111與第二光源模組112,本實施方式中之第一光源模組111與第二光源模組112皆光耦合至帶通濾波元件315,並經由帶通濾波元件315光耦合至均勻器120。藉由此光學配置,可以使光路設計更為緊湊,以更進一步縮減光機模組310於投影機100內所佔用之空間。Please refer to FIG. 7 , which is a schematic diagram illustrating an optical-mechanical module 310 and a homogenizer 120 according to another embodiment of the present disclosure. As shown in Figure 7, in this embodiment, the optomechanical module 310 includes a first light source module 111, a second light source module 112, a dichroic mirror 114 and a bandpass filter element 315, wherein the first light source module 111. The second light source module 112 and the dichroic mirror 114 are the same as the implementation shown in FIG. 2 , so details are not repeated here, and reference can be made to the aforementioned related introductions. The difference between this embodiment and the embodiment shown in FIG. 2 is that the reflector 115 in FIG. 2 is replaced by a band-pass filter element 315 in this embodiment. In addition, compared with the first light source module 111 and the second light source module 112 that are independently optically coupled to the homogenizer 120 in the embodiment shown in FIG. 2 , the first light source module 111 in this embodiment Both are optically coupled to the bandpass filter element 315 with the second light source module 112 , and are optically coupled to the homogenizer 120 through the bandpass filter element 315 . With this optical configuration, the optical path design can be made more compact, so as to further reduce the space occupied by the optical engine module 310 in the projector 100 .

請參照第8圖以及第9圖。第8圖為繪示帶通濾波元件315的波長-反射率曲線圖。第9圖為繪示被帶通濾波元件315反射之螢光P’的波長-強度曲線圖。如第8圖所示,實線代表的是帶通濾波元件315的波長-反射率曲線,而虛線代表的是由波長轉換材料112b所轉換之螢光P的波長-強度曲線。因此,當螢光P抵達帶通濾波元件315之後,被帶通濾波元件315反射之螢光P’即可獲得如第9圖所示之波長-強度曲線。換言之,螢光P的發光頻譜涵蓋帶通濾波元件315的反射頻譜,因此螢光P係部分地通過帶通濾波元件315且部分地被帶通濾波元件315反射。Please refer to Figure 8 and Figure 9. FIG. 8 is a graph showing the wavelength-reflectivity curve of the bandpass filter element 315 . FIG. 9 is a graph showing the wavelength-intensity curve of the fluorescent light P' reflected by the band-pass filter element 315. As shown in FIG. 8, the solid line represents the wavelength-reflectance curve of the bandpass filter element 315, and the dotted line represents the wavelength-intensity curve of the fluorescent light P converted by the wavelength conversion material 112b. Therefore, after the fluorescent light P reaches the band-pass filter element 315, the fluorescent light P' reflected by the band-pass filter element 315 can obtain the wavelength-intensity curve as shown in FIG. 9 . In other words, the emission spectrum of the phosphor P covers the reflection spectrum of the band-pass filter element 315 , so the phosphor P partially passes through the band-pass filter element 315 and is partially reflected by the band-pass filter element 315 .

請參照第10圖,其為繪示通過帶通濾波元件315之不同色光與被帶通濾波元件315反射之螢光P’的波長-強度曲線圖。配合第8圖與第10圖可知,紅光R、綠光G與藍光B的波長-強度曲線並未與帶通濾波元件315的波長-反射率曲線重疊,因此紅光R、綠光G與藍光B可通過帶通濾波元件315。並且,紅光R、綠光G與藍光B的波長-強度曲線亦不與被帶通濾波元件315反射之螢光P’的波長-強度曲線重疊。換言之,紅光R、綠光G與藍光B具有不同的發光頻譜,而帶通濾波元件315的反射頻譜位於紅光R與綠光G的發光頻譜之間。藉此,被波長轉換材料112b所轉換的螢光P可藉由帶通濾波元件315濾出較純的黃光,以利於擴展由紅光R、綠光G、藍光B與螢光P’所混光出之第二白光的色域。Please refer to FIG. 10 , which shows the wavelength-intensity curves of different color lights passing through the band-pass filter element 315 and the fluorescent light P' reflected by the band-pass filter element 315 . According to Fig. 8 and Fig. 10, the wavelength-intensity curves of red light R, green light G and blue light B do not overlap with the wavelength-reflectivity curve of band-pass filter element 315, so the red light R, green light G and blue light The blue light B can pass through the bandpass filter element 315 . Moreover, the wavelength-intensity curves of the red light R, the green light G, and the blue light B do not overlap with the wavelength-intensity curves of the fluorescent light P' reflected by the band-pass filter element 315. In other words, the red light R, the green light G and the blue light B have different emission spectra, and the reflection spectrum of the bandpass filter element 315 is located between the emission spectra of the red light R and the green light G. In this way, the fluorescent light P converted by the wavelength conversion material 112b can filter out purer yellow light through the bandpass filter element 315, so as to facilitate the expansion of the light emitted by the red light R, green light G, blue light B and fluorescent light P'. The color gamut of the second white light from the mixed light.

請參照第11圖,其為繪示根據本揭露另一實施方式之光機模組410與均勻器120的示意圖。如第11圖所示,於本實施方式中,光機模組410包含第一光源模組111、第二光源模組212、反射器214以及帶通濾波元件315,其中第一光源模組111與帶通濾波元件315相同於第7圖所示之實施方式,而第二光源模組212相同於第6圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。簡言之,本實施方式之第二光源模組212的基板212c配置以供發光單元112a所發射的光線通過,使得此光線抵達波長轉換材料112b而被其轉換成螢光P。螢光P接著依序被反射器214與帶通濾波元件315反射(並被濾為螢光P’)而抵達均勻器120。藉由此光學配置,同樣可以使光路設計更為緊湊,以更進一步縮減光機模組410於投影機100內所佔用之空間。Please refer to FIG. 11 , which is a schematic diagram illustrating an optical-mechanical module 410 and a homogenizer 120 according to another embodiment of the present disclosure. As shown in Figure 11, in this embodiment, the optomechanical module 410 includes a first light source module 111, a second light source module 212, a reflector 214 and a bandpass filter element 315, wherein the first light source module 111 The band-pass filter element 315 is the same as the embodiment shown in FIG. 7 , and the second light source module 212 is the same as the embodiment shown in FIG. 6 , so details are not described here, and the above-mentioned related introductions can be referred to. In short, the substrate 212c of the second light source module 212 in this embodiment is configured to allow the light emitted by the light emitting unit 112a to pass through, so that the light reaches the wavelength conversion material 112b and is converted into fluorescent light P by it. The fluorescent light P is then reflected by the reflector 214 and the band-pass filter element 315 in sequence (and filtered as fluorescent light P') and reaches the homogenizer 120. With this optical configuration, the optical path design can also be made more compact, so as to further reduce the space occupied by the optical engine module 410 in the projector 100 .

請參照第12圖,其為繪示根據本揭露另一實施方式之光機模組510與均勻器120的示意圖。如第12圖所示,於本實施方式中,光機模組510包含第一光源模組111、第二光源模組112、分色鏡514以及帶通濾波元件315,其中第一光源模組111的固態光發射器111a、111b、第二光源模組112的發光單元112a與帶通濾波元件315相同或相似於第7圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。本實施方式相較於第7圖所示之實施方式的差異處,在於本實施方式之第一光源模組111的固態光發射器111c與第二光源模組112的發光單元112a係鄰近設置,並遠離第一光源模組111的固態光發射器111a、111b。舉例來說,第一光源模組111的固態光發射器111c與第二光源模組112的發光單元112a可為設置於同一發光器內的相鄰兩雷射二極體,而第一光源模組111的固態光發射器111a、111b可為設置於另一發光器內的相鄰兩雷射二極體。Please refer to FIG. 12 , which is a schematic diagram illustrating an optical mechanical module 510 and a homogenizer 120 according to another embodiment of the present disclosure. As shown in Figure 12, in this embodiment, the optomechanical module 510 includes a first light source module 111, a second light source module 112, a dichroic mirror 514, and a bandpass filter element 315, wherein the first light source module The solid-state light emitters 111a, 111b of 111, the light-emitting unit 112a of the second light source module 112, and the band-pass filter element 315 are the same as or similar to the embodiment shown in FIG. introduce. The difference between this embodiment and the embodiment shown in FIG. 7 is that the solid-state light emitter 111c of the first light source module 111 and the light emitting unit 112a of the second light source module 112 of this embodiment are adjacently arranged. And away from the solid-state light emitters 111 a and 111 b of the first light source module 111 . For example, the solid-state light emitter 111c of the first light source module 111 and the light emitting unit 112a of the second light source module 112 can be two adjacent laser diodes arranged in the same light emitter, and the first light source module The solid-state light emitters 111a, 111b of the group 111 can be two adjacent laser diodes disposed in another light emitter.

本實施方式相較於第7圖所示之實施方式的另一差異處,在於本實施方式之分色鏡514的一部分(例如上半部)具有分光功能。具體來說,分色鏡514的此部分配置以供發光單元112a所發射的光線通過,並配置以將被波長轉換材料112b轉換之螢光P反射至帶通濾波元件315。另外,本實施方式之分色鏡514的另一部分(例如下半部)不具有分光功能。具體來說,分色鏡514的此部分僅配置以供第一光源模組111的固態光發射器111c所發射的光線通過而抵達均勻器120,並無法反射螢光P。藉由前述光學配置,同樣可以使光路設計更為緊湊,以更進一步縮減光機模組510於投影機100內所佔用之空間。Another difference between this embodiment and the embodiment shown in FIG. 7 is that a part (for example, the upper half) of the dichroic mirror 514 of this embodiment has a light splitting function. Specifically, this part of the dichroic mirror 514 is configured to allow the light emitted by the light emitting unit 112 a to pass through, and configured to reflect the fluorescent light P converted by the wavelength conversion material 112 b to the band-pass filter element 315 . In addition, another part (for example, the lower half) of the dichroic mirror 514 in this embodiment has no spectroscopic function. Specifically, this part of the dichroic mirror 514 is only configured for the light emitted by the solid-state light emitter 111 c of the first light source module 111 to pass through and reach the homogenizer 120 , and cannot reflect the fluorescent light P. With the aforementioned optical configuration, the optical path design can also be made more compact, so as to further reduce the space occupied by the optical engine module 510 in the projector 100 .

於一些實施方式中,第12圖中之分色鏡514亦可替換為第7圖中之分色鏡114,且第一光源模組111的固態光發射器111c所發射的光線可通過或不通過分色鏡114而抵達均勻器120。In some embodiments, the dichroic mirror 514 in FIG. 12 can also be replaced with the dichroic mirror 114 in FIG. 7, and the light emitted by the solid-state light emitter 111c of the first light source module 111 can pass through or not Pass through the dichroic mirror 114 and reach the homogenizer 120 .

請參照第13圖,其為繪示根據本揭露另一實施方式之光機模組610與均勻器120的示意圖。如第13圖所示,於本實施方式中,光機模組610包含第一光源模組111、第二光源模組212以及帶通濾波元件315,其中第一光源模組111與帶通濾波元件315相同於第12圖所示之實施方式,而第二光源模組212相同於第6圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。簡言之,本實施方式之第二光源模組212的基板212c配置以供發光單元112a所發射的光線通過,使得此光線抵達波長轉換材料112b而被其轉換成螢光P。螢光P接著依序被反射器214與帶通濾波元件315反射(並被濾為螢光P’)而抵達均勻器120。另外,固態光發射器111c所發射的光線係直接抵達均勻器120。藉由此光學配置,同樣可以使光路設計更為緊湊,以更進一步縮減光機模組610於投影機100內所佔用之空間。Please refer to FIG. 13 , which is a schematic diagram illustrating an optical-mechanical module 610 and a homogenizer 120 according to another embodiment of the present disclosure. As shown in FIG. 13, in this embodiment, the optical-mechanical module 610 includes a first light source module 111, a second light source module 212, and a band-pass filter element 315, wherein the first light source module 111 and the band-pass filter The element 315 is the same as the embodiment shown in FIG. 12 , and the second light source module 212 is the same as the embodiment shown in FIG. 6 , so it will not be repeated here, and reference can be made to the aforementioned related introduction. In short, the substrate 212c of the second light source module 212 in this embodiment is configured to allow the light emitted by the light emitting unit 112a to pass through, so that the light reaches the wavelength conversion material 112b and is converted into fluorescent light P by it. The fluorescent light P is then reflected by the reflector 214 and the band-pass filter element 315 in sequence (and filtered as fluorescent light P') and reaches the homogenizer 120. In addition, the light emitted by the solid-state light emitter 111 c directly reaches the homogenizer 120 . With this optical configuration, the optical path design can also be made more compact, so as to further reduce the space occupied by the optical engine module 610 in the projector 100 .

請參照第14圖、第15A圖以及第15B圖。第14圖為繪示根據本揭露另一實施方式之光機模組710與均勻器120的示意圖。第15A圖為繪示第14圖中之第二光源模組312之部分元件的立體圖。第15B圖為繪示第15A圖中之結構的另一立體圖。於本實施方式中,光機模組710包含第一光源模組111、第二光源模組312、分色鏡114以及帶通濾波元件315,其中第一光源模組111與帶通濾波元件315相同於第12圖所示之實施方式,因此在此恕不贅述,可參照前述相關介紹。本實施方式相較於第2圖所示之實施方式的差異處,在於本實施方式之第二光源模組312係以第一光源模組111的固態光發射器111c作為發光單元。本實施方式相較於第2圖所示之實施方式的另一差異處,在於本實施方式之第二光源模組312的基板312c具有缺口H,且基板312c為轉動式基板。另外,缺口H可由例如玻璃之光透射材料填補,以避免基板312c轉動時產生氣流擾動的噪音。於實際應用中,基板312c可具有不只一個缺口H。當基板312c轉動使得其缺口H移動至固態光發射器111c所發射之光線的光路時,此光線會直接通過缺口H而抵達均勻器120。當基板312c轉動使得其缺口H移動離開固態光發射器111c所發射之光線的光路時,此光線會先被波長轉換材料112b轉換成螢光P,再依序被基板312c、分色鏡114與帶通濾波元件315反射至均勻器120。藉由此光學配置,不僅同樣可更進一步縮減光機模組710於投影機100內所佔用之空間,還可以有效減少光機模組710與投影機100的製造成本。Please refer to Figure 14, Figure 15A and Figure 15B. FIG. 14 is a schematic diagram illustrating an optomechanical module 710 and a homogenizer 120 according to another embodiment of the present disclosure. FIG. 15A is a perspective view showing some components of the second light source module 312 in FIG. 14 . Fig. 15B is another perspective view showing the structure in Fig. 15A. In this embodiment, the optical-mechanical module 710 includes a first light source module 111, a second light source module 312, a dichroic mirror 114, and a band-pass filter element 315, wherein the first light source module 111 and the band-pass filter element 315 It is the same as the implementation shown in FIG. 12 , so it will not be repeated here, and reference can be made to the aforementioned related introductions. The difference between this embodiment and the embodiment shown in FIG. 2 is that the second light source module 312 of this embodiment uses the solid-state light emitter 111c of the first light source module 111 as a light emitting unit. Another difference between this embodiment and the embodiment shown in FIG. 2 is that the substrate 312c of the second light source module 312 of this embodiment has a notch H, and the substrate 312c is a rotary substrate. In addition, the gap H can be filled with a light-transmitting material such as glass, so as to avoid noise caused by airflow disturbance when the substrate 312c rotates. In practical applications, the substrate 312c may have more than one notch H. When the substrate 312c is rotated so that the notch H moves to the light path of the light emitted by the solid-state light emitter 111c, the light will directly pass through the notch H and reach the homogenizer 120 . When the substrate 312c rotates so that the notch H moves away from the optical path of the light emitted by the solid-state light emitter 111c, the light will be converted into fluorescent light P by the wavelength conversion material 112b first, and then by the substrate 312c, the dichroic mirror 114 and Bandpass filter element 315 reflects to homogenizer 120 . With this optical configuration, not only can the space occupied by the optical-mechanical module 710 in the projector 100 be further reduced, but also the manufacturing costs of the optical-mechanical module 710 and the projector 100 can be effectively reduced.

由以上對於本揭露之具體實施方式之詳述,可以明顯地看出,於本揭露的光機模組與投影機中,可產生不同色光之第一光源模組與可產生螢光之第二光源模組經由控制器的控制,即可對應於第一發光模式與第二發光模式分別混光出第一白光與第二白光。藉此,本揭露的光機模組與投影機即可針對各種發光模式取得各自的最大效益。From the above detailed description of the specific implementation of the present disclosure, it can be clearly seen that in the optical-mechanical module and the projector of the present disclosure, the first light source module that can generate different colors of light and the second light source module that can generate fluorescent light Through the control of the controller, the light source module can mix and output the first white light and the second white light respectively corresponding to the first light emitting mode and the second light emitting mode. In this way, the light-mechanical module and the projector disclosed in the present disclosure can obtain respective maximum benefits for various light-emitting modes.

雖然本揭露已以實施方式揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed above in terms of implementation, it is not intended to limit this disclosure. Any person skilled in the art may make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection of this disclosure The scope shall be defined by the scope of the appended patent application.

100:投影機 110,210,310,410,510,610,710:光機模組 111:第一光源模組 111a,111b,111c:固態光發射器 112,212,312:第二光源模組 112a:發光單元 112b:波長轉換材料 112c,212c,312c:基板 113:控制器 114,514:分色鏡 115,214,215:反射器 120:均勻器 121:擴散片 122:積分柱 130:投影模組 140:殼體 315:帶通濾波元件 R:紅光 G:綠光 B:藍光 P:螢光 H:缺口 100:Projector 110,210,310,410,510,610,710: Optical-mechanical modules 111: The first light source module 111a, 111b, 111c: solid state light emitters 112,212,312: Second light source module 112a: light emitting unit 112b: wavelength conversion material 112c, 212c, 312c: substrate 113: Controller 114,514: dichroic mirror 115,214,215: reflector 120:Equalizer 121: Diffuser 122: integral column 130: Projection module 140: shell 315: Bandpass filter element R: red light G: green light B: Blu-ray P: fluorescent H: notch

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖為繪示根據本揭露一實施方式之投影機的立體圖。 第2圖為繪示根據本揭露一實施方式之光機模組與均勻器的示意圖。 第3圖為繪示根據本揭露一實施方式之光機模組所包含元件的功能方塊。 第4圖為繪示根據本揭露一實施方式之投影機於第一發光模式中的運作示意圖。 第5圖為繪示根據本揭露一實施方式之投影機於第二發光模式中的運作示意圖。 第6圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第7圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第8圖為繪示帶通濾波元件的波長-反射率曲線圖。 第9圖為繪示被帶通濾波元件反射之螢光的波長-強度曲線圖。 第10圖為繪示通過帶通濾波元件之不同色光與被帶通濾波元件反射之螢光的波長-強度曲線圖。 第11圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第12圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第13圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第14圖為繪示根據本揭露另一實施方式之光機模組與均勻器的示意圖。 第15A圖為繪示第14圖中之第二光源模組之部分元件的立體圖。 第15B圖為繪示第15A圖中之結構的另一立體圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more comprehensible, the accompanying drawings are described as follows: FIG. 1 is a perspective view illustrating a projector according to an embodiment of the present disclosure. FIG. 2 is a schematic diagram illustrating an optomechanical module and a homogenizer according to an embodiment of the present disclosure. FIG. 3 shows the functional blocks of components included in the optomechanical module according to an embodiment of the present disclosure. FIG. 4 is a schematic diagram showing the operation of the projector in the first light-emitting mode according to an embodiment of the present disclosure. FIG. 5 is a schematic diagram showing the operation of the projector in the second light-emitting mode according to an embodiment of the present disclosure. FIG. 6 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 7 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 8 is a graph showing the wavelength-reflectance curve of the bandpass filter element. Fig. 9 is a graph showing the wavelength-intensity curve of the fluorescent light reflected by the band-pass filter element. Fig. 10 is a graph showing wavelength-intensity curves of light of different colors passing through the band-pass filter element and fluorescent light reflected by the band-pass filter element. FIG. 11 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 12 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 13 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 14 is a schematic diagram illustrating an optomechanical module and a homogenizer according to another embodiment of the present disclosure. FIG. 15A is a perspective view illustrating some components of the second light source module in FIG. 14 . Fig. 15B is another perspective view showing the structure in Fig. 15A.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

110:光機模組 110: Optomechanical module

111:第一光源模組 111: The first light source module

111a,111b,111c:固態光發射器 111a, 111b, 111c: solid state light emitters

112:第二光源模組 112: Second light source module

112a:發光單元 112a: light emitting unit

112b:波長轉換材料 112b: wavelength conversion material

112c:基板 112c: Substrate

114:分色鏡 114: dichroic mirror

115:反射器 115: reflector

120:均勻器 120:Equalizer

121:擴散片 121: Diffuser

122:積分柱 122: integral column

R:紅光 R: red light

G:綠光 G: green light

B:藍光 B: Blu-ray

P:螢光 P: fluorescent

Claims (16)

一種光機模組,包含:一第一光源模組,包含複數個固態光發射器,該些固態光發射器分別配置以產生不同色光;一第二光源模組,配置以產生一螢光;一控制器,配置以:於一第一發光模式中驅動該第一光源模組,其中該些色光配置以混光出一第一白光;以及於一第二發光模式中驅動該第一光源模組與該第二光源模組,其中該些色光與該螢光配置以混光出一第二白光;以及一帶通濾波元件,其中該些固態光發射器中之至少兩者與該第二光源模組光耦合至該帶通濾波元件。 An optical-mechanical module, comprising: a first light source module, including a plurality of solid-state light emitters, and the solid-state light emitters are respectively configured to generate different colors of light; a second light source module, configured to generate a fluorescent light; A controller configured to: drive the first light source module in a first light emitting mode, wherein the color lights are configured to mix light to produce a first white light; and drive the first light source module in a second light emitting mode Set with the second light source module, wherein the color lights and the fluorescent light are configured to mix light into a second white light; and a band-pass filter element, wherein at least two of the solid-state light emitters are compatible with the second light source The module is optically coupled to the bandpass filter element. 如請求項1所述之光機模組,其中該些固態光發射器為雷射二極體,並分別具有不同之發光頻譜,該帶通濾波元件具有一反射頻譜,且該反射頻譜位於該些發光頻譜中之相鄰兩者之間。 The optical machine module as described in claim 1, wherein the solid-state light emitters are laser diodes and have different light emission spectra, the bandpass filter element has a reflection spectrum, and the reflection spectrum is located at the Between the adjacent two in the emission spectrum. 如請求項2所述之光機模組,其中該螢光的發光頻譜涵蓋該反射頻譜。 The optomechanical module as claimed in claim 2, wherein the emission spectrum of the fluorescent light covers the reflection spectrum. 如請求項1所述之光機模組,其中該些固態光發射器中之該至少兩者包含一綠光雷射二極體以及 一紅光雷射二極體。 The optomechanical module as claimed in claim 1, wherein at least two of the solid-state light emitters comprise a green laser diode and A red laser diode. 如請求項1所述之光機模組,其中該些固態光發射器之該至少兩者包含一綠光雷射二極體、一紅光雷射二極體以及一藍光雷射二極體。 The optical machine module as claimed in claim 1, wherein at least two of the solid-state light emitters include a green laser diode, a red laser diode and a blue laser diode . 如請求項1所述之光機模組,其中該第二光源模組包含:一發光單元;以及一波長轉換材料,配置以將該發光單元所發射之光轉換成該螢光。 The optical engine module as claimed in claim 1, wherein the second light source module includes: a light emitting unit; and a wavelength conversion material configured to convert the light emitted by the light emitting unit into the fluorescent light. 如請求項6所述之光機模組,其中該發光單元與該些固態光發射器中之一者為藍光雷射二極體。 The optical engine module as claimed in item 6, wherein the light-emitting unit and one of the solid-state light emitters are blue laser diodes. 如請求項6所述之光機模組,其中該第二光源模組以該些固態光發射器中之一者作為該發光單元。 The optical engine module as claimed in claim 6, wherein the second light source module uses one of the solid-state light emitters as the light emitting unit. 如請求項6所述之光機模組,其中該第二光源模組進一步包含一基板,且該波長轉換材料設置於該基板上。 The optical engine module as claimed in claim 6, wherein the second light source module further includes a substrate, and the wavelength conversion material is disposed on the substrate. 如請求項9所述之光機模組,其中該基 板為一反射式基板。 The optical machine module as described in claim item 9, wherein the base The plate is a reflective substrate. 如請求項10所述之光機模組,進一步包含:一分色鏡,位於該發光單元與該基板之間,其中該分色鏡配置以供該發光單元所發射之光通過,並配置以反射該螢光。 The optical engine module according to claim 10, further comprising: a dichroic mirror located between the light-emitting unit and the substrate, wherein the dichroic mirror is configured to allow the light emitted by the light-emitting unit to pass through, and is configured to reflect the fluorescent light. 如請求項9所述之光機模組,其中該基板為一透射式基板。 The optical machine module as claimed in claim 9, wherein the substrate is a transmissive substrate. 如請求項12所述之光機模組,進一步包含:一反射器,其中該波長轉換材料與該基板位於該發光單元與該反射器之間,且該反射器配置以反射該螢光。 The optomechanical module according to claim 12, further comprising: a reflector, wherein the wavelength conversion material and the substrate are located between the light emitting unit and the reflector, and the reflector is configured to reflect the fluorescent light. 如請求項9所述之光機模組,其中該基板具有一缺口配置以供該發光單元所發射之光通過。 The optical engine module as claimed in claim 9, wherein the substrate has a notch configured for the light emitted by the light emitting unit to pass through. 一種投影機,包含:一如請求項1至14任一所述之光機模組;以及一投影模組,配置以:於該第一發光模式中,基於一第一時序依序處理該些色光;以及 於該第二發光模式中,基於一第二時序依序處理該些色光與該螢光。 A projector, comprising: an optical engine module as described in any one of claims 1 to 14; and a projection module configured to: in the first light-emitting mode, sequentially process the shades; and In the second light emitting mode, the color lights and the fluorescent light are sequentially processed based on a second time sequence. 如請求項15所述之投影機,進一步包含一均勻器,其中該第一光源模組與該第二光源模組係各別獨立地光耦合至該均勻器。 The projector as claimed in claim 15 further comprises a homogenizer, wherein the first light source module and the second light source module are respectively and independently optically coupled to the homogenizer.
TW110109746A 2021-03-18 2021-03-18 Optical engine module and projector TWI792227B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110109746A TWI792227B (en) 2021-03-18 2021-03-18 Optical engine module and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110109746A TWI792227B (en) 2021-03-18 2021-03-18 Optical engine module and projector

Publications (2)

Publication Number Publication Date
TW202238244A TW202238244A (en) 2022-10-01
TWI792227B true TWI792227B (en) 2023-02-11

Family

ID=85460272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109746A TWI792227B (en) 2021-03-18 2021-03-18 Optical engine module and projector

Country Status (1)

Country Link
TW (1) TWI792227B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8434875B2 (en) * 2009-06-30 2013-05-07 Casio Computer Co., Ltd. Projector having light source unit including excitation light source, optical wheel, light emitting light source, and controller
TWI504832B (en) * 2014-05-02 2015-10-21 Coretronic Corp Illumination system and projection apparatus
TWI511576B (en) * 2006-12-13 2015-12-01 Philips Lumileds Lighting Co Multi-color primary light generation in a projection system using leds
TWI533077B (en) * 2013-08-05 2016-05-11 精工愛普生股份有限公司 Illumination device and projector
EP2857897B1 (en) * 2013-08-12 2018-10-17 Ricoh Company Ltd. Light source device and image projecting apparatus having the same
TW201945823A (en) * 2018-04-25 2019-12-01 台達電子工業股份有限公司 Projection system and adjusting method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511576B (en) * 2006-12-13 2015-12-01 Philips Lumileds Lighting Co Multi-color primary light generation in a projection system using leds
US8434875B2 (en) * 2009-06-30 2013-05-07 Casio Computer Co., Ltd. Projector having light source unit including excitation light source, optical wheel, light emitting light source, and controller
TWI533077B (en) * 2013-08-05 2016-05-11 精工愛普生股份有限公司 Illumination device and projector
EP2857897B1 (en) * 2013-08-12 2018-10-17 Ricoh Company Ltd. Light source device and image projecting apparatus having the same
TWI504832B (en) * 2014-05-02 2015-10-21 Coretronic Corp Illumination system and projection apparatus
TW201945823A (en) * 2018-04-25 2019-12-01 台達電子工業股份有限公司 Projection system and adjusting method of the same

Also Published As

Publication number Publication date
TW202238244A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
US7210815B2 (en) Optical device, illumination apparatus, and color illumination apparatus
CN101937164B (en) Light source unit and projector
TWI437350B (en) Illumination system and wavelength-transforming device thereof
US10831087B2 (en) Illumination system and projection apparatus
US11163227B2 (en) Illumination system, wavelength conversion module, projection apparatus and illumination control method
WO2016158297A1 (en) Projector and image optical projection method
JP2012008303A (en) Light source device and projection type display device using the same
US10477171B2 (en) Projection apparatus and illumination system thereof
CN110858051B (en) Projection device and illumination system
WO2020088671A1 (en) Illumination system
JP5787133B2 (en) Light source unit and projector
WO2017203782A1 (en) Light source device and projection display device
JP6425058B2 (en) Light source device and projection device
TWI792227B (en) Optical engine module and projector
JP6908036B2 (en) Light source device and projection display device
US11392019B1 (en) Optical engine module and projector
CN113934091B (en) Illumination system and projection device
JP2016061945A (en) Light source device and projection device
TWI779988B (en) Light source module
TWI501019B (en) Light multiplexer and recycler, and micro-projector incorporating the same
JP2004012790A (en) Liquid crystal projector
TW202301018A (en) Fluorescent light-emitting module, projector, and phosphor wheel