TWI791023B - Method and apparatus for encoding input data as polar code, decoding method and apparatus for decoding code word - Google Patents

Method and apparatus for encoding input data as polar code, decoding method and apparatus for decoding code word Download PDF

Info

Publication number
TWI791023B
TWI791023B TW107119642A TW107119642A TWI791023B TW I791023 B TWI791023 B TW I791023B TW 107119642 A TW107119642 A TW 107119642A TW 107119642 A TW107119642 A TW 107119642A TW I791023 B TWI791023 B TW I791023B
Authority
TW
Taiwan
Prior art keywords
bits
bit
decoding
node
unfrozen
Prior art date
Application number
TW107119642A
Other languages
Chinese (zh)
Other versions
TW201904206A (en
Inventor
金大仙
金潣龜
金世亨
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201904206A publication Critical patent/TW201904206A/en
Application granted granted Critical
Publication of TWI791023B publication Critical patent/TWI791023B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3746Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding
    • H03M13/3753Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding using iteration stopping criteria

Abstract

A method of encoding input data as a polar code includes generating unfrozen bits by adding at least one designated information bit to information bits which have been generated based on the input data, reordering the unfrozen bits and frozen bits by assigning the unfrozen bits to polarized sub-channels having higher reliability than the frozen bits having a value known to both of an encoder and a decoder, and generating a code word by polar-coding results of the reordering may be provided. The at least one designated information bit may have the value known to both the encoder and the decoder.

Description

編碼輸入資料為極性碼的方法及設備、解碼方 法及用以解碼碼字的設備 Method and device for encoding input data into polar code, and decoding method Method and device for decoding codewords [相關申請的交叉引用] [Cross Reference to Related Application]

本申請請求在韓國智慧財產權局於2017年6月8日提交的韓國專利申請第10-2017-0071888號和2017年12月27日提交的韓國專利申請第10-2017-0181521號在35 U.S.C.§119下的優先權,所述申請的揭露內容以全文引用的方式併入本文中。 This application requests Korean Patent Application No. 10-2017-0071888 filed on June 8, 2017 and Korean Patent Application No. 10-2017-0181521 filed on December 27, 2017 at 35 U.S.C.§ 119, the disclosure of which is incorporated herein by reference in its entirety.

本發明概念涉及資料編碼和解碼方法,並且更具體地說涉及基於極性碼的資料編碼和解碼方法。 The inventive concept relates to data encoding and decoding methods, and more particularly to polar code-based data encoding and decoding methods.

在無線通訊系統中,可以執行通道編碼來改進資料傳輸的可靠性。為通道編碼方案中的一種的極性碼可能以低編碼/解碼複雜度實現香農容量(Shannon capacity)。極性碼使用通道極化,其中輸入中觀察到的位元通道(或子通道)被極化成良好位元通道和不良位元通道以通過良好位元通道傳輸資訊位元,同時通過不良位元通道傳輸具有編碼器和解碼器都已知的值(例如,零)的凍結位元。In wireless communication systems, channel coding can be implemented to improve the reliability of data transmission. Polar codes, one of channel coding schemes, may achieve Shannon capacity with low encoding/decoding complexity. Polar codes use channel polarization, where the bit lanes (or sub-channels) observed in the input are polarized into good bit lanes and bad bit lanes to transmit information bits through good bit lanes while passing through bad bit lanes Transfers frozen bits with a value known to both the encoder and decoder (for example, zero).

本發明概念提供一種通過使用預定資訊以改進效率進行極性編碼和解碼的方法和設備。The inventive concept provides a method and apparatus for polar encoding and decoding with improved efficiency by using predetermined information.

根據本發明概念的一方面,提供一種將輸入資料編碼為極性碼的方法,包含:通過將至少一個指定資訊位元添加到已基於輸入資料產生的資訊位元來產生未凍結位元,通過將未凍結位元指配到與具有編碼器和解碼器都已知的值的凍結位元相比可靠性更高的極化子通道來對未凍結位元和凍結位元重新排序;以及通過重新排序的極性編碼結果來產生碼字,其中至少一個指定資訊位元可能具有編碼器和解碼器都已知的值。According to an aspect of the inventive concept, there is provided a method of encoding input data into a polar code, comprising: generating unfrozen bits by adding at least one designated information bit to information bits already generated based on the input data, by adding reordering the unfrozen bits and the frozen bits by assigning the unfrozen bits to more reliable polarized sub-channels than the frozen bits having values known to both the encoder and the decoder; The sorted polar-encoded results are generated to generate codewords in which at least one specified information bit may have a value known to both the encoder and the decoder.

根據本發明概念的另一方面,提供一種將輸入資料編碼為極性碼的設備,包含:記憶體,其被配置以存儲電腦可讀指令;以及一或多個處理器,其被配置以執行電腦可讀指令,以便一或多個處理器被配置以:通過基於極化子通道的可靠性對未凍結位元和具有編碼器和解碼器都已知的值的凍結位元重新排序來產生位元序列,所述未凍結位元包含至少一個指定資訊位元和基於輸入資料的資訊位元;以及通過極性編碼位元序列來產生碼字,其中所述至少一個指定資訊位元具有編碼器和解碼器都已知的值。According to another aspect of the inventive concept, there is provided an apparatus for encoding input data into a polar code, comprising: a memory configured to store computer-readable instructions; and one or more processors configured to execute a computer-readable Instructions readable such that the one or more processors are configured to: generate bits by reordering unfrozen bits and frozen bits having values known to both the encoder and the decoder based on the reliability of the polarized subchannels a sequence of bits, the unfrozen bits comprising at least one designated information bit and an information bit based on input data; and a codeword generated by polar encoding the bit sequence, wherein the at least one designated information bit has an encoder and A value known to the decoder.

根據本發明概念的另一方面,提供一種解碼方法,包含:接收通過極性編碼位元序列所產生的碼字;以及通過在L是正整數的情況下產生L個解碼路徑的清單來執行碼字的列表解碼,其中位元序列包含有包含輸入位元、迴圈冗餘校驗(cyclic redundancy check;CRC)位元和至少一個指定資訊位元的未凍結位元以及具有編碼器和解碼器都已知的值的凍結位元,且其中所述執行包含基於解碼至少一個指定資訊位元的結果提早終止碼字的解碼。According to another aspect of the inventive concept, there is provided a decoding method comprising: receiving a codeword generated by polar encoding a bit sequence; and performing the codeword generation by generating a list of L decoding paths if L is a positive integer List decoding in which the sequence of bits contains unfrozen bits containing input bits, cyclic redundancy check (CRC) bits, and at least one specified information bit and has both encoder and decoder frozen bits of known values, and wherein the performing includes terminating decoding of the codeword early based on a result of decoding at least one specified information bit.

圖1是示出根據本發明概念的實例實施例的包含基站(BS或eNB)10和使用者設備(UE)20的無線通訊系統100的框圖。無線通訊系統100可以包含(但不限於)第5代(5G)無線系統、長期演進(Long Term Evolution;LTE)系統、碼分多址(CDMA)系統、全球移動通信(GSM)系統、無線局域網(WLAN)系統或任何其它無線通訊系統。1 is a block diagram illustrating a wireless communication system 100 including a base station (BS or eNB) 10 and a user equipment (UE) 20 according to an example embodiment of inventive concepts. The wireless communication system 100 may include (but not limited to) the 5th generation (5G) wireless system, the long term evolution (Long Term Evolution; LTE) system, the code division multiple access (CDMA) system, the global mobile communication (GSM) system, the wireless local area network (WLAN) system or any other wireless communication system.

基站10可以是可以與使用者設備20及/或其它基站通信並交換資料和控制資訊的固定站。舉例來說,基站10可被稱為節點B、演進節點B(eNB)、磁區、位元點、基地收發器系統(Base Transceiver System;BTS)、存取點(Access Point;AP)、中繼節點、遠端無線電頭端(Remote Radio Head;RRH)、無線電單元(radio unit;RU)、較小細胞等等。在本揭露內容中,基站10或細胞可以指示由碼分多址中的基站控制器(Base Station Controller;BSC)、寬頻碼分多址(WCDMA)中的節點B、長期演進中的eNB或磁區(位元點)覆蓋的一些區域或功能,並且可以包含各種覆蓋區域(例如巨型細胞、宏細胞、微小區、微微細胞、超微型細胞)以及中繼節點、遠端無線電頭端、無線電單元或較小細胞通信範圍。The base station 10 may be a fixed station capable of communicating with UE 20 and/or other base stations and exchanging data and control information. For example, the base station 10 may be called a Node B, an evolved Node B (eNB), a magnetic zone, a bit point, a base transceiver system (Base Transceiver System; BTS), an access point (Access Point; AP), a middle Relay node, remote radio head (Remote Radio Head; RRH), radio unit (radio unit; RU), smaller cells, etc. In this disclosure, a base station 10 or a cell may refer to a base station controller (Base Station Controller; BSC) in code division multiple access, a node B in wideband code division multiple access (WCDMA), an eNB in long-term evolution, or a magnetic A number of areas or functions covered by a zone (bit point) and can contain various coverage areas (e.g. macrocells, macrocells, microcells, picocells, nanocells) as well as relay nodes, remote radio heads, radio units Or smaller cell communication range.

為無線通訊裝置的使用者設備20可以包含可能固定或移動並且可以與基站10通信以傳輸並接收資料及/或控制資訊的各種裝置。舉例來說,使用者設備20可以是終端設備、移動台(mobile station;MS)、移動終端(mobile terminal;MT)、使用者終端(使用者終端;UT)、訂戶站(subscriber station;SS)、無線裝置、手持裝置等等。The UE 20 which is a wireless communication device may include various devices which may be fixed or mobile and which may communicate with the base station 10 to transmit and receive data and/or control information. For example, the user equipment 20 may be a terminal equipment, a mobile station (mobile station; MS), a mobile terminal (mobile terminal; MT), a user terminal (user terminal; UT), a subscriber station (subscriber station; SS) , wireless devices, handheld devices, and more.

基站10與使用者設備20之間的無線通訊網路可以通過共用可獲得的網路資源來支援多個使用者的通信。舉例來說,在無線通訊網路中,資訊可以通過各種多址方法傳送,所述方法例如碼分多址(code division multiple access;CDMA)、頻分多址(frequency division multiple access;FDMA)、時分多址(time division multiple access;TDMA)、正交頻分多址(orthogonal frequency division multiple access;OFDMA)、單載波頻分多址(Single Carrier Frequency Division Multiple Access;SC-FDMA)、OFDM-FDMA、OFDM-TDMA或OFDM-CDMA。The wireless communication network between the base station 10 and the user equipment 20 can support the communication of multiple users by sharing available network resources. For example, in a wireless communication network, information can be transmitted through various multiple access methods, such as code division multiple access (CDMA), frequency division multiple access (FDMA), time Division multiple access (time division multiple access; TDMA), orthogonal frequency division multiple access (orthogonal frequency division multiple access; OFDMA), single carrier frequency division multiple access (Single Carrier Frequency Division Multiple Access; SC-FDMA), OFDM-FDMA , OFDM-TDMA or OFDM-CDMA.

參考圖1,基站10和使用者設備20可以通過下行鏈路(DL)30和上行鏈路(uplink;UI)40彼此通信。舉例來說,在例如長期演進系統或長期演進高級系統的無線系統中,下行鏈路30和上行鏈路40可以通過控制通道(例如物理下行控制通道(Physical Downlink Control Channel;PDCCH)、物理控制格式指示通道(Physical Control Format Indicator Channel;PCFICH)、物理混合ARQ指示通道(Physical Hybrid ARQ Indicator Channel;PHICH)、物理上行控制通道(Physical Uplink Control Channel;PUCCH)或增強物理下行控制通道(Enhanced Physical Downlink Control Channel;EPDCCH))傳輸控制資訊,並且可以通過資料通道(例如物理下行共用通道(Physical Downlink Shared Channel;PDSCH)或物理上行共用通道(Physical Uplink Shared Channel;PUSCH))傳輸資料。Referring to FIG. 1 , a base station 10 and a user equipment 20 may communicate with each other through a downlink (DL) 30 and an uplink (uplink; UI) 40 . For example, in a wireless system such as the Long Term Evolution system or the Long Term Evolution Advanced system, the downlink 30 and the uplink 40 may be controlled via a control channel (such as a Physical Downlink Control Channel (PDCCH), a physical control format Physical Control Format Indicator Channel (PCFICH), Physical Hybrid ARQ Indicator Channel (PHICH), Physical Uplink Control Channel (PUCCH) or Enhanced Physical Downlink Control Channel (Enhanced Physical Downlink Control Channel; EPDCCH)) transmits control information, and can transmit data through a data channel (such as a Physical Downlink Shared Channel (PDSCH) or a Physical Uplink Shared Channel (PUSCH)).

在本揭露內容中,通過物理控制通道(例如物理上行控制通道、物理上行共用通道、物理下行控制通道、增強物理下行控制通道或物理下行共用通道)傳輸和接收信號可表達為“傳輸和接收物理上行控制通道、物理上行共用通道、物理下行控制通道、增強物理下行控制通道以及物理下行共用通道”。而且,傳輸或接收物理下行控制通道或者通過物理下行控制通道傳輸或接收信號可以包含傳輸或接收增強物理下行控制通道或者通過增強物理下行控制通道傳輸或接收信號。也就是說,物理下行控制通道可以是物理下行控制通道或增強物理下行控制通道,並且可以包含物理下行控制通道和增強物理下行控制通道。In this disclosure, transmitting and receiving signals through a physical control channel (such as a physical uplink control channel, a physical uplink shared channel, a physical downlink control channel, an enhanced physical downlink control channel, or a physical downlink shared channel) can be expressed as "transmitting and receiving physical Uplink Control Channel, Physical Uplink Shared Channel, Physical Downlink Control Channel, Enhanced Physical Downlink Control Channel, and Physical Downlink Shared Channel". Moreover, transmitting or receiving a physical downlink control channel or transmitting or receiving signals through a physical downlink control channel may include transmitting or receiving an enhanced physical downlink control channel or transmitting or receiving signals through an enhanced physical downlink control channel. That is to say, the physical downlink control channel may be a physical downlink control channel or an enhanced physical downlink control channel, and may include the physical downlink control channel and the enhanced physical downlink control channel.

通道編碼可用於通過無線通訊系統100中的下行鏈路30和上行鏈路40改進資料傳輸的可靠性。舉例來說,在無線通訊系統100中,極性碼(或極性標誌)可以用於通道編碼,並且基站10和使用者設備20可以分別包含用於極性碼的編碼器和解碼器。極性碼可以基於通道極化,在輸入中觀察到的位元通道(或子通道)通過所述通道極化被極化成良好和不良位元通道。因此,在所述極性碼中,可以將基於輸入資料DIN的資訊位元指配到良好位元通道,而可以將具有編碼器和解碼器都已知的值的凍結位元指配到不良位元通道。如下文所描述,根據本發明概念的一些實例實施例,可以另外將具有預定或所需值的至少一個指定資訊(可互換地被稱作預定資訊(PI))位元指配到極性碼的良好位元通道。在一些實例實施例中,預定資訊位元可以包含編碼器和解碼器都已知的值(例如,預定或所需固定值及/或使用者設備20的識別字),並且可以被指配到對應於位元序列SEQ中的良好位元通道的索引,所述位元序列SEQ是基於極性碼的特徵確定的編碼器16的輸入。Channel coding can be used to improve the reliability of data transmission through the downlink 30 and uplink 40 in the wireless communication system 100 . For example, in the wireless communication system 100, polar codes (or polar flags) can be used for channel coding, and the base station 10 and the UE 20 can include encoders and decoders for the polar codes, respectively. The polarity code may be based on the channel polarization by which bit-lanes (or sub-channels) observed in the input are polarized into good and bad bit-lanes. Thus, in the polar code, information bits based on the input data DIN can be assigned to good bit lanes, while frozen bits with values known to both encoder and decoder can be assigned to bad bits meta channel. As described below, according to some example embodiments of the inventive concept, at least one designated information (interchangeably referred to as predetermined information (PI)) bit having a predetermined or desired value may additionally be assigned to the polar code's Good bit channel. In some example embodiments, predetermined information bits may contain values known to both the encoder and the decoder (e.g., predetermined or desired fixed values and/or identification words of the user equipment 20), and may be assigned to Corresponds to the index of a good bit-lane in the sequence of bits SEQ that is the input to the encoder 16 determined based on the characteristics of the polar code.

根據本發明概念的一些實例實施例的編碼和解碼設備和/或方法可以使得能夠通過在極性碼的編碼和解碼中使用指定資訊來提早終止極性碼解碼操作,並且因此可能由於高效提早終止而顯著降低無線通訊系統100中的解碼操作的負載(例如,計算資源)。根據本發明概念的一些其它實例實施例的編碼和解碼設備及方法可以通過使用指定資訊獲得所需假警率(false alarm rate;FAR)而無需額外迴圈冗餘校驗(CRC)位元,同時通過在解碼操作期間提早捨棄解碼路徑而提供改進解碼性能。Encoding and decoding devices and/or methods according to some example embodiments of the inventive concepts may enable early termination of polar code decoding operations by using specified information in the encoding and decoding of polar codes, and thus may be significant due to efficient early termination The load (eg, computing resources) of the decoding operation in the wireless communication system 100 is reduced. The encoding and decoding apparatuses and methods according to some other example embodiments of the inventive concept can obtain the desired false alarm rate (FAR) by using designated information without additional CRC bits, At the same time improved decoding performance is provided by dropping the decoding path early during the decoding operation.

參考圖1,基站10可以包含迴圈冗餘校驗處理器12、子通道映射單元14、編碼器16和速率匹配單元18。使用者設備20可以包含極性解碼器22。在下文中,描述實例,其中基站10在通過下行鏈路30將信號傳輸到使用者設備20的過程期間編碼資料,並且使用者設備20在通過下行鏈路30從基站10接收信號的過程期間解碼資料。然而,實例實施例不限於此。根據一些實例實施例,使用者設備20可以通過上行鏈路40將信號傳輸到基站10,並且基站10可以通過上行鏈路40從使用者設備20接收信號。舉例來說,儘管圖1中未展示,但基站10可以包含極性解碼器,並且使用者設備20可以包含極性編碼器。基站10和使用者設備20的元件在一些實例實施例中可以實施為通過邏輯合成等等實施的硬體塊,在一些實例實施例中可以實施為處理器和由處理器實施的軟體塊,並且在一些實例實施例中可以實施為硬體塊、處理器和軟體塊的組合。Referring to FIG. 1 , a base station 10 may include a loop redundancy check processor 12 , a subchannel mapping unit 14 , an encoder 16 and a rate matching unit 18 . The UE 20 may include a polarity decoder 22 . In the following, an example is described in which the base station 10 encodes data during the process of transmitting a signal to the user equipment 20 through the downlink 30, and the user equipment 20 decodes the material during the process of receiving a signal from the base station 10 through the downlink 30 . However, example embodiments are not limited thereto. According to some example embodiments, the user equipment 20 can transmit signals to the base station 10 through the uplink 40 , and the base station 10 can receive signals from the user equipment 20 through the uplink 40 . For example, although not shown in FIG. 1 , base station 10 may include a polar decoder, and UE 20 may include a polar encoder. The elements of the base station 10 and the user equipment 20 may be implemented as hardware blocks implemented by logic synthesis etc. in some example embodiments, may be implemented as processors and software blocks implemented by the processors in some example embodiments, and In some example embodiments may be implemented as a combination of hardware blocks, processors and software blocks.

迴圈冗餘校驗處理器12可以產生輸入資料DIN的迴圈冗餘校驗(CRC)位元,並且產生包含輸入資料DIN和迴圈冗餘校驗位元的迴圈冗餘校驗資料DCRC。舉例來說,迴圈冗餘校驗處理器12可以通過將J個位元的迴圈冗餘校驗位元添加到K個位元的輸入資料DIN來產生(K+J)個位元的迴圈冗餘校驗資料DCRC(K和J是正整數)。在本揭露內容中,迴圈冗餘校驗資料DCRC可被稱為包含輸入資料DIN的輸入位元和迴圈冗餘校驗位元的資訊位元。迴圈冗餘校驗位元可以用於確認使用者設備20中所接收的資料是否存在錯誤,並且迴圈冗餘校驗處理器12可以按無線通訊系統100所需的任何方式產生迴圈冗餘校驗位元。在一些實例實施例中,迴圈冗餘校驗位元可以使用無線電網路臨時識別字(Radio Network Temporary Identifier;RNTI)掩蔽,如下文參考圖2所描述。The loop redundancy check processor 12 can generate a loop redundancy check (CRC) bit of the input data DIN, and generate loop redundancy check data including the input data DIN and the loop redundancy check bits DCRC. For example, the loop redundancy check processor 12 can generate (K+J) bits of Loop redundancy check data DCRC (K and J are positive integers). In this disclosure, the cyclic redundancy check data DCRC may be referred to as information bits including the input bits of the input data DIN and the cyclic redundancy check bits. The loop redundancy check bit can be used to confirm whether there is an error in the data received in the user equipment 20, and the loop redundancy check processor 12 can generate loop redundancy in any manner required by the wireless communication system 100. The rest of the parity bits. In some example embodiments, the loop redundancy check bit may be masked using a Radio Network Temporary Identifier (RNTI), as described below with reference to FIG. 2 .

子通道映射單元14可以從迴圈冗餘校驗資料DCRC產生位元序列SEQ,其為到編碼器16的輸入。在一些實例實施例中,子通道映射單元14可以通過將至少一個預定資訊位元添加到迴圈冗餘校驗資料DCRC來產生未凍結位元,並且可以通過對凍結位元和未凍結位元重新排序來產生位元序列SEQ。舉例來說,通過將J'個位元的預定資訊位元添加到(K + J)個位元的迴圈冗餘校驗資料DCRC,子通道映射單元14可以產生(K + J + J')個位元的未凍結位元並且可以產生(N - (K + J + J'))個位元的凍結位元(J'和N是正整數)。接著,子通道映射單元14可以通過對未凍結位元和凍結位元重新排序來產生N個位元的位元序列SEQ。The sub-channel mapping unit 14 may generate a sequence of bits SEQ from the cycle redundancy check data DCRC, which is an input to the encoder 16 . In some example embodiments, the sub-channel mapping unit 14 can generate unfrozen bits by adding at least one predetermined information bit to the loop redundancy check data DCRC, and can generate unfrozen bits by comparing the frozen bits and the unfrozen bits Reorder to generate the bit sequence SEQ. For example, by adding J' bits of predetermined information bits to (K + J) bits of loop redundancy check data DCRC, the sub-channel mapping unit 14 can generate (K + J + J' ) bits of unfrozen bits and can generate (N - (K + J + J')) bits of frozen bits (J' and N are positive integers). Next, the sub-channel mapping unit 14 may generate a bit sequence SEQ of N bits by reordering the unfrozen bits and the frozen bits.

位元序列SEQ是到產生極性編碼碼字PCW的編碼器16的輸入。位元序列SEQ的索引可以對應於極性碼的極化子通道。因此,子通道映射單元14可以基於索引辨識良好子通道(或良好位元通道)和不良子通道(或不良位元通道),並且可以通過以將包含凍結位元和至少一個預定資訊位元的未凍結位元指配到可靠性比凍結位元更高的極化子通道來產生位元序列SEQ。因此,可以將包含在未凍結位元中的至少一個預定資訊位元指配到具有相對高可靠性的極化子通道。將在下文參考圖6到圖9描述從未凍結位元和凍結位元產生位元序列SEQ的一些實例。The bit sequence SEQ is the input to the encoder 16 which generates the polarity encoded codeword PCW. An index of the bit sequence SEQ may correspond to a polar sub-channel of a polar code. Therefore, the sub-channel mapping unit 14 can identify a good sub-channel (or a good bit-lane) and a bad sub-channel (or a bad bit-lane) based on the index, and can pass to the sub-channel containing the frozen bit and at least one predetermined information bit Unfrozen bits are assigned to polarized sub-channels with higher reliability than frozen bits to generate the bit sequence SEQ. Therefore, at least one predetermined information bit contained in the unfrozen bits can be assigned to the polarized sub-channel with relatively high reliability. Some examples of generating a sequence of bits SEQ from unfrozen bits and frozen bits will be described below with reference to FIGS. 6-9 .

編碼器16可以通過處理位元序列SEQ來產生極性編碼碼字PCW。舉例來說,編碼器16可以如以下[等式1]中所示從N個位元的位元序列SEQ

Figure 02_image002
產生N個位元的極性編碼碼字PCW
Figure 02_image004
。 [等式1]
Figure 02_image007
The encoder 16 may generate a polar encoding codeword PCW by processing the bit sequence SEQ. For example, the encoder 16 can start from the bit sequence SEQ of N bits as shown in [Equation 1] below
Figure 02_image002
Generate a polar codeword PCW of N bits
Figure 02_image004
. [equation 1]
Figure 02_image007

[等式1]中,

Figure 02_image010
可被稱為產生矩陣並且可以是
Figure 02_image012
的n階克羅內克冪(Kronecker power)。舉例來說,圖4繪示根據
Figure 02_image014
(即,N=8)的編碼器16的操作。根據[等式1],隨著N增大,可以極化子通道,並且子通道中的每一者可被稱為極化子通道。從迴圈冗餘校驗資料DCRC產生極性編碼碼字PCW的子通道映射單元14和編碼器16可以統稱為極性編碼器。[Equation 1],
Figure 02_image010
can be called the generating matrix and can be
Figure 02_image012
The nth order Kronecker power (Kronecker power). For example, Figure 4 shows the
Figure 02_image014
(ie, N=8) for the encoder 16 operation. According to [Equation 1], as N increases, the subchannels may be polarized, and each of the subchannels may be referred to as a polarized subchannel. The sub-channel mapping unit 14 and the encoder 16 that generate the polar code word PCW from the cycle redundancy check data DCRC may be collectively referred to as a polar encoder.

速率匹配單元18可以通過對極性編碼碼字PCW進行速率匹配來產生輸出資料DOUT。速率匹配單元18可以通過削弱和/或縮短極性編碼碼字PCW以無線通訊系統100所需的方式執行速率匹配。由速率匹配單元18速率匹配的輸出資料DOUT可以通過依序穿過調變器、混頻器、功率放大器、天線等轉換,並且可以通過下行鏈路30傳送到使用者設備20。The rate matching unit 18 can generate the output data DOUT by performing rate matching on the polar code word PCW. The rate matching unit 18 can perform rate matching in a manner required by the wireless communication system 100 by weakening and/or shortening the polar code word PCW. The output data DOUT rate-matched by the rate-matching unit 18 can be converted by sequentially passing through a modulator, a mixer, a power amplifier, an antenna, etc., and can be transmitted to the UE 20 through the downlink 30 .

使用者設備20可以通過下行鏈路30接收從基站10傳輸的信號。舉例來說,接收到的信號可以通過穿過天線、濾波器、低雜訊放大器、模數轉換器等轉換成資料,並且轉換的資料可以作為極性編碼碼字PCW'傳送到極性解碼器22。極性解碼器22可以通過解碼極性編碼碼字PCW'產生解碼資料DEC,並因此提取通過基站10發送的資訊(例如,輸入資料DIN)。The UE 20 can receive signals transmitted from the base station 10 via the downlink 30 . For example, the received signal can be converted into data by passing through an antenna, a filter, a low noise amplifier, an analog-to-digital converter, etc., and the converted data can be sent to the polar decoder 22 as a polar code word PCW′. The polar decoder 22 can generate the decoded data DEC by decoding the polar code word PCW′, and thereby extract the information (eg, the input data DIN) sent by the base station 10 .

在一些實例實施例中極性解碼器22可以基於連續抵消(successive cancellation;SC)解碼依序逐位元解碼極性編碼碼字PCW'。在一些實例實施例中,極性解碼器22可以基於列表解碼維持多個候選解碼路徑並在根據最大似然捨棄解碼路徑時解碼極性編碼碼字PCW'。連續抵消列表(successive cancellation list;SCL)解碼可被稱為連續抵消解碼和清單解碼的組合。在一些實例實施例中,如下文參考圖5B所描述,例如簡化連續抵消(simplified successive cancellation;SSC)解碼方法的方法可以用於通過將節點分類成解碼樹中的預定(或替代地,所需)組來降低計算複雜度。在一些實例實施例中,包含級聯迴圈冗餘校驗碼和極性碼的方法可以用於改進連續抵消清單解碼的性能。然而,應注意,以上解碼方法僅僅是說明性的,並且本發明概念的實例實施例不限於上文所描述的解碼方法。In some example embodiments, the polar decoder 22 may sequentially decode the polar code word PCW' bit by bit based on successive cancellation (SC) decoding. In some example embodiments, the polar decoder 22 may maintain a plurality of candidate decoding paths based on list decoding and decode the polar encoded codeword PCW' when discarding the decoding paths according to maximum likelihood. Successive cancellation list (SCL) decoding may be referred to as a combination of successive cancellation and list decoding. In some example embodiments, as described below with reference to FIG. 5B , methods such as the simplified successive cancellation (SSC) decoding method may be used by classifying nodes into predetermined (or alternatively, desired ) group to reduce the computational complexity. In some example embodiments, methods involving concatenated cyclic redundancy check codes and polar codes may be used to improve the performance of consecutive offset list decoding. It should be noted, however, that the above decoding methods are merely illustrative, and example embodiments of inventive concepts are not limited to the decoding methods described above.

根據本發明概念的實例實施例,極性解碼器22可以在解碼極性編碼碼字PCW'的過程期間被告知由基站10的子通道映射單元14插入的預定資訊位元的預定(或替代地,所需)值,並且可以使用解碼預定資訊位元的結果(例如,估計的預定資訊位元)。基於估計的預定資訊位元,極性解碼器22在一些實例實施例中可以提早終止解碼操作,並且在一些實例實施例中可以使用列表解碼的列表精簡。而且,估計的預定資訊位元可以通過執行迴圈冗餘校驗功能降低假警率(FAR)。According to an example embodiment of the inventive concept, the polar decoder 22 may be informed of the reservation (or alternatively, the required) value, and the result of decoding the predetermined information bits (eg, estimated predetermined information bits) may be used. Based on the estimated predetermined information bits, polar decoder 22 may terminate the decoding operation early in some example embodiments, and may use list compaction for list decoding in some example embodiments. Moreover, the estimated predetermined information bits can reduce the false alarm rate (FAR) by performing loop redundancy check function.

圖2是示出本發明概念的實例實施例的圖1的下行鏈路30的結構的實例的框圖。舉例來說,圖2繪示圖1的下行鏈路30的傳輸時間間隔(Transmission Time Interval;TTI)。在無線通訊系統100中,下行鏈路30的資料可以在傳輸時間間隔單元中傳輸,並且一個傳輸時間間隔可以被定義為包含多個符號(例如,OFDM符號)的時間間隔。舉例來說,長期演進中的傳輸時間間隔可以是具有1 ms長度的子幀,並且5G中的傳輸時間間隔可以是可擴展傳輸時間間隔。在下文中,將參考圖1描述圖2。FIG. 2 is a block diagram illustrating an example of the structure of the downlink 30 of FIG. 1 of an example embodiment of the inventive concept. For example, FIG. 2 illustrates a transmission time interval (Transmission Time Interval; TTI) of the downlink 30 in FIG. 1 . In the wireless communication system 100, the data of the downlink 30 can be transmitted in TTI units, and a TTI can be defined as a time interval including a plurality of symbols (eg, OFDM symbols). As an example, a TTI in Long Term Evolution may be a subframe with a length of 1 ms, and a TTI in 5G may be a Scalable TTI. Hereinafter, FIG. 2 will be described with reference to FIG. 1 .

參考圖2,下行鏈路30的傳輸時間間隔5可以包含通過時分複用(Time Division Multiplexing;TDM)複用的兩個時間區域。舉例來說,兩個時間區域可以包含用於控制通道(例如,物理下行控制通道或物理混合ARQ指示通道)的傳輸的控制區域和用於共用通道(例如,物理下行共用通道)的傳輸的資料區域。舉例來說,控制區域可以包含用於控制通道的多個符號,並且資料區域可以包括用於共用通道的剩餘符號。Referring to FIG. 2 , the transmission time interval 5 of the downlink 30 may include two time regions multiplexed by Time Division Multiplexing (TDM). For example, two time regions may contain a control region for transmission of a control channel (e.g., a physical downlink control channel or a physical hybrid ARQ indicator channel) and a data region for transmission of a shared channel (e.g., a physical downlink shared channel) area. For example, the control region may contain a number of symbols for the control channel, and the data region may contain the remaining symbols for the common channel.

控制區域可以包含關於下行鏈路30的資訊。舉例來說,在長期演進中,下行鏈路控制資訊(下行鏈路控制資訊;DCI)可以通過控制區域的物理下行控制通道傳輸。下行鏈路控制資訊可以包含使用者設備20需要以便與基站10通信的資訊,例如跳變標記、資源塊分配、調變編碼方案(Modulation Coding Scheme;MCS)和/或冗餘版本(Redundancy Version;RV)。基站10可以傳輸控制區域中的多個物理控制通道以用於多個使用者設備。舉例來說,長期演進的物理下行控制通道可以在一或多個相連控制通道元件(control channel element;CCE)的聚合上傳輸。控制通道元件可被稱為用於根據無線電通道的狀態提供預定(或替代地,所需)編碼速率的物理下行控制通道的邏輯分配單元,並且可以對應于多個資源元件組(resource element group;REG)。基站10可以將迴圈冗餘校驗添加到控制資訊。可以根據所有者或物理下行控制通道的用途掩蔽迴圈冗餘校驗。舉例來說,基站10可以通過對迴圈冗餘校驗掩蔽使用者設備20的唯一識別碼(例如,細胞RNTI)來產生用於使用者設備20的物理下行控制通道。The control field may contain information about the downlink 30 . For example, in the LTE, downlink control information (downlink control information; DCI) can be transmitted through the physical downlink control channel in the control region. The downlink control information may include information required by the UE 20 to communicate with the base station 10, such as hopping flags, resource block allocation, modulation coding scheme (Modulation Coding Scheme; MCS) and/or redundancy version (Redundancy Version; RV). The base station 10 can transmit multiple physical control channels in the control area for multiple UEs. For example, a LTE-PDCCH may be transmitted on an aggregate of one or more connected control channel elements (CCEs). A control channel element may be referred to as a logical allocation unit of a physical downlink control channel for providing a predetermined (or alternatively, required) coding rate according to the state of the radio channel, and may correspond to a plurality of resource element groups (resource element group; REG). The base station 10 can add the loop redundancy check to the control information. Loop redundancy checks can be masked based on owner or usage of the physical downstream control channel. For example, the base station 10 may generate a physical downlink control channel for the UE 20 by masking the unique identifier (eg, cell RNTI) of the UE 20 for the loop redundancy check.

使用者設備20可以監控多個物理控制通道。舉例來說,無線通訊系統100可以定義控制通道元件位置的有限集合,其中可以針對使用者設備20定位物理控制通道。控制通道元件位置的有限集合可以是其中使用者設備20可以搜索其自身的物理控制通道的空間,並且可以被稱為搜索空間(search space;SS)。為了省略用於物理控制通道所述位置的輔助資訊並保留用於多個使用者設備的資源,基站10可能不將關於物理控制通道位於控制區域中的何處的資訊提供到使用者設備20。因此,使用者設備20可以通過嘗試在傳輸時間間隔5中解碼物理控制通道候選來尋找其自身的物理控制通道。通過這種盲解碼,使用者設備20可以識別傳輸到的物理控制通道。舉例來說,在長期演進中,使用者設備20可以以唯一識別碼(細胞RNTI)形式解除掩蔽物理下行控制通道,並且如果不存在迴圈冗餘校驗錯誤,那麼使用者設備20可以將所述物理下行控制通道識別為其自身的物理下行控制通道。在一些實例實施例中,可能需要使用者設備20在一個傳輸時間間隔5內執行盲解碼高達60次。The UE 20 can monitor multiple physical control channels. For example, the wireless communication system 100 may define a finite set of control channel element locations where a physical control channel may be located for the UE 20 . The finite set of control channel element locations may be the space in which the UE 20 may search its own physical control channel, and may be referred to as a search space (SS). In order to omit the auxiliary information for the location of the PCH and preserve resources for multiple UEs, the base station 10 may not provide the information about where the PCH is located in the control area to the UE 20 . Therefore, the UE 20 can find its own PCH by trying to decode the PCH candidates in TTI5. Through this blind decoding, UE 20 can identify the physical control channel to which the transmission is made. For example, in the long-term evolution, the user equipment 20 can unmask the physical downlink control channel in the form of a unique identifier (cell RNTI), and if there is no loop redundancy check error, the user equipment 20 can send all The above physical downlink control channel is identified as its own physical downlink control channel. In some example embodiments, the UE 20 may be required to perform blind decoding up to 60 times within one transmission time interval 5 .

使用者設備20可能由於盲解碼而具有加重的解碼負載,這可能需要具有高計算性能的使用者設備20或可能由於重解碼負載而降低使用者設備20的總體性能。舉例來說,如果無線通訊系統100是5G,使用者設備20在一個傳輸時間間隔5中嘗試的盲解碼的最大次數可以相較於長期演進進一步增大,並且可能需要縮短每次嘗試所花費的時間。因此,在盲解碼中可能需要提早終止物理控制通道的解碼操作。舉例來說,就5G而言,由於將極性碼用作通道編碼方法,所以可能需要提早終止使用極性碼的盲解碼。The UE 20 may have a heavy decoding load due to blind decoding, which may require a high computing performance of the UE 20 or may degrade the overall performance of the UE 20 due to heavy decoding load. For example, if the wireless communication system 100 is 5G, the maximum number of blind decoding attempts of the user equipment 20 in a transmission time interval 5 may be further increased compared to the long-term evolution, and the cost of each attempt may need to be shortened. time. Therefore, it may be necessary to terminate the decoding operation of the physical control channel early in blind decoding. For example, in the case of 5G, blind decoding using polar codes may need to be terminated early due to the use of polar codes as the channel coding method.

圖3示出根據本發明概念的實例實施例的過程的實例,在所述過程中將下行鏈路控制資訊D31從圖1的基站10傳送到使用者設備20。舉例來說,圖3示出在無線通訊系統100是長期演進的情況下將下行鏈路控制資訊D31從基站10傳送到使用者設備20的過程。如圖3所示,基站10可以通過執行一系列操作S300到S340將下行鏈路控制資訊D31傳輸到使用者設備20,並且使用者設備20可以執行一系列操作S350到S390以產生估計的下行鏈路控制資訊(DCI')D32。在下文中,將參考圖1描述圖3。FIG. 3 shows an example of a process in which downlink control information D31 is transmitted from the base station 10 of FIG. 1 to the UE 20 according to an example embodiment of the inventive concept. For example, FIG. 3 shows the process of transmitting the downlink control information D31 from the base station 10 to the UE 20 when the wireless communication system 100 is LTE. As shown in FIG. 3, the base station 10 may transmit the downlink control information D31 to the user equipment 20 by performing a series of operations S300 to S340, and the user equipment 20 may perform a series of operations S350 to S390 to generate an estimated downlink Road Control Information (DCI') D32. Hereinafter, FIG. 3 will be described with reference to FIG. 1 .

參考圖3,在操作S300中,可以執行將迴圈冗餘校驗插入到下行鏈路控制資訊D31中的操作。在一些實例實施例中,基站10可以對迴圈冗餘校驗掩蔽使用者設備20的唯一識別碼(例如,細胞RNTI)。Referring to FIG. 3 , in operation S300 , an operation of inserting a loop redundancy check into the downlink control information D31 may be performed. In some example embodiments, the base station 10 may mask the unique identifier (eg, cell RNTI) of the UE 20 for the loop redundancy check.

在操作S310中,可以執行通道編碼。舉例來說,通道編碼可以包含使用極性碼編碼,並且如上文參考圖1所描述,可以編碼未凍結位元和預定資訊位元添加至下行鏈路控制資訊D31的凍結位元。因此,可以產生極性編碼碼字。將參考圖6到圖10描述操作S310的實例。In operation S310, channel encoding may be performed. For example, channel coding may include coding using polar codes, and as described above with reference to FIG. 1 , unfrozen bits and predetermined information bits may be added to the frozen bits of the downlink control information D31. Therefore, a polar encoding codeword can be generated. An example of operation S310 will be described with reference to FIGS. 6 to 10 .

在操作S320中,可以執行速率匹配。舉例來說,基站10可以通過執行削弱和/或縮短來執行速率匹配。接著,在操作S330中,可以執行調變速率匹配碼字的操作。在操作S340中,可以執行將控制通道元件映射到物理資源元件(resource element;RE)的操作。因此,可以將包含下行鏈路控制資訊D31的資訊的信號傳輸到使用者設備20。In operation S320, rate matching may be performed. For example, base station 10 may perform rate matching by performing attenuation and/or shortening. Next, in operation S330, an operation of modulating the rate matching codeword may be performed. In operation S340, an operation of mapping a control channel element to a physical resource element (resource element; RE) may be performed. Therefore, the signal including the information of the downlink control information D31 can be transmitted to the UE 20 .

在操作S350中,可以執行將物理資源元件解映射到控制通道元件的操作。在操作S360中,可以執行解調控制通道元件的操作。如上文所描述,由於使用者設備20可能並未被告知將哪一控制通道元件聚合用於接收物理下行控制通道,所以使用者設備20可以解調每一控制通道元件的聚合。接著,在操作S370中,可以對解調的資料執行速率匹配。類似地,由於使用者設備20可能未被告知將哪一下行鏈路控制資訊有效負載大小用於接收控制資訊,所以使用者設備20可以對每一下行鏈路控制資訊格式執行速率匹配。In operation S350, an operation of demapping physical resource elements to control channel elements may be performed. In operation S360, an operation of demodulating the control channel element may be performed. As described above, since the UE 20 may not be informed which CCH aggregation is used to receive the PDCCH, the UE 20 can demodulate each CCH aggregation. Next, in operation S370, rate matching may be performed on the demodulated material. Similarly, since the UE 20 may not be informed which DL control information payload size is used to receive the control information, the UE 20 may perform rate matching for each DL control information format.

在操作S380中,可以執行通道解碼。舉例來說,包含在使用者設備20中的極性解碼器22可以基於例如連續抵消清單解碼來對速率匹配資料執行解碼,並通過迴圈冗餘校驗檢測是否發生錯誤。在一些實例實施例中,在解碼過程期間,可以根據預定資訊位元的解碼結果提早終止對所述速率匹配資料的解碼,並且可以繼續或開始對其它速率匹配資料的解碼。將在下文參考圖11到圖14描述操作S380的實例。In operation S380, channel decoding may be performed. For example, the polar decoder 22 included in the UE 20 may perform decoding on the rate-matched data based on, for example, continuous offset list decoding, and detect whether an error occurs through a round-robin redundancy check. In some example embodiments, during the decoding process, the decoding of the rate matching data may be terminated early according to the decoding result of predetermined information bits, and the decoding of other rate matching data may be continued or started. An example of operation S380 will be described below with reference to FIGS. 11 to 14 .

在操作S390中,可以執行去除迴圈冗餘校驗的操作。舉例來說,使用者設備20可以在操作S380中檢測其物理下行控制通道並通過從解碼的資料去除迴圈冗餘校驗來獲得估計的下行鏈路控制資訊(DCI')D32。In operation S390, an operation of removing the loop redundancy check may be performed. For example, the UE 20 may detect its physical downlink control channel and obtain estimated downlink control information (DCI') D32 by removing the cyclic redundancy check from the decoded data in operation S380.

圖4示出根據本發明概念的實例實施例的圖1的編碼器16的操作的實例。如上文參考圖1描述,編碼器16可以基於極性碼執行通道編碼。舉例來說,圖4繪示通過通道W在發送器(例如,圖1的基站10)中從8個位元{u1 ,..., u8 }的位元序列產生8個位元{x1 ,..., x8 }的極性編碼碼字並在接收器(例如,圖1的使用者設備20)中接收8個位元{y1 ,..., y8 }的資料的實例。FIG. 4 illustrates an example of the operation of the encoder 16 of FIG. 1, according to an example embodiment of inventive concepts. As described above with reference to FIG. 1 , encoder 16 may perform channel encoding based on polar codes. For example , FIG . 4 illustrates generating 8 bits { x 1 ,..., x 8 } polar encoding codeword and receive 8 bits of {y 1 ,..., y 8 } data in the receiver (e.g., user equipment 20 in Fig. 1) instance.

通過使用N個位元的位元序列作為輸入來組合N個獨立通道W的通道WN : XN →YN 可以從

Figure 02_image016
以遞迴方式組合。舉例來說,圖4繪示組合通道
Figure 02_image018
以及子通道
Figure 02_image020
Figure 02_image022
。組合通道
Figure 02_image024
可以劃分成N個二進位輸入座標通道W
Figure 02_image025
: X→YN × Xi-1 , 1
Figure 02_image028
i
Figure 02_image028
N,並且每一通道中的轉移概率可以如下文[等式2]中所示來定義。 [等式2]
Figure 02_image029
A channel W N of N independent channels W is combined by using a bit sequence of N bits as input: X N → Y N can be obtained from
Figure 02_image016
Compose in a recursive manner. As an example, Figure 4 depicts the combined channel
Figure 02_image018
and subchannels
Figure 02_image020
and
Figure 02_image022
. combined channel
Figure 02_image024
Can be divided into N binary input coordinate channels W
Figure 02_image025
: X→Y N × X i-1 , 1
Figure 02_image028
i
Figure 02_image028
N, and the transition probability in each channel can be defined as shown in [Equation 2] below. [equation 2]
Figure 02_image029

[等式2]的轉移概率可以如下文[等式3]中所示以遞迴方式表達。 [等式3]

Figure 02_image031
Figure 02_image033
Figure 02_image035
The transition probability of [Equation 2] can be expressed in a recursive manner as shown in [Equation 3] below. [equation 3]
Figure 02_image031
Figure 02_image033
Figure 02_image035

在二進位刪除通道(Binary Erasure Channel;BEC)中,可以簡單地計算根據[等式3]的轉移概率。舉例來說,當刪除概率ε是0.5時,圖4中所示的通道

Figure 02_image037
中的每一者的轉移概率可以如下文[等式4]中所示來計算。 [等式4]
Figure 02_image039
In the Binary Erasure Channel (BEC), the transition probability according to [Equation 3] can be simply calculated. For example, when the deletion probability ε is 0.5, the channel shown in Fig. 4
Figure 02_image037
The transition probability of each of can be calculated as shown in [Equation 4] below. [equation 4]
Figure 02_image039

[等式4]表示對應於通道

Figure 02_image042
的轉移概率相對接近1,而對應於通道
Figure 02_image044
的轉移概率相對接近0。在N增大的情況下,轉移概率中的每一者可以收斂到1或0,並且這種現象可以被稱為通道極化。可以將具有可變值的未凍結位元指配到良好通道,即,具有低轉移概率的位元通道,而將具有固定值的凍結位元指配到到不良通道,即具有高轉移概率的位元通道。舉例來說,在圖4的實例中,四個位元{u4 , u6 , u7 , u8 }可以是未凍結位元,而剩餘四個位元{u1 , u2 , u3 , u5 }可以是凍結位元。[Equation 4] indicates that the channel corresponding to
Figure 02_image042
The transition probability of is relatively close to 1, while the corresponding channel
Figure 02_image044
The transition probability is relatively close to 0. Each of the transition probabilities may converge to 1 or 0 as N increases, and this phenomenon may be referred to as channel polarization. Unfrozen bits with variable values can be assigned to good lanes, i.e., bit lanes with low transition probability, while frozen bits with fixed values are assigned to bad lanes, i.e., with high transition probability. bit channel. For example, in the example of Figure 4, four bits {u 4 , u 6 , u 7 , u 8 } could be unfrozen bits, while the remaining four bits {u 1 , u 2 , u 3 , u 5 } can be frozen bits.

如上文所描述,未凍結位元{u4 , u6 , u7 , u8 }中的至少一者可以用作編碼器和解碼器都已知的預定資訊位元。也就是說,未凍結位元{u4 , u6 , u7 , u8 }可以包含資訊位元和至少一個預定資訊位元,並且資訊位元可以包含輸入位元和迴圈冗餘校驗位元。因而,可以將具有預定(或替代地,所需)值的預定資訊位元指配到未凍結位元而不是凍結位元,並且因此可以獲得所需特徵,從而可以改進無線通訊系統(例如,圖1的無線通訊系統100)的效率。As described above, at least one of the unfrozen bits {u 4 , u 6 , u 7 , u 8 } can be used as a predetermined information bit known to both the encoder and decoder. That is, the unfrozen bits {u 4 , u 6 , u 7 , u 8 } may contain information bits and at least one predetermined information bit, and the information bits may contain input bits and loop redundancy check bits. Thus, predetermined information bits having predetermined (or alternatively, desired) values can be assigned to unfrozen bits instead of frozen bits, and thus desired features can be obtained, whereby wireless communication systems (e.g., Efficiency of the wireless communication system 100 of FIG. 1 ).

圖5A和圖5B示出根據本發明概念的實例實施例的圖1的極性解碼器22的操作的實例。舉例來說,圖5A繪示極性碼的網格,其中N=8,並且圖5B繪示極性碼的二叉樹結構,其中N=8。舉例來說,圖5A和圖5B可與圖4的編碼器結構對應。如圖5A和圖5B中所示,總體上,具有低索引的子通道可能具有相對低的可靠性,並且具有高索引的子通道可能具有相對高的可靠性。5A and 5B illustrate an example of the operation of the polar decoder 22 of FIG. 1 according to example embodiments of inventive concepts. For example, FIG. 5A shows a grid of polar codes, where N=8, and FIG. 5B shows a binary tree structure of polar codes, where N=8. For example, FIGS. 5A and 5B may correspond to the encoder structure of FIG. 4 . As shown in FIGS. 5A and 5B , in general, sub-channels with low indexes may have relatively low reliability, and sub-channels with high indexes may have relatively high reliability.

參考圖5A,對應於可變節點的估計位元由

Figure 02_image046
表示,其中i和j分別表示網格的層級和階段(1
Figure 02_image047
i
Figure 02_image047
n+1,1
Figure 02_image047
j
Figure 02_image047
N)。
Figure 02_image049
Figure 02_image046
的對數似然比(log likelihood ratio;LLR),其可以如下文[等式5]中所示來計算。 [等式5]
Figure 02_image051
Referring to Figure 5A, the estimated bits corresponding to variable nodes are given by
Figure 02_image046
, where i and j represent the level and stage of the grid, respectively (1
Figure 02_image047
i
Figure 02_image047
n+1, 1
Figure 02_image047
j
Figure 02_image047
N).
Figure 02_image049
for
Figure 02_image046
The log likelihood ratio (LLR) of , which can be calculated as shown in [Equation 5] below. [equation 5]
Figure 02_image051

基於[等式5],搜索空間解碼中估計的位元序列

Figure 02_image052
可以表達為下文[等式6]。 [等式6]
Figure 02_image055
Based on [Equation 5], the estimated bit sequence in the search space decoding
Figure 02_image052
can be expressed as [Equation 6] below. [equation 6]
Figure 02_image055

在[等式6]中,

Figure 02_image057
可以表達為下文[等式7]。 [等式7]
Figure 02_image059
In [Equation 6],
Figure 02_image057
can be expressed as [Equation 7] below. [equation 7]
Figure 02_image059

參考圖5B,在2n =N的情況下,連續抵消解碼可以由具有深度n的二叉樹表示。舉例來說,如圖5B中所示,圖5A的網格可以由具有深度為3且23 =8的葉節點的二叉樹表示。在二叉樹中,每一節點可以根據其特徵分類。舉例來說,如圖5B中所示,二叉樹中的節點可以分類為僅具有凍結位元作為子級節點的速率0節點、僅具有未凍結位元作為子級節點的速率1節點以及具有凍結位元和未凍結位元作為子級節點的速率R節點。包含以相同方式分類的節點的子樹可以由相同分類的單個節點替換,並且因此可以簡化二叉樹。舉例來說,在圖5B中,對應於估計位元

Figure 02_image061
的節點和其父節點可以由一個速率0節點替換,並且估計位元
Figure 02_image063
和其父節點可以由一個速率1節點替換。由於二叉樹簡化,可以簡化連續抵消解碼。Referring to FIG. 5B , in the case of 2 n =N, consecutive offset decoding can be represented by a binary tree with depth n. For example, as shown in FIG. 5B , the grid of FIG. 5A may be represented by a binary tree with depth 3 and 2 3 =8 leaf nodes. In a binary tree, each node can be classified according to its characteristics. For example, as shown in FIG. 5B , nodes in a binary tree can be classified as rate 0 nodes having only frozen bits as children, rate 1 nodes having only unfrozen bits as children, and rate 1 nodes having frozen bits as children. Rate R nodes with meta and unfrozen bits as child nodes. Subtrees containing nodes classified in the same way can be replaced by a single node of the same classification, and thus the binary tree can be simplified. For example, in Figure 5B, corresponding to the estimated bit
Figure 02_image061
A node and its parent can be replaced by a rate 0 node, and the estimated bit
Figure 02_image063
and its parent node can be replaced by a rate 1 node. Successive offset decoding can be simplified due to binary tree simplification.

圖6是示出根據本發明概念的實例實施例的圖3的操作S310的實例的流程圖。如上文參考圖3所描述,在圖6的操作S310'中,可以基於極性碼執行通道編碼。如圖6所示,操作S310'可以包含操作S312和S314,並且可以包含從圖3的操作S300所接收的(K + J)個位元的資料(例如,圖1中的DCRC)編碼以產生N個位元的碼字(例如,圖1中的PCW)並將N個位元的碼字提供到圖3的操作S320。舉例來說,圖6的操作S310'可以由圖1的子通道映射單元14和編碼器16執行。在下文中,將參考圖1描述圖6。FIG. 6 is a flowchart illustrating an example of operation S310 of FIG. 3 according to example embodiments of inventive concepts. As described above with reference to FIG. 3 , in operation S310 ′ of FIG. 6 , channel encoding may be performed based on polar codes. As shown in FIG. 6, operation S310' may include operations S312 and S314, and may include encoding the (K+J) bit data (for example, DCRC in FIG. 1 ) received from operation S300 of FIG. 3 to generate An N-bit codeword (eg, PCW in FIG. 1 ) and provides the N-bit codeword to operation S320 of FIG. 3 . For example, operation S310' of FIG. 6 may be performed by the sub-channel mapping unit 14 and the encoder 16 of FIG. 1 . Hereinafter, FIG. 6 will be described with reference to FIG. 1 .

參考圖6,在操作S312中,可以執行子通道映射。舉例來說,子通道映射單元14可以通過將具有預定(或替代地,所需)值的J'個位元的預定資訊位元添加到(K +J)個位元的資料而基於輸入資料DIN(或從輸入資料DIN匯出)來產生(K + J + J')個位元的未凍結位元,並通過對未凍結位元和N- (K + J + J')個位元的凍結位元重新排序來產生N個位元的位元序列。如上文所描述,在位元序列中,可以將未凍結位元指配到具有相對高的可靠性的子通道(或位元通道),而可以將凍結位元指配到具有相對低的可靠性的子通道。因此,由於子通道具有相對高的可靠性,可以在稍後的解碼操作(例如,圖3中的S380)處以各種方式(例如提早終止和/或清單精簡)利用預定資訊位元。Referring to FIG. 6, in operation S312, sub-channel mapping may be performed. For example, the sub-channel mapping unit 14 may base on the input data by adding predetermined information bits of J′ bits having a predetermined (or alternatively, desired) value to (K+J) bits of data DIN (or exported from input data DIN) to generate (K + J + J') bits of unfrozen bits, and by unfrozen bits and N- (K + J + J') bits The frozen bits of are reordered to produce a bit sequence of N bits. As described above, in a bit sequence, unfrozen bits can be assigned to subchannels (or bit lanes) with relatively high reliability, while frozen bits can be assigned to subchannels (or bit lanes) with relatively low reliability. Sexual sub-channels. Therefore, due to the relatively high reliability of sub-channels, predetermined information bits can be utilized in various ways (eg, early termination and/or list reduction) at later decoding operations (eg, S380 in FIG. 3 ).

在操作S314中,可以執行極性編碼。舉例來說,編碼器16可以通過處理來自子通道映射單元14的N位元的位元序列來產生N個位元的極性編碼碼字。In operation S314, polar encoding may be performed. For example, the encoder 16 may generate an N-bit polar encoding codeword by processing the N-bit bit sequence from the sub-channel mapping unit 14 .

圖7示出根據本發明概念的實例實施例的圖6的操作S312的操作的實例。如上文參考圖6所描述,在操作S312中,可以執行映射子通道的操作。舉例來說,可以由圖1的子通道映射單元14執行圖7的實例。將在下文參考圖1和圖6描述圖7。FIG. 7 illustrates an example of the operation of operation S312 of FIG. 6 according to example embodiments of inventive concepts. As described above with reference to FIG. 6, in operation S312, an operation of mapping sub-channels may be performed. For example, the example of FIG. 7 may be performed by sub-channel mapping unit 14 of FIG. 1 . FIG. 7 will be described below with reference to FIGS. 1 and 6 .

參考圖7,可以通過將J'個位元的預定資訊位元添加到(K + J)個位元的預定資訊位元來產生(K + J + J')個位元的未凍結位元。因此,可以通過插入N- (K + J + J')個位元的凍結位元來產生N個位元的第一位元序列SEQ1。可以根據子通道可靠性對準第一位元序列SEQ1,並且如圖7中所示,未凍結位元可以對應於具有比凍結位元更高的可靠性的子通道。Referring to FIG. 7, (K+J+J') bits of unfrozen bits can be generated by adding J' bits of predetermined information bits to (K+J) bits of predetermined information bits . Therefore, the first bit sequence SEQ1 of N bits can be generated by inserting N−(K+J+J′) bits of frozen bits. The first bit sequence SEQ1 may be aligned according to sub-channel reliability, and as shown in FIG. 7 , unfrozen bits may correspond to sub-channels with higher reliability than frozen bits.

可以將第一位元序列SEQ1重新排序成第二位元序列SEQ2。也就是說,可以基於極性碼的極化子通道的索引對第一位元序列SEQ1重新排序。舉例來說,如圖7中所示,在第二位元序列SEQ2中,大多數凍結位元可以對應於較低索引,並且一些凍結位元可以對應于更高索引,且如參考圖4、圖5A和圖5B所描述,可以將良好位元通道和不良位元通道交織在第二位元序列SEQ2中。因此,如圖7中所示,可以在第二位元序列SEQ2中對凍結位元和未凍結位元重新排序,並且可以將第二位元序列SEQ2提供到編碼器(例如,圖1中的編碼器16)。The first bit sequence SEQ1 may be reordered into the second bit sequence SEQ2. That is, the first bit sequence SEQ1 can be reordered based on the indices of the polar subchannels of the polar code. For example, as shown in FIG. 7, in the second sequence of bits SEQ2, most of the frozen bits may correspond to lower indexes, and some of the frozen bits may correspond to higher indexes, and as with reference to FIGS. As depicted in FIGS. 5A and 5B , good bit-lanes and bad bit-lanes can be interleaved in the second bit sequence SEQ2. Thus, as shown in FIG. 7, the frozen and unfrozen bits may be reordered in a second bit sequence SEQ2, and the second bit sequence SEQ2 may be provided to an encoder (e.g., Encoder 16).

在一些實例實施例中,J個位元的迴圈冗餘校驗位元可能在第二位元序列SEQ2中具有高索引,如圖7中所示。在一些實例實施例中,可以指配第二位元序列SEQ2的索引使得將包含在未凍結位元中的J'個位元的預定資訊位元指配到具有相對高可靠性的子通道。而且,在一些實例實施例中,可以基於在編碼後執行的速率匹配來指配第二位元序列SEQ2的索引。將在下文參考圖8和圖9描述將第二位元序列SEQ2的索引指配到預定資訊位元的實例。In some example embodiments, a cyclic redundancy check bit of J bits may have a high index in the second bit sequence SEQ2, as shown in FIG. 7 . In some example embodiments, the index of the second bit sequence SEQ2 may be assigned such that J′ bits of predetermined information bits included in the unfrozen bits are assigned to sub-channels with relatively high reliability. Also, in some example embodiments, the index of the second bit sequence SEQ2 may be assigned based on rate matching performed after encoding. An example of assigning an index of the second bit sequence SEQ2 to predetermined information bits will be described below with reference to FIGS. 8 and 9 .

在一些實例實施例中,J個位元的迴圈冗餘校驗位元可以與輸入位元交織,並且因此J位元的迴圈冗餘校驗位元可以如圖7中所示以不同方式分佈在第二位元序列SEQ2中。可以在極性碼中將分佈的迴圈冗餘校驗位元考慮為輔助位元。預定資訊位元可以如圖7中所示分佈在第二位元序列SEQ2中或可以如將參考圖8描述指配到對應于高可靠性的子通道,並且因此分佈的預定資訊位元可以執行與分佈的迴圈冗餘校驗位元相同或類似的功能。也就是說,由於分佈的預定資訊位元而產生與分佈的迴圈冗餘校驗位元相同的作用。而且,預定資訊位元可以用來降低假警率(FAR)。舉例來說,根據16個位元的迴圈冗餘校驗位元的假警率可以是約2到16。這時,在列表解碼中的列表的數量是8的情況下,假警率可能增加到2到16+3。在所需假警率是2到16的情況下,可以將迴圈冗余校驗位元增加到19個位元來滿足這種需求。然而,代替增大循環冗餘校驗位元的位元數,在添加3個位元的預定資訊位元的情況下,可以獲得由於預定資訊位元產生的上文提及的功能,並且同時可以將假警率維持為2到16。也就是說,可以基於迴圈冗餘校驗位元的位元數和預定資訊位元的位元數來確定假警率。In some example embodiments, the loop redundancy check bits of J bits may be interleaved with the input bits, and thus the loop redundancy check bits of J bits may be different as shown in FIG. 7 The mode is distributed in the second bit sequence SEQ2. Distributed loop redundancy check bits can be considered as auxiliary bits in polar codes. The predetermined information bits can be distributed in the second bit sequence SEQ2 as shown in FIG. 7 or can be assigned to sub-channels corresponding to high reliability as will be described with reference to FIG. 8, and thus the distributed predetermined information bits can perform Same or similar functionality as distributed loop redundancy check bits. That is to say, due to the distributed predetermined information bits, the same effect as the distributed cyclic redundancy check bits is produced. Also, predetermined information bits can be used to reduce the false alarm rate (FAR). For example, the false alarm rate may be about 2 to 16 based on 16 bits of cyclic redundancy check bits. At this time, in the case where the number of lists in list decoding is 8, the false alarm rate may increase to 2 to 16+3. In the case that the desired false alarm rate is 2 to 16, the loop redundancy check bit can be increased to 19 bits to meet this requirement. However, instead of increasing the number of bits of the cyclic redundancy check bits, in the case of adding 3 bits of predetermined information bits, the above-mentioned function due to the predetermined information bits can be obtained, and at the same time A false alarm rate of 2 to 16 can be maintained. That is to say, the false alarm rate can be determined based on the number of cyclic redundancy check bits and the number of predetermined information bits.

圖8示出根據本發明概念的實例實施例的極性碼的二叉樹的實例。舉例來說,圖8的二叉樹可能具有16個葉節點,在所述葉節點之中,黑色填充節點表示未凍結位元,白色填充節點表示凍結位元,並且X填充節點表示縮短的位元。而且,在圖8的實例中,6個位元的未凍結位元可以包含3個位元的輸入位元、2個位元的迴圈冗餘校驗位元和1個位元的預定資訊位元(即,K=3,J=2,J'=1)。在圖8的實例中,母塊大小N可以是16,並且塊大小M可以是12。FIG. 8 shows an example of a binary tree of a polar code according to an example embodiment of the inventive concept. For example, the binary tree of FIG. 8 may have 16 leaf nodes, among which black filled nodes represent unfrozen bits, white filled nodes represent frozen bits, and X filled nodes represent shortened bits. Moreover, in the example of FIG. 8, the 6-bit unfrozen bits may include 3-bit input bits, 2-bit loop redundancy check bits, and 1-bit predetermined information bits (ie, K=3, J=2, J'=1). In the example of FIG. 8, the parent block size N may be 16, and the block size M may be 12.

在一些實例實施例中,可以將預定資訊位元編入索引,使得預定資訊位元實質上均勻地分佈在未凍結位元中。舉例來說,預定資訊位元可以基於產生矩陣的權重而分佈。而且,在一些實例實施例中,預定資訊位元可以均勻地分佈且同時指配到具有相對高可靠性的子通道。舉例來說,作為極性碼的二叉樹的一部分的子樹可能具有對應於冪2的葉節點,並且所述葉節點之中具有最高索引的圖8的最右葉節點可以對應于具有高可靠性的子通道。如圖8中所示,在包含索引5到索引8的葉節點的子樹中,索引8的葉節點可以對應于具有高可靠性的子通道。類似地,如圖8中所示,包含4個葉節點的子樹中的最高索引的葉節點可以對應于具有高可靠性的子通道。因此,可以將具有未凍結位元作為葉節點的子樹中的最高索引(例如,圖8中的8、12或16)指配到預定資訊位元。換句話說,如上文參考圖5B所描述,由於速率1節點和速率R節點包括未凍結位元作為葉節點,所以可以將預定資訊位元指配到速率1節點或速率R節點的葉節點之中具有最高可靠性的子通道。In some example embodiments, the predetermined information bits may be indexed such that the predetermined information bits are substantially evenly distributed among the unfrozen bits. For example, the predetermined information bits can be distributed based on the weights of the generation matrix. Also, in some example embodiments, predetermined information bits may be evenly distributed and simultaneously assigned to sub-channels with relatively high reliability. For example, a subtree that is part of a binary tree of a polar code may have a leaf node corresponding to a power of 2, and the rightmost leaf node of FIG. 8 with the highest index among the leaf nodes may correspond to subchannel. As shown in FIG. 8 , among the subtrees including the leaf nodes of index 5 to index 8 , the leaf node of index 8 may correspond to a subchannel with high reliability. Similarly, as shown in Figure 8, the highest indexed leaf node in a subtree containing 4 leaf nodes may correspond to a subchannel with high reliability. Therefore, the highest index in the subtree with unfrozen bits as leaf nodes (eg, 8, 12 or 16 in FIG. 8 ) can be assigned to the predetermined information bit. In other words, as described above with reference to FIG. 5B, since the rate 1 node and the rate R node include unfrozen bits as leaf nodes, predetermined information bits can be assigned between the leaf nodes of the rate 1 node or the rate R node. The subchannel with the highest reliability in .

在一些實例實施例中,可以考慮到速率匹配來指配預定資訊位元。舉例來說,如圖8中所示,在編碼後執行的速率匹配縮短而刪除序列的末端的情況下,預定資訊位元可能未指配到縮短區域。也就是說,在圖8的實例中,可以從預定資訊位元的候選索引8、12以及16中排除16。In some example embodiments, predetermined information bits may be assigned in consideration of rate matching. For example, as shown in FIG. 8 , in case the end of the sequence is deleted by rate matching shortening performed after encoding, predetermined information bits may not be assigned to the shortened region. That is to say, in the example of FIG. 8 , 16 can be excluded from the candidate indexes 8 , 12 and 16 of the predetermined information bits.

在一些實例實施例中,可以指配預定資訊位元以具有位元序列中的候選索引之中的低索引。如上文所描述,預定資訊位元可以用於提早終止接收器的解碼器中的解碼,並且就例如連續抵消解碼的解碼方法而言,在預定資訊位元放置在前方的情況下(例如,在預定資訊位元具有低索引的情況下),可以在較早的時間確定解碼的提早終止。因此,在圖8的實例中,1個位元的預定資訊位元可能具有候選索引8、12以及16之中的8。而且,就不只是2個位元或多於2個位元的預定資訊位元而言,預定資訊位元可以依序具有昇冪的候選索引。In some example embodiments, predetermined information bits may be assigned to have a low index among candidate indices in the sequence of bits. As described above, the predetermined information bits can be used to terminate decoding early in the receiver's decoder, and in the case of decoding methods such as continuous offset decoding, where the predetermined information bits are placed at the front (e.g., in In case the predetermined information bit has a low index), an early termination of decoding can be determined at an earlier time. Therefore, in the example of FIG. 8 , the predetermined information bit of 1 bit may have 8 of candidate indexes 8 , 12 and 16 . Moreover, not only the predetermined information bits of 2 bits or more, the predetermined information bits may sequentially have candidate indexes of rising powers.

圖9是示出根據本發明概念的實例實施例的指配預定資訊位元的方法的實例的虛擬碼。在圖9中,

Figure 02_image065
可以表示第i個資訊位元,並且
Figure 02_image067
可以表示第i個預定資訊位元。而且,
Figure 02_image069
可以表示位元序列中的索引,例如,圖8中的
Figure 02_image071
可以是6。在下文中,將參考圖8描述圖9。FIG. 9 is a dummy code illustrating an example of a method of assigning predetermined information bits according to an example embodiment of the inventive concept. In Figure 9,
Figure 02_image065
can represent the i-th information bit, and
Figure 02_image067
may represent the i-th predetermined information bit. and,
Figure 02_image069
can represent an index in a sequence of bits, for example, in Figure 8
Figure 02_image071
It can be 6. Hereinafter, FIG. 9 will be described with reference to FIG. 8 .

在L標示解碼清單的數量的情況下,第i個預定資訊位元

Figure 02_image067
的位元序列中的索引可以大於
Figure 02_image073
。也就是說,可以在列表發散結束後開始提早終止。舉例來說,在L是4的情況下,
Figure 02_image075
,並且因此
Figure 02_image077
可以是8。在高編碼速率下,由於多個輸入位元可以放置在母快的前方區域中,可能需要放置預定資訊位元以提高提早終止的效率,如下文所描述。In the case where L indicates the number of decoding lists, the i-th predetermined information bit
Figure 02_image067
Indices in the bit sequence of can be greater than
Figure 02_image073
. That is, early termination can start after the list divergence ends. For example, in the case where L is 4,
Figure 02_image075
, and therefore
Figure 02_image077
Can be 8. At high code rates, since multiple input bits may be placed in the front area of the bus, it may be necessary to place predetermined information bits to improve the efficiency of early termination, as described below.

在一些實例實施例中,在J'個位元的預定資訊位元的集合是E的情況下,可以如圖9中所示獲得集合E。參考圖9,在11行和12行處,可以執行變數的初始化。在13行處,可以校驗輸入位元的位置。在輸入位元的索引超過N/4的情況下,在14行和15行處,預定資訊位元

Figure 02_image067
可以與前一預定資訊位元ei-1 間隔開
Figure 02_image079
來指配。另一方面,在輸入位元的索引並不超過N/4的情況下,在17行和18行處,預定資訊位元
Figure 02_image067
可以與前一預定資訊位元ei-1 間隔開
Figure 02_image080
來指配,並且可以基於輸入位元
Figure 02_image083
的索引
Figure 02_image085
Figure 02_image080
增大k。舉例來說,我們假設母塊的大小確定為N=512,n=9,以及L=8。在
Figure 02_image087
超過128的情況下,預定資訊位元可以指配有索引256 (=28 )、384 (=28 +27 )以及448 (=28 +27 +26 )。在一些實例實施例中,可以進一步優化預定資訊位元的索引,並且例如在確定極性碼的參數的情況下,預定資訊位元的索引可以容易地從極性碼的參數匯出。In some example embodiments, where the set of predetermined information bits of J′ bits is E, the set E may be obtained as shown in FIG. 9 . Referring to FIG. 9, at lines 11 and 12, initialization of variables may be performed. At line 13, the position of the input bit can be checked. In the case where the index of the input bit exceeds N/4, at lines 14 and 15, the predetermined information bit
Figure 02_image067
May be spaced apart from the previous predetermined information bit e i-1
Figure 02_image079
to assign. On the other hand, in the case where the index of the input bit does not exceed N/4, at lines 17 and 18, predetermined information bits
Figure 02_image067
May be spaced apart from the previous predetermined information bit e i-1
Figure 02_image080
to assign, and can be based on the input bit
Figure 02_image083
index of
Figure 02_image085
by
Figure 02_image080
Increase k. For example, we assume that the size of the mother block is determined to be N=512, n=9, and L=8. exist
Figure 02_image087
In the case of exceeding 128, the predetermined information bits can be assigned with indexes 256 (=2 8 ), 384 (=2 8 +2 7 ) and 448 (=2 8 +2 7 +2 6 ). In some example embodiments, the index of the predetermined information bit can be further optimized, and for example, in the case of determining the parameters of the polar code, the index of the predetermined information bit can be easily derived from the parameter of the polar code.

圖10示出根據本發明概念的實例實施例的根據連續抵消解碼中的層級的位元序列的位元的碼樹。舉例來說,圖10繪示N=8的碼樹的實例。FIG. 10 illustrates a code tree of bits of a bit sequence according to levels in consecutive offset decoding according to an example embodiment of the inventive concept. For example, FIG. 10 shows an example of a code tree with N=8.

連續抵消解碼可以表示為如圖10中所示根據層級確定垂直方向上的估計位元序列的位元的碼樹中的一個路徑的過程。可以根據索引在碼樹中從高層級到低層級依序確定估計位元序列的位元。舉例來說,如上文參考圖5B所描述,可以根據估計位元序列

Figure 02_image088
中的索引依序確定所述位元,並且對應於具有零值的凍結位元的位元
Figure 02_image091
的解碼路徑可以如圖10中所示在不分支的情況下繼續到下一個位元(即下一個層級)。Continuous offset decoding can be represented as a process of determining a path in the code tree of the bits of the estimated bit sequence in the vertical direction according to the levels as shown in FIG. 10 . The bits of the estimated bit sequence can be sequentially determined from a high level to a low level in the code tree according to the index. For example, as described above with reference to FIG. 5B , based on the estimated bit sequence
Figure 02_image088
The indices in sequentially identify the bits, and the bits that correspond to frozen bits with a value of zero
Figure 02_image091
The decoding path for can continue to the next bit (ie, the next level) without branching as shown in FIG. 10 .

碼樹的節點可以分別具有對數似然比值。可以根據清單解碼中的對數似然比值使用多個候選解碼路徑在層級中的每一者中添加候選解碼路徑或捨棄候選解碼路徑。捨棄解碼路徑並且不再通過解碼路徑執行解碼的操作可以被稱為列表精簡。列表精簡的發生可以縮短解碼時間。如稍後將描述,解碼過程中估計的預定資訊位元不僅可以用於提早終止解碼,而且可以用於列表解碼,從而由於縮短解碼時間而改良解碼性能。The nodes of the code tree may respectively have log-likelihood ratios. Candidate decoding paths can be added or discarded in each of the levels using multiple candidate decoding paths according to log-likelihood ratio values in manifest decoding. The operation of discarding the decoding path and no longer performing decoding through the decoding path may be referred to as list reduction. List pruning occurs to reduce decoding time. As will be described later, the predetermined information bits estimated during decoding can be used not only for early termination of decoding, but also for list decoding, thereby improving decoding performance due to shortened decoding time.

圖11是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。如上文參考圖3所描述,在圖11的操作S380a中,可以執行基於極性碼的通道解碼。如圖11中所示,操作S380a可以包含多個操作S381a到S386a,並且可以由例如圖1的極性解碼器22執行。在下文中,將參考圖10的實例碼樹描述圖11的操作S380a。FIG. 11 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. As described above with reference to FIG. 3 , in operation S380a of FIG. 11 , polar code-based channel decoding may be performed. As shown in FIG. 11 , operation S380a may include a plurality of operations S381a to S386a, and may be performed by, for example, the polar decoder 22 of FIG. 1 . Hereinafter, operation S380a of FIG. 11 will be described with reference to the example code tree of FIG. 10 .

在操作S381a中,可以執行選擇節點的操作。舉例來說,在執行連續抵消列表(SCL)解碼的情況下,可以選擇候選解碼路徑中先前處理過的節點之後的節點,可以選擇另一候選解碼路徑的節點,並且可以選擇新添加的候選解碼路徑的節點。In operation S381a, an operation of selecting a node may be performed. For example, in the case of performing successive cancellation list (SCL) decoding, the node after the previously processed node in the candidate decoding path can be selected, the node of another candidate decoding path can be selected, and the newly added candidate decoding can be selected the node of the path.

在操作S382a中,可以執行確定節點類型的操作。如上文參考圖7所描述,節點可以對應於凍結位元或未凍結位元。未凍結位元可以包含資訊位元和預定資訊位元,並且因此節點可以對應於凍結位元、資訊位元以及預定資訊位元中的一者。如圖11中所示,隨後可以在節點對應於凍結位元的情況下執行操作S385a,隨後可以在節點對應於資訊位元的情況下執行操作S384a,並且隨後可以在節點對應於預定資訊位元的情況下執行操作S383a。In operation S382a, an operation of determining a node type may be performed. As described above with reference to FIG. 7, a node may correspond to a frozen bit or an unfrozen bit. Unfrozen bits may include information bits and predetermined information bits, and thus a node may correspond to one of frozen bits, information bits, and predetermined information bits. As shown in FIG. 11 , operation S385a may then be performed if the node corresponds to a frozen bit, then operation S384a may be performed if the node corresponds to an information bit, and then operation S384a may be performed when the node corresponds to a predetermined information bit In the case of , perform operation S383a.

在操作S383a中,可以執行確定提早終止的操作。也就是說,在操作S382a中,在節點類型對應於預定資訊位元的情況下,可以根據預定資訊位元的解碼結果確定提早終止。在一些實例實施例中,可以根據對應於單個位元的預定資訊位元的解碼結果確定提早終止。在一些實例實施例中,可以根據對應於多個位元的預定資訊位元的解碼結果確定提早終止。在確定提早終止的情況下,可以終止操作S380a,而在未確定提早終止的情況下,隨後可以執行操作S384a。將在稍後參考圖12描述操作S383a的實例。In operation S383a, an operation of determining early termination may be performed. That is, in operation S382a, in the case that the node type corresponds to the predetermined information bit, early termination may be determined according to the decoding result of the predetermined information bit. In some example embodiments, early termination may be determined based on decoding results of predetermined information bits corresponding to a single bit. In some example embodiments, early termination may be determined based on decoding results of predetermined information bits corresponding to the plurality of bits. If early termination is determined, operation S380a may be terminated, and if early termination is not determined, operation S384a may be subsequently performed. An example of operation S383a will be described later with reference to FIG. 12 .

可以在操作S384a中執行列表精簡。舉例來說,可能由於對應於凍結位元的節點中的已知值(例如,零)而省略操作S384a。在節點類型為未凍結位元並且未確定提早終止的情況下,可以執行清單精簡(S384a)。如上文參考圖10所描述,可以基於對數似然比值在每一節點處執行列表精簡。List reduction may be performed in operation S384a. For example, operation S384a may be omitted due to a known value (eg, zero) in the node corresponding to the frozen bit. In the case that the node type is unfrozen bit and no early termination is determined, manifest reduction may be performed (S384a). As described above with reference to FIG. 10 , list reduction may be performed at each node based on log-likelihood ratio values.

在操作S385a中,可以執行確定節點是否對應於最終位元的操作。在節點不對應於最終位元的情況下,在操作S381a中,可以重複選擇另一節點的操作,而在節點對應於最終位元的情況下,在操作S386a中,可以執行迴圈冗餘校驗。可以根據迴圈冗餘校驗結果檢測錯誤的發生。In operation S385a, an operation of determining whether the node corresponds to the final bit may be performed. In the case that the node does not correspond to the final bit, in operation S381a, the operation of selecting another node may be repeated, and in the case of the node corresponding to the final bit, in operation S386a, loop redundancy checking may be performed. test. The occurrence of an error can be detected based on the result of the loop redundancy check.

圖12是繪示根據本發明概念的實例實施例的圖11的操作S383a的實例的流程圖。如上文參考圖11所描述,在圖11的操作S383a'中,可以執行確定提早終止的操作。如圖12中所示,操作S383a'可以包含操作S383_2及操作S383_4,並且在下文中將參考圖11描述圖12。FIG. 12 is a flowchart illustrating an example of operation S383a of FIG. 11 according to example embodiments of inventive concepts. As described above with reference to FIG. 11 , in operation S383a' of FIG. 11 , an operation of determining early termination may be performed. As shown in FIG. 12 , operation S383a' may include operation S383_2 and operation S383_4, and FIG. 12 will be described below with reference to FIG. 11 .

在操作S383_2中,可以執行更新提早終止條件的操作。如圖12中所示,在圖11的操作S382a中,由於確定節點對應於預定資訊位元,所以可以根據預定資訊位元的解碼結果(例如,估計預定資訊位元的值)更新提早終止條件。在一些實例實施例中,可以針對解碼路徑中的每一者更新提早終止條件。In operation S383_2, an operation of updating the early termination condition may be performed. As shown in FIG. 12, in operation S382a of FIG. 11, since it is determined that the node corresponds to the predetermined information bit, the early termination condition may be updated according to the decoding result of the predetermined information bit (for example, estimated value of the predetermined information bit) . In some example embodiments, the early termination conditions may be updated for each of the decoding paths.

在操作S383_4中,可以執行確定列表是否滿足提早終止條件的操作。也就是說,在包含在清單中的所有解碼路徑滿足提早終止條件的情況下,圖11的操作S380a可以結束,而在包含在清單中的解碼路徑中的至少一者不滿足提早終止條件的情況下,在圖11的操作S384a中,可以執行列表精簡。也就是說,在於根據清單解碼維持候選解碼路徑的狀態下執行解碼的過程中,可以在所有候選解碼路徑滿足提早終止條件的情況下確定提早終止。In operation S383_4, an operation of determining whether the list satisfies an early termination condition may be performed. That is to say, in the case that all the decoding paths included in the manifest satisfy the early termination condition, operation S380a of FIG. Next, in operation S384a of FIG. 11 , list reduction may be performed. That is, in the process of performing decoding in a state in which candidate decoding paths are maintained according to list decoding, early termination may be determined in a case where all candidate decoding paths satisfy early termination conditions.

圖13是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。如上文參考圖3所描述,在圖13的操作S380b中,可以執行基於極性碼的通道解碼。舉例來說,與圖11的操作S380a相比,可以首先確定節點是否對應於凍結位元,且接著確定提早終止。在節點對應於凍結位元的情況下,可以首先執行列表精簡。如圖13中所展示,操作S380b可以包含多個操作S381b到S387b,並且可以由例如圖式的極性解碼器22執行。在下文中,將省略對圖13和圖11的多餘描述。FIG. 13 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. As described above with reference to FIG. 3 , in operation S380b of FIG. 13 , polar code-based channel decoding may be performed. For example, compared to operation S380a of FIG. 11, it may first be determined whether a node corresponds to a frozen bit, and then early termination may be determined. Where a node corresponds to a frozen bit, list reduction may be performed first. As shown in FIG. 13 , operation S380b may include a plurality of operations S381b to S387b, and may be performed by, for example, the polarity decoder 22 of the drawing. Hereinafter, redundant descriptions of FIGS. 13 and 11 will be omitted.

在操作S381b中,可以執行選擇節點的操作。接著,在操作S382b中,可以執行確定節點是否對應於凍結位元的操作。如圖13中所示,在節點是凍結位元的情況下,隨後可以執行操作S386b,而在節點並非凍結位元的情況下(例如,在節點是未凍結位元的情況下),在操作S383b中,可以執行列表精簡。In operation S381b, an operation of selecting a node may be performed. Next, in operation S382b, an operation of determining whether a node corresponds to a frozen bit may be performed. As shown in FIG. 13, in the case that the node is a frozen bit, then operation S386b may be performed, and in the case that the node is not a frozen bit (for example, in the case that the node is an unfrozen bit), in operation In S383b, list reduction may be performed.

在執行列表精簡後,在操作S384b中,可以執行確定節點是否對應於資訊位元的操作。在節點不對應於資訊位元的情況下,即在節點對應於預定資訊位元的情況下,隨後可以執行操作S385b,而在節點對應於資訊位元的情況下,隨後可以執行操作S386b。After the list reduction is performed, in operation S384b, an operation of determining whether a node corresponds to an information bit may be performed. If the node does not correspond to an information bit, that is, if the node corresponds to a predetermined information bit, then operation S385b may be performed, and if the node corresponds to an information bit, then operation S386b may be performed.

在操作S385b中,可以執行確定是否提早終止的操作。舉例來說,如上文參考圖12所描述,可以確定是否所有候選解碼路徑滿足提早終止條件,即是否預定資訊位元的解碼結果不同於已知值。在滿足提早終止條件的情況下,可以結束操作S380b,而在不滿足提早終止條件的情況下,隨後可以執行操作S386b。In operation S385b, an operation of determining whether to terminate early may be performed. For example, as described above with reference to FIG. 12 , it may be determined whether all candidate decoding paths satisfy the early termination condition, ie whether the decoding result of the predetermined information bit is different from the known value. If the early termination condition is satisfied, operation S380b may end, and if the early termination condition is not satisfied, operation S386b may be subsequently performed.

在操作S386b中,可以執行確定節點是否對應於最終位元的操作。在節點不對應於最終位元的情況下,在操作S381b中,隨後可以執行選擇另一節點的操作,而在節點對應於最終位元的情況下,在操作S387b中,可以執行迴圈冗餘校驗。In operation S386b, an operation of determining whether the node corresponds to the final bit may be performed. In case the node does not correspond to the final bit, in operation S381b, an operation of selecting another node may then be performed, and in the case of the node corresponding to the final bit, in operation S387b, loop redundancy may be performed check.

圖14是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。如上文參考圖3所描述,在圖14的操作S380c中,可以執行基於極性碼的通道解碼。在圖14的實例中,預定資訊位元可以用於清單精簡。如圖14所示,操作S380c可以包含多個操作(操作S381c到S384c)。操作S380c還可以包含完成解碼操作所需的額外操作。在下文中,將省略與圖11和圖13的描述相同的圖14的描述。FIG. 14 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. As described above with reference to FIG. 3 , in operation S380c of FIG. 14 , polar code-based channel decoding may be performed. In the example of FIG. 14, predetermined information bits can be used for list compaction. As shown in FIG. 14 , operation S380c may include multiple operations (operations S381c to S384c). Operation S380c may also include additional operations required to complete the decoding operation. Hereinafter, the description of FIG. 14 that is the same as the description of FIGS. 11 and 13 will be omitted.

在操作S381c中,可以執行選擇節點的操作。接著,在操作S382c中,可以執行確定節點是否對應於預定資訊位元的操作。如圖14中所示,在節點並非預定資訊位元(即,是凍結位元或資訊位元)的情況下,可以執行用於解碼的後續操作,而在節點是預定資訊位元的情況下,隨後可以執行操作S383c。In operation S381c, an operation of selecting a node may be performed. Next, in operation S382c, an operation of determining whether a node corresponds to a predetermined information bit may be performed. As shown in FIG. 14, in the case where the node is not a predetermined information bit (i.e., is a frozen bit or an information bit), subsequent operations for decoding can be performed, while in the case of a node that is a predetermined information bit , and then operation S383c can be performed.

在操作S383c中,可以執行確定估計預定資訊位元是否具有預定(或替代地,所需)值的操作。如上文所論述,預定資訊位元可能具有在編碼器中預定(或替代地,所需)的值(例如固定值(例如,零),或包含解碼器的接收器(例如,圖1的接收器20)的唯一值。可以通過解碼器事先知曉所述預定資訊位元的預定(或替代地,所需)值。在估計預定資訊位元具有預定(或替代地,所需)值的情況下,可以執行用於解碼的後續操作。另一方面,在估計預定資訊位元具有的值不同於預定(或替代地,所需)值的的情況下,可以捨棄當前解碼路徑(操作S384c)。也就是說,預定資訊位元可以用於解碼器中的列表精簡,並且因此可以改進解碼性能。In operation S383c, an operation of determining whether the estimated predetermined information bit has a predetermined (or alternatively, required) value may be performed. As discussed above, the predetermined information bit may have a predetermined (or alternatively, desired) value (e.g. a fixed value (e.g., zero)) at the encoder, or a receiver including the decoder (e.g., the receiver of Fig. 1 The unique value of the decoder 20). The predetermined (or alternatively, required) value of the predetermined information bit can be known in advance by the decoder. In the case where it is estimated that the predetermined information bit has a predetermined (or alternatively, required) value Next, subsequent operations for decoding can be performed. On the other hand, in the case where it is estimated that the predetermined information bit has a value different from the predetermined (or alternatively, required) value, the current decoding path can be discarded (operation S384c) That is, predetermined information bits can be used for list compaction in the decoder, and thus decoding performance can be improved.

圖15是根據本發明概念的實例實施例的無線通訊裝置50的實例框圖。如圖15中所示,無線通訊設備50可以包含專用積體電路(application specific integrated circuit;ASIC)51、專用指令集處理器(application specific instruction set processor;ASIP)53、記憶體55、主處理器57和記憶體59。專用積體電路51、專用指令集處理器53以及主處理器57中的兩者或兩者以上可以彼此通信。專用積體電路51、專用指令集處理器53、記憶體55、主處理器57以及主記憶體59中的至少兩者可以包埋於一個晶片中。FIG. 15 is an example block diagram of a wireless communication device 50 according to an example embodiment of the inventive concepts. As shown in FIG. 15 , the wireless communication device 50 may include an application specific integrated circuit (ASIC) 51, an application specific instruction set processor (ASIP) 53, a memory 55, a main processor 57 and memory 59. Two or more of the ASIC 51, the ASIP processor 53, and the main processor 57 may communicate with each other. At least two of ASIC 51 , ASIC processor 53 , memory 55 , main processor 57 and main memory 59 may be embedded in one chip.

專用指令集處理器53是定制用於特定用途的積體電路並且可以支援用於特定應用的專用指令集並執行包含在指令集中的指令。記憶體55可以與專用指令集處理器53通信並且可以作為非揮發性存儲裝置存儲由專用指令集處理器53執行的多個指令。舉例來說,記憶體55可以包含(但不限於)可由專用指令集處理器53存取的任何類型的記憶體,例如隨機存取記憶體(random access memory;RAM)、唯讀記憶體(Read Only Memory;ROM)、磁帶、磁片、光碟、揮發性記憶體、非揮發性記憶體以及其組合。The special-purpose instruction set processor 53 is an integrated circuit customized for a specific application and may support a special-purpose instruction set for a particular application and execute instructions contained in the instruction set. Memory 55 may be in communication with special purpose instruction set processor 53 and may store a number of instructions for execution by special purpose instruction set processor 53 as a non-volatile storage device. For example, the memory 55 may include (but not limited to) any type of memory that can be accessed by the special-purpose instruction set processor 53, such as random access memory (random access memory; RAM), read-only memory (Read Only Memory; ROM), tapes, floppy discs, optical discs, volatile memory, non-volatile memory, and combinations thereof.

主處理器57可以通過執行多個指令控制無線通訊裝置50。舉例來說,主處理器57可以控制專用積體電路51和專用指令集處理器53,並且可以處理在無線通訊網路上接收的資料或處理到無線通訊裝置50的使用者輸入。主記憶體59可以與主處理器57通信並且可以作為非臨時記憶體裝置存儲由主處理器57執行的多個指令。舉例來說,主記憶體59可以包含(但不限於)可由主處理器57存取的任何類型的記憶體,例如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、磁帶、磁片、光碟、揮發性記憶體、非揮發性記憶體以及其組合。The main processor 57 can control the wireless communication device 50 by executing a plurality of instructions. For example, the main processor 57 can control the ASIC 51 and the ASIC 53 , and can process data received over the wireless communication network or user input to the wireless communication device 50 . Main memory 59 may be in communication with main processor 57 and may store a number of instructions for execution by main processor 57 as a non-transitory memory device. By way of example, main memory 59 may include, but is not limited to, any type of memory accessible by main processor 57, such as random access memory (RAM), read only memory (ROM), magnetic tape, magnetic chips, CDs, volatile memory, non-volatile memory, and combinations thereof.

上文所描述的根據本發明概念的實例實施例的編碼和/或解碼方法可以由包含在圖15的無線通訊裝置50中的元件中的至少一者執行。在一些實例實施例中,上文所描述的編碼和/或解碼方法的操作中的至少一者可以實施為存儲於記憶體55中的多個指令。在一些實例實施例中,專用指令集處理器53可以通過執行存儲於記憶體55中的多個指令來執行編碼和/或解碼方法的操作中的至少一者。在一些實例實施例中,編碼和/或解碼方法的操作中的至少一者可以實施在通過邏輯合成等等設計並包含在專用積體電路51中的硬體塊中。在一些實例實施例中,編碼和/或解碼方法的操作中的至少一者可以實施為存儲在主記憶體59中的多個指令,並且主處理器57可以通過執行存儲在主記憶體59中的多個指令來執行編碼和/或解碼方法的操作中的至少一者。The above-described encoding and/or decoding methods according to example embodiments of inventive concepts may be performed by at least one of elements included in the wireless communication device 50 of FIG. 15 . In some example embodiments, at least one of the operations of the encoding and/or decoding methods described above may be implemented as a plurality of instructions stored in memory 55 . In some example embodiments, the special instruction set processor 53 may perform at least one of the operations of the encoding and/or decoding methods by executing a plurality of instructions stored in the memory 55 . In some example embodiments, at least one of the operations of the encoding and/or decoding methods may be implemented in a hardware block designed by logic synthesis or the like and incorporated in the dedicated integrated circuit 51 . In some example embodiments, at least one of the operations of the encoding and/or decoding methods may be implemented as a plurality of instructions stored in the main memory 59, and the main processor 57 may execute the instructions stored in the main memory 59 by executing A plurality of instructions to perform at least one of the operations of the encoding and/or decoding methods.

如上文所描述,已經在圖式和說明書中揭露實例實施例。然而,應理解,術語僅出於描述本發明概念的技術理念的目的而使用且不用於限制權利要求書中定義的本發明概念的範圍。因此,本領域的技術人員應瞭解,在不脫離本發明概念的範圍的情況下,可以對揭露的實例實施例進行各種修改和變化。因此,本發明概念的真實保護範圍應該由所附權利要求書的技術理念來確定。As described above, example embodiments have been disclosed in the drawings and specification. However, it should be understood that the terms are used only for the purpose of describing the technical idea of the inventive concept and are not used to limit the scope of the inventive concept defined in the claims. Accordingly, those of ordinary skill in the art will appreciate that various modifications and changes can be made to the disclosed example embodiments without departing from the scope of the inventive concepts. Therefore, the true protection scope of the concept of the present invention should be determined by the technical concept of the appended claims.

5‧‧‧傳輸時間間隔10‧‧‧基站100‧‧‧無線通訊系統12‧‧‧迴圈冗餘校驗處理器14‧‧‧子通道映射單元16‧‧‧編碼器18‧‧‧速率匹配單元20‧‧‧使用者設備22‧‧‧極性解碼器30‧‧‧下行鏈路40‧‧‧上行鏈路50‧‧‧無線通訊裝置51‧‧‧專用積體電路53‧‧‧專用指令集處理器55、59‧‧‧記憶體57‧‧‧主處理器D31‧‧‧下行鏈路控制資訊D32‧‧‧估計的下行鏈路控制資訊DCRC‧‧‧迴圈冗餘校驗資料DEC‧‧‧解碼資料DIN‧‧‧輸入資料DOUT‧‧‧輸出資料

Figure 02_image093
‧‧‧對數似然比PCW、PCW'‧‧‧極性編碼碼字
Figure 02_image095
Figure 02_image097
Figure 02_image099
‧‧‧估計位元S300~S390、S310'、S380a~S386a、S380b~S387b、S383a'、S383_2、S383_4、S380c~S384c‧‧‧操作SEQ、SEQ1、SEQ2‧‧‧位元序列u1~u8、x1~x8、y1~y8‧‧‧位元W、W8 ‧‧‧通道W2、W4‧‧‧子通道5‧‧‧Transmission Time Interval 10‧‧‧Base Station 100‧‧‧Wireless Communication System 12‧‧‧Loop Redundancy Check Processor 14‧‧‧Sub-channel Mapping Unit 16‧‧‧Encoder 18‧‧‧Rate Matching unit 20‧‧‧user equipment 22‧‧‧polarity decoder 30‧‧‧downlink 40‧‧‧uplink 50‧‧‧wireless communication device 51‧‧‧special integrated circuit 53‧‧‧dedicated Instruction set processor 55, 59‧‧‧memory 57‧‧‧main processor D31‧‧‧downlink control information D32‧‧‧estimated downlink control information DCRC‧‧‧loop redundancy check data DEC‧‧‧decoding data DIN‧‧‧input data DOUT‧‧‧output data
Figure 02_image093
‧‧‧Log likelihood ratio PCW, PCW'‧‧‧Polarity codeword
Figure 02_image095
,
Figure 02_image097
,
Figure 02_image099
‧‧‧Estimating bits S300~S390, S310', S380a~S386a, S380b~S387b, S383a', S383_2, S383_4, S380c~S384c‧‧‧Operating SEQ, SEQ1, SEQ2‧‧‧bit sequence u 1 ~u 8 , x 1 ~x 8 , y 1 ~y 8 ‧‧‧bit W, W 8 ‧‧‧channel W 2 , W 4 ‧‧‧subchannel

圖1是示出根據本發明概念的實例實施例的包含基站和使用者設備的無線通訊系統的框圖。 圖2是示出根據本發明概念的實例實施例的圖1的下行鏈路(downlink;DL)的結構的實例的框圖。 圖3示出根據本發明概念的實例實施例的將下行鏈路控制資訊(downlink control information;DCI)從圖1的基站(base station;BS)傳送到使用者設備(user equipment;UE)的過程的實例。 圖4示出根據本發明概念的實例實施例的圖1的編碼器的操作的實例。 圖5A和圖5B示出根據本發明概念的實例實施例的圖1的極性解碼器的操作的實例。 圖6是示出根據本發明概念的實例實施例的圖3的操作S310的實例的流程圖。 圖7示出根據本發明概念的實例實施例的圖6的操作S312的操作的實例。 圖8示出根據本發明概念的實例實施例的極性碼的二叉樹的實例。 圖9是示出根據本發明概念的實例實施例的指配預定資訊(predefined information;PI)位元的方法的實例的虛擬碼。 圖10示出根據本發明概念的實例實施例的根據連續抵消解碼中的層級的位元序列的位元的碼樹。 圖11是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。 圖12是繪示根據本發明概念的實例實施例的圖11的操作S383a的實例的流程圖。 圖13是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。 圖14是示出根據本發明概念的實例實施例的圖3的操作S380的實例的流程圖。 圖15是示出根據本發明概念的實例實施例的無線通訊裝置的實例框圖。FIG. 1 is a block diagram illustrating a wireless communication system including a base station and a user equipment according to an example embodiment of the inventive concept. FIG. 2 is a block diagram illustrating an example of a structure of a downlink (DL) of FIG. 1 according to an example embodiment of inventive concepts. FIG. 3 illustrates a process of transmitting downlink control information (downlink control information; DCI) from the base station (base station; BS) of FIG. 1 to the user equipment (user equipment; UE) according to an example embodiment of the inventive concept instance of . FIG. 4 illustrates an example of the operation of the encoder of FIG. 1 according to example embodiments of inventive concepts. 5A and 5B illustrate an example of the operation of the polar decoder of FIG. 1 according to example embodiments of inventive concepts. FIG. 6 is a flowchart illustrating an example of operation S310 of FIG. 3 according to example embodiments of inventive concepts. FIG. 7 illustrates an example of the operation of operation S312 of FIG. 6 according to example embodiments of inventive concepts. FIG. 8 shows an example of a binary tree of a polar code according to an example embodiment of the inventive concept. FIG. 9 is a virtual code illustrating an example of a method of assigning predefined information (PI) bits according to an example embodiment of the inventive concept. FIG. 10 illustrates a code tree of bits of a bit sequence according to levels in consecutive offset decoding according to an example embodiment of the inventive concept. FIG. 11 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. FIG. 12 is a flowchart illustrating an example of operation S383a of FIG. 11 according to example embodiments of inventive concepts. FIG. 13 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. FIG. 14 is a flowchart illustrating an example of operation S380 of FIG. 3 according to example embodiments of inventive concepts. FIG. 15 is an example block diagram illustrating a wireless communication device according to an example embodiment of the inventive concept.

10:基站 10: base station

12:迴圈冗餘校驗處理器 12: loop redundancy check processor

14:子通道映射單元 14: Sub-channel mapping unit

16:編碼器 16: Encoder

18:速率匹配單元 18: Rate matching unit

20:使用者設備 20: User equipment

22:極性解碼器 22: Polar decoder

30:下行鏈路 30: Downlink

40:上行鏈路 40: Uplink

100:無線通訊系統 100: Wireless communication system

DCRC:迴圈冗餘校驗資料 DCRC: loop redundancy check data

DEC:解碼資料 DEC: decode data

DIN:輸入資料 DIN: input data

DOUT:輸出資料 DOUT: output data

PCW、PCW':極性編碼碼字 PCW, PCW': Polar code word

SEQ:位元序列 SEQ: bit sequence

Claims (23)

一種將輸入資料編碼為極性碼的方法,所述方法包括:通過將至少一個指定資訊位元添加到已基於所述輸入資料產生的資訊位元來產生未凍結位元;通過將所述未凍結位元指配到與具有編碼器和解碼器都已知的值的凍結位元相比可靠性更高的極化子通道來對所述未凍結位元和所述凍結位元重新排序;以及通過所述重新排序的極性編碼結果來產生碼字,其中所述至少一個指定資訊位元具有所述編碼器和所述解碼器都已知的所述值。 A method of encoding input data into a polar code, the method comprising: generating unfrozen bits by adding at least one specified information bit to information bits already generated based on the input data; by adding the unfrozen reordering said unfrozen bits and said frozen bits by assigning bits to a more reliable polarization sub-channel than frozen bits having a value known to both an encoder and a decoder; and A codeword is generated from the reordered polar encoding results, wherein the at least one specified information bit has the value known to both the encoder and the decoder. 如申請專利範圍第1項所述的將輸入資料編碼為極性碼的方法,其中極性碼樹包括僅具有所述未凍結位元作為子級節點的速率1節點和具有所述凍結位元和未凍結位元兩者作為子級節點的速率R節點,以及其中所述重新排序包括將所述至少一個指定資訊位元指配到在所述速率1節點或所述速率R節點的葉節點之中具有最高可靠性的極化子通道。 The method for encoding input data into a polar code as described in item 1 of the scope of patent application, wherein the polar code tree includes only the rate 1 node with the unfrozen bit as a child node and the frozen bit and the unfrozen bit Freezing both rate R nodes as child nodes, and wherein said reordering comprises assigning said at least one designated information bit into a leaf node in said rate 1 node or said rate R node Polarized sub-channels with highest reliability. 如申請專利範圍第2項所述的將輸入資料編碼為極性碼的方法,其中所述指配包括將所述至少一個指定資訊位元指配到與所述速率1節點或所述速率R節點相關聯的候選索引之中具有最低索引的至少一個葉節點。 The method of encoding input data into a polar code as described in claim 2, wherein said assigning includes assigning said at least one designated information bit to said rate 1 node or said rate R node At least one leaf node with the lowest index among the associated candidate indexes. 如申請專利範圍第2項所述的將輸入資料編碼為極性碼的方法,更包括:通過削弱或縮短所述碼字來進行速率匹配,其中所述指配包括將所述至少一個指定資訊位元指配到所述極化子通道之中不對應於所述速率匹配中的削弱位元或縮短位元的極化子通道。 The method for encoding input data into a polar code as described in item 2 of the scope of the patent application further includes: performing rate matching by weakening or shortening the codeword, wherein the assignment includes converting the at least one designated information bit Bits are assigned to polarized sub-channels among the polarized sub-channels that do not correspond to weakened bits or shortened bits in the rate matching. 如申請專利範圍第1項所述的將輸入資料編碼為極性碼的方法,其中所述資訊位元包括輸入位元和迴圈冗餘校驗位元,以及其中所述重新排序更包括將所述輸入位元和所述迴圈冗餘校驗位元指配到所述至少一個指定資訊位元並未指配到的一些所述極化子通道中。 The method for encoding input data into a polar code as described in item 1 of the scope of the patent application, wherein the information bits include input bits and loop redundancy check bits, and wherein the reordering further includes converting all The input bits and the loop redundancy check bits are assigned to some of the polarization sub-channels to which the at least one designated information bit is not assigned. 如申請專利範圍第5項所述的將輸入資料編碼為極性碼的方法,其中所述指配所述輸入位元和所述迴圈冗餘校驗位元包括以交織方式指配所述輸入位元和所述迴圈冗餘校驗位元。 The method for encoding input data into a polar code as described in item 5 of the scope of patent application, wherein said assigning said input bit and said loop redundancy check bit comprises assigning said input in an interleaved manner bit and the loop redundancy check bit. 如申請專利範圍第5項所述的將輸入資料編碼為極性碼的方法,更包括:根據所述迴圈冗餘校驗位元的假警率和數量來確定所述至少一個指定資訊位元的數量。 The method for encoding input data into a polar code as described in item 5 of the scope of the patent application further includes: determining the at least one designated information bit according to the false alarm rate and the number of the loop redundancy check bits quantity. 如申請專利範圍第1項所述的將輸入資料編碼為極性碼的方法,更包括:將所述碼字傳輸到無線通訊系統的物理控制通道上, 所述傳輸包括省略所述碼字的無線資源配置資訊的傳輸。 The method for encoding input data into a polar code as described in item 1 of the scope of the patent application further includes: transmitting the code word to the physical control channel of the wireless communication system, The transmission includes transmission of RRC information omitting the codeword. 如申請專利範圍第1項所述的將輸入資料編碼為極性碼的方法,其中所述至少一個指定資訊位元具有所述解碼器的固定值或唯一識別碼。 The method for encoding input data into a polar code as described in claim 1, wherein the at least one designated information bit has a fixed value or a unique identification code of the decoder. 一種將輸入資料編碼為極性碼的設備,所述設備包括:記憶體,其被配置以存儲電腦可讀指令;以及一或多個處理器,其被配置以執行所述電腦可讀指令使得所述一或多個處理器被配置以:通過基於極化子通道的可靠性對未凍結位元和具有編碼器和解碼器都已知的值的凍結位元重新排序來產生位元序列,所述未凍結位元包含至少一個指定資訊位元和基於所述輸入資料的資訊位元;以及通過極性編碼所述位元序列來產生碼字,其中所述未凍結位元指配到與所述凍結位元相比可靠性更高的極化子通道。 An apparatus for encoding input data into a polar code, the apparatus comprising: a memory configured to store computer readable instructions; and one or more processors configured to execute the computer readable instructions such that the The one or more processors are configured to: generate a sequence of bits by reordering unfrozen bits and frozen bits having values known to both the encoder and the decoder based on the reliability of the polarization subchannels, said unfrozen bits comprising at least one designated information bit and an information bit based on said input data; and generating a codeword by polar encoding said sequence of bits, wherein said unfrozen bits are assigned to said Polarized sub-channels with higher reliability than frozen bits. 如申請專利範圍第10項所述的將輸入資料編碼為極性碼的設備,其中所述一或多個處理器被進一步配置以接收所述資訊位元並通過將所述至少一個指定資訊位元添加到所述資訊位元來產生所述未凍結位元。 The device for encoding input data into a polar code as described in claim 10, wherein said one or more processors are further configured to receive said information bits and pass said at least one designated information bit added to the information bits to generate the unfrozen bits. 如申請專利範圍第10項所述的將輸入資料編碼為極性碼的設備,其中極性碼樹包括僅具有所述未凍結位元作為子級節點的速 率1節點和具有所述凍結位元和所述未凍結位元兩者作為子級節點的速率R節點,以及其中所述一或多個處理器被進一步配置以將所述至少一個指定資訊位元指配到在所述速率1節點或所述速率R節點的葉節點之中具有最高可靠性的極化子通道。 The device for encoding input data into a polar code as described in item 10 of the scope of patent application, wherein the polar code tree includes only the unfrozen bit as a child node a rate 1 node and a rate R node having both said frozen bit and said unfrozen bit as child nodes, and wherein said one or more processors are further configured to convert said at least one designated information bit A cell is assigned to the polarization subchannel with the highest reliability among the rate 1 node or the rate R node's leaf nodes. 如申請專利範圍第10項所述的將輸入資料編碼為極性碼的設備,其中所述一或多個處理器進一步被配置以:從所述輸入資料的輸入位元產生迴圈冗餘校驗位元,並產生包括所述輸入位元和所述迴圈冗餘校驗位元的所述資訊位元,以及將所述輸入位元和所述迴圈冗餘校驗位元指配到所述至少一個指定資訊位元並未指配到的一些極化子通道。 The apparatus for encoding input data into a polar code according to claim 10, wherein the one or more processors are further configured to: generate a loop redundancy check from input bits of the input data bit, and generating said information bit comprising said input bit and said loop redundancy check bit, and assigning said input bit and said loop redundancy check bit to Some polarization sub-channels to which the at least one designated information bit is not assigned. 如申請專利範圍第10項所述的將輸入資料編碼為極性碼的設備,其中所述一或多個處理器進一步被配置以:削弱或縮短所述碼字,以及將所述至少一個指定資訊位元指配到所述極化子通道之中不對應於削弱位元或縮短位元的極化子通道。 The device for encoding input data into a polar code as described in claim 10, wherein said one or more processors are further configured to: weaken or shorten said codeword, and convert said at least one specified information Bits are assigned to polarization sub-channels among the polarization sub-channels that do not correspond to weakened bits or shortened bits. 一種解碼方法,包括:接收通過極性編碼位元序列所產生的碼字;以及通過在L是正整數的情況下產生L個解碼路徑的清單來執行所述碼字的列表解碼,其中所述位元序列包括包含輸入位元、迴圈冗餘校驗位元和 至少一個指定資訊位元的未凍結位元以及具有編碼器和解碼器都已知的值的凍結位元,以及其中所述執行包括基於解碼所述至少一個指定資訊位元的結果提早終止所述碼字的所述列表解碼,以及其中所述未凍結位元指配到與所述凍結位元相比可靠性更高的極化子通道。 A method of decoding comprising: receiving a codeword produced by polar encoding a sequence of bits; and performing list decoding of the codeword by producing a list of L decoding paths where L is a positive integer, wherein the bits The sequence consists of input bits, loop redundancy check bits and Unfrozen bits of at least one designated information bit and frozen bits having values known to both an encoder and a decoder, and wherein said performing includes early terminating said The list decoding of codewords, and wherein the unfrozen bits are assigned to a more reliable polarization sub-channel than the frozen bits. 如申請專利範圍第15項所述的解碼方法,其中所述執行包括:根據所述L個解碼路徑中的每一者基於碼樹的層級確定節點的類型;以及響應于對應於所述至少一個指定資訊位元的所述節點的所述類型根據由所述節點解碼的值與所述至少一個指定資訊位元中的一者的值是否一致而確定提早終止。 The decoding method according to claim 15, wherein the execution includes: determining the type of the node based on each of the L decoding paths based on the level of the code tree; and responding to the at least one The type of the node specifying an information bit determines early termination based on whether a value decoded by the node agrees with a value of one of the at least one specified information bit. 如申請專利範圍第16項所述的解碼方法,其中所述確定提早終止包括回應於通過解碼用於所有所述L個解碼路徑的所述至少一個指定資訊位元獲得的值不與所述至少一個指定資訊位元中的一者的所述值一致確定所述碼字的所述列表解碼的提早終止。 The decoding method according to claim 16, wherein said determining early termination comprises responding to a value obtained by decoding said at least one designated information bit for all said L decoding paths not being consistent with said at least The value of one of the specified information bits agrees to determine early termination of the list decoding of the codeword. 如申請專利範圍第16項所述的解碼方法,其中所述未凍結位元包括多個指定資訊位元,以及其中所述確定提早終止包括:回應於在所述L個解碼路徑之中通過解碼所述多個指定資訊位元獲得的所有值與所述至少一個 指定資訊位元中的一者的所述值一致不發生的解碼路徑,確定所述碼字的所述列表解碼的提早終止。 The decoding method according to claim 16, wherein said unfrozen bits comprise a plurality of specified information bits, and wherein said determining early termination comprises: in response to passing decoding among said L decoding paths All values obtained by the plurality of designated information bits are related to the at least one Specifying a decoding path in which a coincidence of the value of one of the information bits does not occur determines early termination of the list decoding of the codeword. 如申請專利範圍第16項所述的解碼方法,其中所述執行更包括回應於所述節點的所述類型是輸入位元來執行列表精簡。 The decoding method according to claim 16, wherein said performing further includes performing list reduction in response to said type of said node being an input bit. 如申請專利範圍第16項所述的解碼方法,其中所述執行更包括回應於所述節點的所述類型是未凍結位元來執行列表精簡。 The decoding method of claim 16, wherein said performing further includes performing list reduction in response to said type of said node being unfrozen bits. 如申請專利範圍第16項所述的解碼方法,其中所述執行更包括捨棄解碼路徑,在所述解碼路徑中,對應於所述至少一個指定資訊位元的解碼值與所述至少一個指定資訊位元中的一者的所述值不一致。 The decoding method described in claim 16 of the patent application, wherein the execution further includes discarding the decoding path, in which the decoded value corresponding to the at least one specified information bit and the at least one specified information The value for one of the bits is inconsistent. 如申請專利範圍第15項所述的解碼方法,其中所述執行更包括回應於達到所述解碼路徑中的最終位元而對解碼路徑執行迴圈冗餘校驗。 The decoding method of claim 15, wherein the performing further includes performing a loop redundancy check on the decoding path in response to reaching a final bit in the decoding path. 一種用以解碼碼字的設備,其特徵在於,包括:記憶體,其被配置以存儲電腦可讀指令;以及一或多個處理器,其被配置以執行所述電腦可讀指令使得所述一或多個處理器被配置以執行根據申請專利範圍第15項所述的所述解碼方法。 An apparatus for decoding codewords, comprising: a memory configured to store computer-readable instructions; and one or more processors configured to execute the computer-readable instructions such that the One or more processors are configured to execute the decoding method according to claim 15 of the patent application.
TW107119642A 2017-06-08 2018-06-07 Method and apparatus for encoding input data as polar code, decoding method and apparatus for decoding code word TWI791023B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20170071888 2017-06-08
??10-2017-0071888 2017-06-08
KR10-2017-0071888 2017-06-08
KR1020170181521A KR102452618B1 (en) 2017-06-08 2017-12-27 Polar encoding and decoding using predefined information
??10-2017-0181521 2017-12-27
KR10-2017-0181521 2017-12-27

Publications (2)

Publication Number Publication Date
TW201904206A TW201904206A (en) 2019-01-16
TWI791023B true TWI791023B (en) 2023-02-01

Family

ID=64952386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119642A TWI791023B (en) 2017-06-08 2018-06-07 Method and apparatus for encoding input data as polar code, decoding method and apparatus for decoding code word

Country Status (2)

Country Link
KR (1) KR102452618B1 (en)
TW (1) TWI791023B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144266B1 (en) * 2019-05-10 2020-08-13 포항공과대학교 산학협력단 Decoding method and apparatus based on polar code in communication system
KR102115216B1 (en) * 2019-06-28 2020-05-26 재단법인대구경북과학기술원 Polar codes decoding device and method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140019820A1 (en) * 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20140365842A1 (en) * 2012-01-20 2014-12-11 Huawei Technologies Co., Ltd. Decoding method and decoding device for polar code cascaded with cyclic redundancy check
US20150194987A1 (en) * 2012-09-24 2015-07-09 Huawei Technologies Co.,Ltd. Method and apparatus for generating hybrid polar code
US20150295593A1 (en) * 2014-04-10 2015-10-15 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding data in twisted polar code
US20160013810A1 (en) * 2014-07-10 2016-01-14 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
US20160079999A1 (en) * 2013-05-31 2016-03-17 Huawei Technologies Co., Ltd. Coding method and coding device
US20170155405A1 (en) * 2015-12-01 2017-06-01 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015121B1 (en) * 2012-10-17 2019-08-28 삼성전자주식회사 Controller configured to control nonvolatile memory device and operating method of controller
KR102128471B1 (en) * 2014-03-11 2020-06-30 삼성전자주식회사 List decoding method for polar codes and memory system adopting the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365842A1 (en) * 2012-01-20 2014-12-11 Huawei Technologies Co., Ltd. Decoding method and decoding device for polar code cascaded with cyclic redundancy check
US20140019820A1 (en) * 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20150194987A1 (en) * 2012-09-24 2015-07-09 Huawei Technologies Co.,Ltd. Method and apparatus for generating hybrid polar code
US20160079999A1 (en) * 2013-05-31 2016-03-17 Huawei Technologies Co., Ltd. Coding method and coding device
US20150295593A1 (en) * 2014-04-10 2015-10-15 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding data in twisted polar code
US20160013810A1 (en) * 2014-07-10 2016-01-14 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
US20170155405A1 (en) * 2015-12-01 2017-06-01 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder

Also Published As

Publication number Publication date
KR20180134276A (en) 2018-12-18
KR102452618B1 (en) 2022-10-11
TW201904206A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
CN109039344B (en) Method and equipment for coding input data into polar code, decoding method and equipment thereof
RU2761405C2 (en) Method for speed matching, encoding device and communication device
JP6731115B2 (en) Information transmission method, transmission end device and reception end device
CN108282247B (en) Control information transmission method and device
CN108365848B (en) Polar code decoding method and device
WO2019062145A1 (en) Polar encoding method and encoding apparatus, and decoding method and decoding apparatus
CN106982172B (en) Method and communication device for determining size of transmission block of polarization code
KR102056746B1 (en) Method and apparatus for transmitting indication information
JP2020516157A (en) Encoding method, decoding method, device, and device
CN109792298B (en) Sub-channel mapping
US11026244B2 (en) Method and device in terminal and base station for dynamic scheduling
TWI791023B (en) Method and apparatus for encoding input data as polar code, decoding method and apparatus for decoding code word
WO2017101023A1 (en) Communication method, network device, and user equipment
KR102517960B1 (en) Method and apparatus for data transmission in wirelss cellular communication system
KR102445151B1 (en) Apparatus and method for encoding and decoding in communication or broadcasting system
CN110519018B (en) Method and equipment used for UE (user equipment) and base station for channel coding
WO2020147527A1 (en) Polar coding and decoding method and apparatus
JP6989692B2 (en) Terminals, base stations, wireless communication methods and systems
EP3592074B1 (en) Resource mapping method and apparatus thereof
CN108631977B (en) Method and equipment for sending broadcast information indication
CN109964427B (en) Method and device used in terminal and base station for channel coding
KR20190056178A (en) Method and apparutus for encoding and decoding in a wireless communication system
US11218248B2 (en) Channel encoding method and device
CN109937547B (en) Method and device for channel coding in base station and user equipment
CN109952709B (en) Method and device for channel coding in base station and user equipment