TWI790133B - Preparation method of superfine wc-base hard alloy - Google Patents

Preparation method of superfine wc-base hard alloy Download PDF

Info

Publication number
TWI790133B
TWI790133B TW111107197A TW111107197A TWI790133B TW I790133 B TWI790133 B TW I790133B TW 111107197 A TW111107197 A TW 111107197A TW 111107197 A TW111107197 A TW 111107197A TW I790133 B TWI790133 B TW I790133B
Authority
TW
Taiwan
Prior art keywords
powder
cemented carbide
preparation
entropy alloy
fine
Prior art date
Application number
TW111107197A
Other languages
Chinese (zh)
Other versions
TW202300672A (en
Inventor
劉超
葉坤雄
范超穎
文曉
蔡曉康
林樂
Original Assignee
大陸商廈門鎢業股份有限公司
大陸商廈門金鷺特種合金有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廈門鎢業股份有限公司, 大陸商廈門金鷺特種合金有限公司 filed Critical 大陸商廈門鎢業股份有限公司
Publication of TW202300672A publication Critical patent/TW202300672A/en
Application granted granted Critical
Publication of TWI790133B publication Critical patent/TWI790133B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling

Abstract

The invention discloses a preparation method of a superfine WC-base hard alloy with a molecular formula WC-T-HEA, wherein T is at least one of a carbide, an oxide or a boride, HEA is a high-entropy alloy. The high-entropy alloy ingot is prepared by smelting and casting the raw material of the high-entropy alloy. Under the protection of inert atmosphere, the high-entropy alloy ingot is crushed by a mechanical crushing method to obtain the high-entropy alloy coarse powder. The submicron WC powder, T Powder and the high-entropy alloy coarse powder are added into the air flow mill in proportion to the ultrafine WC hard alloy components, and then are subjected to air flow grinding and crushing in an inert atmosphere without the classification steps, and 1 μm or less powder originally separated is mixed in the grinding powder to obtain mixed fine powder. The method can solve the problem of too high oxygen content in the superfine WC hard alloy preparation process, improves the processing performance of the ultrafine WC-base hard alloy, and can meet the requirement of the optical level surface through machining.

Description

一種超細WC硬質合金的製備方法 A kind of preparation method of superfine WC cemented carbide

本發明涉及一種WC基硬質合金的製備方法,特別涉及無Co、Ni粘結相的超細WC硬質合金的製備方法。 The invention relates to a preparation method of WC-based hard alloy, in particular to a preparation method of superfine WC hard alloy without Co and Ni binding phase.

無Co、Ni粘結相硬質合金與傳統的WC-Co硬質合金相比有著更高的硬度,彈性模量,同時耐腐蝕性和耐磨性也有著大幅的提高,被逐步運用在精密光學模具,噴砂嘴,核工業密封件等要求高精度,高硬度,高彈性模量,高耐腐蝕性的領域。 Compared with the traditional WC-Co cemented carbide, Co and Ni-free cemented carbide has higher hardness, elastic modulus, corrosion resistance and wear resistance have also been greatly improved, and is gradually used in precision optical molds , Sandblasting nozzles, nuclear industry seals and other fields that require high precision, high hardness, high elastic modulus, and high corrosion resistance.

中國發明專利申請CN1827817A公開了一種高熵合金粘結劑與複合碳化物燒結的硬質合金及其製作方法,秤取複合碳化物和粘結相的金屬粉末在球磨筒內進行混合,接著把球磨筒放入球磨機內進行至少10小時的高能球磨,然後向球磨筒中添加1-2wt%的石蠟作為潤濕劑和粘結劑,再進行至少5小時的低能球磨,卸料與乾燥後壓製成圓胚,然後是脫酯和燒結,最後製得成品,但該方法並不適用於無Co、Ni粘結相超細碳化鎢硬質合金的製備。 Chinese invention patent application CN1827817A discloses a cemented carbide sintered with a high-entropy alloy binder and composite carbide and its production method. The metal powder of the composite carbide and the binder phase is weighed and mixed in a ball mill, and then the ball mill Put it into the ball mill for at least 10 hours of high-energy ball milling, then add 1-2wt% paraffin wax as a wetting agent and binder to the ball mill cylinder, and then carry out at least 5 hours of low-energy ball milling, unloading and drying, then press into a round billet , followed by deesterification and sintering, and finally the finished product is obtained, but this method is not suitable for the preparation of superfine tungsten carbide cemented carbide without Co and Ni binder phase.

目前無Co、Ni粘結相超細WC硬質合金的製備方法,一種是首先通過高能球磨方法製備亞微米WC粉體,提高粉體表面能,然後通過放電等離子燒結技術製備無粘結相超細WC硬質合金,這種製備方法在製備過程中容易引入雜質,另外亞微米WC粉體極易吸附氧,導致氧含量過高,在燒結過程中易與游離碳反應生成缺碳相,影響燒結試樣加工性能。 At present, the preparation method of superfine WC cemented carbide without Co and Ni binder phase, one is to first prepare submicron WC powder by high energy ball milling method to improve the surface energy of the powder, and then prepare superfine WC cemented carbide without binder phase by spark plasma sintering technology. WC cemented carbide, this preparation method is easy to introduce impurities during the preparation process. In addition, the submicron WC powder is very easy to absorb oxygen, resulting in too high oxygen content. Sample processing performance.

本發明的目的提供一種WC基硬質合金的製備方法,能夠克服超細WC硬質合金製備過程氧含量過高問題,提高超細WC硬質合金的加工性能,能夠通過加工達到光學級表面要求。 The purpose of the present invention is to provide a preparation method of WC-based cemented carbide, which can overcome the problem of excessive oxygen content in the preparation process of ultrafine WC cemented carbide, improve the processing performance of ultrafine WC cemented carbide, and can achieve optical grade surface requirements through processing.

本發明提供的技術方案如下:一種超細WC硬質合金的製備方法,所述超細WC硬質合金的分子式為WC-T-HEA,其中T為碳化物、氧化物或硼化物中的至少一種,所述T中包含B元素,HEA為高熵合金;所述HEA選自Al、Nb、Ti、Zr、Ge、Si、V、Ta、Cr、Mn、Ce、Mo、W、Hf元素中的至少五種;所述T中包含B元素,所述製備方法包括:步驟a,將所述高熵合金的原料放入真空熔煉爐中進行熔煉,將熔煉所得的熔融液進行鑄造,製得高熵合金鑄錠;步驟b,在惰性氣氛保護下,採用機械破碎方式將所述高熵合金鑄錠破碎,獲得高熵合金粗粉末;步驟c,將亞微米WC粉末、T粉末及所述高熵合金粗粉末按照超細WC硬質合金成分比例加入到氣流磨製粉機中,在惰性氣氛下進行氣流磨粉碎,去除分級步驟,使原來被分離出來的1μm以下粉末混合在粉碎粉中,得到混合細粉;所述超細WC硬質合金成分包括:0.5wt%-5wt%的HEA,35wt%以下的T,0.1wt%-3wt%的B,餘量為WC和不可避免的雜質;步驟d:將所述混合細粉進行壓製成形、燒結獲得所述的超細WC硬質合金。 The technical scheme provided by the present invention is as follows: a method for preparing ultrafine WC cemented carbide, the molecular formula of the ultrafine WC cemented carbide is WC-T-HEA, wherein T is at least one of carbide, oxide or boride, The T contains B elements, and HEA is a high-entropy alloy; the HEA is selected from Al, Nb, Ti, Zr, Ge, Si, V, Ta, Cr, Mn, Ce, Mo, W, and Hf at least Five types; the T contains element B, and the preparation method includes: step a, putting the raw material of the high-entropy alloy into a vacuum melting furnace for melting, and casting the molten liquid obtained by melting to obtain a high-entropy alloy alloy ingot; step b, under the protection of an inert atmosphere, crush the high-entropy alloy ingot by mechanical crushing to obtain high-entropy alloy coarse powder; step c, submicron WC powder, T powder and the high-entropy alloy Coarse alloy powder is added to the jet mill according to the ultrafine WC cemented carbide composition ratio, and the jet mill is pulverized under an inert atmosphere. powder; the superfine WC cemented carbide composition comprises: the HEA of 0.5wt%-5wt%, the T below 35wt%, the B of 0.1wt%-3wt%, the surplus is WC and unavoidable impurity; Step d: will The mixed fine powder is pressed into shape and sintered to obtain the superfine WC hard alloy.

本發明通過將高熵合金以合金粉末形式添加,相較於將高熵合金各元素分別以金屬單質粉末形式添加,能夠有效避免高熵合金部分活性元素的氧化,有利於降低氧含量,通過採用低氧製備工藝,能夠避免製備過程中亞微米WC粉體吸附氧,提高超細WC硬質合金加工性能,經加工後,所述超細WC硬質合金的表面粗糙度Ra

Figure 111107197-A0305-02-0004-8
10nm。 In the present invention, by adding the high-entropy alloy in the form of alloy powder, compared with adding each element of the high-entropy alloy in the form of metal elemental powder, it can effectively avoid the oxidation of some active elements of the high-entropy alloy, which is beneficial to reduce the oxygen content. The low-oxygen preparation process can avoid the absorption of oxygen by the submicron WC powder in the preparation process, and improve the processing performance of the ultra-fine WC cemented carbide. After processing, the surface roughness of the ultra-fine WC cemented carbide is Ra
Figure 111107197-A0305-02-0004-8
10nm.

另一方面本發明的超細WC硬質合金引入高熵合金並充分發揮B元素的作用,合金體系中HEA與B二者協同發揮作用,使本發明的超細WC硬質合金整體具有優異的強度和韌性,較高的熱導率及熱穩定性,密度高,能夠達到 光學模具的要求:熱導率

Figure 111107197-A0305-02-0005-9
72W/m˙K,密度
Figure 111107197-A0305-02-0005-10
12g˙cm-3,硬度HRA
Figure 111107197-A0305-02-0005-11
70,斷裂韌性
Figure 111107197-A0305-02-0005-12
10MPa˙M1/2,抗彎強度
Figure 111107197-A0305-02-0005-13
1600N˙mm-2,氧化增重
Figure 111107197-A0305-02-0005-14
1.16mg˙cm-2,加工後表面粗糙度Ra
Figure 111107197-A0305-02-0005-15
10nm。 On the other hand, the superfine WC cemented carbide of the present invention introduces high-entropy alloys and fully exerts the effect of the B element. In the alloy system, HEA and B play a synergistic role, so that the ultrafine WC cemented carbide of the present invention as a whole has excellent strength and Toughness, high thermal conductivity and thermal stability, high density, can meet the requirements of optical molds: thermal conductivity
Figure 111107197-A0305-02-0005-9
72W/m˙K, density
Figure 111107197-A0305-02-0005-10
12g˙cm -3 , hardness HRA
Figure 111107197-A0305-02-0005-11
70, fracture toughness
Figure 111107197-A0305-02-0005-12
10MPa˙M 1/2 , bending strength
Figure 111107197-A0305-02-0005-13
1600N˙mm -2 , oxidation weight gain
Figure 111107197-A0305-02-0005-14
1.16mg˙cm -2 , surface roughness Ra after processing
Figure 111107197-A0305-02-0005-15
10nm.

下面將結合本發明實施例,對本發明的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。 The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

在推薦的實施方式中,將所述真空感應熔煉爐抽真空至真空度4Pa-9Pa時,向熔煉室內充入氬氣使爐內壓力至0.03MPa-0.06MPa後進行熔煉。 In a recommended implementation, when the vacuum induction melting furnace is evacuated to a vacuum degree of 4Pa-9Pa, argon gas is filled into the melting chamber to bring the pressure in the furnace to 0.03MPa-0.06MPa before melting.

在推薦的實施方式中,所述機械破碎採用兩個顎式破碎機封閉式串連,在惰性氣氛保護下,將所述高熵合金鑄錠破碎至1mm-3mm的粗粉末。所述的機械破碎方法並不限於顎式破碎機,也可以採用車削和高速粉碎結合的方式或其他粉碎方式。所述惰性氣氛可為本領域常規的含有惰性氣體或氮氣的氣氛。 In a recommended implementation, the mechanical crushing adopts two closed jaw crushers connected in series, and under the protection of an inert atmosphere, the high-entropy alloy ingot is crushed to a coarse powder of 1mm-3mm. The mechanical crushing method is not limited to the jaw crusher, and a combination of turning and high-speed crushing or other crushing methods can also be used. The inert atmosphere may be an atmosphere containing inert gas or nitrogen conventional in the art.

在推薦的實施方式中,所述氣流磨製粉機的粉碎室壓力為5MPa-11MPa,分選輪轉速為3500rpm-4300rpm。 In a recommended implementation, the pressure of the crushing chamber of the jet mill is 5MPa-11MPa, and the rotation speed of the sorting wheel is 3500rpm-4300rpm.

在推薦的實施方式中,所述WC粉末的平均粒徑為0.2μm-0.8μm,所述T粉末的平均粒徑為0.5μm-1μm。 In a recommended implementation, the average particle size of the WC powder is 0.2 μm-0.8 μm, and the average particle size of the T powder is 0.5 μm-1 μm.

在推薦的實施方式中,所述去除分級步驟是在所述氣流磨製粉機的旋風分離器內增設一通過管道與所述氣流磨製粉機的壓縮機相連通的篩檢程式,並將篩檢程式設置為能夠阻擋超細粉通過,從而使得1μm以下粉末在旋風分離器內不被分離出來,混合在粉碎粉中。 In a recommended implementation, the step of removing classification is to add a screening program in the cyclone separator of the jet mill to the compressor of the jet mill through a pipeline, and to screen The program is set to block the passage of ultrafine powder, so that the powder below 1 μm is not separated in the cyclone separator and mixed in the pulverized powder.

在推薦的實施方式中,在所述步驟d中,將壓製成形的坯體置於放電等離子燒結爐中並抽真空,調節燒結壓力至35MPa-60MPa,升溫至750-800℃,保溫1min-2min,繼續升溫至1500℃-1700℃,保溫5min-30min。 In a recommended implementation, in the step d, place the pressed body in a spark plasma sintering furnace and vacuumize it, adjust the sintering pressure to 35MPa-60MPa, raise the temperature to 750-800°C, and keep it warm for 1min-2min , continue to heat up to 1500°C-1700°C, and keep warm for 5min-30min.

在推薦的實施方式中,所述HEA的熔點為1850℃以下。 In a preferred embodiment, the HEA has a melting point below 1850°C.

在推薦的實施方式中,所述T為Al4C3、HfC、TiC、Cr3C2、VC、ZrC、NbC、TaC、SiC、Mn3C、MoC、CuC、Mg2C3、W2C、CeO2、La2O3、MgO、ZrO2、Al2O3、ZrB2、CrB2、TiB2或MnB2中的至少兩種;在推薦的實施方式中,優選的B以過渡金屬硼化物形式存在,如ZrB2、CrB2、TiB2或MnB2In a recommended embodiment, the T is Al 4 C 3 , HfC, TiC, Cr 3 C 2 , VC, ZrC, NbC, TaC, SiC, Mn 3 C, MoC, CuC, Mg 2 C 3 , W 2 At least two of C, CeO 2 , La 2 O 3 , MgO, ZrO 2 , Al 2 O 3 , ZrB 2 , CrB 2 , TiB 2 or MnB 2 ; in a preferred embodiment, preferred B is a transition metal Borides exist in the form of ZrB 2 , CrB 2 , TiB 2 or MnB 2 .

在推薦的實施方式中,所述高熵合金HEA選自分子式為Al0.4Hf0.6NbTaTiZr、AlMo0.5NbTa0.5TiZr、AlNbTaTiV、AlNb1.5Ta0.5Ti1.5Zr0.5、AlCr2Mo2Nb2Ti2Zr、HfMoNbTiZr、HfNbTaTiZr、HfNbTiVZr、CrNbTiVZr、CrMo0.5NbTa0.5TiZr、TiZrHfNbCr、TiNbMoTaW、TiVNbMoTaW、HfMoTaTiZr或HfMoNbTaTiZr中的至少一種。上述分子式中包含一個原子半徑稍大的金屬元素和原子半徑接近的其餘元素,有益於在HEA形成中,其中原子半徑稍大的金屬元素進入晶格中,促進晶格發生畸變,從面心立方相向體心立方相轉變;選擇的元素在燒結過程中,原子間更易結合,形成有序固溶體;同時選擇的HEA更有益於提升WC基硬質合金的熱導率及熱穩定性。 In a recommended embodiment, the high-entropy alloy HEA is selected from the group consisting of the molecular formulas Al 0.4 Hf 0.6 NbTaTiZr, AlMo 0.5 NbTa 0.5 TiZr, AlNbTaTiV, AlNb 1.5 Ta 0.5 Ti 1.5 Zr 0.5 , AlCr 2 Mo 2 Nb 2 Ti 2 Zr, At least one of HfMoNbTiZr, HfNbTaTiZr, HfNbTiVZr, CrNbTiVZr, CrMo 0.5 NbTa 0.5 TiZr, TiZrHfNbCr, TiNbMoTaW, TiVNbMoTaW, HfMoTaTiZr or HfMoNbTaTiZr. The above molecular formula contains a metal element with a slightly larger atomic radius and other elements with a similar atomic radius, which is beneficial to the formation of HEA, in which the metal element with a slightly larger atomic radius enters the lattice and promotes the distortion of the lattice, from face-centered cubic Phase to body-centered cubic phase transformation; the selected elements are more likely to combine between atoms during the sintering process to form an ordered solid solution; at the same time, the selected HEA is more beneficial to improve the thermal conductivity and thermal stability of WC-based cemented carbide.

需要說明的是,本發明中公佈的所有數值範圍包括這個範圍內的所有點值。 It should be noted that all numerical ranges disclosed in the present invention include all point values within this range.

燒結體中的氧含量評價過程:燒結體中的氧含量使用日本HORIBA公司的EMGA-620W型氧氮分析儀進行檢測。 Oxygen content evaluation process in the sintered body: the oxygen content in the sintered body was detected by an EMGA-620W oxygen and nitrogen analyzer from Japan HORIBA Company.

硬度測試:參照GB/T 7997-2014《硬質合金維氏硬度試驗方法》。 Hardness test: refer to GB/T 7997-2014 "Cemented Carbide Vickers Hardness Test Method".

抗彎強度、壓縮強度:採用CMT5305微機控制萬能試驗機進行測定,參照GB/T 3851-2015《硬質合金橫向斷裂強度測定方法》,GB/T 23370-2009《硬質合金壓縮試驗方法》。 Bending strength and compressive strength: measured by CMT5305 microcomputer-controlled universal testing machine, referring to GB/T 3851-2015 "Measurement Method for Transverse Fracture Strength of Cemented Carbide", GB/T 23370-2009 "Cemented Carbide Compression Test Method".

韌性測試:參照GB/T 33819-2017《硬質合金巴氏韌性試驗》。 Toughness test: refer to GB/T 33819-2017 "Barcol Toughness Test of Cemented Carbide".

熱導率:採用德國耐馳LFA457型鐳射導熱儀,參照標準GB/T 22588-2008。 Thermal conductivity: German NETZSCH LFA457 laser thermal conductivity meter is used, referring to the standard GB/T 22588-2008.

密度:美國麥克AccuPyc II 1340真密度分析儀進行測定。 Density: measured by American Mike AccuPyc II 1340 true density analyzer.

抗氧化性:參照GB/T 13303-1991《鋼的抗氧化性能測定方法》。 Oxidation resistance: Refer to GB/T 13303-1991 "Method for Determination of Oxidation Resistance of Steel".

表面粗糙度:採用影致留形方法進行測定,參照GB/T 15056-2017《鑄造表面粗糙度評定方法》。 Surface roughness: It is measured by the method of shape retention, referring to GB/T 15056-2017 "Evaluation Method for Surface Roughness of Casting".

以下結合實施例對本發明作進一步詳細說明。 The present invention is described in further detail below in conjunction with embodiment.

實施例一 Embodiment one

實施例一的超細WC硬質合金的製備方法包括如下步驟: The preparation method of the superfine WC cemented carbide of embodiment one comprises the steps:

(1)真空熔煉 (1) Vacuum melting

按照高熵合金HEA分子式AlNb1.5Ta0.5Ti1.5Zr0.5準備構成HEA的五種金屬單質粉體(Al、Nb、Ta、Ti、Zr),將五種金屬單質粉體放入真空感應熔煉爐中,抽真空至真空度5Pa時,向熔煉室內充入氬氣使爐內壓力至0.05MPa後進行熔煉和澆注,獲得高熵合金鑄錠。 According to the high-entropy alloy HEA molecular formula AlNb 1.5 Ta 0.5 Ti 1.5 Zr 0.5 , prepare five metal elemental powders (Al, Nb, Ta, Ti, Zr) that constitute HEA, and put the five metal elemental powders into the vacuum induction melting furnace , when the vacuum is evacuated to 5Pa, argon gas is filled into the melting chamber to make the pressure in the furnace reach 0.05MPa, and then melting and pouring are carried out to obtain high-entropy alloy ingots.

(2)粗破碎 (2) Coarse crushing

在惰性氣氛保護下,採用兩個顎式破碎機封閉式串連,在高純氮氣(99.99%)保護下,將所述高熵合金鑄錠破碎至1mm-3mm的粗粉末,獲得高熵合金粗粉末。 Under the protection of an inert atmosphere, two jaw crushers are connected in closed series, and under the protection of high-purity nitrogen (99.99%), the high-entropy alloy ingot is crushed to a coarse powder of 1mm-3mm to obtain a high-entropy alloy coarse powder.

(3)細破碎及混合 (3) fine crushing and mixing

將平均粒徑為0.8μm WC粉末、平均粒徑為0.5μm T粉末及所述高熵合金粗粉末按照表1的超細WC硬質合金成分比例加入到氣流磨製粉機中,在氮氣氣氛下,在粉碎室壓力為10MPa、分選輪轉速為3500rpm條件下,進行氣流磨粉碎,在所述氣流磨製粉機的旋風分離器內增設一通過管道與氣流磨製粉機的壓縮機相連通的篩檢程式,並將篩檢程式設置為能夠阻擋超細粉通過,從而使得1μm以下粉末在旋風分離器內不被分離出來,得到混合細粉。 Add the WC powder with an average particle size of 0.8 μm, the T powder with an average particle size of 0.5 μm, and the high-entropy alloy coarse powder into the jet mill according to the ultrafine WC cemented carbide composition ratio in Table 1, and under a nitrogen atmosphere, Under the condition that the pressure of the pulverizing chamber is 10MPa and the rotating speed of the sorting wheel is 3500rpm, carry out jet mill pulverization, and add a screening in the cyclone separator of the jet mill pulverizer through pipelines connected with the compressor of the jet mill pulverizer program, and set the screening program to block the ultrafine powder from passing through, so that the powder below 1 μm will not be separated in the cyclone separator, and the mixed fine powder will be obtained.

(4)壓製 (4) suppression

將所述混合細粉經180MPa壓力壓製,保壓時間120s,得到生坯。 The mixed fine powder was compressed under a pressure of 180 MPa for a holding time of 120 s to obtain a green body.

(5)燒結 (5) Sintering

將生坯置於放電等離子燒結爐中並抽真空,調節燒結壓力至50MPa,升溫至800℃,保溫1min,繼續升溫至1500℃,保溫10min,冷卻後得到超細WC硬質合金,並採用奈米級別金剛石研磨膏進行表面拋光處理。 Put the green body in a discharge plasma sintering furnace and vacuumize it, adjust the sintering pressure to 50MPa, raise the temperature to 800°C, keep it for 1min, continue to raise the temperature to 1500°C, keep it for 10min, and get ultra-fine WC cemented carbide after cooling, and use nanometer Grade diamond abrasive paste for surface polishing.

Figure 111107197-A0305-02-0008-1
Figure 111107197-A0305-02-0008-1

各實施例和對比例的硬質合金進行性能測試,結果如表2所示。 The cemented carbides of each embodiment and comparative examples were subjected to performance tests, and the results are shown in Table 2.

Figure 111107197-A0305-02-0008-2
Figure 111107197-A0305-02-0008-2

在上述實施例1-7中,超細WC基硬質合金成分配合低氧製備工藝,各實施例中合金的熱導率

Figure 111107197-A0305-02-0008-16
72W/m˙K,密度
Figure 111107197-A0305-02-0008-17
12g˙cm-3,硬度
Figure 111107197-A0305-02-0008-18
70,斷裂韌性
Figure 111107197-A0305-02-0008-19
10MPa˙M1/2,抗彎強度
Figure 111107197-A0305-02-0008-20
1600N˙mm-2,氧化增重
Figure 111107197-A0305-02-0008-21
1.16mg˙cm-2,合金的氧含量 均小於50ppm,各實施例的硬質合金拋光後的表面粗糙度Ra
Figure 111107197-A0305-02-0009-22
10nm,均符合用於製造光學鏡片的合金模具的要求。 In the above-mentioned examples 1-7, the superfine WC-based cemented carbide components are combined with the low-oxygen preparation process, and the thermal conductivity of the alloy in each example is
Figure 111107197-A0305-02-0008-16
72W/m˙K, density
Figure 111107197-A0305-02-0008-17
12g˙cm -3 , hardness
Figure 111107197-A0305-02-0008-18
70, fracture toughness
Figure 111107197-A0305-02-0008-19
10MPa˙M 1/2 , bending strength
Figure 111107197-A0305-02-0008-20
1600N˙mm -2 , oxidation weight gain
Figure 111107197-A0305-02-0008-21
1.16mg˙cm -2 , the oxygen content of the alloy is less than 50ppm, the surface roughness Ra of the cemented carbide of each embodiment after polishing
Figure 111107197-A0305-02-0009-22
10nm, all meet the requirements of alloy molds used to manufacture optical lenses.

在實施例1-7中,在HEA添加量0.5wt%-5wt%且B添加量0.1wt%-3wt%時,添加的HEA增加,合金的硬度、抗彎強度有所下降,與之相對的導熱率、斷裂韌性有所提升,同時氧化增重略微增加,即抗氧化性略有下降;而且添加其他元素如Ta、Al等,可以適當增強的合金強度,如硬度、抗彎強度有所增加。 In Examples 1-7, when the amount of HEA added is 0.5wt%-5wt% and the amount of B added is 0.1wt%-3wt%, the added HEA increases, and the hardness and flexural strength of the alloy decrease. The thermal conductivity and fracture toughness have been improved, while the oxidation weight has increased slightly, that is, the oxidation resistance has decreased slightly; and the addition of other elements such as Ta, Al, etc., can properly enhance the strength of the alloy, such as hardness and flexural strength. .

相較於實施例1,對比例1由於HEA高於5wt%,導致合金硬度低於70,氧化增重高於1.16mg.cm-2,其製得合金拋光後的表面粗糙度Ra高於10nm,顯然不符合用於光學鏡片的合金模具的要求。 Compared with Example 1, Comparative Example 1 has an alloy hardness lower than 70 and an oxidation weight gain higher than 1.16 mg due to HEA being higher than 5wt%. cm -2 , the surface roughness Ra of the prepared alloy after polishing is higher than 10nm, which obviously does not meet the requirements of alloy molds for optical lenses.

相較於實施例4,對比例2由於B高於3wt%,導致合金的斷裂韌性小於10MPa.M1/2,氧化增重大於1.16mg.cm-2,其合金拋光後的表面粗糙度Ra高於10nm,顯然不符合用於光學鏡片的合金模具的要求。 Compared with Example 4, Comparative Example 2 has a fracture toughness of less than 10MPa because B is higher than 3wt%. M 1/2 , oxidation increase greater than 1.16mg. cm -2 , the surface roughness Ra of the alloy after polishing is higher than 10nm, which obviously does not meet the requirements of alloy molds for optical lenses.

相較於添加5wt% HEA的實施例1,對比例3中不添加HEA,導致合金斷裂韌性低於10MPa.M1/2,而且氧化增重明顯高於1.16mg.cm-2,其合金拋光後的表面粗糙度Ra明顯高於10nm,顯然不符合用於光學鏡片的合金模具的要求;相較於實施例1,對比例4中不添加B,導致合金的硬度低於70,同時氧化增重高於1.16mg.cm-2,其合金拋光後的表面粗糙度Ra高於10nm,顯然也不符合用於光學鏡片的合金模具的要求。 Compared with Example 1 with 5wt% HEA added, Comparative Example 3 did not add HEA, resulting in alloy fracture toughness lower than 10MPa. M 1/2 , and the oxidative weight gain was significantly higher than 1.16mg. cm -2 , the surface roughness Ra of the alloy after polishing is significantly higher than 10nm, which obviously does not meet the requirements of alloy molds for optical lenses; compared with Example 1, B is not added in Comparative Example 4, resulting in the hardness of the alloy Less than 70, while the oxidative weight gain is higher than 1.16mg. cm -2 , the surface roughness Ra of the alloy after polishing is higher than 10nm, which obviously does not meet the requirements of alloy molds for optical lenses.

實施例二 Embodiment two

實施例8-12組成的超細WC硬質合金的製備與實施例1不同之處在於,原料中的HEA粉體分子式構成不完全相同,在超細WC基硬質合金中的構成如表3所示。 The difference between the preparation of ultrafine WC cemented carbide composed of Examples 8-12 and Example 1 is that the molecular formula of HEA powder in the raw material is not completely the same, and the composition of ultrafine WC-based cemented carbide is shown in Table 3 .

Figure 111107197-A0305-02-0009-3
Figure 111107197-A0305-02-0009-3

各實施例的硬質合金進行性能測試,結果如表4所示。 The cemented carbide of each embodiment was tested for performance, and the results are shown in Table 4.

Figure 111107197-A0305-02-0010-5
Figure 111107197-A0305-02-0010-5

在實施例8-12中,超細WC基硬質合金成分與低氧製備工藝配合,各實施例合金的氧含量均小於50ppm,各合金的熱導率、密度、硬度、斷裂韌性、抗彎強度及氧化增重均符合用於光學鏡片的合金模具的要求:熱導率

Figure 111107197-A0305-02-0010-23
72W/m˙K,密度
Figure 111107197-A0305-02-0010-24
12g˙cm-3,硬度HRA
Figure 111107197-A0305-02-0010-25
70,斷裂韌性
Figure 111107197-A0305-02-0010-26
10MPa˙M1/2,抗彎強度
Figure 111107197-A0305-02-0010-27
1600N˙mm-2,氧化增重
Figure 111107197-A0305-02-0010-28
1.16mg˙cm-2。 In Examples 8-12, the superfine WC-based cemented carbide components are combined with the low-oxygen preparation process, and the oxygen content of the alloys in each example is less than 50ppm. The thermal conductivity, density, hardness, fracture toughness, and flexural strength of each alloy and oxidation weight gain are in line with the requirements of alloy molds for optical lenses: thermal conductivity
Figure 111107197-A0305-02-0010-23
72W/m˙K, density
Figure 111107197-A0305-02-0010-24
12g˙cm -3 , hardness HRA
Figure 111107197-A0305-02-0010-25
70, fracture toughness
Figure 111107197-A0305-02-0010-26
10MPa˙M 1/2 , bending strength
Figure 111107197-A0305-02-0010-27
1600N˙mm -2 , oxidation weight gain
Figure 111107197-A0305-02-0010-28
1.16 mg˙cm -2 .

對比例一 Comparative example one

對比例一的超細WC硬質合金的製備方法包括如下步驟: The preparation method of the superfine WC cemented carbide of comparative example one comprises the steps:

(1)原料準備 (1) Raw material preparation

平均粒徑0.8μm的WC粉;構成HEA的五種金屬單質粉體(Al、Nb、Ta、Ti、Zr),粒徑均為0.5μm;由碳化硼、碳化鈦、碳化鉭或氧化鋁構成的粒徑為0.5μm的陶瓷粉體T。 WC powder with an average particle size of 0.8 μm; five metal elemental powders (Al, Nb, Ta, Ti, Zr) that constitute HEA, all with a particle size of 0.5 μm; composed of boron carbide, titanium carbide, tantalum carbide or alumina Ceramic powder T with a particle size of 0.5 μm.

Figure 111107197-A0305-02-0010-6
Figure 111107197-A0305-02-0010-6

(2)球磨 (2) ball mill

a.高能球磨構成HEA的單質粉體,球料比15:1,轉速400r/min,球磨介質為硬質合金球,時間24h,得到HEA合金粉末;b.加入WC粉和所述陶瓷粉體T,球磨,球料比5:1,轉速100r/min,時間40h。 a. High-energy ball milling the elemental powder that constitutes HEA, the ball-to-material ratio is 15:1, the rotation speed is 400r/min, the ball milling medium is cemented carbide balls, and the time is 24 hours to obtain HEA alloy powder; b. Add WC powder and the ceramic powder T , Ball milling, the ratio of ball to material is 5:1, the speed is 100r/min, and the time is 40h.

(3)壓製 (3) suppression

經180MPa壓力壓製,保壓時間120s,得到生坯。 After being pressed under a pressure of 180 MPa and held for 120 s, a green body was obtained.

(4)燒結 (4) Sintering

在上述生坯置於燒結爐內,真空度高於10Pa的條件下,於1600℃溫度,60MPa燒結壓力進行放電等離子體燒結30min,冷卻後得到WC基硬質合金。 Place the green body above in a sintering furnace with a vacuum degree higher than 10 Pa, conduct discharge plasma sintering at a temperature of 1600° C. and a sintering pressure of 60 MPa for 30 minutes, and obtain a WC-based cemented carbide after cooling.

各實施例和對比例的硬質合金進行性能測試,結果如表6所示。 The cemented carbides of each embodiment and comparative examples were subjected to performance tests, and the results are shown in Table 6.

Figure 111107197-A0305-02-0011-7
Figure 111107197-A0305-02-0011-7

相較於實施例1,對比例5由於製備過程沒有惰性氣體保護而容易引入過多氧,在燒結過程中易與游離碳反應生成缺碳相,合金的氧含量突增超過100ppm,導致最終合金硬度、氧化增重及加工後的表面粗糙度都沒有達到光學鏡片模具的要求;相較於實施例2,對比例6由於製備過程沒有惰性氣體保護而容易引入過多氧,在燒結過程中易與游離碳反應生成缺碳相,合金的氧含量突增超過100ppm,導致最終合金氧化增重及表面粗糙度都沒有達到光學鏡片模具的要求。 Compared with Example 1, Comparative Example 5 is easy to introduce too much oxygen because there is no inert gas protection in the preparation process, and it is easy to react with free carbon to form a carbon-deficient phase during the sintering process, and the oxygen content of the alloy suddenly increases by more than 100ppm, resulting in the hardness of the final alloy , oxidation weight gain, and surface roughness after processing have not reached the requirements of optical lens molds; compared with Example 2, Comparative Example 6 is easy to introduce too much oxygen because there is no inert gas protection in the preparation process, and it is easy to mix with free in the sintering process. Carbon reacts to form a carbon-deficient phase, and the oxygen content of the alloy suddenly increases to more than 100ppm, resulting in the final alloy oxidation weight gain and surface roughness not meeting the requirements of the optical lens mold.

實施例三 Embodiment three

將實施例1、4、9、10、12和對比例1-6得到的超細WC基硬質合金,應用於加工聚碳酸酯光學玻璃用模具,在模具表面鍍膜後,採用鍍膜後模具壓製成形光學鏡片,將光學鏡片置於光源前四方形孔之前3公分偏下,稍微傾斜鏡片進行檢驗,光源採用20W的日光燈或100W的燈泡,要求檢測環境前、上、下、左、右均為黑色之不反光物,採用放大鏡(4倍)檢查#60或#60以下之傷痕:採用實施例1、4、9、10、12的超細WC硬質合金材質的模具製得的光學玻璃外觀良好;採用對比例1-6的材質的模具製得的光學鏡片外觀點子不良,不合格。 The ultra-fine WC-based cemented carbide obtained in Examples 1, 4, 9, 10, 12 and Comparative Examples 1-6 is applied to a mold for processing polycarbonate optical glass, and after the surface of the mold is coated, the coated mold is used for compression molding Optical lens, place the optical lens 3 cm below the square hole in front of the light source, and slightly tilt the lens for inspection. The light source is a 20W fluorescent lamp or a 100W light bulb, and the front, top, bottom, left and right of the testing environment are required to be black. For non-reflective objects, use a magnifying glass (4 times) to check the scars below #60 or #60: the optical glass made by the ultra-fine WC hard alloy mold of Examples 1, 4, 9, 10, and 12 has a good appearance; The optical lens produced by the mold made of the material of Comparative Examples 1-6 had a bad appearance and was unqualified.

上述實施例僅用來進一步說明本發明的幾種具體的實施方式,但本發明並不局限於實施例,凡是依據本發明的技術實質對以上實施例所做的任何簡單修改、等同變化與修飾,均落入本發明技術方案的保護範圍內。 The above-mentioned examples are only used to further illustrate several specific implementation modes of the present invention, but the present invention is not limited to the examples, any simple modifications, equivalent changes and modifications made to the above-mentioned examples according to the technical essence of the present invention , all fall within the scope of protection of the technical solution of the present invention.

Claims (10)

一種超細WC硬質合金的製備方法,其特徵在於,所述超細WC硬質合金無Co、Ni粘結相,所述超細WC硬質合金的分子式為WC-T-HEA,其中T為碳化物、氧化物或硼化物中的至少一種,所述T中包含B元素,所述B以過渡金屬硼化物形式存在,HEA為高熵合金;所述HEA選自Al、Nb、Ti、Zr、Ge、Si、V、Ta、Cr、Mn、Ce、Mo、W、Hf元素中的至少五種;所述製備方法包括:步驟a,將所述高熵合金的原料放入真空熔煉爐中進行熔煉,將熔煉所得的熔融液進行鑄造,製得高熵合金鑄錠;步驟b,在惰性氣氛保護下,採用機械破碎方式將所述高熵合金鑄錠破碎,獲得高熵合金粗粉末;步驟c,將亞微米WC粉末、T粉末及所述高熵合金粗粉末按照超細WC硬質合金成分比例加入到氣流磨製粉機中,在惰性氣氛下進行氣流磨粉碎,去除分級步驟,使原來被分離出來的1μm以下粉末混合在粉碎粉中,得到混合細粉;所述超細WC硬質合金成分包括:0.5wt%-5wt%的HEA,35wt%以下的T,0.1wt%-3wt%的B,餘量為WC和不可避免的雜質;步驟d:將所述混合細粉進行壓製成形、燒結獲得所述的超細WC硬質合金。 A preparation method of ultra-fine WC hard alloy, characterized in that the ultra-fine WC hard alloy has no Co, Ni binder phase, and the molecular formula of the ultra-fine WC hard alloy is WC-T-HEA, wherein T is carbide , at least one of oxides or borides, the T contains B elements, the B exists in the form of transition metal borides, HEA is a high-entropy alloy; the HEA is selected from Al, Nb, Ti, Zr, Ge , Si, V, Ta, Cr, Mn, Ce, Mo, W, Hf at least five elements; the preparation method includes: step a, the raw material of the high-entropy alloy is put into a vacuum melting furnace for melting , casting the molten liquid obtained by smelting to obtain a high-entropy alloy ingot; step b, under the protection of an inert atmosphere, crushing the high-entropy alloy ingot by mechanical crushing to obtain a high-entropy alloy coarse powder; step c , the submicron WC powder, T powder and the high-entropy alloy coarse powder are added to the jet mill pulverizer according to the ultrafine WC cemented carbide composition ratio, and the jet mill is pulverized under an inert atmosphere, and the classification step is removed to make the original separated The powder below 1 μm is mixed in the pulverized powder to obtain a mixed fine powder; the ultrafine WC cemented carbide composition includes: 0.5wt%-5wt% HEA, 35wt% or less T, 0.1wt%-3wt% B, The balance is WC and unavoidable impurities; step d: press-forming and sintering the mixed fine powder to obtain the ultra-fine WC cemented carbide. 如請求項1所述的超細WC硬質合金的製備方法,其在步驟a中,將所述真空感應熔煉爐抽真空至真空度4Pa-9Pa時,向熔煉室內充入氬氣使爐內壓力至0.03MPa-0.06MPa後進行熔煉。 The preparation method of ultra-fine WC cemented carbide as claimed in claim 1, in step a, when the vacuum induction melting furnace is evacuated to a vacuum degree of 4Pa-9Pa, argon gas is filled into the melting chamber to make the furnace pressure Melting is carried out after reaching 0.03MPa-0.06MPa. 如請求項1所述的超細WC硬質合金的製備方法,其在步驟b中,所述機械破碎採用兩個顎式破碎機封閉式串連,在惰性氣氛保護下,將所述高熵合金鑄錠破碎至1mm-3mm的粗粉末。 The preparation method of ultra-fine WC cemented carbide as claimed in item 1, in step b, the mechanical crushing adopts two closed jaw crushers connected in series, and under the protection of an inert atmosphere, the high-entropy alloy The ingot is crushed to a coarse powder of 1mm-3mm. 如請求項1所述的超細WC硬質合金的製備方法,其在步驟c中,所述氣流磨製粉機的粉碎室壓力為5MPa-11MPa,分選輪轉速為3500rpm-4300rpm。 The preparation method of ultrafine WC cemented carbide as claimed in item 1, in step c, the crushing chamber pressure of the jet mill pulverizer is 5MPa-11MPa, and the rotating speed of the sorting wheel is 3500rpm-4300rpm. 如請求項1所述的超細WC硬質合金的製備方法,其在步驟c中,所述亞微米WC粉末的平均粒徑為0.2μm-0.8μm,所述T粉末的平均粒徑為0.5μm-1μm。 The preparation method of ultrafine WC cemented carbide as claimed in item 1, in step c, the average particle diameter of the submicron WC powder is 0.2 μm-0.8 μm, and the average particle diameter of the T powder is 0.5 μm -1 μm. 如請求項5所述的超細WC硬質合金的製備方法,其在步驟c中,所述去除分級步驟是在所述氣流磨製粉機的旋風分離器內增設一通過管道與所述氣流磨製粉機的壓縮機相連通的篩檢程式,並將篩檢程式設置為能夠阻擋超細粉通過,從而使得1μm以下粉末在旋風分離器內不被分離出來,混合在粉碎粉中。 The preparation method of ultra-fine WC cemented carbide as claimed in claim 5, in step c, the step of removing and classifying is to add a passage through the pipeline and the jet milling powder in the cyclone separator of the jet mill powder mill The screening program connected to the compressor of the machine, and the screening program is set to block the passage of ultrafine powder, so that the powder below 1 μm will not be separated in the cyclone separator and mixed in the pulverized powder. 如請求項1所述的超細WC硬質合金的製備方法,其在所述步驟d中,將壓製成形的坯體置於放電等離子燒結爐中並抽真空,調節燒結壓力至35MPa-60MPa,升溫至750-800℃,保溫1min-2min,繼續升溫至1500℃-1700℃,保溫5min-30min。 The preparation method of ultra-fine WC cemented carbide as claimed in item 1, in said step d, place the pressed body in a spark plasma sintering furnace and vacuumize it, adjust the sintering pressure to 35MPa-60MPa, and raise the temperature Heat to 750-800°C, keep warm for 1min-2min, continue to heat up to 1500°C-1700°C, keep warm for 5min-30min. 如請求項1所述的超細WC硬質合金的製備方法,其中所述HEA的熔點為1850℃以下。 The method for preparing ultra-fine WC cemented carbide according to claim 1, wherein the melting point of the HEA is below 1850°C. 如請求項1所述的超細WC硬質合金的製備方法,其中所述T為Al4C3、HfC、TiC、Cr3C2、VC、ZrC、NbC、TaC、SiC、Mn3C、MoC、CuC、Mg2C3、W2C、CeO2、La2O3、MgO、ZrO2、Al2O3、ZrB2、CrB2、TiB2或MnB2中的至少兩種。 The preparation method of ultrafine WC cemented carbide as claimed in item 1, wherein said T is Al 4 C 3 , HfC, TiC, Cr 3 C 2 , VC, ZrC, NbC, TaC, SiC, Mn 3 C, MoC , CuC, Mg 2 C 3 , W 2 C, CeO 2 , La 2 O 3 , MgO, ZrO 2 , Al 2 O 3 , ZrB 2 , CrB 2 , TiB 2 or MnB 2 at least two. 如請求項1所述的超細WC硬質合金的製備方法,其中所述高熵合金HEA選自分子式為Al0.4Hf0.6NbTaTiZr、AlMo0.5NbTa0.5TiZr、AlNbTaTiV、AlNb1.5Ta0.5Ti1.5Zr0.5、AlCr2Mo2Nb2Ti2Zr、HfMoNbTiZr、HfNbTaTiZr、HfNbTiVZr、CrNbTiVZr、CrMo0.5NbTa0.5TiZr、TiZrHfNbCr、TiNbMoTaW、TiVNbMoTaW、HfMoTaTiZr或HfMoNbTaTiZr中的至少一種。 The preparation method of ultrafine WC cemented carbide as claimed in item 1, wherein the high-entropy alloy HEA is selected from the group consisting of molecular formulas of Al 0.4 Hf 0.6 NbTaTiZr, AlMo 0.5 NbTa 0.5 TiZr, AlNbTaTiV, AlNb 1.5 Ta 0.5 Ti 1.5 Zr 0.5 , At least one of AlCr 2 Mo 2 Nb 2 Ti 2 Zr, HfMoNbTiZr, HfNbTaTiZr, HfNbTiVZr, CrNbTiVZr, CrMo 0.5 NbTa 0.5 TiZr, TiZrHfNbCr, TiNbMoTaW, TiVNbMoTaW, HfMoTaTiZr or HfMoNbTaTiZr.
TW111107197A 2021-06-18 2022-02-25 Preparation method of superfine wc-base hard alloy TWI790133B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110675545.2A CN113430443B (en) 2021-06-18 2021-06-18 Preparation method of superfine WC hard alloy
CN202110675545.2 2021-06-18

Publications (2)

Publication Number Publication Date
TW202300672A TW202300672A (en) 2023-01-01
TWI790133B true TWI790133B (en) 2023-01-11

Family

ID=77756395

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107197A TWI790133B (en) 2021-06-18 2022-02-25 Preparation method of superfine wc-base hard alloy

Country Status (4)

Country Link
KR (1) KR20230051574A (en)
CN (1) CN113430443B (en)
TW (1) TWI790133B (en)
WO (1) WO2022262421A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462947B (en) * 2021-06-18 2022-06-03 厦门钨业股份有限公司 WC-based hard alloy and application thereof
CN113430443B (en) * 2021-06-18 2022-06-10 厦门钨业股份有限公司 Preparation method of superfine WC hard alloy
CN115627402A (en) * 2022-07-14 2023-01-20 河源正信硬质合金有限公司 Complex-phase co-strengthening hard alloy and preparation method thereof
CN115433011B (en) * 2022-10-10 2023-08-18 北方民族大学 High entropy carbide (VNbTaMoW) C 5 -SiC complex phase ceramics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827817A (en) * 2006-04-14 2006-09-06 韶关学院 Hard alloy sintered by high-entropy alloy binder and compound carbide and preparation method thereof
CN108060322A (en) * 2017-12-07 2018-05-22 中南大学 The preparation method of hard high-entropy alloy composite material
CN111235453A (en) * 2020-03-23 2020-06-05 郑州轻工业大学 Hard alloy with high-entropy alloy layer on surface and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560215A (en) * 2012-02-17 2012-07-11 中南大学 Ni3Al bonded ultra-fine grained tungsten carbide-based hard alloy and preparation method thereof
KR20190135318A (en) * 2018-05-28 2019-12-06 부산대학교 산학협력단 Method for welding high entropy alloy containing chromium as active ingredient
CN108823478B (en) * 2018-06-14 2020-04-14 湖南金锐美新材料有限公司 Ultra-fine high-entropy alloy binding phase metal ceramic and preparation method thereof
CN109252081B (en) * 2018-10-31 2020-09-22 华南理工大学 High-entropy alloy binding phase superfine tungsten carbide hard alloy and preparation method thereof
CN111961940B (en) * 2020-08-20 2021-09-21 四川轻化工大学 WC-based hard alloy containing high-entropy ceramic phase and preparation method thereof
CN111940723B (en) * 2020-08-30 2022-11-25 中南大学 Nano ceramic metal composite powder for 3D printing and application
CN113462947B (en) * 2021-06-18 2022-06-03 厦门钨业股份有限公司 WC-based hard alloy and application thereof
CN113430443B (en) * 2021-06-18 2022-06-10 厦门钨业股份有限公司 Preparation method of superfine WC hard alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827817A (en) * 2006-04-14 2006-09-06 韶关学院 Hard alloy sintered by high-entropy alloy binder and compound carbide and preparation method thereof
CN108060322A (en) * 2017-12-07 2018-05-22 中南大学 The preparation method of hard high-entropy alloy composite material
CN111235453A (en) * 2020-03-23 2020-06-05 郑州轻工业大学 Hard alloy with high-entropy alloy layer on surface and preparation method thereof

Also Published As

Publication number Publication date
KR20230051574A (en) 2023-04-18
CN113430443B (en) 2022-06-10
TW202300672A (en) 2023-01-01
WO2022262421A1 (en) 2022-12-22
CN113430443A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
TWI790133B (en) Preparation method of superfine wc-base hard alloy
US6228139B1 (en) Fine-grained WC-Co cemented carbide
JP6796266B2 (en) Cemented carbide and cutting tools
CN108421985B (en) Method for preparing oxide dispersion strengthening medium-entropy alloy
US3565643A (en) Alumina - metalline compositions bonded with aluminide and titanide intermetallics
CN108723371A (en) A kind of high-entropy alloy reinforced aluminum matrix composites and preparation method
Yun et al. Effects of sintering temperature and nano Ti (C, N) on the microstructure and mechanical properties of Ti (C, N) cermets cutting tool materials with low Ni-Co
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
CN100390312C (en) Prepn process of high-performance superfine crystal hard WC-10 wt.% Co alloy
CN107523710A (en) A kind of whisker modified Ti (C, N) based composite metal ceramic preparation of resistance to high temperature oxidation
TWI790132B (en) Wc-base hard alloy and its application
CN105861901A (en) Metal-based ceramic cutting tool and preparation method
CN112111684B (en) 3D prints ternary boride Mo2NiB2Alloy powder and production process thereof
CN110408833A (en) A kind of preparation method of NbTaTiZr high-entropy alloy and its powder
CN111690861B (en) Contains TiO2Cermet cutter material and preparation method thereof
CN107267836A (en) A kind of twin crystal hard alloy and preparation method thereof
CN109439990A (en) A kind of preparation process of high-compactness high-content molybdenum niobium alloy target
CN111101042B (en) Ultra-fine grain Ti (C, N) cermet material and preparation method thereof
CN111842906A (en) Preparation method of metal ceramic cutter material added with nano cubic boron nitride
US3542529A (en) Metal bonded alumina-carbide compositions
JP7171973B1 (en) Method for producing silicon nitride powder, slurry, and silicon nitride sintered body
CN115725885B (en) Gradient YG hard alloy material for mold and preparation method
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
JPS61223145A (en) Manufacture of tungsten carbide base sintered hard alloy
CN111925216A (en) TiN-Mo2C composite material and preparation method thereof