TWI788904B - Gas concentrator - Google Patents
Gas concentrator Download PDFInfo
- Publication number
- TWI788904B TWI788904B TW110124640A TW110124640A TWI788904B TW I788904 B TWI788904 B TW I788904B TW 110124640 A TW110124640 A TW 110124640A TW 110124640 A TW110124640 A TW 110124640A TW I788904 B TWI788904 B TW I788904B
- Authority
- TW
- Taiwan
- Prior art keywords
- gas
- outlet
- inlet
- molecular sieve
- way solenoid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0259—Physical processing only by adsorption on solids
- C01B13/0262—Physical processing only by adsorption on solids characterised by the adsorbent
- C01B13/027—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0259—Physical processing only by adsorption on solids
- C01B13/0262—Physical processing only by adsorption on solids characterised by the adsorbent
- C01B13/0274—Other molecular sieve materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Gas Separation By Absorption (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
本發明是有關於一種氣體濃縮裝置。The invention relates to a gas enrichment device.
製氧機是一種常見的醫療設備,目前常規的醫用製氧設備按其原理可以分為兩類:其一是通過電解水製造氧氣,而另一則是利用分子篩吸附並分離空氣以汲取氧,也就是變壓吸附(Pressure Swing Adsorption,PSA)。前者以電解水製氧的方式具有成本低,噪音低,氧濃度高等優點,但卻容易產生安全性疑慮。後者雖然以分子篩過濾的理論最高濃度僅為96%,但其設備簡單,安全性高,同時製氧濃度已能滿足大多數醫學臨床的用氧需求,故而成為目前用於患者缺氧預防和治療的主要方式。Oxygen concentrator is a common medical equipment. At present, conventional medical oxygen concentrators can be divided into two categories according to their principles: one is to produce oxygen through electrolysis of water, and the other is to use molecular sieves to absorb and separate air to absorb oxygen. That is pressure swing adsorption (Pressure Swing Adsorption, PSA). The former method of electrolyzing water to produce oxygen has the advantages of low cost, low noise, and high oxygen concentration, but it is prone to safety concerns. Although the theoretical maximum concentration of the latter filtered by molecular sieve is only 96%, its equipment is simple and safe, and the concentration of oxygen production can meet the oxygen demand of most medical clinics, so it is currently used for the prevention and treatment of hypoxia in patients. main way.
雖然前述採用變壓吸附手段的製氧設備簡單而具備容易攜行的特性,但現有設備仍受限於構件組裝及管路配置,其中緣由即在於,習知之製氧機大多是採用現成之零組件加以組裝而成,因此造成結構鬆散且組裝空間龐大,如此反而導致攜行不易而有違前述特性,同時也造成使用者在進行更換或維修的不便與困難度。Although the aforementioned oxygen generators using pressure swing adsorption are simple and easy to carry, the existing equipment is still limited by component assembly and pipeline configuration. The components are assembled, so the structure is loose and the assembly space is huge, which makes it difficult to carry and violates the above-mentioned characteristics, and also causes inconvenience and difficulty for users to replace or maintain.
本發明提供一種氣體濃縮裝置,其以簡單結構配置而具備能毋須工具即能進行快速拆裝的特性。The invention provides a gas enrichment device, which is configured with a simple structure and has the characteristic of quick disassembly and assembly without tools.
本發明的氣體濃縮裝置,包括至少一氣體濃縮模組。氣體濃縮模組包括本體、管路接頭以及至少一控制閥。本體填充分子篩濾材,且本體具有彼此相對的第一端與第二端。管路接頭位於第一端。管路接頭具有入口、第一出口與第二出口。控制閥位於第一端與管路接頭之間並控制入口、第一出口與第二出口的至少其一的啟閉。第一氣體是於通過入口進入本體,並以分子篩濾材過濾第一氣體而分離出第二氣體與第三氣體。The gas enrichment device of the present invention includes at least one gas enrichment module. The gas enrichment module includes a body, a pipeline connector and at least one control valve. The body is filled with molecular sieve filter material, and the body has a first end and a second end opposite to each other. A tubing connector is located at the first end. The pipeline joint has an inlet, a first outlet and a second outlet. The control valve is located between the first end and the pipeline joint and controls opening and closing of at least one of the inlet, the first outlet and the second outlet. The first gas enters the body through the inlet, and the molecular sieve filter material is used to filter the first gas to separate the second gas and the third gas.
在本發明的一實施例中,上述的控制閥是二位三通電磁閥。氣體濃縮裝置還包括控制模組,電性連接二位三通電磁閥。第一氣體為空氣,第二氣體為氧氣,第三氣體為氮氣。控制模組驅動二位三通電磁閥以開啟入口以及控制第一出口與第二出口啟閉,以使第一氣體經由入口進入本體並被分子篩濾材過濾而分離出第二氣體與第三氣體,並經由該第一出口將第二氣體排出本體,其中控制模組驅動二位三通電磁閥關閉入口與第一出口且開啟第二出口,以經由第二出口將第三氣體排出本體。In an embodiment of the present invention, the above-mentioned control valve is a two-position three-way solenoid valve. The gas enrichment device also includes a control module, which is electrically connected to the two-position three-way solenoid valve. The first gas is air, the second gas is oxygen, and the third gas is nitrogen. The control module drives the two-position three-way solenoid valve to open the inlet and controls the opening and closing of the first outlet and the second outlet, so that the first gas enters the body through the inlet and is filtered by the molecular sieve filter material to separate the second gas and the third gas, And discharge the second gas out of the body through the first outlet, wherein the control module drives the two-position three-way solenoid valve to close the inlet and the first outlet and open the second outlet to discharge the third gas out of the body through the second outlet.
在本發明的一實施例中,上述的至少一控制閥包括二通電磁閥與開關。二通電磁閥連接並控制入口與第二出口的啟閉,開關連接並控制第一出口的啟閉。氣體濃縮裝置還包括控制模組,分別電性連接二通電磁閥與開關。第一氣體為空氣,第二氣體為氧氣,第三氣體為氮氣。控制模組驅動二通電磁閥開啟入口且關閉第二出口,且控制模組驅動開關開啟第一出口,以使第一氣體經由入口進入本體並被分子篩濾材過濾而分離出第二氣體與第三氣體,以經由第一出口將第二氣體排出本體。控制模組驅動二通電磁閥開啟第二出口,且關閉入口及第一出口,以經由第二出口將第三氣體排出本體。In an embodiment of the present invention, the above-mentioned at least one control valve includes a two-way solenoid valve and a switch. The two-way solenoid valve is connected and controls the opening and closing of the inlet and the second outlet, and the switch is connected and controls the opening and closing of the first outlet. The gas enrichment device also includes a control module, which is electrically connected to the two-way solenoid valve and the switch respectively. The first gas is air, the second gas is oxygen, and the third gas is nitrogen. The control module drives the two-way solenoid valve to open the inlet and close the second outlet, and the control module drives the switch to open the first outlet, so that the first gas enters the body through the inlet and is filtered by the molecular sieve filter material to separate the second gas and the third gas. gas to discharge the second gas out of the body through the first outlet. The control module drives the two-way solenoid valve to open the second outlet, and close the inlet and the first outlet, so as to discharge the third gas out of the body through the second outlet.
在本發明的一實施例中,上述經由第一出口將第二氣體排出本體,也經由第二出口將第三氣體排出本體。In an embodiment of the present invention, the above-mentioned second gas is discharged from the body through the first outlet, and the third gas is also discharged from the body through the second outlet.
在本發明的一實施例中,上述的氣體濃縮裝置還包括導管,設置於本體內。導管連接位於第一端的第一出口並延伸至第二端。第二氣體從第二端進入導管,並經由第一出口排出本體。In an embodiment of the present invention, the above-mentioned gas concentrator further includes a conduit disposed in the body. A conduit is connected to the first outlet at the first end and extends to the second end. The second gas enters the conduit from the second end and exits the body through the first outlet.
在本發明的一實施例中,上述的分子篩濾材包括依序從第一端層疊至第二端的多個網片,上述的導管穿過這些網片。In an embodiment of the present invention, the above-mentioned molecular sieve filter material includes a plurality of mesh sheets stacked sequentially from the first end to the second end, and the above-mentioned conduit passes through these mesh sheets.
在本發明的一實施例中,上述的氣體濃縮模組還包括彈性件,抵接在位於第二端的網片與本體之間,抵接彈性件的網片是這些網片的最末者。In an embodiment of the present invention, the above-mentioned gas concentration module further includes an elastic member abutting between the mesh at the second end and the body, and the mesh abutting the elastic member is the last of the meshes.
在本發明的一實施例中,上述的氣體濃縮裝置包括多個氣體濃縮模組,且這些氣體濃縮模組的多個管路接頭為一體式結構。In an embodiment of the present invention, the above-mentioned gas enrichment device includes a plurality of gas enrichment modules, and the plurality of pipeline joints of the gas enrichment modules are of an integrated structure.
在本發明的一實施例中,上述的氣體濃縮裝置還包括空壓機,連接至少一上述氣體濃縮模組的入口,以加壓並傳送第一氣體經由入口進入本體。In an embodiment of the present invention, the above-mentioned gas enrichment device further includes an air compressor connected to the inlet of at least one of the above-mentioned gas enrichment modules, so as to pressurize and deliver the first gas into the main body through the inlet.
在本發明的一實施例中,上述的氣體濃縮裝置還包括空壓機,連接至少一上述氣體濃縮模組的第二出口,以經由第二出口從本體抽出第三氣體。In an embodiment of the present invention, the above-mentioned gas enrichment device further includes an air compressor connected to the second outlet of at least one of the above-mentioned gas enrichment modules, so as to extract the third gas from the main body through the second outlet.
在本發明的一實施例中,上述的氧濃縮裝置還包括貯存罐,連接至少一上述氣體濃縮模組的第一出口,以收集第二氣體。In an embodiment of the present invention, the above-mentioned oxygen concentrator further includes a storage tank connected to the first outlet of at least one of the above-mentioned gas concentration modules to collect the second gas.
在本發明的一實施例中,上述的氧濃縮裝置還包括貯存罐,連接至少一上述氣體濃縮模組的第二出口,以收集第三氣體In an embodiment of the present invention, the above-mentioned oxygen enrichment device further includes a storage tank connected to the second outlet of at least one of the above-mentioned gas enrichment modules to collect the third gas
基於上述,本發明的氣體濃縮裝置包括至少一氣體濃縮模組,而氣體濃縮模組藉由在本體內填充分子篩濾材後,將管路接頭組裝於本體的第一端,以讓管路接頭的入口、第一出口與第二出口與本體的內部空間連通,進而將控制閥設置於第一端與管路接頭之間時,得以控制上述入口、第一出口與第二出口的至少其一的啟閉,其中第一氣體適於從管路接頭的入口進入本體,並以分子篩濾材過濾且分離出第二氣體與第三氣體。如此一來,氣體濃縮模組便能統一調控同位於第一端的管路接頭,以讓上述氣體皆是從本體的第一端進出,而據以達到結構簡化的效果。Based on the above, the gas concentrating device of the present invention includes at least one gas concentrating module, and the gas concentrating module assembles the pipeline joint on the first end of the main body after filling the molecular sieve filter material in the main body, so that the pipeline joint The inlet, the first outlet, and the second outlet communicate with the inner space of the body, and when the control valve is arranged between the first end and the pipe joint, at least one of the inlet, the first outlet, and the second outlet can be controlled. Opening and closing, wherein the first gas is suitable to enter the body from the inlet of the pipeline joint, and is filtered by molecular sieve filter material to separate the second gas and the third gas. In this way, the gas enrichment module can uniformly regulate the pipeline joints located at the first end, so that the above-mentioned gases all enter and exit from the first end of the main body, thereby achieving the effect of structural simplification.
圖1是依據本發明一實施例的氣體濃縮裝置的示意圖。圖2是圖1的氣體濃縮裝置的部分構件爆炸圖。請同時參考圖1與圖2,在本實施例中,氣體濃縮裝置100包括設置在殼體內的本體110A、110B、管路接頭120A、120B以及控制閥130A、130B。在此,本體110A、110B具有相同結構,管路接頭120A、120B具有相同結構,且控制閥130A、130B具有相同結構,因此後續(包含圖2所示)將以本體110A、管路結構120A與控制閥130A作為例示進行描述。也就是說,本實施例雖以兩組相同結構形成的氧濃縮裝置100作為例示,但因其作動原理相同,因此在另一未繪示的實施例中,僅以單一組件,例如本體110A、管路接頭120A與控制閥130A,也能達到相同效果。簡而言之,本實施例的氣體濃縮裝置100是由兩個氣體濃縮模組G1、G2組成,其中氣體濃縮模組G1包括本體110A、管路接頭120A與控制閥130A,氣體濃縮模組G2包括本體110B、管路接頭120B與控制閥130B,因氣體濃縮模組G1、G2各自具有相同的構件組成,故而具備同樣的氣體濃縮能力,後續會有進一步描述。FIG. 1 is a schematic diagram of a gas enrichment device according to an embodiment of the present invention. Fig. 2 is an exploded view of some components of the gas enrichment device in Fig. 1 . Please refer to FIG. 1 and FIG. 2 at the same time. In this embodiment, the
如圖2所繪示本體110A的爆炸圖(本體110B的爆炸圖也是相同),本體110A包括頂蓋111、底蓋113、柱形壁112、導管114、以分子篩濾材115製成的多個網片(各網片具有如圖所示的多個篩孔)、彈性件116以及多個密封件117A、117B、117C與117D,其中頂蓋111組裝至柱形壁112並以密封件117B夾持其間,且形成本體110A的第一端N1,底蓋113組裝至柱形壁112並以密封件117A夾持其間,且形成本體110A的第二端N2。如此一來,由頂蓋111、柱形壁112、底蓋113以及密封件117A、117B便構成用以容置多個層疊網片的空間,相當於將分子篩濾材115填充於本體110A之內。為利於辨識,在此僅繪示部分分子篩濾材115。As shown in Figure 2, the exploded view of the
圖3是圖1的氣體濃縮裝置的部分構件剖視圖。請同時參考圖2與圖3,在本實施例中,導管114設置於本體110A內,且如圖3所示,導管114的一端連接頂蓋111,並以密封件117C密封其間,導管114的另一端延伸至本體110A的第二端N2。如圖3所示,頂蓋111與底蓋113分別螺接在柱形壁112的相對兩端而形成前述第一端N1與第二端N2。彈性件116抵接位於第二端N2的網片與本體110A之間,也就是抵接該彈性件116的網片是該些網片的最末者,進而在彈性件116的彈力驅使之下,使這些網片能彼此抵緊,同時,彈性件116還讓前述最末者的該網片與底蓋113之間存在空間,而前述導管114延伸至第二端N2的開口便位於所述空間中。Fig. 3 is a cross-sectional view of some components of the gas concentrator in Fig. 1 . Please refer to FIG. 2 and FIG. 3 at the same time. In this embodiment, the
再者,管路接頭120A組裝於本體110A的第一端N1(管路接頭120B組裝於本體110B的第一端N1)。在本實施例中,管路接頭120A、120B各具有入口E1、第一出口E2與第二出口E3。在此,控制閥130A、130B例如是二位三通電磁閥,控制閥130A組裝於管路接頭120A(控制閥130B組裝於管路接頭120B)並控制入口E1、第一出口E2與第二出口E3的啟閉。第一氣體適於從入口E1進入本體110A後,經由分子篩濾材115過濾並分離出第二氣體與第三氣體。在此,第一氣體是空氣Air,第二氣體是氧氣O
2,第三氣體是氮氣N
2。同樣的氣體過濾分離動作也發生於另一氣體濃縮模組G2中。可預知地,在其他未繪示的實施例中,本領域的技術人員可通過不同種類的分子篩濾材而使本實施例的氣體過濾裝置對不同氣體進行過濾分離。
Furthermore, the
進一步地說,在製造氧氣(第二氣體)的過程中,入口E1與第一出口E2受控而被開啟,第二出口E3受控而被關閉,以讓第一氣體(空氣)流入本體110A(本體110B亦同,不再贅述),而讓分子篩濾材115將空氣篩離出的氧氣能從第一出口E2流出。在排氮過程中,與前述相反,也就是入口E1與第一出口E2受控而被關閉,第二出口E3受控而被開啟。Furthermore, during the process of producing oxygen (second gas), the inlet E1 and the first outlet E2 are controlled to be opened, and the second outlet E3 is controlled to be closed, so that the first gas (air) flows into the
請再參考圖1與圖3,在另一未繪示的實施例中,上述控制閥130A或130B也可改以二通電磁閥與開關替代,其中二通電磁閥連接並控制入口E1與第二出口E3的啟閉,而開關連接並控制第一出口E2的啟閉。換句話說,如圖3所示用以讓第二氣體(氧氣O
2)排出本體110A的管路接頭120A的獨立結構特徵,其可以開關作為獨立出口的啟閉之用。此舉讓本實施也能維持上述「氣體壓力需維持一定數值以上」的狀態,以利於第一氣體在本體110A內的過濾分離作用。還需提及的是,本實施例也因控制閥分置為二通電磁閥與開關,故而本體110A內的第一氣體完成被過濾分離出第二氣體與第三氣體後,能分別受二通電磁閥與開關的控制,經由第一出口E2將第二氣體排出本體110A的同時,也經由第二出口E3將第三氣體排出本體110A。
Please refer to FIG. 1 and FIG. 3 again. In another not-shown embodiment, the above-mentioned
此外,如圖1所示,氣體濃縮裝置100還包括貯存罐140與空壓機150,其中貯存罐140連接第一出口E2,以收集從本體110A、110B排出的第二氣體,而空壓機150連接入口E1與第二出口E3,其中空壓機150用以將外部環境的空氣予以壓縮並經由入口E1送入本體110A、110B,或空壓機150用以對本體110A、110B進行抽取第三氣體,以將殘留在分子篩濾材115的第三氣體從本體110A、110B抽出。在另一未繪示的實施例中,也可以另一貯存罐連接第二出口E3,以收集第三氣體。進一步地說,當進行前述製氧過程時,也就是入口E1與第一出口E2被開啟,第二出口E3被關閉時,從空壓機150提供的高壓空氣便能經由入口E1進入本體110A,氧氣被分子篩濾材115分離出並經由第一出口E2進入貯存罐140。在此,本實施例還包括調壓閥,用以限定氧氣需在特定壓力才能通過,因此能讓本體110A內形成正壓,以提高分子篩濾材115的分離效果。對應地,當入口E1與第一出口E2被關閉,而第二出口E3被開啟時,本體110A的壓力會降低,而讓氮氣得以經由第二出口E3離開,或以空壓機150強制從本體110A將氮氣抽出,同時此舉還能讓本體110A內形成負壓,而有利於下一次的製氧過程(因壓差而縮短氧氣製造時間,以提高製氧效率)。In addition, as shown in Figure 1, the
圖4是圖1的氣體濃縮裝置電性關係圖。請同時參考圖2至圖4,氣體濃縮裝置100還包括控制模組160,其電性連接控制閥130A、130B(二位三通電磁閥)與空壓機150,也如上述另一實施例而電性連接二通電磁閥與開關,以利於進行相關作業,如後述。FIG. 4 is an electrical relationship diagram of the gas concentrator in FIG. 1 . Please refer to FIGS. 2 to 4 at the same time. The
以例如是二位三通電磁閥的控制閥130A、130B為例,當控制閥130A、130B受控於控制模組160而開啟入口E1及第一出口E2,並關閉第二出口E3時,第一氣體(空氣Air)通過入口E1進入本體110A、110B(且如前述是經由空壓機150壓縮後的空氣),並以分子篩濾材115過濾而保留氧。如圖3所示,壓縮後的空氣從第一端N1進入本體110A、110B後,便會由上而下地依序通過這些由分子篩濾材115製成的網片,以讓這些網片逐層地將空氣中的氮吸附,故而空氣中的氧便會因此被壓制且傳送至本體110B的第二端N2,而在經過這些網片的最末者而進入導管114的開口所在的空間時,便能讓氧順利地進入導管114。此時由於第二出口E3保持關閉狀態,故能有效維持本體110A內的壓力而確保過濾分離過持的進行。當第二氣體(氧氣O
2)以通過導管114與第一出口E2排出本體110A、110B,且因此被傳送並收集至貯存罐140,這即是氣體濃縮裝置100的製氧模式。相對地,當控制閥130A、130B關閉入口E1、第一出口E2並開啟第二出口E3時,於前述製氧的過程中受分子篩濾材115吸附且阻滯的第三氣體(氮氣N
2)便能因空壓機150的抽取,而經由第二出口E3排出本體110A、110B,此即氣體濃縮裝置100的排氮模式。
Take the
基於上述,由於管路接頭120A、120B的入口E1、第一出口E2與第二出口E3同位於本體110A、110B的第一端N1,因此能有效簡化氣體濃縮裝置100的結構組成,也就是相當於氣體的進出皆在第一端N1,故而本體110A、110B可從第二端N2進行維修拆裝而不致影響管路結構120A、120B與控制閥130A、130B。再者,由於頂蓋111與底蓋113皆是以螺接結構而與柱形壁112結合,此舉也便於使用者對於本體110A、110B的拆裝作業。換句話說,本發明有效地簡化氣體濃縮裝置100的拆裝機制,使用者毋須具備特殊工業技能即能順利地進行拆裝,也因此間接地提高養濃度裝置100在消費市場的應用程度。Based on the above, since the inlet E1, the first outlet E2 and the second outlet E3 of the
圖5是圖1的氣體濃縮裝置的作動關係示意圖。請參考圖5,在此要說明的作動狀態僅為例示。如本實施例在前述所示,氣體濃縮機構100的本體110A、110B,管路接頭120A、120B與控制閥130A、130B皆是具有相同結構,因此可依據需求而對應調整不同的模式。如圖5所示,氧濃縮裝置100可進一步分隔為兩個氣體濃縮模組G1、G2,使用者便能通過控制模組160而對氣體濃縮模組G1、G2下達相同或不同的指令。FIG. 5 is a schematic diagram of the operation relationship of the gas enrichment device in FIG. 1 . Please refer to FIG. 5 , the actuation state to be described here is only an example. As shown above in this embodiment, the
舉例來說,控制模組160傳送指令至控制閥130A而讓氣體濃縮模組G1處於製氧模式,同時,控制模組160傳送指令至控制閥130B而讓氣體濃縮模組G2處於排氮模式。據此,便能產生交替作動的狀態,且能隨時依據需求而加以改變(在製氧模式與排氮模式之間進行切換),進而提高氧濃縮裝置100的工作效率。類似地,當氧濃縮裝置包括多個氣體濃縮模組時,即能依據需求而提供使用者更有效率的製氧需求。如上述控制閥包括二通電磁閥與開關的實施例,除了在單一氣體濃縮模組G1或G2能使控制模組160分別對管路接頭控制而達到所需的啟閉效果外,也能如上述控制多個氣體濃縮模組,進而使氣體濃縮裝置能有多種驅動模式。For example, the
圖6是本發明另一實施例的氣體濃縮裝置的部分結構示意圖。請參考圖6,與前述實施例相同的是,氣體濃縮裝置同樣包括兩個氣體濃縮模組G1、G2,而不同的是,這兩個氣體濃縮模組G1、G2的管路接頭是採一體式結構,也就是分屬不同氣體濃縮模組G1、G2的入口E1、第一出口E2與第二出口E3是以整合結構體223而形成一體式結構,有利於提高結構強度,且也方便使用者拆裝本體110A、110B。Fig. 6 is a partial structural schematic diagram of a gas enrichment device according to another embodiment of the present invention. Please refer to Fig. 6, the same as the previous embodiment, the gas enrichment device also includes two gas enrichment modules G1, G2, but the difference is that the pipeline joints of the two gas enrichment modules G1, G2 are integrated In other words, the inlet E1, the first outlet E2, and the second outlet E3 belonging to different gas enrichment modules G1 and G2 form an integrated structure by integrating the
綜上所述,在本發明的上述實施例中,藉由在本體內填充分子篩濾材後,將管路接頭組裝於本體的第一端,以讓管路接頭的入口、第一出口與第二出口與本體的內部空間連通,進而在將控制閥組裝於管路接頭與第一端之間時,便得以控制上述入口、第一出口與第二出口的啟閉。如此一來,當入口開啟而第一出口、第二出口關閉時,第一氣體即能經由入口進入本體,以利於分子篩濾材將第一氣體分離為第二氣體與第三氣體,並在第一出口或第二出口開啟時,讓第二氣體經由第一出口排出本體,或讓第三氣體經由第二出口排出本體。To sum up, in the above-mentioned embodiment of the present invention, after filling the molecular sieve filter material in the main body, the pipeline joint is assembled on the first end of the main body, so that the inlet of the pipeline joint, the first outlet and the second The outlet communicates with the inner space of the body, and then when the control valve is assembled between the pipe joint and the first end, the opening and closing of the above-mentioned inlet, the first outlet and the second outlet can be controlled. In this way, when the inlet is opened and the first outlet and the second outlet are closed, the first gas can enter the body through the inlet, so that the molecular sieve filter material can separate the first gas into the second gas and the third gas, When the outlet or the second outlet is opened, the second gas is discharged from the body through the first outlet, or the third gas is discharged from the body through the second outlet.
再者,控制閥可依據管路接頭的結構型式而選用二位三通電磁閥對上述三個出入口(入口、第一出口與第二出口)進行啟閉控制,或以二通電磁閥搭配開關分別對上述三個出入口進行啟閉控制。無論選用何者,皆能確保在進行氣體過濾分離的過程中,以利於讓本體內的氣體壓力達一定值以上而得以使氣體過濾分離的過程順利進行。一旦完成氣體過濾分離後,即能分別開啟第一出口與第二出口,而將所需的第二氣體、第三氣體排出本體並進行收集。Furthermore, the control valve can use a two-position three-way solenoid valve to control the opening and closing of the above three inlets (inlet, first outlet, and second outlet) according to the structure of the pipe joint, or use a two-way solenoid valve with a switch Control the opening and closing of the above three entrances and exits respectively. No matter which one is selected, it can be ensured that in the process of gas filtration and separation, the gas pressure in the main body can reach a certain value, so that the process of gas filtration and separation can be carried out smoothly. Once the gas filtration and separation is completed, the first outlet and the second outlet can be respectively opened to discharge the required second gas and third gas out of the body and collect them.
上述設置有效簡化氣體濃縮裝置的結構組成,也就是相當於氣體的進出皆在第一端,故而本體可從第二端進行維修拆裝而不致影響管路結構與電磁閥。再者,由於頂蓋與底蓋皆是以螺接結構而與柱形壁結合,此舉也便於使用者對於本體的拆裝作業。 此外,氣體濃縮裝置還能藉由設置氣體濃縮模組,並藉由控制模組的調整而讓這些氣體濃縮模組各自依據需求而切換至不同工作模式,進而提高氣體濃縮裝置的作動效率。 The above arrangement effectively simplifies the structure of the gas concentrator, that is, the gas enters and exits at the first end, so the main body can be repaired and disassembled from the second end without affecting the pipeline structure and solenoid valve. Furthermore, since the top cover and the bottom cover are combined with the cylindrical wall through a screw connection structure, it is also convenient for the user to disassemble and assemble the main body. In addition, the gas enrichment device can also be equipped with gas enrichment modules, and through the adjustment of the control modules, these gas enrichment modules can be switched to different working modes according to requirements, thereby improving the operating efficiency of the gas enrichment device.
100:氣體濃縮裝置
110A、110B:本體
111:頂蓋
112:柱形壁
113:底蓋
114:導管
115:分子篩濾材
116:彈性件
117A、117B、117C、117D:密封件
120A、120B:管路接頭
130A、130B:控制閥
140:貯存罐
150:空壓機
160:控制模組
223:整合結構體
E1:入口
E2:第一出口
E3:第二出口
G1、G2:氣體濃縮模組
N1:第一端
N2:第二端
Air:空氣
O
2:氧氣
N
2:氮氣
100:
圖1是依據本發明一實施例的氣體濃縮裝置的示意圖。 圖2是圖1的氣體濃縮裝置的部分構件爆炸圖。 圖3是圖1的氣體濃縮裝置的部分構件剖視圖。 圖4是圖1的氣體濃縮裝置電性關係圖。 圖5是圖1的氣體濃縮裝置的作動關係示意圖。 圖6是本發明另一實施例的氣體濃縮裝置的部分結構示意圖。 FIG. 1 is a schematic diagram of a gas enrichment device according to an embodiment of the present invention. Fig. 2 is an exploded view of some components of the gas enrichment device in Fig. 1 . Fig. 3 is a cross-sectional view of some components of the gas concentrator in Fig. 1 . FIG. 4 is an electrical relationship diagram of the gas concentrator in FIG. 1 . FIG. 5 is a schematic diagram of the operation relationship of the gas enrichment device in FIG. 1 . Fig. 6 is a partial structural schematic diagram of a gas enrichment device according to another embodiment of the present invention.
100:氣體濃縮裝置 100: Gas enrichment device
110A、110B:本體 110A, 110B: body
120A、120B:管路接頭 120A, 120B: pipe joints
130A、130B:控制閥 130A, 130B: control valve
140:貯存罐 140: storage tank
150:空壓機 150: air compressor
E1:入口 E1: Entrance
E2:第一出口 E2: The first exit
E3:第二出口 E3: The second exit
G1、G2:氣體濃縮模組 G1, G2: Gas enrichment module
N1:第一端 N1: first end
N2:第二端 N2: the second end
Air:空氣 Air: air
O2:氧氣 O 2 : Oxygen
N2:氮氣 N 2 : Nitrogen
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110124640A TWI788904B (en) | 2021-07-05 | 2021-07-05 | Gas concentrator |
CN202210741914.8A CN115581992A (en) | 2021-07-05 | 2022-06-27 | Gas concentration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110124640A TWI788904B (en) | 2021-07-05 | 2021-07-05 | Gas concentrator |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI788904B true TWI788904B (en) | 2023-01-01 |
TW202302202A TW202302202A (en) | 2023-01-16 |
Family
ID=84772046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110124640A TWI788904B (en) | 2021-07-05 | 2021-07-05 | Gas concentrator |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115581992A (en) |
TW (1) | TWI788904B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057728A1 (en) * | 1997-06-16 | 1998-12-23 | Airsep Corporation | Pressure swing adsorption apparatus and method |
TW200916134A (en) * | 2007-05-07 | 2009-04-16 | Teijin Pharma Ltd | Oxygen enricher |
CN101534928A (en) * | 2006-08-28 | 2009-09-16 | Ric投资有限责任公司 | Oxygen concentration system |
CN105727405A (en) * | 2016-01-30 | 2016-07-06 | 成都康拓兴业科技有限责任公司 | Airborne molecular sieve oxygen system |
CN106456927A (en) * | 2014-03-28 | 2017-02-22 | 开罗股份有限公司 | Controlling oxygen concentrator timing cycle based on flow rate of oxygen output |
CN112830456A (en) * | 2021-02-08 | 2021-05-25 | 江苏鱼跃医疗设备股份有限公司 | Oxygen concentrator casing and use oxygen concentrator of this casing |
-
2021
- 2021-07-05 TW TW110124640A patent/TWI788904B/en active
-
2022
- 2022-06-27 CN CN202210741914.8A patent/CN115581992A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057728A1 (en) * | 1997-06-16 | 1998-12-23 | Airsep Corporation | Pressure swing adsorption apparatus and method |
CN101534928A (en) * | 2006-08-28 | 2009-09-16 | Ric投资有限责任公司 | Oxygen concentration system |
TW200916134A (en) * | 2007-05-07 | 2009-04-16 | Teijin Pharma Ltd | Oxygen enricher |
CN106456927A (en) * | 2014-03-28 | 2017-02-22 | 开罗股份有限公司 | Controlling oxygen concentrator timing cycle based on flow rate of oxygen output |
CN105727405A (en) * | 2016-01-30 | 2016-07-06 | 成都康拓兴业科技有限责任公司 | Airborne molecular sieve oxygen system |
CN112830456A (en) * | 2021-02-08 | 2021-05-25 | 江苏鱼跃医疗设备股份有限公司 | Oxygen concentrator casing and use oxygen concentrator of this casing |
Also Published As
Publication number | Publication date |
---|---|
TW202302202A (en) | 2023-01-16 |
CN115581992A (en) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100491684B1 (en) | Gas concentrating Method and apparatus for use of Pressure Swing Adsorption | |
JP4301452B2 (en) | Gas concentration method and apparatus | |
WO2022068165A1 (en) | Efficient vpsa oxygen production process and system thereof | |
CN1748838A (en) | Small equalizing variable pressure adsorptive oxygen making device of adsorber air inlet end | |
TWI788904B (en) | Gas concentrator | |
CN214528139U (en) | Energy-saving oxygen generator | |
KR102417781B1 (en) | Oxygen concentration device | |
CN206985715U (en) | Control system for equipment of making nitrogen technological process | |
CN105152136B (en) | PSA oxygenerators | |
WO2023109023A1 (en) | Integrated air inlet and outlet valve and pressure swing adsorption air path system | |
CN208632102U (en) | A kind of medical oxygen therapy oxygenerator | |
CN206886670U (en) | Pressure-variable adsorption multitower oxygen generation system | |
CN107921357B (en) | Oxygen separator with improved efficiency | |
CN220405196U (en) | Portable molecular sieve oxygenerator | |
CN212548817U (en) | Haze purifies high-efficient processing apparatus | |
CN115463512B (en) | Oxygen generation system | |
CN213202370U (en) | High-efficient vacuum pressure swing adsorption oxygenerator of VSPA | |
KR100614850B1 (en) | Gas concentration method for low purity | |
CN110078032A (en) | Formula nitrogen separating equipment for purification can be filtered with magnetic film | |
CN215610386U (en) | Small-sized double molecular sieve tower oxygen-making equipment | |
CN221619015U (en) | Pressure swing adsorption nitrogen making machine | |
CN116272253A (en) | Portable molecular sieve oxygenerator | |
CN2281184Y (en) | Small size oxygen concentrator for breath by method of using membrane | |
CN214680907U (en) | High-efficiency energy-saving molecular sieve adsorber | |
KR102616452B1 (en) | Moisture and Nitrogen Adsorption Integrated PSA Oxygen Generator |