TWI788851B - 絕緣型共振電路裝置以及非接觸供電系統 - Google Patents

絕緣型共振電路裝置以及非接觸供電系統 Download PDF

Info

Publication number
TWI788851B
TWI788851B TW110117834A TW110117834A TWI788851B TW I788851 B TWI788851 B TW I788851B TW 110117834 A TW110117834 A TW 110117834A TW 110117834 A TW110117834 A TW 110117834A TW I788851 B TWI788851 B TW I788851B
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
resonant circuit
signal voltage
resonant
Prior art date
Application number
TW110117834A
Other languages
English (en)
Other versions
TW202201874A (zh
Inventor
三島大地
伊藤勇輝
長岡真吾
上松武
Original Assignee
日商歐姆龍股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商歐姆龍股份有限公司 filed Critical 日商歐姆龍股份有限公司
Publication of TW202201874A publication Critical patent/TW202201874A/zh
Application granted granted Critical
Publication of TWI788851B publication Critical patent/TWI788851B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/523Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

絕緣型共振電路裝置包括:第一共振電路,包含相互電磁耦合且電性絕緣的第一LC共振電路與第二LC共振電路,基於所輸入的交流電壓以規定的第一共振頻率振盪,產生振盪訊號電壓並輸出;整流電路,包含多個切換元件,按照規定的多個閘極訊號切換振盪訊號電壓後,加以平滑並將規定的直流電壓輸出至負載;第二共振電路,具有與第一共振頻率實質上相同的第二共振頻率,與振盪訊號電壓共振而進行檢測,將所檢測出的振盪訊號電壓輸出;以及控制電路,將來自第二共振電路的振盪訊號電壓、與用以獲得目標輸出電壓及/或目標輸出電流的比較訊號電壓進行比較,由此產生用以控制整流電路的多個閘極訊號並輸出至整流電路。

Description

絕緣型共振電路裝置以及非接觸供電系統
本發明例如是有關於一種包括相互電性絕緣的多個電感電容(Inductor-Capacitor,LC)共振電路及控制電路的絕緣型共振電路裝置、以及包括所述絕緣型共振電路裝置的非接觸供電系統。
以往,無人搬運車(Automatic Guided Vehicle,AGV)等移動體搭載有鋰離子電池等充電電池。於對該充電電池進行充電時,使AGV移動至充電站後,使搭載於AGV的受電線圈電磁耦合於充電站的送電線圈,於非接觸充電系統中進行非接觸充電。
[現有技術文獻] [專利文獻]
[專利文獻1]日本專利第6201388號公報
然而,所述非接觸充電系統中,如圖10所示般存在以下兩個課題。
(課題1)若送電線圈與受電線圈之間的位置關係變化則電感變化,共振頻率fr變化而切換頻率fsw與fr不一致,由此引起效率劣化等不良影響。因此,為了使切換頻率與共振頻率一致,需要用以控制切換元件的驅動電路的機構。另外,電感的變化導致充電電路的輸出電壓、輸出電流等輸出特性變化,故而用以滿足充電電池的充電輪廓(charge profile)的電路設計或控制變得複雜。
(課題2)負載視充電電池的餘量而變動,其結果為,充電電路的輸出電壓、輸出電流等輸出特性變動。由此,用以滿足充電電池的充電輪廓的電路設計或控制變複雜。
此處,課題1及課題2雖然可藉由例如專利文獻1中揭示的技術解決,但產生以下的其他課題。
例如,為了控制非接觸供電系統的輸出特性,需要追加對送電裝置的電路或受電裝置的電路的控制電路。另外,為了進行所述控制,亦需要利用無線通訊系統。因此,存在下述課題,即:構成零件增加而導致電路尺寸增大,或者通訊延遲或中斷而導致無法控制電路的輸出特性等。
本發明的目的在於解決以上的問題點,提供一種絕緣型共振電路裝置、及使用所述絕緣型共振電路裝置的非接觸供電系統,其無需用以解決所述兩個課題的複雜控制,且與現有技術相比較,僅藉由追加簡單的電路便可削減用以控制輸出特性的一部分(送電裝置的控制電路、或用以控制送電裝置的通訊系統等)。
本發明的絕緣型共振電路裝置包括:第一共振電路,包含相互電磁耦合且電性絕緣的第一LC共振電路與第二LC共振電路,基於所輸入的交流電壓以規定的第一共振頻率振盪,產生振盪訊號電壓並進行輸出;整流電路,包含多個切換元件,按照規定的多個閘極訊號切換來自所述第一共振電路的振盪訊號電壓後,加以平滑並將規定的直流電壓輸出至負載;第二共振電路,具有與所述第一共振頻率實質上相同的第二共振頻率,與來自所述第一共振電路的振盪訊號電壓共振而進行檢測,將所檢測出的振盪訊號電壓輸出;以及控制電路,將來自所述第二共振電路的振盪訊號電壓、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓進行比較,由此產生用以控制所述整流電路的所述多個閘極訊號並輸出至所述整流電路。
因此,根據本發明的絕緣型共振電路裝置等,藉由對受電裝置追加第二LC共振電路,而可削減用以控制輸出特性的一部分(送電裝置的控制電路、或用以控制送電裝置的通訊系統等)。藉此,與現有技術相比較,結構簡單且可大幅度地削減製造成本。
11:功率因數改善電路(PFC電路)
12、15、15A:逆變器電路
12C、30、30A、30B:控制電路
13、13A~13E、14、14A~14G:LC共振電路
16:電解電容器
17:負載
21、21A:第一共振電路
22、22A:第二共振電路
23:第三共振電路
31、32、34、41、42:電壓檢測器
33、35、43:電流檢測器
51、53:比較器
52:帶重置的積分器
54:操作部
55:比較訊號電壓產生器
56、57:反相器
100:送電裝置
200、200A:受電裝置
301、302:絕緣型共振電路裝置
C1~C42:電容器
Io:輸出電流
Is1、Is2:輸出電流
L1~L42:電感器
Lg1~Lg12:支線
Q1~Q24:MOS電晶體
R1~R21:電阻
S1~S4、S11~S14、Sp1~Sp4:閘極訊號
t1~t4:時刻
Vin:輸入電壓
Vo:輸出電壓
Vr1:振盪訊號電壓
Vr2:輸出電壓(檢測電壓)
Vref:基準訊號電壓
Vs1、Vs2:輸出電壓
Vt:比較訊號電壓
Vtri:三角波訊號電壓
α:時間期間、相位差
圖1為表示實施形態1的非接觸供電系統的結構例的方塊圖。
圖2A為表示圖1的逆變器電路12的結構例的電路圖。
圖2B為表示圖1的控制電路30的結構例的方塊圖。
圖3為表示圖1的非接觸供電系統的動作例的各電壓及訊號的時序圖。
圖4為表示實施形態2的非接觸供電系統中所用的控制電路30A的結構例的方塊圖。
圖5為表示圖4的非接觸供電系統的動作例的各電壓及訊號的時序圖。
圖6為表示實施形態3的非接觸供電系統的結構例的方塊圖。
圖7為表示實施形態4的非接觸供電系統的結構例的方塊圖。
圖8A為表示圖1等的LC共振電路13的結構例的電路圖。
圖8B為表示變形例1的LC共振電路13A的結構例的電路圖。
圖8C為表示變形例2的LC共振電路13B的結構例的電路圖。
圖8D為表示變形例3的LC共振電路13C的結構例的電路圖。
圖8E為表示變形例4的LC共振電路13D的結構例的電路圖。
圖8F為表示變形例5的LC共振電路13E的結構例的電路圖。
圖9A為表示變形例6的LC共振電路14B的結構例的電路圖。
圖9B為表示變形例7的LC共振電路14C的結構例的電路圖。
圖9C為表示變形例8的LC共振電路14D的結構例的電路圖。
圖9D為表示變形例9的LC共振電路14E的結構例的電路圖。
圖9E為表示變形例10的LC共振電路14F的結構例的電路圖。
圖9F為表示變形例11的LC共振電路14G的結構例的電路圖。
圖10為用以說明現有技術的問題點的、表示非接觸供電系統中的輸出電壓的頻譜的圖表。
以下,參照圖式對本發明的實施形態加以說明。再者,對相同或同樣的構成構件標註相同符號。
(發明者的見解)
以下的實施形態中,對下述絕緣型共振電路裝置及其控制方法、以及非接觸供電系統進行以下說明,即:無需送電裝置與受電裝置間的通訊,可藉由僅利用受電裝置的資訊來控制受電裝置的電路,從而針對送電裝置與受電裝置間的耦合度及負載變動而設為所需的輸出特性(輸出電壓特性及/或輸出電流特性)。
為了解決所述現有技術中的課題,本發明的實施形態的特徵在於,以僅基於受電裝置的資訊來控制受電裝置所包括的整流用逆變器電路的方式構成。此處,具有以下結構。
(1)若送電裝置的送電線圈與受電裝置的受電線圈之間的位置關係變化而電感變化或耦合度變動,則送電裝置的逆變器電路的閘極訊號、與受電裝置的整流電路(逆變器電路)的閘極訊號 的相位差變化。
(2)藉由連接於受電裝置的共振電路的第二共振電路來檢測所述相位差,針對負載的變動以及電感或耦合度的變動來算出成為所需的輸出特性(輸出電壓或輸出電流)的規定相位差。
(3)利用受電裝置的控制電路來對驅動逆變器電路的閘極訊號的頻率及相位差進行控制。此時,作為控制方法,有下述兩個。
(控制方法A)算出輸出特性不依賴於電感、耦合度或負載的變動的送電裝置的逆變器電路的閘極訊號與整流用逆變器電路的閘極訊號之間的相位差,基於該相位差來控制整流用逆變器電路的閘極訊號。該情況將於實施形態1中揭示。
(控制方法B)算出輸出特性不依賴於電感、耦合度或負載的變動的整流用逆變器電路的支線間的規定的相位差,基於該相位差來控制整流用逆變器電路的閘極訊號。該情況將於實施形態2中揭示。
(4)藉此,無需送電裝置與受電裝置間的通訊,可針對電感與耦合度及負載變動而控制為所需的輸出特性(輸出電壓或輸出電流)。
以下,對本發明的實施形態及變形例的該些控制電路及控制方法加以說明。以下的所有實施形態及變形例為用以實施本發明的一例,且不限定於此。
(實施形態1)
圖1為表示實施形態1的非接觸供電系統的結構例的方塊圖。
圖1中,實施形態1的非接觸供電系統是包括送電裝置100及受電裝置200而構成。此處,送電裝置100是包括功率因數改善電路(以下稱為功率因數修正電路((Power Factor Correction,PFC)電路))11、逆變器電路12及送電用LC共振電路13而構成。另一方面,受電裝置200是包括受電用LC共振電路14、逆變器電路15、平滑用電解電容器16、負載17、控制電路30及作為電壓檢測用電感電容電阻(Inductance-Capacitance-Resistance,LCR)共振電路的第二共振電路22而構成。再者,由送電用LC共振電路13及受電用LC共振電路14構成第一共振電路21。另外,由逆變器電路15及電解電容器16構成整流電路。受電裝置200更包括電壓檢測器31、電壓檢測器32、電壓檢測器34及電流檢測器33、電流檢測器35。
此處,LC共振電路13例如包括電容器C1與電感器L1的串聯電路,LC共振電路14例如包括電容器C2、電容器C3與電感器L2的串聯電路。另外,第二共振電路22包括電感器L3、電容器C3及電阻R1的串聯電路,且以具有與第一共振電路21的振盪頻率實質上相同的共振頻率的方式構成。
另外,本發明的絕緣型共振電路裝置301包括共振電路13、共振電路14、第二共振電路22、逆變器電路15、電解電容器16及控制電路30。另外,送電裝置100與受電裝置200例如為了進行充電等電源供給而相互位於附近,由此LC共振電路13的電 感器L1與LC共振電路14的電感器L2相互以規定的耦合度電磁耦合且電性絕緣。
送電裝置100中,PFC電路11例如將來自商用交流電源等交流電源的交流電壓的輸入電壓Vin轉換為直流電壓且使用規定的功率因數改善方法對輸入電壓進行功率因數改善處理後,進行直流-直流(Direct Current-Direct Current,DCDC)轉換為規定的直流電壓並輸出至逆變器電路12。逆變器電路12藉由對來自PFC電路11的直流電壓進行切換從而產生交流電壓並輸出至LC共振電路13。LC共振電路13基於所輸入的交流電流以規定的共振頻率fr共振,產生包含具有該共振頻率fr的交流電壓的交流電力,向耦合於LC共振電路13的LC共振電路14進行送電。
圖2A為表示圖1的逆變器電路12的結構例的電路圖。圖2A中,逆變器電路12是分別將作為切換元件的四個金屬氧化物半導體(Metal-Oxide-Semiconductor,MOS)電晶體Q21~Q24以橋(bridge)形式連接、且更包括控制電路12C而構成。此處,MOS電晶體Q21、MOS電晶體Q24為高側(高電壓側)的切換元件,MOS電晶體Q22、MOS電晶體Q23為低側(低電壓側)的切換元件。四個MOS電晶體Q21~Q24由輸入至各閘極(控制端子的一例)的、來自控制電路12C的四個閘極訊號Sp1~Sp4進行通斷控制。再者,如圖3所示,閘極訊號Sp1、閘極訊號Sp3例如為占空比為50%且彼此相同的閘極訊號,另一方面,閘極訊號Sp2、閘極訊號Sp4例如為占空比為50%且彼此相同的閘極訊號, 且為閘極訊號Sp1、閘極訊號Sp3的反轉訊號。再者,閘極訊號Sp1~閘極訊號Sp4的占空比不限定於為50%,亦可為其以外的占空比的設定值。
受電裝置200中,LC共振電路14接受來自LC共振電路13的交流電力,將該交流電力的交流電壓經由構成整流電路的逆變器電路15及電解電容器16而輸出至負載17。此處,逆變器電路15是分別將作為切換元件的四個MOS電晶體Q1~Q4以橋形式連接而構成。此處,MOS電晶體Q1、MOS電晶體Q4為高側(高電壓側)的切換元件,MOS電晶體Q2、MOS電晶體Q3為低側(低電壓側)的切換元件。四個MOS電晶體Q1~Q4由輸入至各閘極(控制端子的一例)的、來自控制電路30的四個閘極訊號S1~S4進行通斷控制。此處,將MOS電晶體Q1、MOS電晶體Q2稱為支線Lg1,將MOS電晶體Q3、MOS電晶體Q4稱為支線Lg2。
利用電解電容器16將來自逆變器電路15的電壓加以平滑,藉此整流為規定的直流電壓後,輸出至負載17。再者,亦可於電解電容器16與負載17之間設置變更直流電壓的DCDC轉換器。
電壓檢測器31檢測LC共振電路14的輸出電壓Vs1,電流檢測器33檢測LC共振電路14的輸出電流Is1。電壓檢測器32檢測作為第二共振電路22的輸出電壓的振盪訊號電壓Vr1。電壓檢測器34檢測逆變器電路15及電解電容器16(整流電路)的 輸出電壓Vo,電流檢測器35檢測逆變器電路15及電解電容器16(整流電路)的輸出電流Io。
圖1的實施形態1中,尤其特徵在於,與現有技術相比較,更包括第二共振電路22。第二共振電路22檢測由第一共振電路21所振盪的振盪訊號電壓Vr1並輸出至控制電路30,控制電路30將振盪訊號電壓Vr1、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此生成驅動逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的四個閘極訊號S1~S4。
圖2B為表示圖1的控制電路30的結構的一例的方塊圖。再者,圖1的控制電路30的結構不限定於此。即,圖2B的結構、各種設定值、以下的說明僅為一例,且並不限定於此。
圖2B中,控制電路30是包括比較器51、比較器53、帶重置的積分器52、操作部54、比較訊號電壓產生器55及反相器56而構成。
比較器51將由第二共振電路22檢測出的振盪訊號電壓Vr1與接地電壓進行比較,產生比較結果的基準訊號電壓Vref並輸出至帶重置的積分器52。帶重置的積分器52根據基準訊號電壓Vref的下降將輸出電壓重置為接地電壓0V後,具有基準訊號電壓Vref的週期T的一半即T/2的週期而反覆,以規定的斜率增大後,產生作為與基準訊號電壓Vref同步的同步訊號電壓的、重置為接地電壓(0V)的三角波訊號電壓Vtri,並輸出至比較器53 的反轉輸入端子。
另一方面,比較訊號電壓產生器55使用操作部54而產生比較訊號電壓Vt並輸出至比較器53的非反轉輸入端子,所述比較訊號電壓Vt用以獲得例如由用戶設定的規定的目標輸出電壓及/或規定的目標輸出電流。此處,目標電壓Vt例如具有較三角波訊號電壓Vtri的最大值更低的電壓。比較器53將所輸入的三角波訊號電壓Vtri與所述比較訊號電壓Vt進行比較,生成比較結果訊號作為閘極訊號S1、閘極訊號S3,並且將所述比較結果訊號經由反相器56而生成與閘極訊號S1、閘極訊號S3反轉的閘極訊號S2、閘極訊號S4。將該些閘極訊號S1~S4施加於逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的各閘極,對MOS電晶體Q1~MOS電晶體Q4進行通斷驅動控制。此處,閘極訊號S1~閘極訊號S4例如具有矩形脈波形狀。
如此構成的圖2B所圖示的、圖1的控制電路30的結構的一例中,控制成基於來自第二共振電路22的振盪訊號電壓Vr1而生成基準訊號Vref,將基準訊號Vref、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此算出送電裝置100的逆變器電路12的閘極訊號、與受電裝置200的逆變器電路15的閘極訊號之間的相位差α,基於所算出的相位差α而產生閘極訊號S1~閘極訊號S4,使用該閘極訊號S1~閘極訊號S4控制成逆變器電路15以該相位差α進行動作,由此獲得規定的目標輸出電壓及/或規定的目標輸出電流。
圖3為表示圖1的非接觸供電系統的動作例的各電壓及訊號的時序圖。
如由圖3所表明,基準訊號電壓Vref例如具有矩形脈波形狀,以與振盪訊號電壓Vr1同步的方式產生。再者,基準訊號電壓Vref與送電裝置100的逆變器電路12的閘極訊號Sp2、閘極訊號Sp4同步,與閘極訊號Sp1、閘極訊號Sp3的反轉訊號同步。
三角波訊號電壓Vtri是以與基準訊號電壓Vref同步的方式產生,根據基準訊號電壓Vref的下降而重置為接地電壓0V後,以規定的斜率增大。此處,於三角波訊號電壓Vtri在較其下降重置的時刻t2以規定的時間期間α靠前的時序的時刻t1,達到用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt時,將閘極訊號S1、閘極訊號S3接通,另一方面將閘極訊號S2、閘極訊號S4斷開。繼而,於三角波訊號電壓Vtri在較其下降重置的時刻t4以規定的時間期間α靠前的時序的時刻t3,達到所述比較訊號電壓Vt時,將閘極訊號S1、閘極訊號S3斷開,另一方面將閘極訊號S2、閘極訊號S4接通。該動作以週期T反覆。
即,閘極訊號S1、閘極訊號S3彼此相同,閘極訊號S2、閘極訊號S4彼此相同。另外,閘極訊號S2、閘極訊號S4為閘極訊號S1、閘極訊號S3的反轉訊號。因此,於相同的各支線Lg1、Lg2中,一對閘極訊號(S1、S2)(S3、S4)相互處於反轉關係。
再者,以上的實施形態中,控制輸出電壓Vo,但本發明 不限於此,亦能以控制輸出電流Io的方式構成。關於這一情況,以下的實施形態及變形例中亦相同。
如以上所說明,根據本實施形態,更包括檢測第一共振電路21的振盪訊號電壓的第二共振電路22,檢測由第二共振電路22所檢測出的振盪訊號電壓Vr1並輸出至控制電路30。控制電路30將振盪訊號電壓Vr1、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此生成驅動逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的四個閘極訊號S1~S4。藉由利用該閘極訊號S1~閘極訊號S4來控制逆變器電路15,從而控制成輸出電壓Vo成為規定的目標輸出電壓及/或輸出電流Io成為規定的目標輸出電流。
根據以上的結構,無需用於在送電裝置100與受電裝置200之間進行控制資訊的通訊的機構、或者用以針對電感及耦合度或負載變動將輸出電壓或輸出電流的特性控制為所需值的機構。此處,不使用無線通訊系統,故而不會因通訊的延遲或中斷而成為無法控制的狀態,無需保護電路等。藉此,與現有技術相比較,結構簡單且可大幅度地削減製造成本。
(實施形態2)
圖4為表示實施形態2的非接觸供電系統中所用的控制電路30A的結構例的方塊圖。實施形態2的非接觸供電系統與圖1的實施形態1的非接觸供電系統相比較,具有以下的不同點。
(1)包括圖4的控制電路30A代替控制電路30。
(2)控制電路30A與圖2B的控制電路30相比較,更包括反相器57。
以下,對不同點進行說明。
圖4中,比較器53輸出閘極訊號S3,並且經由反相器56作為閘極訊號S4而輸出。另外,比較器51將基準訊號電壓Vref作為閘極訊號S1而輸出,並且經由反相器57作為閘極訊號S2而輸出。該些閘極訊號S1~S4分別施加於逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的各閘極。
圖5為表示圖4的非接觸供電系統的動作例的各電壓及訊號的時序圖。
如由圖5所表明,基準訊號電壓Vref及三角波訊號電壓Vtri是與圖3的實施形態1同樣地產生。此處,於三角波訊號電壓Vtri在較其下降重置的時刻t2以規定的時間期間α靠前的時序的時刻t1,達到用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt時,將閘極訊號S3接通,另一方面將閘極訊號S4斷開。另外,閘極訊號S1為與基準訊號電壓Vref相同的同步訊號,閘極訊號S2為閘極訊號S1的反轉訊號。繼而,於三角波訊號電壓Vtri在較其下降重置的時刻t4以規定的時間期間α靠前的時序的時刻t3,達到所述比較訊號電壓Vt時,將閘極訊號S3斷開,另一方面將閘極訊號S4接通。該動作以週期T反覆。
即,閘極訊號S2為閘極訊號S1的反轉訊號,閘極訊號 S4為閘極訊號S3的反轉訊號。因此,於相同的各支線Lg1、Lg2中,一對閘極訊號(S1、S2)(S3、S4)相互處於反轉關係,但不同的支線Lg1、Lg2中,閘極訊號S1相較於閘極訊號S3而以時間期間α延遲,閘極訊號S2相較於閘極訊號S4而以時間期間α延遲。
如以上所說明,根據本實施形態,更包括檢測第一共振電路21的振盪訊號電壓的第二共振電路22,檢測由第二共振電路22所檢測出的振盪訊號電壓Vr1並輸出至控制電路30A。控制電路30A將振盪訊號電壓Vr1、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此生成驅動逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的四個閘極訊號S1~S4。藉由利用該閘極訊號S1~閘極訊號S4來控制逆變器電路15,從而使輸出電壓Vo成為規定的目標輸出電壓及/或輸出電流Io成為規定的目標輸出電流。
即,基於來自第二共振電路22的振盪訊號電壓Vr1而生成基準訊號Vref,並將基準訊號Vref與所述比較訊號電壓Vt進行比較,由此算出支線Lg1、支線Lg2間的對應的切換元件(S1與S3;S2與S4)間的相位差,基於所述算出的相位差而產生閘極訊號S1~閘極訊號S4,以獲得規定的目標輸出電壓及/或目標輸出電流的方式進行控制。
藉由以上的結構,無需用於在送電裝置100與受電裝置200之間進行控制資訊的通訊的機構、或者用以針對電感及耦合度 或負載變動來將輸出電壓或輸出電流的特性控制為所需值的機構。此處,不使用無線通訊系統,故而不會因通訊的延遲或中斷而成為無法控制的狀態,無需保護電路等。藉此,與現有技術相比較,結構簡單且可大幅度地削減製造成本。
(實施形態3)
圖6為表示實施形態3的非接觸供電系統的結構例的方塊圖。實施形態3的非接觸供電系統與圖1的實施形態1的非接觸供電系統相比較,具有以下的不同點。
(1)包括受電裝置200A代替受電裝置200。
(2)受電裝置200A與受電裝置200相比較,包括控制電路30B代替控制電路30,並且更包括LC共振電路14A、另一個第二共振電路22A、逆變器電路15A、電壓檢測器31、電壓檢測器42及電流檢測器33。
即,實施形態3的非接觸供電系統的特徵在於,包括兩個第二共振電路22、22A及兩個逆變器電路15、15A且進行了並聯連接。以下,對不同點加以說明。
圖6中,本發明的絕緣型共振電路裝置302包括由共振電路13、共振電路14、共振電路14A、第二共振電路22、第二共振電路22A、逆變器電路15、逆變器電路15A、電解電容器16及控制電路30B。另外,第一共振電路21A包括共振電路13、共振電路14、共振電路14A。此處,送電裝置100與受電裝置200A例如為了進行充電等電源供給而相互位於附近,由此LC共振電路 13的電感器L1、與LC共振電路14的電感器L2及LC共振電路14A的電感器L12相互以規定的耦合度電磁耦合。
LC共振電路14A包括電感器L12及電容器C12、電容器C13的串聯電路。另外,另一個第二共振電路22A包括電阻R11、電感器L13及電容器C13的串聯電路,且以具有與第一共振電路21A的振盪頻率實質上相同的共振頻率的方式構成。
逆變器電路15A與逆變器電路15同樣地,是分別將作為切換元件的四個MOS電晶體Q11~Q14以橋形式連接而構成。此處,MOS電晶體Q11、MOS電晶體Q14為高側(高電壓側)的切換元件,MOS電晶體Q12、MOS電晶體Q13為低側(低電壓側)的切換元件。四個MOS電晶體Q11~Q14由來自控制電路30B的四個閘極訊號進行通斷控制。此處,將MOS電晶體Q11、MOS電晶體Q12稱為支線Lg11,將MOS電晶體Q13、MOS電晶體Q14稱為支線Lg12。
利用電解電容器16將來自逆變器電路15、逆變器電路15A的電壓加以平滑,藉此整流為規定的直流電壓後,輸出至負載17。
電壓檢測器41檢測LC共振電路14A的輸出電壓Vs2,電流檢測器43檢測LC共振電路14的輸出電流Is2。電壓檢測器42檢測另一個第二共振電路22A的輸出電壓Vr2。
如以上般構成的實施形態3中,控制電路30B除了振盪訊號電壓Vr1以外,還基於檢測電壓Vr2,使用控制方法A或控 制方法B的圖2B或圖4的電路,
(1)將振盪訊號電壓Vr1、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此生成驅動逆變器電路15的MOS電晶體Q1~MOS電晶體Q4的四個閘極訊號S1~S4,分別控制逆變器電路15,
(2)將檢測電壓Vr2、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓Vt進行比較,由此生成驅動逆變器電路15A的MOS電晶體Q11~MOS電晶體Q14的四個閘極訊號S11~S14,分別控制逆變器電路15A。
藉此,控制電路30B以輸出電壓Vo成為規定的目標輸出電壓及/或輸出電流Io成為規定的目標輸出電流的方式進行控制。
藉由以上的結構,無需用於在送電裝置100與受電裝置200或200A之間進行控制資訊的通訊的機構、或者用以針對電感及耦合度或負載變動來將輸出電壓或輸出電流的特性控制為所需值的機構。此處,不使用無線通訊系統,因而不會因通訊的延遲或中斷而成為無法控制的狀態,無需保護電路等。藉此,與現有技術相比較,結構簡單且可大幅度地削減製造成本。
實施形態3的特徵在於,受電裝置200A中,包括兩個第二共振電路22、22A及兩個逆變器電路15、15A且進行了並聯連接。該實施形態3的特有效果如下。
例如於因大電力化等而由以多相進行動作的電路來構成受電裝置200A的情況下,產生各相間的電流變得不平衡等課 題。然而,作為簡化對逆變器電路15、逆變器電路15A的控制處理的方法,可藉由將受電裝置200A設為所謂複式結構並進行相位控制從而解決所述課題。即,根據實施形態3的結構,除了可藉由改善效率而實現電路整體的小型化以外,還可使用以改善電流的不平衡的、先前的複雜的控制電路的部分極為簡化。
以上的實施形態3中,使用兩個第二共振電路22、22A及兩個逆變器電路15、15A,但本發明不限於此,亦可使用三個以上的多個各電路,並以將該些並聯連接的方式構成。
(實施形態4)
圖7為表示實施形態4的非接觸供電系統的結構例的方塊圖。實施形態4的非接觸供電系統與圖1的實施形態1的非接觸供電系統相比較,具有以下的不同點。
(1)包括送電裝置100A代替送電裝置100。
(2)送電裝置100A更包括第三共振電路23。
以下,對不同點加以說明。
圖7中,本發明之絕緣型共振電路裝置303包括共振電路13、共振電路14、第二共振電路22、逆變器電路15、電解電容器16以及控制電路30。而且,第三共振電路23相對於LC共振電路13而串聯連接,包括電阻R21、電感器L23及電容器C21的串聯電路。第三共振電路23以具有與逆變器電路12的切換頻率fsw實質上相同的共振頻率的方式構成,以追隨於來自逆變器電路12的輸出電壓的方式振盪的振盪電流於第三共振電路23內 流動,由此可使LC共振電路13的振盪狀態變得穩定。再者,控制電路30的控制方法可為控制方法A與控制方法B的任一個。
如以上般構成的實施形態4的作用效果如下。
圖1的實施形態1的送電裝置100中,送電裝置100的切換頻率固定,因而存在下述課題,即:因耦合度k而變化的電感L(k)的變動導致電力轉換效率劣化等。
因此,根據實施形態4的非接觸供電系統,第三共振電路23不對逆變器電路12的切換頻率fsw進行追隨控制,而可追隨因耦合度k而變化的電感L(k)的變動所致的、送電裝置100A的共振頻率fsr的變化,故而可於送電裝置100A與受電裝置200之間不存在無線通訊系統而改善電力轉換效率。
再者,實施形態4中,亦可與實施形態3同樣地,由受電裝置200A的多個第二共振電路22、22A及逆變器電路15、15A構成。
(變形例等)
以下,對第一共振電路21內的LC共振電路13及LC共振電路14的變形例等加以說明。以下的電感器包含自感、勵磁電感或漏感等,L31、L41、L42意指設置與該等不同的電感器。另外,下述結構例僅為基本形式的電路,將電感器與電容器串聯或並聯連接的該等的數量亦可變更。
圖8A為表示圖1等的LC共振電路13的結構例的電路圖。圖8A中,LC共振電路13為實施形態1~實施形態4的共振 電路,由電感器L1與電容器C1的串聯電路構成。此處,送電裝置100、送電裝置100A的LC共振電路13亦可包括以下的LC共振電路13A~LC共振電路13E的任一個。
圖8B為表示變形例1的LC共振電路13A的結構例的電路圖。圖8B中,LC共振電路13A包括電感器L1與電容器C1的並聯電路。
圖8C為表示變形例2的LC共振電路13B的結構例的電路圖。圖8C中,LC共振電路13B包括電感器L1及電容器C1的串聯電路和電容器C31的並聯電路。
圖8D為表示變形例3的LC共振電路13C的結構例的電路圖。圖8D中,LC共振電路13C包括電感器L1及電容器C31的並聯電路和電容器C1的串聯電路。
圖8E為表示變形例4的LC共振電路13D的結構例的電路圖。圖8E中,LC共振電路13D是包含與如下並聯電路、即、電感器L1及電容器C1的串聯電路和電感器L31的並聯電路串聯連接的電感器L31而構成。
圖8F為表示變形例5的LC共振電路13E的結構例的電路圖。圖8F中,LC共振電路13E是包含與如下並聯電路、即、電感器L1及電容器C1的串聯電路和電感器L31的並聯電路串聯連接的電容器C32而構成。
如由圖8A~圖8F表明,LC共振電路13、LC共振電路13A~LC共振電路13E包含至少一個電感器及至少一個電容器, 所述各電感器與所述各電容器串聯或並聯連接。
另外,受電裝置200、受電裝置200A的LC共振電路14亦可由以下的LC共振電路14A~LC共振電路14G的任一個構成。
圖9A為表示變形例6的LC共振電路14B的結構例的電路圖。圖9A中,LC共振電路14B包括電感器L2與電容器C2的串聯電路。
圖9B為表示變形例7的LC共振電路14C的結構例的電路圖。圖9B中,LC共振電路14C包括電感器L2與電容器C2的並聯電路。
圖9C為表示變形例8的LC共振電路14D的結構例的電路圖。圖9C中,LC共振電路14D包括如下並聯電路、即、電感器L2與電容器C2的串聯電路和電容器C41的並聯電路。
圖9D為表示變形例9的LC共振電路14E的結構例的電路圖。圖9D中,LC共振電路14E包括如下串聯電路、即、電感器L2與電容器C41的並聯電路和電容器C2的串聯電路。
圖9E為表示變形例10的LC共振電路14F的結構例的電路圖。圖9E中,LC共振電路14F是包含與如下並聯電路、即、電感器L2與電容器C2的串聯電路和電容器C41的並聯電路串聯連接的電感器L41而構成。
圖9F為表示變形例11的LC共振電路14G的結構例的電路圖。圖9F中,LC共振電路14G是包含與如下並聯電路,即 電感器L2與電容器C2的串聯電路和電感器L42的並聯電路,串聯連接的電容器C42而構成。
如由圖9A~圖9F所表明,LC共振電路14A~LC共振電路14G包含至少一個電感器及至少一個電容器,所述各電感器與所述各電容器並聯或串聯地連接。
[產業上的可利用性]
以上的實施形態的非接觸供電系統例如可適用於對AGV或EV等移動體的供電系統、以及對生產線的托板(pallet)的供電系統。另外,於送受電間距離不變化的應用中本實施形態亦有效,例如可適用於代替機械臂等所使用的滑環(旋轉體)而使用的、非接觸供電裝置的非接觸滑環。
進而,以上的實施形態的共振電路可適用於利用LC共振電路的電源裝置等,即便因製品偏差等而電感或電容的值並非如設計般,亦可於實機中使共振頻率對應於電感值及/或電容值的偏差而與規定值一致。
11:功率因數改善電路(PFC電路)
12、15:逆變器電路
12C、30:控制電路
13、14:LC共振電路
16:電解電容器
17:負載
21:第一共振電路
22:第二共振電路
31、32、34:電壓檢測器
33、35:電流檢測器
100:送電裝置
200:受電裝置
301:絕緣型共振電路裝置
C1~C3:電容器
Io:輸出電流
Is1:輸出電流
L1~L3:電感器
Lg1、Lg2:支線
Q1~Q4:MOS電晶體
R1:電阻
S1~S4:閘極訊號
Vin:輸入電壓
Vo:輸出電壓
Vr1:振盪訊號電壓
Vs1:輸出電壓

Claims (10)

  1. 一種絕緣型共振電路裝置,包括:第一共振電路,包含相互電磁耦合且電性絕緣的第一電感電容共振電路及第二電感電容共振電路,基於所輸入的交流電壓以規定的第一共振頻率振盪,產生振盪訊號電壓並進行輸出;整流電路,包含多個切換元件,按照規定的多個閘極訊號切換來自所述第一共振電路的振盪訊號電壓後,加以平滑並將規定的直流電壓輸出至負載;第二共振電路,具有與所述第一共振頻率實質上相同的第二共振頻率,與來自所述第一共振電路的振盪訊號電壓共振而進行檢測,將所檢測出的振盪訊號電壓輸出;以及控制電路,將來自所述第二共振電路的振盪訊號電壓、與用以獲得規定的目標輸出電壓及/或規定的目標輸出電流的比較訊號電壓進行比較,由此產生用以控制所述整流電路的所述多個閘極訊號並輸出至所述整流電路。
  2. 如請求項1所述的絕緣型共振電路裝置,其中所述絕緣型共振電路裝置更包括:逆變器電路,設於所述第一共振電路的前段,且包含多個切換元件,按照規定的多個閘極訊號切換輸入電壓後,將切換後的所述交流電壓輸出至所述第一共振電路,所述控制電路控制成基於來自所述第二共振電路的振盪訊號電壓而生成規定的基準訊號,並將所述基準訊號與所述比較訊號 電壓進行比較,由此算出所述逆變器電路的多個閘極訊號、與所述整流電路的多個閘極訊號之間的相位差,基於算出的所述相位差而產生所述整流電路的多個閘極訊號,使用產生的所述整流電路的多個閘極訊號,控制成所述整流電路以所述相位差來進行動作,由此獲得所述目標輸出電壓及/或所述目標輸出電流。
  3. 如請求項1或請求項2所述的絕緣型共振電路裝置,其中所述整流電路包含:屬於第一支線的一對第一切換元件及第二切換元件、以及屬於第二支線的一對第三切換元件及第四切換元件,所述第一切換元件及第四切換元件為高側的切換元件,所述第二切換元件及第三切換元件為低側的切換元件,所述整流電路是將所述第一切換元件至所述第四切換元件以橋形式連接而構成,所述控制電路包含:積分機構,基於來自所述第二共振電路的振盪訊號電壓,產生與來自所述第一共振電路的振盪訊號電壓同步的規定的同步訊號電壓;比較機構,將所述同步訊號電壓與所述比較訊號電壓進行比較,由此當所述同步訊號電壓達到所述比較訊號電壓時,產生彼此相同的第一閘極訊號及第三閘極訊號並分別輸出至所述第一切換元件及所述第三切換元件的控制端子;以及反轉機構,將所述第一閘極訊號反轉,產生彼此相同的第二 閘極訊號及第四閘極訊號,並分別輸出至所述第二切換元件及所述第四切換元件的控制端子。
  4. 如請求項1所述的絕緣型共振電路裝置,其中所述整流電路包含:屬於第一支線的一對第一切換元件及第二切換元件、以及屬於第二支線的一對第三切換元件及第四切換元件,所述第一切換元件及第四切換元件為高側的切換元件,所述第二切換元件及第三切換元件為低側的切換元件,所述整流電路是將所述第一切換元件至所述第四切換元件以橋形式連接而構成,所述控制電路控制成基於來自所述第二共振電路的振盪訊號電壓而生成規定的基準訊號,並將所述基準訊號與所述比較訊號電壓進行比較,由此算出所述第一支線與所述第二支線間的對應的切換元件間的相位差,基於算出的所述相位差而產生所述多個閘極訊號,以獲得所述目標輸出電壓及/或所述目標輸出電流。
  5. 如請求項1或請求項4所述的絕緣型共振電路裝置,其中所述控制電路包含:積分機構,產生與來自所述第二共振電路的振盪訊號電壓同步的同步訊號電壓;第一比較機構,基於來自所述第二共振電路的振盪訊號電壓,將與來自所述第一共振電路的振盪訊號電壓同步的基準訊號電壓作為第一閘極訊號輸出至所述第一切換元件的控制端子; 第一反轉機構,將所述第一閘極訊號反轉,產生第二閘極訊號並輸出至所述第二切換元件的控制端子;第二比較機構,將所述同步訊號電壓與所述比較訊號電壓進行比較,由此當所述同步訊號電壓達到所述比較訊號電壓時,產生第三閘極訊號並輸出至所述第三切換元件的控制端子;以及第二反轉機構,將所述第三閘極訊號反轉,產生第四閘極訊號並輸出至所述第四切換元件的控制端子。
  6. 如請求項1或請求項2所述的絕緣型共振電路裝置,其中所述絕緣型共振電路裝置更包括:至少一個其他整流電路,包含多個切換元件,按照規定的多個其他閘極訊號切換來自所述第一共振電路的振盪訊號電壓後,加以平滑並將規定的直流電壓輸出至負載;以及至少一個其他第二共振電路,具有與所述第一共振頻率實質上相同的第二共振頻率,與來自所述第一共振電路的振盪訊號電壓共振而進行檢測,將所檢測出的振盪訊號電壓輸出,所述控制電路進而將來自所述其他第二共振電路的振盪訊號電壓與所述比較訊號電壓進行比較,由此產生用以控制所述其他整流電路的所述多個其他閘極訊號並輸出至所述其他整流電路。
  7. 如請求項1或請求項2所述的絕緣型共振電路裝置,其中所述絕緣型共振電路裝置更包括:第三共振電路,連接於所述第一電感電容共振電路,且具有與輸入的所述交流電壓的頻率實質上相同的共振頻率,相對於所 述交流電壓而共振。
  8. 一種非接觸供電系統,包括:送電裝置,輸送交流電壓;以及受電裝置,與所述送電裝置電磁耦合,接受所述交流電壓,且所述非接觸供電系統包括如請求項1至請求項5中任一項所述的絕緣型共振電路裝置,所述送電裝置包含所述第一電感電容共振電路,所述受電裝置包含所述第二電感電容共振電路、所述第二共振電路、所述整流電路及所述控制電路。
  9. 一種非接觸供電系統,包括:送電裝置,輸送交流電壓;以及受電裝置,與所述送電裝置電磁耦合,接受所述交流電壓,且所述非接觸供電系統包括如請求項6所述的絕緣型共振電路裝置,所述送電裝置包含所述第一電感電容共振電路,所述受電裝置包含所述第二電感電容共振電路、所述第二共振電路、所述整流電路、所述其他第二共振電路、所述其他整流電路及所述控制電路。
  10. 一種非接觸供電系統,包括:送電裝置,輸送交流電壓;以及 受電裝置,與所述送電裝置電磁耦合,接受所述交流電壓,且所述非接觸供電系統包括如請求項7所述的絕緣型共振電路裝置,所述送電裝置包含所述第一電感電容共振電路及所述第三共振電路,所述受電裝置包含所述第二電感電容共振電路、所述第二共振電路、所述整流電路及所述控制電路。
TW110117834A 2020-06-18 2021-05-18 絕緣型共振電路裝置以及非接觸供電系統 TWI788851B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-105481 2020-06-18
JP2020105481A JP2021197893A (ja) 2020-06-18 2020-06-18 絶縁型共振回路装置及び非接触給電システム

Publications (2)

Publication Number Publication Date
TW202201874A TW202201874A (zh) 2022-01-01
TWI788851B true TWI788851B (zh) 2023-01-01

Family

ID=79198027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117834A TWI788851B (zh) 2020-06-18 2021-05-18 絕緣型共振電路裝置以及非接觸供電系統

Country Status (6)

Country Link
US (1) US20230275503A1 (zh)
EP (1) EP4170863A1 (zh)
JP (1) JP2021197893A (zh)
CN (1) CN115699510A (zh)
TW (1) TWI788851B (zh)
WO (1) WO2021256174A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201236311A (en) * 2010-12-29 2012-09-01 Kawasaki Heavy Ind Ltd Battery module charging system
JP2014176173A (ja) * 2013-03-07 2014-09-22 Fujitsu Ltd 電力伝送装置、受電装置、及び、送電装置
TW201507312A (zh) * 2013-06-14 2015-02-16 Renesas Electronics Corp 通信控制裝置及安裝基板
JP2016063699A (ja) * 2014-09-19 2016-04-25 株式会社日本自動車部品総合研究所 無線給電装置
JP6201388B2 (ja) * 2013-04-15 2017-09-27 日産自動車株式会社 非接触給電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201236311A (en) * 2010-12-29 2012-09-01 Kawasaki Heavy Ind Ltd Battery module charging system
JP2014176173A (ja) * 2013-03-07 2014-09-22 Fujitsu Ltd 電力伝送装置、受電装置、及び、送電装置
JP6201388B2 (ja) * 2013-04-15 2017-09-27 日産自動車株式会社 非接触給電システム
TW201507312A (zh) * 2013-06-14 2015-02-16 Renesas Electronics Corp 通信控制裝置及安裝基板
JP2016063699A (ja) * 2014-09-19 2016-04-25 株式会社日本自動車部品総合研究所 無線給電装置

Also Published As

Publication number Publication date
WO2021256174A1 (ja) 2021-12-23
EP4170863A1 (en) 2023-04-26
JP2021197893A (ja) 2021-12-27
TW202201874A (zh) 2022-01-01
US20230275503A1 (en) 2023-08-31
CN115699510A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US10637352B2 (en) High power charge pump with inductive elements
JP7161548B2 (ja) Dcdcコンバータ、車載充電器及び電気自動車
CN111193327B (zh) 高性能无线功率传输系统,装置与器件
EP3506481A1 (en) Direct current-direct current converter
CN107104515B (zh) Ss-l无线电力传输补偿电路
TWI629862B (zh) 功率轉換電路及其操作方法
US11063526B2 (en) Power conversion equipment
EP3633822A1 (en) Bidirectional wireless power transmission system
Bui et al. DC-DC converter based impedance matching for maximum power transfer of CPT system with high efficiency
US20220385190A1 (en) Converter adaptable to wide range output voltage and control method thereof
Chen et al. Active capacitor voltage balancing control for three-level flying capacitor boost converter
TWI788851B (zh) 絕緣型共振電路裝置以及非接觸供電系統
JP6364864B2 (ja) 共振型dc/dcコンバータ
CN107800202B (zh) 无线输电阻抗匹配及电压调节电路
CN115276261A (zh) 一种无线充电阻抗匹配系统控制方法
Pakhaliuk et al. Optimal components design for modified Z-source based IPT approach
WO2018056343A1 (ja) 受電装置、制御方法、及び非接触給電システム
EP3528365B1 (en) Turner and rectifier apparatus for wireless power transfer receiver
WO2015182097A1 (ja) 非接触給電装置およびそれを用いた非接触給電システム
CA2315443C (en) Rectifier with midpoint feed
CN111903047A (zh) 电力转换装置
JP2000312474A (ja) 電源装置
JP7495311B2 (ja) 電力変換装置、電力変換装置の制御方法、及び電力システム
CN113942403B (zh) 电动车辆、充放电装置及其控制方法
WO2024053376A1 (ja) 無線電力伝送システム、無線送電回路及び無線受電回路