TWI788226B - 擊球運動器材擊球點位置偵測方法及裝置 - Google Patents
擊球運動器材擊球點位置偵測方法及裝置 Download PDFInfo
- Publication number
- TWI788226B TWI788226B TW111105528A TW111105528A TWI788226B TW I788226 B TWI788226 B TW I788226B TW 111105528 A TW111105528 A TW 111105528A TW 111105528 A TW111105528 A TW 111105528A TW I788226 B TWI788226 B TW I788226B
- Authority
- TW
- Taiwan
- Prior art keywords
- ball
- vibration
- hitting
- sports equipment
- characteristic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
- A63B60/46—Measurement devices associated with golf clubs, bats, rackets or the like for measuring physical parameters relating to sporting activity, e.g. baseball bats with impact indicators or bracelets for measuring the golf swing
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0021—Tracking a path or terminating locations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/51—Force
- A63B2220/53—Force of an impact, e.g. blow or punch
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/64—Frequency, e.g. of vibration oscillation
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/833—Sensors arranged on the exercise apparatus or sports implement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Physical Education & Sports Medicine (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Artificial Intelligence (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
一種擊球運動器材擊球點位置偵測方法及裝置。此方法包括下列步驟:擷取震動感測器偵測擊球運動器材與球體撞擊所產生的震動而生成的震動訊號;對震動訊號進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率;以及利用各個特徵頻率的振幅計算至少一筆特徵資訊並輸入使用機器學習預先建立的一預測模型,以估測球體在擊球運動器材上的撞擊位置,其中預測模型經使用多個震動訊號的特徵資訊及對應的多個撞擊位置訓練。
Description
本發明是有關於一種位置偵測方法及裝置,且特別是有關於一種擊球運動器材擊球點位置偵測方法及裝置。
目前對於棒球打者擊球時棒球與球棒接觸點(即,擊球點)的位置偵測,主要是採用影像處理的方式來進行判斷。通過在打者周圍架設攝影器材以拍攝打者擊球影像,並利用特徵擷取、比對等影像處理方式分析影像,最終評估出擊球點位置。
然而,上述方法需使用成本較高的高速攝影器材,並調整至特殊攝影角度才能清楚拍攝到擊球點。而由於擊球動作隨時在變化,攝影器材的攝影角度無法因應動作即時調整,實際拍攝時常會有攝影死角。此外,通過影像處理方式進行位置偵測需要較高的運算量,特別是在影像幀數較多時,對處理裝置運算能力的要求也會增高,結果將增加成本。
本發明提供一種擊球運動器材擊球點位置偵測方法及裝置,通過偵測擊球運動器材擊球時的震動,並分析該震動的頻率特徵,可準確地偵測出擊球點位置。
本發明提供一種擊球運動器材擊球點位置偵測方法,適用於由具處理器的電子裝置利用配置於擊球運動器材上的震動感測器偵測撞擊位置。此方法包括下列步驟:擷取震動感測器偵測擊球運動器材與球體撞擊所產生的震動而生成的震動訊號;對震動訊號進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率(eigenfrequency);以及利用各個特徵頻率的振幅計算至少一筆特徵資訊並輸入使用機器學習預先建立的一預測模型,以估測球體在擊球運動器材上的撞擊位置,其中預測模型經使用多個震動訊號的特徵資訊及對應的多個撞擊位置訓練。
在本發明的一實施例中,上述利用各個特徵頻率的振幅計算至少一筆特徵資訊的步驟包括根據特徵頻率的振幅大小選擇一個主要特徵頻率及至少一個次要特徵頻率,並利用主要特徵頻率及次要特徵頻率的振幅計算特徵資訊。
在本發明的一實施例中,上述利用主要特徵頻率及次要特徵頻率的振幅計算特徵資訊的步驟包括計算主要特徵頻率與各個次要特徵頻率的振幅的比值作為特徵資訊。
在本發明的一實施例中,上述利用主要特徵頻率及次要特徵頻率的振幅計算特徵資訊的步驟更包括計算次要特徵頻率之間的振幅的比值作為特徵資訊。
在本發明的一實施例中,上述利用主要特徵頻率及次要特徵頻率的振幅計算特徵資訊的步驟包括利用主要特徵頻率的振幅計算第一特徵值,利用各個次要特徵頻率的振幅計算至少一個第二特徵值,並計算第一特徵值與各個第二特徵值的比值作為特徵資訊。
在本發明的一實施例中,上述的方法更擷取震動感測器偵測球體撞擊擊球運動器材上預設的多個撞擊位置所產生的震動而生成的多個震動訊號,對震動訊號分別進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率,並利用各個特徵頻率的振幅計算特徵資訊,以及將特徵資訊作為預測模型的輸入,並將對應的撞擊位置作為預測模型的輸出,用以訓練預測模型,並記錄經訓練預測模型的多個學習參數。
本發明提供一種擊球運動器材擊球點位置偵測裝置,其包括資料擷取裝置、儲存裝置及處理器。資料擷取裝置用以連接配置於擊球運動器材上的震動感測器,此震動感測器偵測擊球運動器材的震動以生成震動訊號。儲存裝置用以儲存使用機器學習預先建立的預測模型的多個學習參數,其中預測模型經使用多個震動訊號的特徵資訊及對應的多個撞擊位置訓練,所述撞擊位置為擊球運動器材與球體撞擊的位置。處理器耦接資料擷取裝置及儲存裝置,經配置以通過資料擷取裝置擷取震動感測器偵測擊球運動器材與球體撞擊所產生的震動而生成的震動訊號,對震動訊號進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率,以及利用各個特徵頻率的振幅計算至少一筆特徵資訊並輸入預測模型,以估測球體在擊球運動器材上的撞擊位置。
在本發明的一實施例中,上述的處理器包括根據特徵頻率的振幅大小選擇一個主要特徵頻率及至少一個次要特徵頻率,並利用主要特徵頻率及次要特徵頻率的振幅計算特徵資訊。
在本發明的一實施例中,上述的處理器包括計算主要特徵頻率與各個次要特徵頻率的振幅的比值作為特徵資訊。
在本發明的一實施例中,上述的處理器更計算次要特徵頻率之間的振幅的比值作為特徵資訊。
在本發明的一實施例中,上述的處理器包括利用主要特徵頻率的振幅計算第一特徵值,利用各個次要特徵頻率的振幅計算至少一個第二特徵值,並計算第一特徵值與各個第二特徵值的比值作為特徵資訊。
在本發明的一實施例中,上述的處理器更利用資料擷取裝置擷取震動感測器偵測球體撞擊擊球運動器材上預設的多個撞擊位置所產生的震動而生成的多個震動訊號,對震動訊號分別進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率,並利用各個特徵頻率的振幅計算特徵資訊,以及將特徵資訊作為預測模型的輸入,並將對應的撞擊位置作為預測模型的輸出,用以訓練預測模型,並記錄經訓練預測模型的學習參數於儲存裝置。
在本發明的一實施例中,上述的機器學習包括決策樹(decision tree)、卷積神經網絡(Convolutional Neural Network,CNN)、深度神經網路(Deep Neural Networks,DNN)或支援向量機(Support Vector Machine,SVM)。
在本發明的一實施例中,上述的震動感測器包括壓電式震動感測器、電動式震動感測器、電渦流式震動感測器、電感式震動感測器、電容式震動感測器、電阻式震動感測器及光電式震動感測器其中之一或其組合。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本發明實施例提出一種擊球運動器材擊球點位置偵測方法及裝置,其通過在擊球運動器材上裝設震動感測器以偵測擊球運動器材擊球時的震動,並對震動訊號進行頻譜分析以取得頻域上的多個特徵頻率,然後將這些特徵頻率的相對特徵輸入使用機器學習預先建立並訓練的預測模型,從而估測出擊球點位置。藉此,無論擊球力量的大小,本發明實施例可精確地計算出擊球點位置。
詳細而言,圖1是根據本發明一實施例所繪示的擊球運動器材擊球點位置偵測裝置的方塊圖。請參考圖1,本發明實施例的擊球運動器材擊球點位置偵測裝置10例如是具有運算能力的檔案伺服器、資料庫伺服器、應用程式伺服器、工作站或個人電腦等計算機裝置,或是手機、平板電腦等行動裝置,其中包括資料擷取裝置12、儲存裝置14及處理器16等元件,這些元件的功能分述如下:
資料擷取裝置12例如是可與配置在擊球運動器材上的震動感測器連接的任意的有線或無線的介面裝置,用以擷取震動感測器偵測擊球運動器材震動所生成的震動訊號。對於有線方式而言,資料擷取裝置12可以是通用序列匯流排(universal serial bus,USB)、RS232、通用非同步接收器/傳送器(universal asynchronous receiver/transmitter,UART)、內部整合電路(I2C)、序列周邊介面(serial peripheral interface,SPI)、顯示埠(display port)或雷電埠(thunderbolt)等介面,但不限於此。對於無線方式而言,資料擷取裝置12可以是支援無線保真(wireless fidelity,Wi-Fi)、RFID、藍芽、紅外線、近場通訊(near-field communication,NFC)或裝置對裝置(device-to-device,D2D)等通訊協定的裝置,亦不限於此。其中,震動感測器例如是配置或附加於擊球運動器材的尾端、棒頭或其他任意位置的壓電式震動感測器、電動式震動感測器、電渦流式震動感測器、電感式震動感測器、電容式震動感測器、電阻式震動感測器及光電式震動感測器其中之一或其組合,本實施例不限制其種類及配置方式。
舉例來說,圖2是根據本發明一實施例所繪示的震動感測器的配置方式的示意圖。請參照圖2,本發明實施例的例如是將壓電式震動感測器20配置於棒球球棒22的尾端,用以偵測棒球球棒22擊球時所產生的震動並生成震動訊號,震動感測器20並將此震動訊號傳送至球棒擊球點位置偵測裝置10,而由球棒擊球點位置偵測裝置10計算出擊球點位置24。在本實施例中,基於壓電式震動感測器20是採用較為材質較為輕薄的壓電材料,因此可在不影響球棒握持度和球棒特性的情況下偵測球棒的震動。需說明的是,雖然本實施例是以棒球球棒為例做說明,但不限於此,本發明實施例可應用於壘球棒、羽球拍、網球拍、桌球拍、曲棍球桿、高爾夫球桿等各式擊球運動器材,在此不設限。
儲存裝置14例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或類似元件或上述元件的組合,而用以儲存可由處理器16執行的電腦程式。在一些實施例中,儲存裝置14還儲存由處理器16使用機器學習預先建立並訓練的預測模型的學習參數。在一些實施例中,儲存裝置14可用以暫存由處理器16利用資料擷取裝置12從雲端伺服器或遠端裝置下載的使用機器學習預先建立並訓練的預測模型的學習參數。所述機器學習包括決策樹(decision tree)、卷積神經網絡(Convolutional Neural Network,CNN)、深度神經網路(Deep Neural Networks,DNN)或支援向量機(Support Vector Machine,SVM),但不限於此。
處理器16例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、微控制器(Microcontroller)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,本發明不在此限制。在本實施例中,處理器16可從儲存裝置14載入電腦程式,以執行本發明實施例的基於機器學習的擊球點位置偵測方法。
圖3是依照本發明一實施例所繪示的擊球運動器材擊球點位置偵測方法的流程圖。請同時參照圖1及圖3,本實施例的方法適用於上述的擊球運動器材擊球點位置偵測裝置10,以下即搭配擊球運動器材擊球點位置偵測裝置10的各項元件說明本實施例的擊球運動器材擊球點位置偵測方法的詳細步驟。
在步驟S302中,由擊球運動器材擊球點位置偵測裝置10的處理器16利用資料擷取裝置12擷取震動感測器偵測擊球運動器材與球體撞擊所產生的震動而生成的震動訊號。其中,所述震動訊號例如是震動感測器在擊球運動器材震動時所測得的時域上的標準化能量。
在步驟S304中,處理器16對震動訊號進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率(eigenfrequency)。其中,處理器16例如是對震動訊號執行傅立葉轉換(Fourier transform)或小波轉換等頻域分析方法,但不限於此,在其他實施例中,處理16可採用任意種類的頻域分析方法將震動訊號轉換為頻域訊號,並測得頻域訊號中的多個波峰(peak)作為特徵頻率。
在步驟S306中,處理器16利用各個特徵頻率的振幅計算至少一筆特徵資訊並輸入使用機器學習預先訓練的預測模型,以估測球體在擊球運動器材上的撞擊位置。其中,處理器16例如是根據特徵頻率的振幅大小選擇一個主要特徵頻率及至少一個次要特徵頻率,並利用此主要特徵頻率及次要特徵頻率的振幅來計算特徵資訊。此特徵資訊例如是上述特徵頻率的相對特徵,例如是主要特徵頻率與次要特徵頻率的振幅的比值,藉此排除擊球力量大小的影響。
舉例來說,在一些實施例中,處理器16可對多個特徵頻率的振幅進行正規化(normalization)運算(即,將各個振幅除以其中的最大值),從這些特徵頻率中選擇振幅前3大(依序為M
1、M
2、M
3)的特徵頻率,並計算其中最大振幅M
1與其他振幅M
2、M
3的比值M
1/M
2、M
1/M
3,用以作為該擊球運動器材的特徵資訊。在一些實施例中,處理器16可僅使用最大振幅M
1與次大振幅M
2的比值M
1/M
2來作為該擊球運動器材的特徵資訊。在一些實施例中,處理器16可進一步計算振幅M
2、M
3的比值M
2/M
3,而與前述的比值M
1/M
2、M
1/M
3一同用以作為該擊球運動器材的特徵資訊。上述實施例僅用以說明本發明可能的實施方式,並非用以限制本發明。
另一方面,上述的預測模型例如是經使用多個震動訊號的特徵資訊及對應的多個撞擊位置預先訓練的機器學習模型。詳細而言,預測模型需要一個決策標準來確定要使用哪個特徵和回歸方程式。由於來自不同特徵資訊的振幅的比值具有不同的分佈,本發明實施例可通過決策樹回歸器(regressor)或深度機器學習等進階方式來實現高精度的預測模型。
詳細而言,圖4是依照本發明一實施例所繪示的使用機器學習訓練預測模型的方法流程圖。請同時參照圖1及圖4,本實施例的方法適用於上述的擊球運動器材擊球點位置偵測裝置10。
在步驟S402中,擊球運動器材擊球點位置偵測裝置10的處理器16利用資料擷取裝置12擷取震動感測器偵測球體撞擊擊球運動器材上預設的多個撞擊位置所產生的震動而生成的多個震動訊號。其中,本實施例例如是在自擊球運動器材棒頭起算的40公分(如圖2所示)內平均分佈40個撞擊點(例如每隔1公分設置一個撞擊點),依序使用球體撞擊這些撞擊點並利用震動感測器偵測擊球運動器材被撞擊時所產生的震動而生成震動訊號。處理器16利用資料擷取裝置12擷取這些震動訊號。
在步驟S404中,處理器16對這些震動訊號分別進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率,並利用各個特徵頻率的振幅計算特徵資訊。類似於前述特徵資訊的計算方式,處理器16例如是根據特徵頻率的振幅大小選擇一個主要特徵頻率及至少一個次要特徵頻率,並利用此主要特徵頻率及次要特徵頻率的振幅來計算特徵資訊,例如計算主要特徵頻率及各次要特徵頻率的振幅的比值作為特徵資訊,以及計算次要特徵頻率之間的振幅的比值作為特徵資訊,但本實施例不限於此。
在步驟S406中,處理器16將所計算的特徵資訊作為預測模型的輸入,將對應的撞擊位置作為預測模型的輸出,用以訓練預測模型,並將經訓練預測模型的多個學習參數記錄於儲存裝置14。
通過上述預測模型建構擊球運動器材的特性分佈後,本發明實施例的擊球運動器材擊球點位置偵測裝置10即可在每次使用該擊球運動器材擊球時,通過將所偵測到的震動訊號轉換為特徵資訊並輸入預測模型,從而精確地定位出擊球點。在一些實施例中,擊球運動器材擊球點位置偵測裝置10例如可針對不同種類的擊球運動器材(例如木棒、鋁棒),個別建立預測模型並儲存在儲存裝置14中,從而在實際擊球時,可通過識別擊球運動器材的序號或種類,從儲存裝置14中存取對應的預測模型以偵測擊球點位置。藉此,可增加所偵測擊球點位置的精確度。
圖5是依照本發明一實施例所繪示的擊球運動器材擊球點位置偵測方法的流程圖。請同時參照圖1及圖5,本實施例的方法適用於上述的擊球運動器材擊球點位置偵測裝置10,以下即搭配擊球運動器材擊球點位置偵測裝置10的各項元件說明本實施例的擊球運動器材擊球點位置偵測方法的詳細步驟。
在步驟S502中,由擊球運動器材擊球點位置偵測裝置10的處理器16利用資料擷取裝置12擷取震動感測器偵測擊球運動器材與球體撞擊所產生的震動而生成的震動訊號。在步驟S504中,處理器16對震動訊號進行頻譜分析,以獲得震動訊號在頻域上的多個特徵頻率。上述的步驟S502~S504與前述實施例的步驟S302~S304相同或相似,故其詳細內容在此不再贅述。
與前述實施例不同的是,在本實施例中,處理器16是在步驟S506中,根據特徵頻率的振幅的大小選擇主要特徵頻率及至少一個次要特徵頻率,並在步驟S508中,利用主要特徵頻率的振幅計算第一特徵值,利用各個次要特徵頻率的振幅計算至少一個第二特徵值,並計算第一特徵值與各個第二特徵值的比值作為特徵資訊。舉例來說,處理器16可計算主要特徵頻率的振幅的平方、平方根或其他次方以作為第一特徵值,並相應地計算次要特徵頻率的振幅的平方、平方根或其他次方以作為第二特徵值,然後再計算第一特徵值與各個第二特徵值的比值來作為特徵資訊,本實施例不限定特徵值的計算方式。
在步驟S510中,處理器16將所計算的特徵資訊輸入使用機器學習預先訓練的預測模型,以估測球體在擊球運動器材上的撞擊位置。其中,處理器16例如是以相同方式計算多個震動訊號的特徵資訊,並用以訓練預測模型,從而獲得精確的擊球點位置。
通過上述預測模型,本發明實施例的擊球運動器材擊球點位置偵測裝置10同樣可在每次使用擊球運動器材擊球時,通過將所偵測到的震動訊號轉換為特徵資訊並輸入預測模型,從而精確地定位出擊球點。
圖6A至圖6G是依照本發明一實施例所繪示的球棒擊球點位置偵測方法的範例。本實施例例如是將球體以強、中、弱三種不同力道撞擊球棒上的多個撞擊位置d(其中d為自球棒棒頭起算的40公分內每隔1公分的位置)並利用震動感測器偵測撞擊時球棒的震動,而得到如圖6A所示的時域上的震動訊號
P[d],此震動訊號
P[d]中的每個點表示經過正規化運算後所得到的數值介於0.0~1.0之間的撞擊強度,其中黑色點代表以強力道撞擊球棒所得的撞擊強度,深灰色點代表以中力道撞擊球棒所得的撞擊強度,淺灰色點代表以弱力道撞擊球棒所得的撞擊強度。
接著,通過對此震動訊號
P[d]進行頻譜分析以獲得其在頻域上的多個特徵頻率並對這些特徵頻率的振幅進行正規化運算後,可得到其中前3大特徵頻率的振幅隨撞擊位置d的分佈,包括圖6B所示的最大振幅M
1[d]的分佈,圖6C所示的第2大振幅M
2[d]的分佈,以及圖6D所示的最3大振幅M
3[d]的分佈。
然後,通過對振幅M
1[d]、M
2[d]、M
3[d]進行比值的計算後,可得到球棒的多筆特徵資訊隨撞擊位置d的分佈,包括圖6E所示的特徵資訊M
1[d]/M
2[d]的分佈,圖6F所示的特徵資訊M
1[d]/M
3[d]的分佈,以及圖6G所示的特徵資訊M
2[d]/M
3[d]的分佈。由圖6E至圖6G可知,經由比值的計算,本實施例可排除撞擊力道大小對於特徵資訊的影響。
最後,通過將這些特徵資訊M
1[d]/M
2[d]、M
1[d]/M
3[d]、M
2[d]/M
3[d]及其對應的撞擊位置d分別作為輸入和輸出,用以訓練利用機器學習所建立的預測模型,即可獲得記錄有該球棒特性的預測模型,而用以作為後續偵測擊球點位置的依據。
綜上所述,在本發明實施例的擊球運動器材擊球點位置偵測方法及裝置中,通過在擊球運動器材上裝設震動感測器以偵測擊球運動器材擊球時的震動,並使用震動訊號在頻域上的相對特徵預先建立可響應擊球運動器材特性的預測模型。藉此,每當使用相同或同類型擊球運動器材擊球時,即可通過將震動訊號的相對特徵輸入對應的預測模型,從而精確地計算出擊球點位置。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10:擊球運動器材擊球點位置偵測裝置
12:資料擷取裝置
14:儲存裝置
16:處理器
20:壓電式震動感測器
22:棒球球棒
24:擊球點位置
S302~S306、S402~S406、S502~S510:步驟
圖1是根據本發明一實施例所繪示的擊球運動器材擊球點位置偵測裝置的方塊圖。
圖2是根據本發明一實施例所繪示的震動感測器的配置方式的示意圖。
圖3是依照本發明一實施例所繪示的擊球運動器材擊球點位置偵測方法的流程圖。
圖4是依照本發明一實施例所繪示的使用機器學習訓練預測模型的方法流程圖。
圖5是依照本發明一實施例所繪示的擊球運動器材擊球點位置偵測方法的流程圖。
圖6A至圖6G是依照本發明一實施例所繪示的球棒擊球點位置偵測方法的範例。
S302~S306:步驟
Claims (12)
- 一種擊球運動器材擊球點位置偵測方法,適用於由具處理器的電子裝置利用配置於擊球運動器材上的震動感測器偵測撞擊位置,所述方法包括下列步驟:擷取所述震動感測器偵測所述擊球運動器材與球體撞擊所產生的震動而生成的震動訊號;對所述震動訊號進行頻譜分析,以獲得所述震動訊號在頻域上的多個特徵頻率(eigenfrequency);以及利用各所述特徵頻率的振幅計算至少一特徵資訊並輸入使用機器學習預先建立的一預測模型,以估測所述球體在所述擊球運動器材上的撞擊位置,其中所述預測模型經使用多個震動訊號的特徵資訊及對應的多個撞擊位置訓練,其中利用各所述特徵頻率的振幅計算至少一特徵資訊的步驟包括:根據所述特徵頻率的所述振幅的大小選擇一主要特徵頻率及至少一次要特徵頻率,並計算所述主要特徵頻率與各所述次要特徵頻率的所述振幅的比值作為所述特徵資訊。
- 如請求項1所述的方法,其中利用所述主要特徵頻率及所述次要特徵頻率的所述振幅計算所述特徵資訊的步驟更包括:計算所述次要特徵頻率之間的所述振幅的比值作為所述特徵資訊。
- 如請求項1所述的方法,其中利用所述主要特徵頻率及所述次要特徵頻率的所述振幅計算所述特徵資訊的步驟包括:利用所述主要特徵頻率的振幅計算第一特徵值,利用各所述次要特徵頻率的振幅計算至少一第二特徵值,並計算所述第一特徵值與各所述第二特徵值的比值作為所述特徵資訊。
- 如請求項1所述的方法,更包括:擷取所述震動感測器偵測所述球體撞擊所述擊球運動器材上預設的多個撞擊位置所產生的震動而生成的多個震動訊號;對所述震動訊號分別進行頻譜分析,以獲得所述震動訊號在頻域上的多個特徵頻率,並利用各所述特徵頻率的振幅計算所述特徵資訊;以及將所述特徵資訊作為所述預測模型的輸入,並將對應的所述撞擊位置作為所述預測模型的輸出,用以訓練所述預測模型,並記錄經訓練所述預測模型的多個學習參數。
- 如請求項1所述的方法,其中所述機器學習包括決策樹(decision tree)、卷積神經網絡(Convolutional Neural Network,CNN)、深度神經網路(Deep Neural Networks,DNN)或支援向量機(Support Vector Machine,SVM)。
- 如請求項1所述的方法,其中所述震動感測器包括壓電式震動感測器、電動式震動感測器、電渦流式震動感測器、電感式震動感測器、電容式震動感測器、電阻式震動感測器及光電式震動感測器其中之一或其組合。
- 一種擊球運動器材擊球點位置偵測裝置,包括:資料擷取裝置,連接配置於擊球運動器材上的震動感測器,所述震動感測器偵測所述擊球運動器材的震動以生成震動訊號;儲存裝置,儲存使用機器學習預先建立的預測模型的多個學習參數,其中所述預測模型經使用多個震動訊號的特徵資訊及對應的多個撞擊位置訓練,所述撞擊位置為所述擊球運動器材與球體撞擊的位置;以及處理器,耦接所述資料擷取裝置及所述儲存裝置,經配置以:通過所述資料擷取裝置擷取所述震動感測器偵測所述擊球運動器材與所述球體撞擊所產生的震動而生成的所述震動訊號;對所述震動訊號進行頻譜分析,以獲得所述震動訊號在頻域上的多個特徵頻率;以及利用各所述特徵頻率的振幅計算至少一特徵資訊並輸入所述預測模型,以估測所述球體在所述擊球運動器材上的撞擊位置,其中所述處理器包括根據所述特徵頻率的所述振幅的大小選擇一主要特徵頻率及至少一次要特徵頻率,並計算所述主要特徵頻率與各所述次要特徵頻率的所述振幅的比值作為所述特徵資訊。
- 如請求項7所述的擊球運動器材擊球點位置偵測裝置,其中所述處理器更計算所述次要特徵頻率之間的所述振幅的比值作為所述特徵資訊。
- 如請求項7所述的擊球運動器材擊球點位置偵測裝置,其中所述處理器包括利用所述主要特徵頻率的振幅計算第一 特徵值,利用各所述次要特徵頻率的振幅計算至少一第二特徵值,並計算所述第一特徵值與各所述第二特徵值的比值作為所述特徵資訊。
- 如請求項7所述的擊球運動器材擊球點位置偵測裝置,所述處理器更利用所述資料擷取裝置擷取所述震動感測器偵測所述球體撞擊所述擊球運動器材上預設的多個撞擊位置所產生的震動而生成的多個震動訊號,對所述震動訊號分別進行頻譜分析,以獲得所述震動訊號在頻域上的多個特徵頻率,並利用各所述特徵頻率的振幅計算所述特徵資訊,以及將所述特徵資訊作為所述預測模型的輸入,並將對應的所述撞擊位置作為所述預測模型的輸出,用以訓練所述預測模型,並記錄經訓練所述預測模型的所述學習參數於所述儲存裝置。
- 如請求項7所述的擊球運動器材擊球點位置偵測裝置,其中所述機器學習包括決策樹、卷積神經網絡、深度神經網路或支援向量機。
- 如請求項7所述的擊球運動器材擊球點位置偵測裝置,其中所述震動感測器包括壓電式震動感測器、電動式震動感測器、電渦流式震動感測器、電感式震動感測器、電容式震動感測器、電阻式震動感測器及光電式震動感測器其中之一或其組合。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105528A TWI788226B (zh) | 2022-02-16 | 2022-02-16 | 擊球運動器材擊球點位置偵測方法及裝置 |
US17/718,300 US11890519B2 (en) | 2022-02-16 | 2022-04-11 | Method and apparatus for impact position detection of impact sport equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105528A TWI788226B (zh) | 2022-02-16 | 2022-02-16 | 擊球運動器材擊球點位置偵測方法及裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI788226B true TWI788226B (zh) | 2022-12-21 |
TW202333829A TW202333829A (zh) | 2023-09-01 |
Family
ID=85795262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111105528A TWI788226B (zh) | 2022-02-16 | 2022-02-16 | 擊球運動器材擊球點位置偵測方法及裝置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11890519B2 (zh) |
TW (1) | TWI788226B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM384044U (en) * | 2010-02-06 | 2010-07-11 | Univ Chaoyang Technology | Sweet point detectable racket |
JP2014023753A (ja) * | 2012-07-27 | 2014-02-06 | Yamaha Corp | ゴルフクラブ |
TW202118539A (zh) * | 2019-11-07 | 2021-05-16 | 南開科技大學 | 網球發球訓練系統及其方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090221388A1 (en) | 2008-02-28 | 2009-09-03 | Giannetti William B | Feedback-providing sporting goods item |
TW201043298A (en) | 2009-06-09 | 2010-12-16 | Nat Univ Chin Yi Technology | Method for finding an optimal point of baseball batting with minimized vibration |
EP3881283B1 (en) | 2018-11-14 | 2024-06-12 | Str8bat Sports Tech Solutions Pte. Ltd. | System and method for sweet spot detection |
-
2022
- 2022-02-16 TW TW111105528A patent/TWI788226B/zh active
- 2022-04-11 US US17/718,300 patent/US11890519B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM384044U (en) * | 2010-02-06 | 2010-07-11 | Univ Chaoyang Technology | Sweet point detectable racket |
JP2014023753A (ja) * | 2012-07-27 | 2014-02-06 | Yamaha Corp | ゴルフクラブ |
TW202118539A (zh) * | 2019-11-07 | 2021-05-16 | 南開科技大學 | 網球發球訓練系統及其方法 |
Also Published As
Publication number | Publication date |
---|---|
US11890519B2 (en) | 2024-02-06 |
US20230256311A1 (en) | 2023-08-17 |
TW202333829A (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10369409B2 (en) | Dynamic sampling in sports equipment | |
CN104524755B (zh) | 摆动分析装置 | |
US11173362B2 (en) | Analysis apparatus, analysis method, and recording medium | |
CN105797319B (zh) | 一种羽毛球运动数据处理方法及装置 | |
JP6268274B2 (ja) | ゴルフ用具のためのインパクトおよび音響の分析 | |
JP2016515884A (ja) | ゴルフ用具のためのインパクトおよび音響の分析 | |
US10675512B2 (en) | Technologies for a sport ball and for evaluation of handling a sport ball | |
JP5773122B2 (ja) | スイング分析装置及びスイング分析プログラム | |
CN104645585A (zh) | 运动分析方法以及运动分析装置 | |
JP2011200641A (ja) | 圧電物質含有ゴルフボール | |
TWI788226B (zh) | 擊球運動器材擊球點位置偵測方法及裝置 | |
TW201813698A (zh) | 智慧型擊打練習系統及方法 | |
CN115867956A (zh) | 抓握分析系统和方法 | |
CN116662892A (zh) | 击球运动器材击球点位置侦测方法及装置 | |
US10918920B2 (en) | Apparatus and methods to track movement of sports implements | |
TWI541050B (zh) | 矯正打擊姿勢之裝置及方法 | |
WO2023286502A1 (ja) | データ処理装置及びプログラム | |
Sarwar et al. | ContaBat: Designing and Prototyping an Attachable Sports Analytics Device That Provides Ball-Bat Impact Location for Performance Enhancement | |
JP2015166018A (ja) | スイング分析装置 | |
CN106132492A (zh) | 信息提供方法、信息提供装置、信息提供系统及信息提供程序 |