TWI787646B - Ultraviolet c light-emitting diode - Google Patents

Ultraviolet c light-emitting diode Download PDF

Info

Publication number
TWI787646B
TWI787646B TW109129702A TW109129702A TWI787646B TW I787646 B TWI787646 B TW I787646B TW 109129702 A TW109129702 A TW 109129702A TW 109129702 A TW109129702 A TW 109129702A TW I787646 B TWI787646 B TW I787646B
Authority
TW
Taiwan
Prior art keywords
layer
light
electron blocking
emitting diode
hole gas
Prior art date
Application number
TW109129702A
Other languages
Chinese (zh)
Other versions
TW202211497A (en
Inventor
蔡佳龍
劉學興
蔡長達
Original Assignee
財團法人工業技術研究院
光磊科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院, 光磊科技股份有限公司 filed Critical 財團法人工業技術研究院
Priority to TW109129702A priority Critical patent/TWI787646B/en
Publication of TW202211497A publication Critical patent/TW202211497A/en
Application granted granted Critical
Publication of TWI787646B publication Critical patent/TWI787646B/en

Links

Images

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

An ultraviolet C light-emitting diode including an n-type semiconductor layer, a p-type semiconductor layer, an active layer, a two-dimensional hole gas (2DHG) inducing layer, and an electron blocking layer is provided. The active layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer, wherein a wavelength of a maximum peak of a spectrum emitted by the active layer ranges from 230 nm to 280 nm. The 2DHG inducing layer is disposed between the active layer and the p-type semiconductor layer. A concentration of magnesium in the 2DHG inducing layer is less than 1017 atoms/cm3. The electron blocking layer is disposed between the p-type semiconductor layer and the 2DHG inducing layer. A concentration of magnesium in a part of the electron blocking layer adjacent to the 2DHG inducing layer is greater than 1019 atoms/cm3.

Description

紫外光C發光二極體 UV-C Light Emitting Diodes

本技術領域是有關於一種紫外光C發光二極體。 This technical field relates to a kind of ultraviolet C light-emitting diode.

為了讓電洞載子容易注入於發光層、主動層或多重量子井層中,紫外光C發光二極體(ultraviolet C light-emitting diode,UVC-LED)結構中的電子阻擋層(electron blocking layer,EBL)會透過摻雜鈹、鎂或鋅等形成P型半導體。如此一來,除了可以增加電洞濃度外,更進一步可以提高紫外光C發光二極體元件的效能。 In order to allow hole carriers to be easily injected into the light-emitting layer, active layer or multiple quantum well layer, the electron blocking layer (electron blocking layer) in the ultraviolet C light-emitting diode (UVC-LED) structure , EBL) will form a P-type semiconductor by doping beryllium, magnesium or zinc. In this way, in addition to increasing the hole concentration, the efficiency of the UV-C light-emitting diode device can be further improved.

但是當在電子阻擋層中摻雜鈹、鎂或鋅等時,由於電子阻擋層中的鋁濃度相較發光層、主動層或多重量子井層中的量子能障中的鋁濃度高,使得鈹、鎂或鋅等不易摻雜。另一方面,若提高鈹、鎂或鋅等的摻雜量,則會面臨的問題是鈹、鎂、鋅等的記憶效應(memory effect)及其擴散到量子井或量子能障中。如此一來,過多的雜質會在量子井或量子能障中形成缺陷,導致紫外光C發光二極體元件的發光效能下降,且產生不必要的缺陷放光。 But when beryllium, magnesium or zinc etc. are doped in the electron blocking layer, because the aluminum concentration in the electron blocking layer is higher than the aluminum concentration in the quantum energy barrier in the light-emitting layer, the active layer or the multiple quantum well layer, making the beryllium , magnesium or zinc are not easily doped. On the other hand, if the doping amount of beryllium, magnesium, or zinc is increased, the problem faced is the memory effect of beryllium, magnesium, zinc, etc. and their diffusion into quantum wells or quantum energy barriers. As a result, excessive impurities will form defects in the quantum wells or quantum energy barriers, resulting in a decrease in the luminous efficacy of the UV-C light-emitting diode device and unnecessary defect emission.

本揭露的一實施例提出一種紫外光C發光二極體,其包括一N型半導體層、一P型半導體層、一主動層、一第一電子阻擋層及一第二電子阻擋層。主動層位於N型半導體層和P型半導體層之間,主動層發出之光譜的最大峰值的波長是落在230奈米至280奈米的範圍內,且主動層中的鎂的濃度小於1017原子數/立方公分。第一電子阻擋層和第二電子阻擋層位於P型半導體層和主動層之間,第二電子阻擋層中的鎂的濃度大於第一電子阻擋層中的鎂的濃度,且第二電子阻擋層中的鎂的濃度大於1018原子數/立方公分。 An embodiment of the present disclosure provides a UV-C light-emitting diode, which includes an N-type semiconductor layer, a P-type semiconductor layer, an active layer, a first electron blocking layer, and a second electron blocking layer. The active layer is located between the N-type semiconductor layer and the P-type semiconductor layer, the wavelength of the maximum peak of the spectrum emitted by the active layer falls within the range of 230 nm to 280 nm, and the concentration of magnesium in the active layer is less than 10 17 Atoms/cubic centimeter. The first electron blocking layer and the second electron blocking layer are located between the P-type semiconductor layer and the active layer, the concentration of magnesium in the second electron blocking layer is greater than the concentration of magnesium in the first electron blocking layer, and the second electron blocking layer The concentration of magnesium in it is greater than 10 18 atoms/cubic centimeter.

本揭露的一實施例提出一種紫外光C發光二極體,包括一N型半導體層、一P型半導體層、一主動層、一二維電洞氣誘發層(two-dimensional hole gas inducing layer,2DHG inducing layer)及一電子阻擋層。主動層配置於N型半導體層和P型半導體層之間,其中主動層發出之光譜的最大峰值的波長是落在230奈米至280奈米的範圍內。二維電洞氣誘發層配置於主動層與P型半導體層之間。二維電洞氣誘發層的材料包括AlαGaβN,其中β=1-α,且二維電洞氣誘發層中的鎂的濃度小於1017原子數/立方公分。電子阻擋層配置於P型半導體層和二維電洞氣誘發層之間。電子阻擋層的材料包括AlγGaδN,其中δ=1-γ,0.65<γ≦0.9,且電子阻擋層之鄰近二維電洞氣誘發層的部分中的鎂的濃度大於1019原子 數/立方公分。紫外光C發光二極體符合α>γ及0.1<α-γ≦0.3,以使得二維電洞氣誘發層與電子阻擋層之間的界面處形成二維電洞氣。 An embodiment of the present disclosure proposes a UV-C light-emitting diode, including an N-type semiconductor layer, a P-type semiconductor layer, an active layer, and a two-dimensional hole gas inducing layer (two-dimensional hole gas inducing layer, 2DHG inducing layer) and an electron blocking layer. The active layer is disposed between the N-type semiconductor layer and the P-type semiconductor layer, wherein the maximum peak wavelength of the spectrum emitted by the active layer falls within the range of 230 nm to 280 nm. The two-dimensional hole gas inducing layer is configured between the active layer and the P-type semiconductor layer. The material of the two-dimensional hole gas induction layer includes Al α Ga β N, wherein β=1-α, and the concentration of magnesium in the two-dimensional hole gas induction layer is less than 10 17 atoms/cm3. The electron blocking layer is configured between the P-type semiconductor layer and the two-dimensional hole gas inducing layer. The material of the electron blocking layer includes Al γ Ga δ N, where δ=1-γ, 0.65<γ≦0.9, and the concentration of magnesium in the part of the electron blocking layer adjacent to the two-dimensional hole gas induction layer is greater than 10 19 atoms / cubic centimeter. The UV-C light-emitting diode conforms to α>γ and 0.1<α-γ≦0.3, so that two-dimensional hole gas is formed at the interface between the two-dimensional hole gas induction layer and the electron blocking layer.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

50:第一電極 50: first electrode

60:第二電極 60: Second electrode

100、100a、100b、100c、100d:紫外光C發光二極體 100, 100a, 100b, 100c, 100d: ultraviolet C light-emitting diodes

110:N型半導體層 110: N-type semiconductor layer

112:第一N型氮化鋁鎵層 112: the first N-type aluminum gallium nitride layer

114:第二N型氮化鋁鎵層 114: the second N-type aluminum gallium nitride layer

120、120d:P型半導體層 120, 120d: P-type semiconductor layer

122:第一P型氮化鎵或氮化鋁鎵層 122: the first p-type gallium nitride or aluminum gallium nitride layer

122d:鋁漸變層 122d: Aluminum gradient layer

124:第二P型氮化鎵或氮化鋁鎵層 124: the second p-type gallium nitride or aluminum gallium nitride layer

124d:P型半導體子層 124d: P-type semiconductor sublayer

130:主動層 130: active layer

132:能障層 132: Barrier layer

134:能井層 134: energy well layer

140:二維電洞氣誘發層 140: Two-dimensional hole gas induced layer

160:藍寶石基板 160: sapphire substrate

170:氮化鋁模板層 170: Aluminum nitride template layer

180:緩衝層 180: buffer layer

190:非故意摻雜氮化鋁鎵層 190: Unintentionally doped AlGaN layer

200、200a、200b、200c、200d:電子阻擋層 200, 200a, 200b, 200c, 200d: electron blocking layer

210、210c、210d:第一電子阻擋層 210, 210c, 210d: first electron blocking layer

212:第一子層 212: The first sublayer

214:第二子層 214: second sublayer

220、220d:第二電子阻擋層 220, 220d: the second electron blocking layer

Ec:導電帶的最低能階 E c : the lowest energy level of the conduction band

Efn:N型半導體的費米能階 Ef n : Fermi level of N-type semiconductor

Efp:P型半導體的費米能階 Ef p : Fermi level of P-type semiconductor

Ev:價帶的最高能階 E v : the highest energy level of the valence band

p:電洞密度 p: hole density

P1:第一發光波峰 P1: the first luminescent peak

P2:第二發光波峰 P2: Second Luminous Peak

Q1、Q2:點 Q1, Q2: points

T1、T11、T12、T2、T2a、T2b、T3、T4:厚度 T1, T11, T12, T2, T2a, T2b, T3, T4: Thickness

ΔEc:能障高度差 ΔE c : energy barrier height difference

圖1是本揭露的一實施例之紫外光C發光二極體的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a UV-C light-emitting diode according to an embodiment of the present disclosure.

圖2為利用二次離子質譜儀測量圖1的紫外光C發光二極體所得的成分分佈圖。 Fig. 2 is a composition distribution diagram obtained by measuring the ultraviolet C light-emitting diode in Fig. 1 with a secondary ion mass spectrometer.

圖3為圖1的紫外光C發光二極體的光譜圖。 FIG. 3 is a spectrum diagram of the ultraviolet C light-emitting diode in FIG. 1 .

圖4為一比較例中的紫外光C發光二極體的能帶圖。 FIG. 4 is an energy band diagram of a UV-C light-emitting diode in a comparative example.

圖5為圖1之紫外光C發光二極體的能帶圖。 FIG. 5 is an energy band diagram of the UV-C light-emitting diode in FIG. 1 .

圖6是本揭露的另一實施例之紫外光C發光二極體的剖面示意圖。 FIG. 6 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure.

圖7為利用二次離子質譜儀測量一比較例的紫外光C發光二極體所得的成分分佈圖。 FIG. 7 is a composition distribution diagram obtained by measuring a UV-C light-emitting diode of a comparative example by using a secondary ion mass spectrometer.

圖8為圖7的比較例的紫外光C發光二極體的光譜圖。 FIG. 8 is a spectrum diagram of the UV-C light-emitting diode of the comparative example in FIG. 7 .

圖9為利用二次離子質譜儀測量本揭露的另一實施例的紫外光C發光二極體所得的成分分佈圖。 FIG. 9 is a composition distribution diagram obtained by measuring a UV-C light-emitting diode according to another embodiment of the present disclosure by using a secondary ion mass spectrometer.

圖10為圖9對應的實施例的紫外光C發光二極體的光譜圖。 FIG. 10 is a spectrum diagram of the ultraviolet C light-emitting diode of the embodiment corresponding to FIG. 9 .

圖11為本揭露的又一實施例的紫外光C發光二極體的剖面示意圖。 FIG. 11 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure.

圖12為本揭露的再一實施例的紫外光C發光二極體的剖面示意圖。 FIG. 12 is a schematic cross-sectional view of a UV-C light-emitting diode according to yet another embodiment of the present disclosure.

圖13為本揭露的另一實施例的紫外光C發光二極體的剖面示意圖。 FIG. 13 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure.

圖14為利用二次離子質譜儀測量圖13的紫外光C發光二極體所得的成分分佈圖。 FIG. 14 is a composition distribution diagram obtained by measuring the ultraviolet C light-emitting diode in FIG. 13 by using a secondary ion mass spectrometer.

圖15為圖13之紫外光C發光二極體的能帶圖。 FIG. 15 is an energy band diagram of the UV-C light-emitting diode in FIG. 13 .

圖16A為當電子阻擋層的鎂濃度為1019原子數/立方公分時圖13的紫外光C發光二極體的載子注入效率相對於α-γ的曲線圖。 FIG. 16A is a graph showing the carrier injection efficiency of the UV-C light-emitting diode of FIG. 13 relative to α-γ when the magnesium concentration of the electron blocking layer is 10 19 atoms/cm3.

圖16B為當電子阻擋層的鎂濃度為1020原子數/立方公分時圖13的紫外光C發光二極體的載子注入效率相對於α-γ的曲線圖。 16B is a graph showing the carrier injection efficiency of the UV-C light-emitting diode in FIG. 13 relative to α-γ when the magnesium concentration of the electron blocking layer is 10 20 atoms/cm3.

圖17為圖13的紫外光C發光二極體的穿透電子顯微術的影像。 FIG. 17 is a transmission electron microscopy image of the UV-C LED of FIG. 13 .

圖1是本揭露的一實施例之紫外光C發光二極體的剖面示意圖。請參照圖1,本實施例的紫外光C發光二極體100包括一N型半導體層110、一P型半導體層120、一主動層130(或多重量子井)及一電子阻擋層200。N型半導體層110例如為N型 氮化鋁鎵層,其可具有IVA族的摻雜源(例如碳或矽),此IVA族的摻雜源用以取代鋁或鎵原子,而多出自由電子,或可具有VIA族元素的摻雜源,此VIA族元素的摻雜源用以取代氮原子,而多出自由電子,或可具有其他元素的摻雜源,其取代鋁、鎵和氮後具多出自由電子的特徵。在本實施例中,紫外光C發光二極體100更包括一藍寶石基板160、一氮化鋁模板層170、一緩衝層180及一非故意摻雜氮化鋁鎵層(unintentionally doped aluminum gallium nitride layer)190,其中氮化鋁模板層170、緩衝層180、非故意摻雜氮化鋁鎵層190及N型半導體層110依序堆疊於藍寶石基板160上。緩衝層180的材料例如為氮化鋁鎵,其鋁的陽離子莫耳分率的範圍為95%至50%,且鎵的陽離子莫耳分率的範圍為5%至50%。或者,緩衝層180可以是具有超晶格結構的氮化鋁鎵層,其鋁的陽離子莫耳分率的範圍為95%至50%,且鎵的陽離子莫耳分率的範圍為5%至50%。 FIG. 1 is a schematic cross-sectional view of a UV-C light-emitting diode according to an embodiment of the present disclosure. Referring to FIG. 1 , the UV-C light emitting diode 100 of this embodiment includes an N-type semiconductor layer 110 , a P-type semiconductor layer 120 , an active layer 130 (or multiple quantum wells) and an electron blocking layer 200 . The N-type semiconductor layer 110 is, for example, an N-type The aluminum gallium nitride layer may have a group IVA doping source (such as carbon or silicon), and this group IVA doping source is used to replace aluminum or gallium atoms, and more free electrons, or may have a group VIA element The doping source, the doping source of the VIA group element is used to replace the nitrogen atom, so as to generate more free electrons, or it may have the doping source of other elements, which has the characteristics of generating more free electrons after replacing aluminum, gallium and nitrogen. In this embodiment, the UV-C light-emitting diode 100 further includes a sapphire substrate 160, an aluminum nitride template layer 170, a buffer layer 180, and an unintentionally doped aluminum gallium nitride layer (unintentionally doped aluminum gallium nitride layer) 190 , wherein the aluminum nitride template layer 170 , the buffer layer 180 , the unintentionally doped aluminum gallium nitride layer 190 and the N-type semiconductor layer 110 are sequentially stacked on the sapphire substrate 160 . The material of the buffer layer 180 is, for example, aluminum gallium nitride, the cation mole fraction of aluminum is in the range of 95% to 50%, and the cation mole fraction of gallium is in the range of 5% to 50%. Alternatively, the buffer layer 180 may be an aluminum gallium nitride layer having a superlattice structure, the cation mole fraction of aluminum is in the range of 95% to 50%, and the cation mole fraction of gallium is in the range of 5% to 50%. 50%.

在本實施例中,N型半導體層110包括一第一N型氮化鋁鎵層112與一第二N型氮化鋁鎵層114,其中第一N型氮化鋁鎵層112的N型摻雜濃度高於第二N型氮化鋁鎵層114的N型摻雜濃度,且第二N型氮化鋁鎵層114與第一N型氮化鋁鎵層112依序堆疊於非故意摻雜氮化鋁鎵層190上。 In this embodiment, the N-type semiconductor layer 110 includes a first N-type AlGaN layer 112 and a second N-type AlGaN layer 114, wherein the N-type of the first N-type AlGaN layer 112 The doping concentration is higher than the N-type doping concentration of the second N-type AlGaN layer 114, and the second N-type AlGaN layer 114 and the first N-type AlGaN layer 112 are sequentially stacked on an unintentional AlGaN layer 190 is doped.

主動層130為發光層,在本實施例中,主動層130為多重量子井層,其包括交替堆疊於N型半導體層110上的多個能障層(barrier layer)132與能井層(well layer)134。在本實施例中, 能障層132與能井層134的材料皆為氮化鋁鎵,只是能障層132中的鋁濃度高於能井層134中的鋁濃度。 The active layer 130 is a light-emitting layer. In this embodiment, the active layer 130 is a multiple quantum well layer, which includes a plurality of energy barrier layers (barrier layers) 132 and energy well layers (well layers) stacked alternately on the N-type semiconductor layer 110. layer) 134. In this example, Both the energy barrier layer 132 and the energy well layer 134 are made of AlGaN, but the aluminum concentration in the energy barrier layer 132 is higher than the aluminum concentration in the energy well layer 134 .

電子阻擋層200包括一第一電子阻擋層210及一第二電子阻擋層220。在本實施例中,第一電子阻擋層210與第二電子阻擋層220依序疊堆於主動層130上。第一電子阻擋層210與第二電子阻擋層220例如皆為摻雜鎂的氮化鋁鎵層,其中第二電子阻擋層220中的鎂的濃度大於第一電子阻擋層210中的鎂的濃度,且第二電子阻擋層220中的鎂的濃度大於1018原子數/立方公分。 The electron blocking layer 200 includes a first electron blocking layer 210 and a second electron blocking layer 220 . In this embodiment, the first electron blocking layer 210 and the second electron blocking layer 220 are sequentially stacked on the active layer 130 . The first electron blocking layer 210 and the second electron blocking layer 220 are, for example, aluminum gallium nitride layers doped with magnesium, wherein the concentration of magnesium in the second electron blocking layer 220 is greater than the concentration of magnesium in the first electron blocking layer 210 , and the concentration of magnesium in the second electron blocking layer 220 is greater than 10 18 atoms/cm3.

P型半導體層120堆疊於電子阻擋層200上。在本實施例中,P型半導體層120包括依序堆疊於電子阻擋層200上的一第一P型氮化鎵或氮化鋁鎵層122與一第二P型氮化鎵或氮化鋁鎵層124,其中第二P型氮化鎵或氮化鋁鎵層124的P型摻雜濃度高於第一P型氮化鎵或氮化鋁鎵層122的P型摻雜濃度。第一P型氮化鎵或氮化鋁鎵層122與第二P型氮化鎵或氮化鋁鎵層124中的P型摻雜可以是IIA族元素,例如是鈹或鎂,而在本實施例中是以鎂為例。 The P-type semiconductor layer 120 is stacked on the electron blocking layer 200 . In this embodiment, the P-type semiconductor layer 120 includes a first P-type GaN or AlGaN layer 122 and a second P-type GaN or AlN layer stacked on the electron blocking layer 200 in sequence. Gallium layer 124 , wherein the P-type doping concentration of the second P-type GaN or AlGaN layer 124 is higher than the P-type doping concentration of the first P-type GaN or AlGaN layer 122 . The p-type doping in the first p-type gallium nitride or aluminum gallium nitride layer 122 and the second p-type gallium nitride or aluminum gallium nitride layer 124 can be group IIA elements, such as beryllium or magnesium, and in this In the embodiment, magnesium is taken as an example.

在本實施例中,主動層130位於N型半導體層110和P型半導體層120之間,主動層130發出之光譜的最大峰值的波長是落在230奈米至280奈米的範圍內,也就是落在紫外光C的波段內。紫外光波段包括紫外光A(ultraviolet A,UVA)波段、紫外光B(ultraviolet B,UVB)波段及紫外光C(ultraviolet C,UVC)波段。紫外光A波段的波長範圍約為400奈米至315奈米,也就 是其光子能量範圍約為3.10電子伏特至3.94電子伏特。紫外光B波段的波長範圍約為315奈米至280奈米,也就是其光子能量範圍約為3.94電子伏特至4.43電子伏特。紫外光C波段的波長範圍約為280奈米至100奈米,也就是其光子能量範圍約為4.43電子伏特至12.4電子伏特。主動層130中的鎂的濃度小於1017原子數/立方公分。此外,第一電子阻擋層210和第二電子阻擋層220位於P型半導體層120和主動層130之間。在本實施例中,第二電子阻擋層220位於第一電子阻擋層210與P型半導體層120之間。 In this embodiment, the active layer 130 is located between the N-type semiconductor layer 110 and the P-type semiconductor layer 120, and the wavelength of the maximum peak of the spectrum emitted by the active layer 130 falls within the range of 230 nm to 280 nm, also It falls within the wavelength band of ultraviolet C. The ultraviolet light waveband includes ultraviolet light A (ultraviolet A, UVA) waveband, ultraviolet light B (ultraviolet B, UVB) waveband and ultraviolet light C (ultraviolet C, UVC) waveband. The wavelength range of the ultraviolet A band is about 400 nm to 315 nm, that is, the photon energy range is about 3.10 eV to 3.94 eV. The wavelength range of the ultraviolet B-band is about 315 nm to 280 nm, that is, the photon energy range is about 3.94 eV to 4.43 eV. The wavelength range of the ultraviolet C-band is about 280 nm to 100 nm, that is, the photon energy range is about 4.43 eV to 12.4 eV. The concentration of magnesium in the active layer 130 is less than 10 17 atoms/cm3. In addition, the first electron blocking layer 210 and the second electron blocking layer 220 are located between the P-type semiconductor layer 120 and the active layer 130 . In this embodiment, the second electron blocking layer 220 is located between the first electron blocking layer 210 and the P-type semiconductor layer 120 .

本實施例的紫外光C發光二極體100可更包括一第一電極50與一第二電極60,其中第一電極50與N型半導體層110電性連接,而第二電極60與P型半導體層120電性連接。藉由對第一電極50與第二電極60施加一順向偏壓,則紫外光C發光二極體100的主動層130便可以藉由輻射復合(radiative recombination)發出紫外光C波段。在圖1中,第一電極50與第二電極60是採用水平配置的形式為例,也就是第一電極50與第二電極60位於紫外光C發光二極體100的同一側。然而,在其他實施例中,第一電極50與第二電極60亦可以採用垂直配置的形式,也就是第一電極50是位於N型半導體層110的下方,而第二電極60是位於P型半導體層120的上方。 The UV-C light-emitting diode 100 of this embodiment may further include a first electrode 50 and a second electrode 60, wherein the first electrode 50 is electrically connected to the N-type semiconductor layer 110, and the second electrode 60 is electrically connected to the P-type semiconductor layer 110. The semiconductor layer 120 is electrically connected. By applying a forward bias voltage to the first electrode 50 and the second electrode 60 , the active layer 130 of the UV-C light-emitting diode 100 can emit C-band UV light through radiative recombination. In FIG. 1 , the first electrode 50 and the second electrode 60 are arranged horizontally as an example, that is, the first electrode 50 and the second electrode 60 are located on the same side of the UV-C light-emitting diode 100 . However, in other embodiments, the first electrode 50 and the second electrode 60 can also be arranged vertically, that is, the first electrode 50 is located under the N-type semiconductor layer 110, and the second electrode 60 is located under the P-type semiconductor layer 110. above the semiconductor layer 120 .

在本實施例的紫外光C發光二極體100中,由於採用了第二電子阻擋層220中的鎂的濃度大於第一電子阻擋層210中的鎂的濃度,且第二電子阻擋層220中的鎂的濃度大於1018原子數/ 立方公分的設計,因此透過特定比例關係的鎂摻雜,可以有效抑制主動層130中的電子溢流至P型半導體層120的情形,進而提升紫外光C發光二極體100的元件效能。另外,在本實施例的紫外光C發光二極體100中,藉由電子阻擋層200中適當的鋁的陽離子莫耳分率及適當的鎂摻雜量的調配,除了可阻擋電子溢流至P型半導體層120之外,還可以提升電洞載子注入主動層130的效率,進而使紫外光C發光二極體100的發光效能增加。 In the ultraviolet C light-emitting diode 100 of this embodiment, since the concentration of magnesium in the second electron blocking layer 220 is greater than the concentration of magnesium in the first electron blocking layer 210, and in the second electron blocking layer 220 The concentration of magnesium is greater than 10 18 atoms/cm3, so through doping magnesium in a specific ratio, the overflow of electrons in the active layer 130 to the P-type semiconductor layer 120 can be effectively suppressed, thereby improving the ultraviolet C Device performance of the light emitting diode 100 . In addition, in the UV-C light-emitting diode 100 of this embodiment, by adjusting the appropriate molar fraction of aluminum cations in the electron blocking layer 200 and the appropriate amount of magnesium doping, in addition to blocking electrons from overflowing to In addition to the P-type semiconductor layer 120 , the efficiency of hole carrier injection into the active layer 130 can also be improved, thereby increasing the luminous efficacy of the UV-C light-emitting diode 100 .

在本實施例中,第二電子阻擋層220的厚度T2是落在0.1奈米至20奈米的範圍內,而第一電子阻擋層210的厚度T1是落在10奈米至100奈米的範圍內。 In this embodiment, the thickness T2 of the second electron blocking layer 220 is in the range of 0.1 nm to 20 nm, and the thickness T1 of the first electron blocking layer 210 is in the range of 10 nm to 100 nm. within range.

圖2為利用二次離子質譜儀(secondary ion mass spectrometer,SIMS)測量圖1的紫外光C發光二極體所得的成分分佈圖,而圖3為圖1的紫外光C發光二極體的光譜圖。請參照圖1至圖3,本實施例的紫外光C發光二極體100所發出的光的光譜包括一第一發光波峰P1與一第二發光波峰P2,且第一發光波峰P1的光譜強度為第二發光波峰P2的光譜強度的20倍以上。在圖3中,第二發光波峰P2並不明顯,但若將縱軸(即光譜強度)取對數值,則可明顯看出第二發光波峰P2。這是因為第一發光波峰P1的光譜強度與第二發光波峰P2的光譜強度之間相差過大導致圖3中看不出第二發光波峰P2,但縱軸取對數值後就可使第二發光波峰P2變得明顯。在本實施例中,第二發光波峰P2的波長減去第一發光波峰P1的波長所得到的差值是落在20奈米至40奈 米的範圍內。第二發光波峰P2是由缺陷發光所產生,由圖3可明顯得知,本實施例的紫外光C發光二極體100的缺陷發光受到良好的抑制,因此紫外光C發光二極體100具有良好的發光效能。 Fig. 2 is a composition distribution diagram obtained by measuring the UV-C light-emitting diode in Fig. 1 by secondary ion mass spectrometer (secondary ion mass spectrometer, SIMS), and Fig. 3 is the spectrum of the UV-C light-emitting diode in Fig. 1 picture. Please refer to FIG. 1 to FIG. 3 , the spectrum of the light emitted by the ultraviolet C light-emitting diode 100 of this embodiment includes a first luminescence peak P1 and a second luminescence peak P2, and the spectral intensity of the first luminescence peak P1 It is more than 20 times the spectral intensity of the second luminescence peak P2. In FIG. 3 , the second luminescence peak P2 is not obvious, but if the vertical axis (ie spectral intensity) is taken as a logarithmic value, the second luminescence peak P2 can be clearly seen. This is because the difference between the spectral intensity of the first luminescence peak P1 and the spectral intensity of the second luminescence peak P2 is too large, so that the second luminescence peak P2 cannot be seen in Figure 3, but the second luminescence can be made after taking the logarithmic value on the vertical axis. Peak P2 becomes apparent. In this embodiment, the difference obtained by subtracting the wavelength of the first luminescence peak P1 from the wavelength of the second luminescence peak P2 falls within 20 nanometers to 40 nanometers. within the range of meters. The second luminescence peak P2 is produced by defect luminescence. It can be clearly seen from FIG. Good luminous efficacy.

在本實施例中,第二電子阻擋層220中的最高鎂濃度(例如為圖2中Q1點的鎂濃度為第一電子阻擋層210中的最低鎂濃度(例如為圖2中Q2點的鎂濃度)的5到200倍,另一實施例為20到80倍。此外,在本實施例中,第二電子阻擋層220中的鎂濃度為P型半導體層120中的鎂濃度的1/2至1/50倍。此外,在本實施例中,第一電子阻擋層210與第二電子阻擋層220的整體的鎂濃度從P型半導體120至主動層130的分佈曲線呈現先陡降後平緩而後陡降的樣貌,如圖2所示。 In this embodiment, the highest magnesium concentration in the second electron blocking layer 220 (for example, the magnesium concentration at Q1 in FIG. 2 is the lowest magnesium concentration in the first electron blocking layer 210 (for example, the magnesium at Q2 in FIG. 2 Concentration) 5 to 200 times, another embodiment is 20 to 80 times.In addition, in this embodiment, the magnesium concentration in the second electron blocking layer 220 is 1/2 of the magnesium concentration in the P-type semiconductor layer 120 to 1/50 times. In addition, in this embodiment, the distribution curve of the overall magnesium concentration of the first electron blocking layer 210 and the second electron blocking layer 220 from the P-type semiconductor 120 to the active layer 130 presents a steep drop first and then a gentle Then the appearance of the steep drop is shown in Figure 2.

在本實施例中,該第一電子阻擋層210與該第二電子阻擋層220中的鋁的陽離子莫耳分率是落在60%至80%的範圍內。舉例而言,當第一電子阻擋層210與第二電子阻擋層220的主要成分的化學式可表示為AlxGa1-xN時,則此化學式中的x即為上述鋁的陽離子莫耳分率。 In this embodiment, the cation mole fraction of aluminum in the first electron blocking layer 210 and the second electron blocking layer 220 falls within a range of 60% to 80%. For example, when the chemical formula of the main components of the first electron blocking layer 210 and the second electron blocking layer 220 can be expressed as AlxGa1 -xN , then x in this chemical formula is the cation mole fraction of the above-mentioned aluminum Rate.

在本實施例中,第二電子阻擋層220的折射率小於主動層130的能井層134的折射率,且小於主動層130的能障層132的折射率。此外,第一電子阻擋層210的折射率也小於主動層130的能井層134的折射率,且小於主動層130的能障層132的折射率。一般而言,在氮化鋁鎵的材料中,鋁含量越高,則折射率越小。 In this embodiment, the refractive index of the second electron blocking layer 220 is smaller than the refractive index of the energy well layer 134 of the active layer 130 and smaller than the refractive index of the energy barrier layer 132 of the active layer 130 . In addition, the refractive index of the first electron blocking layer 210 is also lower than the refractive index of the energy well layer 134 of the active layer 130 , and is smaller than the refractive index of the energy barrier layer 132 of the active layer 130 . Generally speaking, in AlGaN materials, the higher the aluminum content, the smaller the refractive index.

在本實施例的紫外光C發光二極體100中,由於第二電子阻擋層220位於第一電子阻擋層210與P型半導體層120之間,因此可以有效地把鎂摻雜在第二電子阻擋層220中而不致於使鎂以梯度分佈的方式擴散到主動層130中。如此一來,便可以有效降低鎂進到主動層130後所誘發的缺陷發光,進而提升紫外光C發光二極體100的發光效率。在本實施例中,紫外光C發光二極體100的發光強度或光輸出功率(light output power)為17.4毫瓦。 In the UV-C light-emitting diode 100 of this embodiment, since the second electron blocking layer 220 is located between the first electron blocking layer 210 and the P-type semiconductor layer 120, magnesium can be effectively doped in the second electron blocking layer 220. In the barrier layer 220 , magnesium will not diffuse into the active layer 130 in a gradient distribution manner. In this way, defect luminescence induced by magnesium entering the active layer 130 can be effectively reduced, thereby improving the luminous efficiency of the UV-C light-emitting diode 100 . In this embodiment, the luminous intensity or light output power of the UV-C LED 100 is 17.4 milliwatts.

圖4為一比較例中的紫外光C發光二極體的能帶圖,而圖5為圖1之紫外光C發光二極體的能帶圖。請參照圖1、圖4與圖5,圖4與圖5所對應的紫外光C發光二極體的結構可皆相同於圖1的紫外光C發光二極體100的結構,而兩者的不同處在於圖4中的電子阻擋層200中的鎂濃度約為5×1017原子數/立方公分,而圖5中的電子阻擋層200中的鎂濃度約為5×1018原子數/立方公分。在圖4與圖5中,Ec所對應的曲線為導電帶(conduction)的最低能階,Efn所對應的曲線為電子的準費米能階(Quasi-fermienergy level),Ev所對應的曲線為價帶(valence band)的最高能階,而Efp所對應的曲線為電洞的準費米能階。由圖4與圖5可知,當電子阻擋層200中的鎂濃度較高時,第二電子阻擋層220的導電帶能障高度與主動層130的導電帶能障高度之間的導電帶能障高度差ΔEc較大,而有效導電帶能障高度差ΔEc越大會使得來自主動層130的電子更不容易溢流至P型半導體層120。在圖1的實 施例中,第二電子阻擋層220所形成的導電帶能障比主動層130所形成的導電帶能障高出0.2至1電子伏特,因此有效導電帶能障高度差ΔEc為0.2至1電子伏特,可有效阻擋來自主動層130的電子溢流至P型半導體層120,以有效避免上述電子的溢流所導致的發光效率下降。 FIG. 4 is an energy band diagram of a UV-C light-emitting diode in a comparative example, and FIG. 5 is an energy-band diagram of the UV-C light-emitting diode in FIG. 1 . Please refer to FIG. 1, FIG. 4 and FIG. 5, the structure of the UV-C light-emitting diode corresponding to FIG. 4 and FIG. 5 can be the same as the structure of the UV-C light-emitting diode 100 in FIG. The difference is that the magnesium concentration in the electron blocking layer 200 in FIG. 4 is about 5×10 17 atoms/cm3, while the magnesium concentration in the electron blocking layer 200 in FIG. 5 is about 5×10 18 atoms/cm3 cm. In Figure 4 and Figure 5, the curve corresponding to E c is the lowest energy level of the conduction band (conduction), the curve corresponding to Ef n is the quasi-fermienergy level of electrons, and the curve corresponding to E v The curve of is the highest energy level of the valence band, and the curve corresponding to Ef p is the quasi-Fermi level of the hole. 4 and 5, when the magnesium concentration in the electron blocking layer 200 is high, the conductive band energy barrier between the conductive band energy barrier height of the second electron blocking layer 220 and the conductive band energy barrier height of the active layer 130 The height difference ΔE c is larger, and the greater the effective conduction barrier height difference ΔE c makes it less likely for electrons from the active layer 130 to overflow to the P-type semiconductor layer 120 . In the embodiment of FIG. 1 , the conductive band energy barrier formed by the second electron blocking layer 220 is 0.2 to 1 eV higher than the conductive band energy barrier formed by the active layer 130, so the effective conductive band energy barrier height difference ΔE c It is 0.2 to 1 eV, which can effectively prevent the overflow of electrons from the active layer 130 to the P-type semiconductor layer 120, so as to effectively avoid the reduction of luminous efficiency caused by the overflow of electrons.

圖6是本揭露的另一實施例之紫外光C發光二極體的剖面示意圖。圖7為利用二次離子質譜儀測量一比較例的紫外光C發光二極體所得的成分分佈圖,而圖8為圖7的比較例的紫外光C發光二極體的光譜圖。請先參照圖6,本實施例之紫外光C發光二極體100a與圖1之紫外光C發光二極體100類似,而兩者的差異如下所述。在本實施例之紫外光C發光二極體100a中,電子阻擋層200a的第二電子阻擋層220位於第一電子阻擋層210與主動層130之間。在本實施例中,第二電子阻擋層220的厚度T2a是落在0.1奈米至10奈米的範圍內,而第一電子阻擋層210的厚度T1是落在10奈米至100奈米的範圍內。 FIG. 6 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure. 7 is a composition distribution diagram obtained by measuring a UV-C light-emitting diode of a comparative example by a secondary ion mass spectrometer, and FIG. 8 is a spectrum diagram of the UV-C light-emitting diode of a comparative example in FIG. 7 . Please refer to FIG. 6 first. The UV-C light-emitting diode 100 a of this embodiment is similar to the UV-C light-emitting diode 100 in FIG. 1 , and the differences between the two are as follows. In the UV-C light emitting diode 100 a of the present embodiment, the second electron blocking layer 220 of the electron blocking layer 200 a is located between the first electron blocking layer 210 and the active layer 130 . In this embodiment, the thickness T2a of the second electron blocking layer 220 falls within the range of 0.1 nm to 10 nm, while the thickness T1 of the first electron blocking layer 210 falls within the range of 10 nm to 100 nm. within range.

請再參照圖7與圖8,在此比較例中,由圖7可看出,由於主動層130中的鋁的陽離子莫耳分率較電子阻擋層200低,導致第二電子阻擋層220中的鎂離子容易以梯度分佈的方式擴散至主動層130中導致缺陷發光,而在圖8的光譜圖中出現較為明顯的第二發光波峰P2。如此一來,比較例的紫外光C發光二極體100a的發光強度變成5.4毫瓦。為了降低第二電子阻擋層的鎂離子擴散至主動層130而導致缺陷發光的情形,在本揭露的另一實施例中, 可使電子阻擋層200有如圖9的鎂濃度分佈,也就是透過特定摻雜比例關係的鎂摻雜,以在電子阻擋層200摻雜鎂,且使鎂較不會擴散進主動層130(請比對圖7和圖9中主動層130中的鎂濃度),此時可發現此種鎂濃度分佈較不會導致缺陷發光,而其所對應的光譜圖(如圖10所示)中的第二發光波峰P2被有效地抑制而不明顯,且幾乎看不出來。也就是說,此實施例成功地讓第一發光波峰P1的發光強度大於第二發光波峰P2的缺陷發光強度的20倍以上。 Please refer to FIG. 7 and FIG. 8 again. In this comparative example, it can be seen from FIG. Magnesium ions easily diffuse into the active layer 130 in a gradient distribution manner, causing defects to emit light, and a relatively obvious second luminescence peak P2 appears in the spectrum diagram of FIG. 8 . In this way, the luminous intensity of the UV-C light-emitting diode 100a of the comparative example becomes 5.4 mW. In order to reduce the situation that magnesium ions in the second electron blocking layer diffuse into the active layer 130 and cause defects to emit light, in another embodiment of the present disclosure, The electron blocking layer 200 can be made to have a magnesium concentration distribution as shown in FIG. Comparing the magnesium concentration in the active layer 130 in Fig. 7 and Fig. 9), it can be found that this kind of magnesium concentration distribution will not cause defects to emit light, and the corresponding spectrum (as shown in Fig. 10) in the first The secondary luminescence peak P2 is effectively suppressed and not obvious, and can hardly be seen. That is to say, this embodiment successfully makes the luminous intensity of the first luminous peak P1 greater than 20 times the defect luminous intensity of the second luminous peak P2.

圖11為本揭露的又一實施例的紫外光C發光二極體的剖面示意圖。請參照圖11,本實施例的紫外光C發光二極體100b與圖1的紫外光C發光二極體100類似,而兩者的差異如下所述。在本實施例的紫外光C發光二極體100b中,電子阻擋層200b的第二電子阻擋層220位於第一電子阻擋層210中。在本實施例中,第二電子阻擋層220的厚度T2b是落在0.1奈米至15奈米的範圍內,而第一電子阻擋層210的厚度(也就是圖11中的厚度T11加上厚度T12)是落在10奈米至100奈米的範圍內。 FIG. 11 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure. Please refer to FIG. 11 , the UV-C light-emitting diode 100 b of this embodiment is similar to the UV-C light-emitting diode 100 in FIG. 1 , and the differences between the two are as follows. In the UV-C light emitting diode 100b of this embodiment, the second electron blocking layer 220 of the electron blocking layer 200b is located in the first electron blocking layer 210 . In this embodiment, the thickness T2b of the second electron blocking layer 220 falls within the range of 0.1 nm to 15 nm, and the thickness of the first electron blocking layer 210 (that is, the thickness T11 in FIG. 11 plus the thickness T12) falls within the range of 10 nm to 100 nm.

圖12為本揭露的再一實施例的紫外光C發光二極體的剖面示意圖。請參照圖12,本實施例的紫外光C發光二極體100c類似於圖1的紫外光C發光二極體100,而兩者的差異如下所述。在本實施例的紫外光C發光二極體100c的電子阻擋層200c中,第一電子阻擋層210c具有超晶格(superlattice)結構。具體而言,第一電子阻擋層210c具有交替堆疊的多個第一子層212與多個第 二子層214,而第一子層212與第二子層214皆為摻雜鎂的氮化鋁鎵層,但第一子層212中的鋁濃度不同於第二子層214中的鋁濃度。也就是說,第一電子阻擋層210c中的鋁濃度從靠近主動層130的一側至靠近P型半導體層120的一側是呈現高低交替變化。 FIG. 12 is a schematic cross-sectional view of a UV-C light-emitting diode according to yet another embodiment of the present disclosure. Please refer to FIG. 12 , the UV-C light-emitting diode 100 c of this embodiment is similar to the UV-C light-emitting diode 100 in FIG. 1 , and the differences between the two are as follows. In the electron blocking layer 200c of the UV-C light emitting diode 100c of this embodiment, the first electron blocking layer 210c has a superlattice structure. Specifically, the first electron blocking layer 210c has a plurality of first sublayers 212 and a plurality of second sublayers stacked alternately. Two sub-layers 214 , and both the first sub-layer 212 and the second sub-layer 214 are AlGaN layers doped with magnesium, but the aluminum concentration in the first sub-layer 212 is different from that in the second sub-layer 214 . That is to say, the concentration of aluminum in the first electron blocking layer 210 c is alternately high and low from the side close to the active layer 130 to the side close to the P-type semiconductor layer 120 .

相較之下,在圖2、圖7和圖9的實施例中,第一電子阻擋層210在靠近P型半導體層120處的鋁濃度小於在靠近主動層130處的鋁濃度,例如第一電子阻擋層210的鋁濃度從靠近P型半導體層120的一側往靠近主動層130的方向逐漸上升,靠近P型半導體層120處的鋁濃度與靠近主動層130處的鋁濃度差異約5%陽離子莫耳分率。第一電子阻擋層210在靠近P型半導體層120處的鎵濃度大於在靠近主動層130處的鎵濃度,靠近P型半導體層120處的鎵濃度與靠近主動層130處的鎵濃度差異約5%陽離子莫耳分率。 In contrast, in the embodiments of FIG. 2 , FIG. 7 and FIG. 9 , the aluminum concentration of the first electron blocking layer 210 near the P-type semiconductor layer 120 is smaller than the aluminum concentration near the active layer 130 , for example, the first The aluminum concentration of the electron blocking layer 210 gradually increases from the side close to the P-type semiconductor layer 120 to the direction close to the active layer 130, and the difference between the aluminum concentration near the P-type semiconductor layer 120 and the aluminum concentration near the active layer 130 is about 5%. Cation mole fraction. The gallium concentration of the first electron blocking layer 210 near the P-type semiconductor layer 120 is greater than the gallium concentration near the active layer 130, and the difference between the gallium concentration near the P-type semiconductor layer 120 and the gallium concentration near the active layer 130 is about 5. % Cationic mole fraction.

此外,在圖12的實施例中,第二電子阻擋層220亦可以是配置於第一電子阻擋層210c與主動層130之間,或配置於第一電子阻擋層210c中。 In addition, in the embodiment of FIG. 12 , the second electron blocking layer 220 can also be disposed between the first electron blocking layer 210c and the active layer 130 , or disposed in the first electron blocking layer 210c.

圖13為本揭露的另一實施例的紫外光C發光二極體的剖面示意圖。請參照圖13,本實施例的紫外光C發光二極體100d類似於圖6的紫外光C發光二極體100a,而兩者的主要差異如下所述。在本實施例中,紫外光C發光二極體100d更包括一二維電洞氣誘發層140,配置於主動層130與P型半導體層120d之間。電子阻擋層200d配置於P型半導體層120d與二維電洞氣誘發層 140之間。二維電洞氣誘發層140的材料包括AlαGaβN,其中β=1-α,且0.7<α≦0.95,其中α為化合物AlαGaβN中鋁的陽離子莫耳分率(cationic molar fraction),且β為化合物AlαGaβN中鎵的陽離子莫耳分率。二維電洞氣誘發層140中的鎂的濃度小於1017原子數/立方公分。在一實施例中,主動層130中的鎂的濃度小於1017原子數/立方公分。電子阻擋層200d的材料包括AlγGaδN,其中δ=1-γ,且0.65<γ≦0.9,其中γ為化合物AlγGaδN中的鋁的陽離子莫耳分率,且δ為化合物AlγGaδN中的鎵的陽離子莫耳分率。 FIG. 13 is a schematic cross-sectional view of a UV-C light-emitting diode according to another embodiment of the present disclosure. Please refer to FIG. 13 , the UV-C light-emitting diode 100d of this embodiment is similar to the UV-C light-emitting diode 100a of FIG. 6 , and the main differences between the two are as follows. In this embodiment, the UV-C light emitting diode 100d further includes a two-dimensional hole gas inducing layer 140 disposed between the active layer 130 and the P-type semiconductor layer 120d. The electron blocking layer 200d is disposed between the P-type semiconductor layer 120d and the two-dimensional hole gas inducing layer 140 . The material of the two-dimensional hole gas inducing layer 140 includes Al α Ga β N, wherein β=1-α, and 0.7<α≦0.95, wherein α is the cation mole fraction of aluminum in the compound Al α Ga β N (cationic molar fraction), and β is the cation molar fraction of gallium in the compound Al α Ga β N. The concentration of magnesium in the two-dimensional hole gas inducing layer 140 is less than 10 17 atoms/cm3. In one embodiment, the concentration of magnesium in the active layer 130 is less than 10 17 atoms/cm3. The material of the electron blocking layer 200d includes AlγGaδN, wherein δ =1- γ , and 0.65<γ≦0.9, wherein γ is the cation mole fraction of aluminum in the compound AlγGaδN, and δ is the compound Cationic mole fraction of gallium in AlγGaδN .

電子阻擋層200d之鄰近二維電洞氣誘發層140的部分中的鎂的濃度大於1019原子數/立方公分,或者在一實施例為大於1020原子數/立方公分。紫外光C發光二極體100d符合α>γ及0.1<α-γ≦0.3。二維電洞氣誘發層140的鋁濃度大於電子阻擋層200d的鋁濃度。二維電洞氣誘發層140與電子阻擋層200d之間的鋁濃度差異會藉由自發極化及壓電極化而在二維電洞氣誘發層140與電子阻擋層200d之間的界面處誘發二維電洞氣。二維電洞氣的誘發促進了電洞直接注入主動層130,因此紫外光C發光二極體100d的光效率被有效地提升。藉由採用二維電洞氣誘發層140,紫外光C發光二極體100d的光輸出功率提升了56%。經封裝的發光二極體的光輸出功率從17毫瓦(不具有二維電洞氣誘發層140)提升至26毫瓦(具有二維電洞氣誘發層140)。 The concentration of magnesium in the portion of the electron blocking layer 200d adjacent to the two-dimensional hole gas inducing layer 140 is greater than 10 19 atoms/cm 3 , or in one embodiment, greater than 10 20 atoms/cm 3 . The ultraviolet C light-emitting diode 100d satisfies α>γ and 0.1<α-γ≦0.3. The aluminum concentration of the two-dimensional hole gas inducing layer 140 is greater than that of the electron blocking layer 200d. The aluminum concentration difference between the two-dimensional hole gas inducing layer 140 and the electron blocking layer 200d is induced at the interface between the two-dimensional hole gas inducing layer 140 and the electron blocking layer 200d by spontaneous polarization and piezoelectric polarization. Two-dimensional hole gas. The induction of the two-dimensional hole gas promotes the direct injection of holes into the active layer 130, so the light efficiency of the UV-C light-emitting diode 100d is effectively improved. By adopting the two-dimensional hole gas inducing layer 140, the light output power of the UV-C light-emitting diode 100d is increased by 56%. The light output power of the encapsulated LED is increased from 17 mW (without the 2D hole gas inducing layer 140 ) to 26 mW (with the 2D hole gas inducing layer 140 ).

在本實施例中,電子阻擋層200d包括一第一電子阻擋層210d及一第二電子阻擋層220d,其中第二電子阻擋層220d配置 於二維電洞氣誘發層140與第一電子阻擋層210d之間。第二電子阻擋層220d中的鎂的濃度大於第一電子阻擋層210d中的鎂的濃度,且第二電子阻擋層220d中的鎂的濃度大於1019原子數/立方公分,或在一實施例中大於1020原子數/立方公分。也就是說,第二電子阻擋層220d為前述電子阻擋層200d之鄰近二維電洞氣誘發層140的部分。 In this embodiment, the electron blocking layer 200d includes a first electron blocking layer 210d and a second electron blocking layer 220d, wherein the second electron blocking layer 220d is disposed between the two-dimensional hole gas inducing layer 140 and the first electron blocking layer Between 210d. The concentration of magnesium in the second electron blocking layer 220d is greater than the concentration of magnesium in the first electron blocking layer 210d, and the concentration of magnesium in the second electron blocking layer 220d is greater than 10 19 atoms/cm3, or in one embodiment Medium is greater than 10 20 atoms/cubic centimeter. That is to say, the second electron blocking layer 220d is a portion of the aforementioned electron blocking layer 200d adjacent to the two-dimensional hole gas inducing layer 140 .

在本實施例中,二維電洞氣誘發層140接觸這些能井層134中最靠近二維電洞氣誘發層140的一個。在本實施例中,二維電洞氣誘發層140的厚度T4是落在1奈米至3奈米的範圍內。在本實施例中,電子阻擋層200d的厚度T3與二維電洞氣誘發層140的厚度T4的比值是落在從6至20的範圍內。在一實施例中,二維電洞氣誘發層140的厚度T4例如是落在1奈米至3奈米的範圍內,且電子阻擋層200d的厚度T3例如是落在從20奈米至60奈米的範圍內。 In this embodiment, the two-dimensional hole gas inducing layer 140 is in contact with the one of the energy well layers 134 that is closest to the two-dimensional hole gas inducing layer 140 . In this embodiment, the thickness T4 of the two-dimensional hole gas inducing layer 140 falls within a range of 1 nm to 3 nm. In this embodiment, the ratio of the thickness T3 of the electron blocking layer 200d to the thickness T4 of the two-dimensional hole gas inducing layer 140 falls within a range from 6 to 20. In one embodiment, the thickness T4 of the two-dimensional hole gas inducing layer 140 is, for example, in the range of 1 nm to 3 nm, and the thickness T3 of the electron blocking layer 200d is, for example, in the range from 20 nm to 60 nm. in the nanometer range.

對於主動層130所發出的光而言,二維電洞氣誘發層140的透光度可以大於電子阻擋層200d的透光度。在本實施例中,對於主動層130所發出的光而言,二維電洞氣誘發層140的透光度大於N型半導體層110的透光度,且N型半導體層110的透光度小於電子阻擋層200d的透光度。 For the light emitted by the active layer 130, the transmittance of the two-dimensional hole gas inducing layer 140 may be greater than that of the electron blocking layer 200d. In this embodiment, for the light emitted by the active layer 130, the transmittance of the two-dimensional hole gas inducing layer 140 is greater than the transmittance of the N-type semiconductor layer 110, and the transmittance of the N-type semiconductor layer 110 Less than the light transmittance of the electron blocking layer 200d.

此外,二維電洞氣誘發層140的折射率可以小於電子阻擋層200d的折射率。二維電洞氣誘發層140的折射率小於N型半導體層110的折射率。此外,二維電洞氣誘發層140的電阻率可 以大於電子阻擋層200d的電阻率。二維電洞氣誘發層140的電阻率可以大於N型半導體層110的電阻率。另外,二維電洞氣誘發層140的鋁濃度可以大於N型半導體層110的鋁濃度。再者,二維電洞氣誘發層140的鎵濃度小於電子阻擋層200d的鎵濃度,且小於N型半導體層110的鎵濃度。在一實施例中,電子阻擋層200d的鋁濃度大於或等於能井層134的鋁濃度。在一實施例中,電子阻擋層200d的鋁濃度大於或等於能障層132的鋁濃度。 In addition, the refractive index of the two-dimensional hole gas inducing layer 140 may be smaller than that of the electron blocking layer 200d. The refractive index of the two-dimensional hole gas inducing layer 140 is smaller than that of the N-type semiconductor layer 110 . In addition, the resistivity of the two-dimensional hole gas inducing layer 140 can be With a resistivity greater than that of the electron blocking layer 200d. The resistivity of the two-dimensional hole gas inducing layer 140 may be greater than that of the N-type semiconductor layer 110 . In addition, the aluminum concentration of the two-dimensional hole gas inducing layer 140 may be greater than the aluminum concentration of the N-type semiconductor layer 110 . Furthermore, the gallium concentration of the two-dimensional hole-gas inducing layer 140 is smaller than the gallium concentration of the electron blocking layer 200 d and smaller than the gallium concentration of the n-type semiconductor layer 110 . In one embodiment, the aluminum concentration of the electron blocking layer 200 d is greater than or equal to the aluminum concentration of the energy well layer 134 . In one embodiment, the aluminum concentration of the electron blocking layer 200 d is greater than or equal to the aluminum concentration of the energy barrier layer 132 .

在本實施例中,P型半導體層120d包括一鋁漸變層122d及一P型半導體子層124d,其中P型半導體子層124d例如為摻雜鎂的氮化鎵層,且鋁漸變層122d例如為摻雜鎂的氮化鋁鎵層,其中此摻雜鎂的氮化鋁鎵層的鋁濃度從靠近電子阻擋層200d的一側往靠近P型半導體子層124d的一側遞減。 In this embodiment, the P-type semiconductor layer 120d includes an aluminum graded layer 122d and a P-type semiconductor sub-layer 124d, wherein the P-type semiconductor sub-layer 124d is, for example, a magnesium-doped gallium nitride layer, and the aluminum graded layer 122d is, for example, is a Mg-doped AlGaN layer, wherein the Al concentration of the Mg-doped AlGaN layer decreases from the side close to the electron blocking layer 200d to the side close to the P-type semiconductor sub-layer 124d.

圖14為利用二次離子質譜儀測量圖13的紫外光C發光二極體所得的成分分佈圖。圖14中的單位「c/s」是指每秒的計數。請參照圖13與圖14,在圖14的實施例中,二維電洞氣誘發層140的AlαGaβN的α例如為0.95。二維電洞氣誘發層140的鎂濃度小於1017原子數/立方公分,且電子阻擋層200d之鄰近二維電洞氣誘發層140的部分中的鎂濃度約為1019原子數/立方公分。二維電洞氣誘發層140的鋁強度大於電子阻擋層200d的鋁強度,其是指二維電洞氣誘發層140的鋁濃度大於電子阻擋層200d的鋁濃度。電子阻擋層200d的鋁強度大於主動層130的鋁強度,其是指電子阻擋層200d的鋁濃度大於主動層130的鋁濃度,包括能井層134 與能障層132的鋁濃度。二維電洞氣誘發層140的鋁強度大於N型半導體層110的鋁強度,其是指二維電洞氣誘發層140的鋁濃度大於N型半導體層110的鋁濃度。二維電洞氣誘發層140的鎵強度小於電子阻擋層200d的鎵強度,且小於N型半導體層110的鎵強度。二維電洞氣誘發層140的鎵濃度小於電子阻擋層200d的鎵濃度,且小於N型半導體層110的鎵濃度。 FIG. 14 is a composition distribution diagram obtained by measuring the ultraviolet C light-emitting diode in FIG. 13 by using a secondary ion mass spectrometer. The unit "c/s" in Fig. 14 means counts per second. Please refer to FIG. 13 and FIG. 14 , in the embodiment of FIG. 14 , the α of Al α Ga β N of the two-dimensional hole gas inducing layer 140 is, for example, 0.95. The magnesium concentration of the two-dimensional hole gas inducing layer 140 is less than 10 17 atoms/cm3, and the magnesium concentration in the portion of the electron blocking layer 200d adjacent to the two-dimensional hole gas inducing layer 140 is about 10 19 atoms/cm3 . The aluminum strength of the two-dimensional hole gas inducing layer 140 is greater than that of the electron blocking layer 200d, which means that the aluminum concentration of the two-dimensional hole gas inducing layer 140 is greater than that of the electron blocking layer 200d. The aluminum strength of the electron blocking layer 200 d is greater than that of the active layer 130 , which means that the aluminum concentration of the electron blocking layer 200 d is greater than that of the active layer 130 , including the aluminum concentrations of the energy well layer 134 and the energy barrier layer 132 . The aluminum intensity of the two-dimensional hole gas induction layer 140 is greater than that of the N-type semiconductor layer 110 , which means that the aluminum concentration of the two-dimensional hole gas induction layer 140 is greater than that of the N-type semiconductor layer 110 . The gallium intensity of the two-dimensional hole gas inducing layer 140 is smaller than the gallium intensity of the electron blocking layer 200d, and smaller than the gallium intensity of the N-type semiconductor layer 110. The gallium concentration of the two-dimensional hole gas inducing layer 140 is smaller than the gallium concentration of the electron blocking layer 200 d and smaller than the gallium concentration of the N-type semiconductor layer 110 .

圖15為圖13之紫外光C發光二極體的能帶圖。請參照圖13與圖15,圖15中Ec、Efn、Ev及Efp所分別對應的曲線的物理意義與單位「eV」敘述於解釋圖5的段落,在此不再重述。此外,圖15中對應至p且具有單位「cm-3」的曲線是指電洞密度(hole density)。從圖15可知,二維電洞氣誘發層140誘發了二維電洞氣,因此二維電洞氣誘發層140內產生了電洞。因此,曲線p在二維電洞氣誘發層140內部具有一對應於高電洞密度的波峰。所以,來自二維電洞氣誘發層140的電洞注入主動層130。因此,紫外光C發光二極體100d的光效率被有效地提升。藉由採用二維電洞氣誘發層140,從能帶結構模擬(bandgap structure simulation)可得知,在電流密度為35安培/平方公分的情況下,紫外光C發光二極體100d的額外電洞載子注入效率從10%(不具有二維電洞氣誘發層140)提升至30%(具有二維電洞氣誘發層140)。 FIG. 15 is an energy band diagram of the UV-C light-emitting diode in FIG. 13 . Please refer to FIG. 13 and FIG. 15. The physical meaning and unit “eV” of the curves corresponding to E c , Ef n , E v and Ef p in FIG. 15 are described in the paragraph explaining FIG. 5 and will not be repeated here. In addition, the curve corresponding to p in FIG. 15 and having the unit “cm −3 ” refers to the hole density. It can be known from FIG. 15 that the two-dimensional hole gas inducing layer 140 induces the two-dimensional hole gas, so holes are generated in the two-dimensional hole gas inducing layer 140 . Therefore, the curve p has a peak corresponding to a high hole density inside the two-dimensional hole gas inducing layer 140 . Therefore, holes from the two-dimensional hole gas inducing layer 140 are injected into the active layer 130 . Therefore, the light efficiency of the UV-C LED 100d is effectively improved. By adopting the two-dimensional hole gas inducing layer 140, it can be known from the bandgap structure simulation that the extra electric current of the UV-C light-emitting diode 100d is 35 A/cm2. The hole carrier injection efficiency is increased from 10% (without the two-dimensional hole gas inducing layer 140 ) to 30% (with the two-dimensional hole gas inducing layer 140 ).

圖16A為當電子阻擋層的鎂濃度為1019原子數/立方公分時圖13的紫外光C發光二極體的載子注入效率相對於α-γ的曲線圖。圖16B為當電子阻擋層的鎂濃度為1020原子數/立方公分時圖 13的紫外光C發光二極體的載子注入效率相對於α-γ的曲線圖。圖16A與圖16B是在電流密度為35安培/平方公分的情況下所模擬的。圖16A顯示當電子阻擋層200d具有的鎂濃度為1019原子數/立方公分時,二維電洞氣在0.2≦α-γ≦0.3的條件下形成。當二維電洞氣形成時,載子注入效率會提升。在圖16A中,α-γ=0.2的載子注入效率些微高於α-γ=0.1的載子注入效率,其表示當α-γ=0.2時二維電洞氣開始形成。α-γ=0.3的載子注入效率甚至高於α-γ=0.2的載子注入效率,其表示二維電洞氣的現象變得更強。圖16B顯示當電子阻擋層200d的鎂濃度為1020原子數/立方公分時,二維電洞氣在0.1<α-γ≦0.3的條件下形成。圖16B中的電子阻擋層200d的鎂濃度高於圖16A中的電子阻擋層200d的鎂濃度,相較於圖16A,0.2≦α-γ的載子注入效率的增加在圖16B中甚至更為明顯。電子阻擋層中的鎂濃度越高,會有越多的二維電洞氣在二維電洞氣誘發層140中產生。在圖16中,α-γ=0.2的載子注入效率遠大於α-γ=0.1的載子注入效率,其表示當0.1<α-γ時二維電洞氣開始形成。 FIG. 16A is a graph showing the carrier injection efficiency of the UV-C light-emitting diode in FIG. 13 relative to α-γ when the magnesium concentration of the electron blocking layer is 10 19 atoms/cm3. FIG. 16B is a graph showing the carrier injection efficiency of the UV-C light-emitting diode in FIG. 13 relative to α-γ when the magnesium concentration of the electron blocking layer is 10 20 atoms/cm3. FIG. 16A and FIG. 16B are simulated at a current density of 35 A/cm2. FIG. 16A shows that when the electron blocking layer 200d has a magnesium concentration of 10 19 atoms/cm3, two-dimensional hole gas is formed under the condition of 0.2≦α-γ≦0.3. When two-dimensional hole gas is formed, the carrier injection efficiency will increase. In FIG. 16A , the carrier injection efficiency of α-γ=0.2 is slightly higher than that of α-γ=0.1, which indicates that the two-dimensional hole gas starts to form when α-γ=0.2. The carrier injection efficiency of α-γ=0.3 is even higher than that of α-γ=0.2, which indicates that the phenomenon of two-dimensional hole gas becomes stronger. FIG. 16B shows that when the magnesium concentration of the electron blocking layer 200d is 10 20 atoms/cm3, the two-dimensional hole gas is formed under the condition of 0.1<α-γ≦0.3. The magnesium concentration of the electron blocking layer 200d in FIG. 16B is higher than that of the electron blocking layer 200d in FIG. 16A , and the increase in carrier injection efficiency of 0.2≦α-γ is even greater in FIG. 16B compared to FIG. 16A . obvious. The higher the magnesium concentration in the electron blocking layer, the more two-dimensional hole gas will be generated in the two-dimensional hole gas inducing layer 140 . In Fig. 16, the carrier injection efficiency of α-γ=0.2 is much higher than that of α-γ=0.1, which means that when 0.1<α-γ, the two-dimensional hole gas begins to form.

圖17為圖13的紫外光C發光二極體的穿透電子顯微術(transmission electron microscopy,TEM)的影像。請參照圖13與圖17,從圖17可知,二維電洞氣誘發層140形成亮白線,其代表高透光度。當二維電洞氣誘發層140中的鋁濃度越高,對於波長為230奈米至280奈米的光而言二維電洞氣誘發層140的穿透率(transmittance)越高。當N型半導體層110中的鋁的陽離子莫 耳分率從49%變化至60%時,對於波長為230奈米至280奈米的光而言N型半導體層110的穿透率從0%變化至76.3%。另外,二維電洞氣誘發層140的鋁濃度可大於N型半導體層110的鋁濃度,因此對於波長為230奈米至280奈米的光而言二維電洞氣誘發層140的穿透率可以大於76.3%。二維電洞氣誘發層140的透光度使得二維電洞氣誘發層140較不會吸收來自主動層130的光。 FIG. 17 is a transmission electron microscopy (TEM) image of the UV-C light-emitting diode shown in FIG. 13 . Please refer to FIG. 13 and FIG. 17 . It can be seen from FIG. 17 that the two-dimensional hole gas inducing layer 140 forms bright white lines, which represent high light transmittance. When the aluminum concentration in the two-dimensional hole gas inducing layer 140 is higher, the transmittance of the two-dimensional hole gas inducing layer 140 is higher for light with a wavelength of 230 nm to 280 nm. When the cations of aluminum in the N-type semiconductor layer 110 Mo When the fraction ratio changes from 49% to 60%, the transmittance of the N-type semiconductor layer 110 changes from 0% to 76.3% for light with a wavelength of 230 nm to 280 nm. In addition, the aluminum concentration of the two-dimensional hole gas induction layer 140 can be greater than the aluminum concentration of the N-type semiconductor layer 110, so the penetration of the two-dimensional hole gas induction layer 140 for light with a wavelength of 230 nm to 280 nm The rate can be greater than 76.3%. The light transmittance of the two-dimensional hole gas inducing layer 140 makes the two-dimensional hole gas inducing layer 140 less likely to absorb light from the active layer 130 .

本揭露的各實施例的紫外光C發光二極體的各膜層可利用金屬有機物化學氣相沉積(metal organic chemical vapor deposition,MOCVD)製程或其他適當的半導體製程來製作,其為所屬領域中具有通常知識者所熟知,因此在此不詳述。 Each film layer of the UV-C light-emitting diode in each embodiment of the present disclosure can be manufactured by metal organic chemical vapor deposition (metal organic chemical vapor deposition, MOCVD) process or other appropriate semiconductor process, which is in the field It is well known to those of ordinary skill and therefore will not be described in detail here.

綜上所述,在本揭露的實施例的紫外光C發光二極體中,由於採用了第二電子阻擋層中的鎂的濃度大於第一電子阻擋層中的鎂的濃度,且第二電子阻擋層中的鎂的濃度大於1018原子數/立方公分的設計,因此透過特定比例關係的鎂摻雜(例如上述的關於鎂濃度的大小關係及數值範圍,以及例如圖2與圖9中的鎂濃度分佈曲線),可以有效抑制主動層中的電子溢流至P型半導體層的情形,進而提升紫外光C發光二極體的元件效能。本揭露的實施例的紫外光C發光二極體採用了二維電洞氣誘發層,且符合α>γ與0.1<α-γ≦0.3,因此二維電洞氣在二維電洞氣誘發層與電子阻擋層之間的界面處形成。二維電洞氣的誘發促進了電洞直接注入主動層130,因此紫外光C發光二極體100d的光效率被有效地提升。 To sum up, in the UV-C light-emitting diode of the embodiment of the present disclosure, since the concentration of magnesium in the second electron blocking layer is greater than that in the first electron blocking layer, and the second electron The concentration of magnesium in the barrier layer is greater than the design of 10 18 atoms/cm3, so the magnesium doping through a specific proportional relationship (for example, the above-mentioned magnitude relationship and numerical range of the magnesium concentration, and for example in Figure 2 and Figure 9 Magnesium concentration distribution curve) can effectively suppress the overflow of electrons in the active layer to the P-type semiconductor layer, thereby improving the device performance of the UV-C light-emitting diode. The UV-C light-emitting diodes of the disclosed embodiments adopt a two-dimensional hole gas induction layer, and meet the requirements of α>γ and 0.1<α-γ≦0.3, so the two-dimensional hole gas is induced in the two-dimensional hole gas formed at the interface between the layer and the electron blocking layer. The induction of the two-dimensional hole gas promotes the direct injection of holes into the active layer 130, so the light efficiency of the UV-C light-emitting diode 100d is effectively improved.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present disclosure has been disclosed above with embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection of this disclosure should be defined by the scope of the appended patent application.

50:第一電極 50: first electrode

60:第二電極 60: Second electrode

100d:紫外光C發光二極體 100d: Ultraviolet C LED

110:N型半導體層 110: N-type semiconductor layer

112:第一N型氮化鋁鎵層 112: the first N-type aluminum gallium nitride layer

114:第二N型氮化鋁鎵層 114: the second N-type aluminum gallium nitride layer

120d:P型半導體層 120d: P-type semiconductor layer

122d:鋁漸變層 122d: Aluminum gradient layer

124d:P型半導體子層 124d: P-type semiconductor sublayer

130:主動層 130: active layer

132:能障層 132: Barrier layer

134:能井層 134: energy well layer

140:二維電洞氣誘發層 140: Two-dimensional hole gas induced layer

160:藍寶石基板 160: sapphire substrate

170:氮化鋁模板層 170: Aluminum nitride template layer

180:緩衝層 180: buffer layer

190:非故意摻雜氮化鋁鎵層 190: Unintentionally doped AlGaN layer

200d:電子阻擋層 200d: electron blocking layer

210d:第一電子阻擋層 210d: the first electron blocking layer

220d:第二電子阻擋層 220d: the second electron blocking layer

T3、T4:厚度 T3, T4: Thickness

Claims (20)

一種紫外光C發光二極體,包括:一N型半導體層;一P型半導體層;一主動層,配置於該N型半導體層和該P型半導體層之間,該主動層發出之光譜的最大峰值的波長是落在230奈米至280奈米的範圍內;一二維電洞氣誘發層,配置於該主動層與該P型半導體層之間,其中該二維電洞氣誘發層的材料包括AlαGaβN,β=1-α,且該二維電洞氣誘發層中的鎂的濃度小於1017原子數/立方公分;以及一電子阻擋層,配置於該P型半導體層和該二維電洞氣誘發層之間,其中該電子阻擋層的材料包括AlγGaδN,δ=1-γ,0.65<γ≦0.9,且該電子阻擋層之鄰近該二維電洞氣誘發層的部分中的鎂的濃度大於1019原子數/立方公分,其中,α>γ且0.1<α-γ≦0.3,以使得該二維電洞氣誘發層與該電子阻擋層之間的界面處形成二維電洞氣。 An ultraviolet C light-emitting diode, comprising: an N-type semiconductor layer; a P-type semiconductor layer; an active layer, configured between the N-type semiconductor layer and the P-type semiconductor layer, the spectrum emitted by the active layer The wavelength of the maximum peak falls within the range of 230 nm to 280 nm; a two-dimensional hole gas induction layer is arranged between the active layer and the P-type semiconductor layer, wherein the two-dimensional hole gas induction layer The material includes Al α Ga β N, β=1-α, and the concentration of magnesium in the two-dimensional hole gas inducing layer is less than 10 17 atoms/cm3; and an electron blocking layer is arranged on the P-type semiconductor layer and the two-dimensional hole gas induction layer, wherein the material of the electron blocking layer includes Al γ Ga δ N, δ=1-γ, 0.65<γ≦0.9, and the electron blocking layer adjacent to the two-dimensional electric The concentration of magnesium in the portion of the hole gas inducing layer is greater than 10 19 atoms/cm3, wherein, α>γ and 0.1<α-γ≦0.3, so that the two-dimensional hole gas inducing layer and the electron blocking layer Two-dimensional hole gas is formed at the interface between them. 如請求項1所述的紫外光C發光二極體,其中0.7<α≦0.95。 The UV-C light-emitting diode as claimed in item 1, wherein 0.7<α≦0.95. 如請求項1所述的紫外光C發光二極體,其中0.2≦α-γ≦0.3。 The UV-C light-emitting diode as claimed in item 1, wherein 0.2≦α-γ≦0.3. 如請求項1所述的紫外光C發光二極體,其中該電子阻擋層之鄰近該二維電洞氣誘發層的該部分中的鎂的濃度大於1020原子數/立方公分。 The UV-C light-emitting diode as claimed in claim 1, wherein the concentration of magnesium in the portion of the electron blocking layer adjacent to the two-dimensional hole gas inducing layer is greater than 10 20 atoms/cm3. 如請求項1所述的紫外光C發光二極體,其中該主動層為一多重量子井層,該多重量子井層包括交替堆疊的多個能井層與多個能障層,且該二維電洞氣誘發層接觸該些能井層中最靠近該二維電洞氣誘發層的一個。 The ultraviolet C light-emitting diode as described in Claim 1, wherein the active layer is a multiple quantum well layer, and the multiple quantum well layer includes multiple energy well layers and multiple energy barrier layers stacked alternately, and the The two-dimensional hole gas inducing layer contacts the one of the energy well layers closest to the two-dimensional hole gas inducing layer. 如請求項5所述的紫外光C發光二極體,其中該電子阻擋層的鋁濃度大於或等於該些能井層的鋁濃度。 The UV-C light-emitting diode as claimed in item 5, wherein the aluminum concentration of the electron blocking layer is greater than or equal to the aluminum concentration of the energy well layers. 如請求項5所述的紫外光C發光二極體,其中該電子阻擋層的鋁濃度大於或等於該些能障層的鋁濃度。 The ultraviolet C light-emitting diode as claimed in item 5, wherein the aluminum concentration of the electron blocking layer is greater than or equal to the aluminum concentration of the energy barrier layers. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的厚度是落在從1奈米至3奈米的範圍內。 The UV-C light-emitting diode as claimed in claim 1, wherein the thickness of the two-dimensional hole gas inducing layer falls within a range from 1 nm to 3 nm. 如請求項1所述的紫外光C發光二極體,其中該電子阻擋層的厚度與該二維電洞氣誘發層的厚度的比值是落在6至20的範圍內。 The UV-C light-emitting diode as claimed in claim 1, wherein the ratio of the thickness of the electron blocking layer to the thickness of the two-dimensional hole gas inducing layer is in the range of 6-20. 如請求項1所述的紫外光C發光二極體,其中對該主動層所發出的光而言,該二維電洞氣誘發層的透光度大於該電子阻擋層的透光度。 The UV-C light-emitting diode as claimed in claim 1, wherein for the light emitted by the active layer, the transmittance of the two-dimensional hole gas inducing layer is greater than that of the electron blocking layer. 如請求項10所述的紫外光C發光二極體,其中對於該主動層所發出的光而言,該二維電洞氣誘發層的透光度大於該N 型半導體層的透光度,且該N型半導體層的透光度小於該電子阻擋層的透光度。 The ultraviolet C light-emitting diode as claimed in claim 10, wherein for the light emitted by the active layer, the transmittance of the two-dimensional hole gas induction layer is greater than the N The light transmittance of the N-type semiconductor layer, and the light transmittance of the N-type semiconductor layer is smaller than the light transmittance of the electron blocking layer. 如請求項10所述的紫外光C發光二極體,其中對該主動層所發出的光而言,該二維電洞氣誘發層的穿透率大於76.3%。 The UV-C light-emitting diode as claimed in claim 10, wherein the transmittance of the two-dimensional hole gas inducing layer is greater than 76.3% for the light emitted by the active layer. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的折射率小於該電子阻擋層的折射率。 The UV-C light-emitting diode as claimed in claim 1, wherein the refractive index of the two-dimensional hole gas inducing layer is smaller than that of the electron blocking layer. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的折射率小於該N型半導體層的折射率。 The UV-C light-emitting diode as claimed in claim 1, wherein the refractive index of the two-dimensional hole gas inducing layer is smaller than that of the N-type semiconductor layer. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的電阻率大於該電子阻擋層的電阻率。 The UV-C light-emitting diode as claimed in claim 1, wherein the resistivity of the two-dimensional hole gas inducing layer is greater than the resistivity of the electron blocking layer. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的鋁濃度大於該N型半導體層的鋁濃度。 The ultraviolet C light-emitting diode as claimed in claim 1, wherein the aluminum concentration of the two-dimensional hole gas induction layer is greater than the aluminum concentration of the N-type semiconductor layer. 如請求項1所述的紫外光C發光二極體,其中該二維電洞氣誘發層的鎵濃度小於該電子阻擋層的鎵濃度,且小於該N型半導體層的鎵濃度。 The ultraviolet C light-emitting diode as claimed in claim 1, wherein the gallium concentration of the two-dimensional hole gas induction layer is smaller than the gallium concentration of the electron blocking layer, and is smaller than the gallium concentration of the N-type semiconductor layer. 如請求項1所述的紫外光C發光二極體,其中該電子阻擋層包括:一第一電子阻擋層;以及一第二電子阻擋層,配置於該二維電洞氣誘發層與該第一電子阻擋層之間,其中該第二電子阻擋層中的鎂的濃度大於該第一電子阻擋層中的鎂的濃度,且該第二電子阻擋層中的鎂的濃度大 於1019原子數/立方公分。 The UV-C light-emitting diode as claimed in claim 1, wherein the electron blocking layer includes: a first electron blocking layer; and a second electron blocking layer disposed between the two-dimensional hole gas inducing layer and the second electron blocking layer Between an electron blocking layer, wherein the concentration of magnesium in the second electron blocking layer is greater than the concentration of magnesium in the first electron blocking layer, and the concentration of magnesium in the second electron blocking layer is greater than 10 19 atoms/ Cubic centimeters. 如請求項18所述的紫外光C發光二極體,其中該第二電子阻擋層中的鎂的濃度大於1020原子數/立方公分。 The UV-C light-emitting diode as claimed in claim 18, wherein the concentration of magnesium in the second electron blocking layer is greater than 10 20 atoms/cm3. 如請求項1所述的紫外光C發光二極體,其中該主動層中的鎂的濃度小於1017原子數/立方公分。 The UV-C light-emitting diode as claimed in item 1, wherein the concentration of magnesium in the active layer is less than 10 17 atoms/cm3.
TW109129702A 2020-08-31 2020-08-31 Ultraviolet c light-emitting diode TWI787646B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129702A TWI787646B (en) 2020-08-31 2020-08-31 Ultraviolet c light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129702A TWI787646B (en) 2020-08-31 2020-08-31 Ultraviolet c light-emitting diode

Publications (2)

Publication Number Publication Date
TW202211497A TW202211497A (en) 2022-03-16
TWI787646B true TWI787646B (en) 2022-12-21

Family

ID=81731804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129702A TWI787646B (en) 2020-08-31 2020-08-31 Ultraviolet c light-emitting diode

Country Status (1)

Country Link
TW (1) TWI787646B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267655A1 (en) * 2011-04-20 2012-10-25 Invenlux Limited Light-emitting device with low forward voltage and method for fabricating the same
US20140374700A1 (en) * 2012-03-06 2014-12-25 Hc Semitek Corporation Semiconductor light-emitting diode and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267655A1 (en) * 2011-04-20 2012-10-25 Invenlux Limited Light-emitting device with low forward voltage and method for fabricating the same
US20140374700A1 (en) * 2012-03-06 2014-12-25 Hc Semitek Corporation Semiconductor light-emitting diode and method for manufacturing the same

Also Published As

Publication number Publication date
TW202211497A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US7821019B2 (en) Triple heterostructure incorporating a strained zinc oxide layer for emitting light at high temperatures
TWI685129B (en) Ultraviolet c light-emitting diode
US10177273B2 (en) UV light emitting device
KR20090064903A (en) Iii-nitride semiconductor light emitting device
Chang et al. AlGaN-based multiple quantum well deep ultraviolet light-emitting diodes with polarization doping
EP2919282B1 (en) Nitride semiconductor stacked body and semiconductor light emitting device comprising the same
US20160225950A1 (en) Near uv light emitting device
Ji et al. Tailoring of energy band in electron-blocking structure enhancing the efficiency of AlGaN-based deep ultraviolet light-emitting diodes
Chen et al. Improvement of efficiency droop in blue InGaN light-emitting diodes with p-InGaN/GaN superlattice last quantum barrier
US20090146163A1 (en) High brightness light emitting diode structure
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
Wu et al. Increasing the carrier injection efficiency of gan-based ultraviolet light-emitting diodes by double al composition gradient last quantum barrier and p-type hole supply layer
CN111201616B (en) Optoelectronic device with boron nitride alloy electron blocking layer and method of manufacture
TWI787646B (en) Ultraviolet c light-emitting diode
US11538960B2 (en) Epitaxial light emitting structure and light emitting diode
Li et al. High quantum efficiency and low droop of 400-nm InGaN near-ultraviolet light-emitting diodes through suppressed leakage current
CN110197861B (en) AlInGaN-based light-emitting diode
US11233173B2 (en) Ultraviolet c light-emitting diode
TWI570954B (en) Nitride semiconductor structure and semiconductor light-emitting element
KR101861218B1 (en) High efficiency light emitting diode
TW201318203A (en) Optoelectronic component
CN106340572B (en) Light emitting diode and forming method thereof
CN116544326A (en) Deep ultraviolet light-emitting diode
JP2021197533A (en) Light-emitting element
TWM482163U (en) Light-emitting diode