TWI787622B - 登革次單位疫苗組成物 - Google Patents

登革次單位疫苗組成物 Download PDF

Info

Publication number
TWI787622B
TWI787622B TW109120883A TW109120883A TWI787622B TW I787622 B TWI787622 B TW I787622B TW 109120883 A TW109120883 A TW 109120883A TW 109120883 A TW109120883 A TW 109120883A TW I787622 B TWI787622 B TW I787622B
Authority
TW
Taiwan
Prior art keywords
cediii
cells
denv
protein
polypeptide
Prior art date
Application number
TW109120883A
Other languages
English (en)
Other versions
TW202115103A (zh
Inventor
林以行
葉才明
莊詠鈞
余佳益
陳信偉
萬書彣
王淑鶯
何宗憲
謝達斌
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Publication of TW202115103A publication Critical patent/TW202115103A/zh
Application granted granted Critical
Publication of TWI787622B publication Critical patent/TWI787622B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24131Uses of virus other than therapeutic or vaccine, e.g. disinfectant
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明有關於一種包含融合蛋白的登革次單位疫苗組成物,其中前述融合蛋白是將去除C端之非結構蛋白1 (NS1ΔC或截短NS1ΔC)予以共軛或連接於至少一多肽,前述至少一多肽為非結構蛋白3c (NS3c或截短NS3c)及/或同源套膜蛋白第三區塊(cEDIII),藉此加強對登革病毒攻擊的保護並減緩相關病理反應。

Description

登革次單位疫苗組成物
本發明係有關一種次單位疫苗組成物,特別是有關於一種含去除C端之非結構蛋白1(NS1△C或截短NS1△C)予以共軛或連接於非結構蛋白3c(NS3c或截短NS3c)及/或同源套膜蛋白第三區塊(cEDIII)的至少一多肽之融合蛋白的重組登革次單位疫苗組成物,其中至少一多肽為非結構蛋白3c(NS3c或截短NS3c)及/或同源套膜蛋白第三區塊(cEDIII)。
登革病毒(Dengue virus,DENV)是全球公衛最重要的蟲媒病毒疾病(WHO,2016)。DENV經由埃及斑蚊(Aedes aegypti)與白線斑蚊(Aedes albopictus)傳染人,每年造成估計3.9億個案例感染,其中有9.6千萬案例有明顯徵狀,有50萬案例有登革出血熱或登革休克症候群(dengue hemorrhagic fever/dengue shock syndrome,DHF/DSS)(Bhatt et al.,2013;Diamond and Pierson,2015;Katzelnick et al.,2017)。至今有超過128個國家已報導有DENV的傳染, 主要影響亞洲及拉丁美洲的熱帶及亞熱帶地區。因此,為了控制登革疾病,開發登革疫苗為當務之急(Wan et al.,2013)。
賽諾菲巴斯德在2015年12月推出全球首例登革疫苗Dengvaxia®(或稱CYD-TDV);然而,該疫苗對於血清呈陰性的疫苗接種者,其安全性仍有疑慮(Wichmann et al.,2017;Normile,2017;Sridhar et al.,2018;Gubler and Halstead,2019)。另二支登革疫苗,分別是美國國家過敏與傳染病研究所(National Institute of Allergy and Infectious Diseases,NIAID)研發的TV003/TV005疫苗,以及武田公司研發的TAK-003疫苗,目前仍在進行第三期人體試驗中(Kirkpatrick et al.,2015;Biswal et al.,2019)。上述三支疫苗都是活性減毒疫苗(Screaton et al.,2015;WHO,2016)。由於對於目前登革疫苗Dengvaxia®的接種計劃仍有安全性的疑慮,其他活性減毒候選疫苗的安全性亦仍待審慎評估(Normile,2017)。開發DENV的改良型疫苗及/或抗病毒療法仍是全球公衛的重點。
針對開發登革次單位疫苗,先前研究認為,套膜(envelope,E)蛋白是引起保護型抗體反應的主要抗原。套膜蛋白第三區塊(EDIII)含有細胞表面受體辨識區域,被視為是登革次單位疫苗的潛在標的(Guzman et al.,2010)。然而,針對E蛋白的抗體不僅可以中和DENV, 卻也可能透過抗體依賴型增強作用(antibody-dependent enhancement,ADE)而增加DENV的感染(Guzman et al.,2015)。過去研究曾藉由比對四種血清型DENV之不同分離株的序列,找出同源套膜蛋白第三區塊(consensus EDIII,cEDIII)作為免疫原。這些研究顯示,cEDIII可引發抗體反應,藉此交叉中和四種血清型之DENV(Leng et al.,2009)。在非人類的靈長類動物研究中,以cEDIII與磷酸鋁接種猴子,可引起猴子對第二型登革病毒(DENV2)的抗體反應,且反應是明顯強烈並持久。同時也引起特異性的T細胞反應並產生細胞激素,這與抗體反應相關(Chen et al.,2013)。
NS1蛋白在內質網(endoplasmic reticulum,ER)內腔(lumen)經轉譯後修飾成二聚體化(dimerized),可表現在受感染的細胞表面。NS1蛋白亦可分泌成可溶性、與脂質相關的六聚體(lipid-associated hexamer),成為體液免疫的主要目標(Flamand et al.,1999;Muller and Young,2013)。目前已知NS1的表現量高與DHF相關,而且NS1會長期存在於血管滲漏的患者體內(Adikari et al.,2016;Malavige and Ogg,2017)。分泌型的NS1可活化細胞以釋放出促發炎細胞激素(proinflammatory cytokines),引起細胞激素風暴(cytokine storm)後,導致血管滲漏(Beatty et al., 2015;Modhiran et al.,2015)。此外,分泌型的NS1會破壞內皮糖萼(endothelial glycocalyx),導致血管的高通透性(Puerta-Guardo et al.,2016;Chen et al.,2016;Chen et al.,2018)。近來研究顯示,NS1亦可經由TLR4活化血小板,導致血小板減少症(thrombocytopenia)及出血(hemorrhage)(Chao et al.,2019)。基於上述結果,對於NS1作為候選的疫苗開發及治療策略的關注性持續提升(Halstead,2013;Amorim et al.,2014;Glasner et al.,2018)。
不過,針對DENV NS1產生的抗體也會辨識凝血相關蛋白、血小板及內皮細胞上的共同抗原表位(common epitopes)。發明人先前研究指出,抗DENV NS1的抗體會與人體血小板及內皮細胞交叉反應,造成血小板及內皮細胞的破壞及功能失調(Lin et al.,2001,2003,2005,2011;Chen et al.,2013)。DENV NS1與細胞表面抗原之間的同源區主要位於C端第311-352個胺基酸殘基(Cheng et al.,2009)。去除NS1之C端區域所得的NS1△C可大幅減少交叉反應性(Chen et al.,2009)。以抗NS1△C的多株抗體或單株抗體進行被動免疫,可降低DENV引起的出血時間延長及出血(Wan et al.,2014;Wan 2017)。因此,有必要確認cEDIII-NS1△C融合蛋白作為潛在候選次單位疫苗的保護效力。
因此,本發明之一態樣是提供一種登革次單位疫苗組成物,其包括一融合蛋白,此融合蛋白為去除C端之非結構蛋白1(NS1△C)多肽予以共軛或連接於至少一多肽,此至少一多肽為非結構蛋白3c(NS3c)多肽及/或同源套膜蛋白第三區塊(cEDIII)多肽,且選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
本發明之另一態樣是提供一種登革次單位疫苗組成物,其包含NS3c多肽以及一融合蛋白,此融合蛋白包含cEDIII多肽以及NS1△C多肽(cEDIII-NS1△C),以及選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
本發明之又一態樣是提供一種登革次單位疫苗組成物,其包含一融合蛋白,此融合蛋白包含NS1△C多肽以及NS3c多肽,以及選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
根據本發明之上述態樣,提出一種登革次單位疫苗組成物,其包括一融合蛋白,此融合蛋白為去除C端之非結構蛋白1(NS1△C)多肽予以共軛或連接於至少一多肽,此至少一多肽為非結構蛋白3c(NS3c)多肽及/或同源套膜蛋白第三區塊(cEDIII)多肽。在此實施例中,前述NS1△C多肽可為如序列辨識編號(SEQ ID NO):2或5所示之序列,cEDIII多肽可為如SEQ ID NO:1 或4所示之序列,而NS3c多肽為如SEQ ID NO:3或6所示之序列。再者,前述融合蛋白可選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
根據本發明之上述態樣,另提出一種登革次單位疫苗組成物。前述組成物包含一融合蛋白,此融合蛋白包含cEDIII多肽以及NS1△C多肽,其中cEDIII多肽可為如SEQ ID NO:1或4所示序列,NS1△C多肽為如SEQ ID NO:2或5所示之序列,如SEQ ID NO:3或6所示序列的NS3c多肽,以及選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
在一實施例中,上述融合蛋白之N端至C端的順序可為cEDIII多肽及NS1△C多肽(cEDIII-NS1ic)。在一具體例中,前述融合蛋白在cEDIII多肽與NS1△C多肽之間包含第一連接肽。
在一實施例中,上述融合蛋白之N端至C端的順序可為NS1△C多肽及cEDIII多肽(NS1△C-cEDIII),並共軛至NS3c多肽。在一具體例中,前述融合蛋白在NS1△C多肽與NS3c多肽之間包含第二連接肽。
在一實施例中,上述融合蛋白之N端至C端的順序可為NS1△C多肽以及cEDIII多肽(NS1△C-cEDIII)。在一具體例中,前述融合蛋白在cEDIII多肽與NS1△C多肽之間可包含第一連接肽。
在一實施例中,上述由N端至C端以NS1△C-cEDIII之順序的融合蛋白可共軛至NS3c多肽。 在一具體例中,第二連接肽可共軛至cEDIII多肽與NS1△C多肽之間。
在一實施例中,上述融合蛋白更可選擇性地含有佐劑。
根據本發明之上述態樣,更提出一種登革次單位疫苗組成物,包含一融合蛋白,其為如SEQ ID NO:5所示序列之截短NS1△C多肽以及如SEQ ID NO:6所示序列之截短NS3c多肽,以及選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
在一實施例中,上述融合蛋白之N端至C端的順序為截短NS1△C多肽以及截短NS3c多肽(截短NS1△C-截短NS3c)。
在一實施例中,上述融合蛋白在截短NS1△C多肽與截短NS3c多肽之間包含第一連接肽。
在一實施例中,上述融合蛋白之N端至C端的順序為截短NS3c多肽以及截短NS1△C多肽(截短NS3c-截短NS1△C)。
在一實施例中,上述融合蛋白在截短NS1△C多肽與截短NS3c多肽之間包含第一連接肽。
在一實施例中,上述組成物更包含如SEQ ID NOs:1或4所示序列之cEDIII多肽。在此實施例中,前述融合蛋白之截短NS1△C多肽可選擇性共軛至cEDIII多肽。在一些具體例中,前述融合蛋白之截短NS3c多肽可選擇性共軛至cEDIII多肽。在其他具體例 中,前述cEDIII多肽可選擇性共軛至截短NS1△C多肽與截短NS3c多肽之間。
應用本發明登革次單位疫苗組成物,其包含cEDIII-NS1△C之融合蛋白以及NS3c多肽,或者截短NS1△C多肽與NS3c多肽之融合蛋白,藉此加強對登革病毒攻擊的保護並減緩相關病理反應。
101、103、201、203、205、207、301、303、401、403、501、503:曲線
本發明包含至少一張彩色圖式。專利專責機關將根據請求並支付必要費用,提供附有彩色圖式的副本。為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:
[圖1A]至[圖8B]係繪示根據本發明數個實施例的登革次單位疫苗組成物的各種次單位。
[圖9A]至[圖9C]係繪示利用cEDIII-NS1△C、cEDIII加上DJ NS1以及DJ NS1重組蛋白免疫誘導之抗體反應的結果。(圖9A)此圖式顯示cEDIII、NS1△C、DJ NS1以及線性融合的cEDIII-NS1△C重組蛋白。(圖9B)每隻小鼠給予25μg cEDIII-NS1△C、5μg cEDIII加上(+)20μg DJ NS1、或25μg DJ NS1蛋白並混合鋁鹽作為佐劑,皮下免疫小鼠三次。(圖9C)在第二次免疫及第三次免疫後三天,收集小鼠血清並測定抗體力價(n=3)。
[圖10A]至[圖10D]係繪示以鋁鹽混合 cEDIII-NS1△C或DJ NS1蛋白免疫小鼠,其血清對抗四種血清型DENV的中和抗體力價的結果。將未免疫小鼠之血清(mock serum)、以鋁鹽免疫的血清(alum serum)、以cEDIII-NS1△C混合鋁鹽免疫的血清(cEDIII-NS1△C serum)及以DJ NS1混合鋁鹽免疫的血清(DJ NS1 serum)經二倍序列稀釋,與50-80 PFU的DENV1(圖10A)、DENV2(圖10B)、DENV3(圖10C)或DENV4(圖10D)於室溫混合1小時後,再接種1×105的BHK-21細胞。利用溶斑減少中和試驗(plaque reduction neutralization test,PRNT)測定抗DENV的中和抗體。每組數據係以溶斑產生的平均百分比與誤差線(SD bar)表示(n=3)。
[圖11A]至[圖11D]係繪示以鋁鹽混合cEDIII-NS1△C或DJ NS1蛋白免疫小鼠的血清可對於受四種不同血清型DENV感染的細胞引起補體介導之細胞溶解的結果。以DENV1(圖11A)、DENV2(圖11B)、DENV3(圖11C)或DENV4(圖11D)(MOI=20)個別感染HMEC-1細胞達48小時。然後,以1:200倍稀釋之未免疫小鼠之血清(mock serum)、以鋁鹽免疫的血清(alum serum)、以cEDIII-NS1△C混合鋁鹽免疫的血清(cEDIII-NS1△C serum)或以DJ NS1混合鋁鹽免疫的血清(DJ NS1 serum),在存在或不存在補體下,與細胞在37℃培養6小時。收集細胞上清液,分析釋放出的乳酸脫氫酶(LDH)。以三重複之培養物的平均值 ±SD表示。**:p<0.01;***:p<0.001(n=3)。
[圖12A]至[圖12B]係繪示以cEDIII-NS1△C蛋白免疫小鼠的實驗設計及在四種不同血清型DENV感染前的抗體力價。(圖12A)以25μg/小鼠之cEDIII-NS1△C蛋白混合鋁鹽,皮下注射(s.c.)免疫小鼠三次。在第二次及第三次免疫後3天,收集小鼠血清並測定抗體力價。(未免疫組,n=2;DENV免疫組,n=3;鋁鹽免疫組、DENV加cEDIII-NS1△C混合鋁鹽組,n=4)。(FIG.12B)。小鼠在第24天經由靜脈注射(i.v.)的途徑接種1×108 PFU的DENV1、DENV2、DENV3及DENV4。感染2天後,分析小鼠的出血時間延長,收集血清以測定病毒力價與可溶性NS1的含量,如圖13A至圖14D所示。
[圖13A]至[圖13D]係繪示以cEDIII-NS1△C主動免疫可降低DENV誘導之出血時間延長。圖12A係顯示小鼠免疫模式。小鼠在第24天以1×108 PFU的DENV1(圖13A)、DENV2(圖13B)、DENV3(圖13C)、DENV4(圖13D)經由靜脈注射(i.v.)的途徑接種。感染後2天檢測小鼠尾部出血時間。*p<0.05,**p<0.01,***p<0.001,****p<0.0001,ns:無顯著差異(not significant)。
[圖14A]至[圖14D]係繪示以cEDIII-NS1△C主動免疫可降低小鼠血清中的病毒力價。小鼠在第24天以1×108 PFU的DENV1(圖14A)、DENV2(圖14B)、DENV3(圖14C)、DENV4(圖14D)經由靜脈注射 (i.v.)的途徑接種。小鼠在感染後2天犧牲。收集血清,利用螢光聚焦分析法(fluorescent focus assay,FFA)檢測病毒力價。**p<0.01,***p<0.001,****p<0.0001,ns:無顯著差異(not significant)。
[圖15A]至[圖15D]係繪示以DJ NS1及NS3主動免疫程度(%)的結果,其以DJ NS1或NS3抗原於離體刺激後,可誘導CD4+與CD8+ T細胞活化。在第0天,C3H/HeN小鼠經皮下免疫不同劑量的免疫原,即25μg DJ NS1加上12.5μg NS3/小鼠、25μg DJ NS1/小鼠、12.5μg NS3/小鼠、單獨鋁鹽或PBS,並於第14天補強免疫(boosted)。小鼠在第21天犧牲,收集淋巴結(lymph node,LN)細胞,並利用5μg/mL DJ NS1或NS3蛋白再刺激3天,最後4小時與抗CD3/CD28抗體培養,然後利用PE-標定的抗CD25抗體、FITC標定的抗CD4抗體以及PE/Cy7標定的抗CD8抗體進行三重染色,以利用流式細胞儀分析CD4+及CD8+ T細胞之CD25的表現量。圖15A係繪示CD4+ T細胞經DJ NS1抗原刺激後,反應出的CD25+百分比。圖15B係繪示CD4+ T細胞經NS3抗原刺激後,反應出的CD25+百分比。圖15C係繪示CD8+ T細胞經DJ NS1抗原刺激後,反應出的CD25+百分比。圖15D係繪示CD8+ T細胞經NS3抗原刺激後,反應出的CD25+百分比。DJ NS1加上NS3的組別之n=5,而其他組別之n=4。每個組別以平均值±SD顯示。*p<0.05,**p<0.01, ***p<0.001,以上利用單因子變異數分析(one-way ANOVA)及杜凱事後比較法檢定(Tukey post hoc test)判定。
[圖16A]至[圖16C]係繪示以DJ NS1及NS3主動免疫誘導細胞毒殺性T淋巴細胞反應(cytotoxic T lymphocyte;CTL)對抗表現NS3之L929細胞的結果。圖16A係繪示CTL毒殺分析的實驗設計。收集淋巴結細胞並以5μg/mL DJ NS1或NS3蛋白再刺激3天,以作為效應細胞。圖16B係將表現NS1之L929細胞(T)與效應細胞(E)進行共培養,其中E:T比例為20:1。經4小時後,收集目標細胞(T),並利用PI染色與流式細胞儀分析細胞死亡。利用西方墨點法分析NS1表現量。圖16C係顯示具有S135A的NS2B/3可用於NS3表現之L929細胞,NS2B3之自降解(self-processing)不存在,則由西方墨點法分析可確認突變構築體之蛋白酶活性受損。NS3表現之L929細胞(T)與效應細胞(E)進行共培養,其中E:T比例為20:1。經4小時後,收集目標細胞(T),並利用PI染色與流式細胞儀分析細胞死亡。利用西方墨點法分析NS1表現量。DJ NS1加上NS3的組別之n=5,而其他組別之n=4。每個組別以平均值±SD顯示。*p<0.05,**p<0.01,以上利用單因子變異數分析(one-way ANOVA)及杜凱事後比較法檢定(Tukey post hoc test)判定。
[圖17A]至[圖17B]係繪示以DJ NS1及NS3免疫之 小鼠,經DJ NS1(圖17A)或NS3(圖17B)之抗原離體刺激後,其CD107a表現量增加之結果,其中CD107a為毒殺性CD8+ T細胞活性的標記。小鼠在第21天犧牲,收集淋巴結細胞並再利用5μg/mL DJ NS1或NS3蛋白刺激3天後,與抗CD3/CD28抗體、莫能菌素(monensin)及布雷非德菌素A(Brefeldin A)培養最後4小時,之後對CD8+ T細胞表現的CD107a進行表面染色,並利用流式細胞儀分析。DJ NS1加上NS3的組別之n=5,而其他組別之n=4。每個組別以平均值±SD顯示。*p<0.05,**p<0.01,***p<0.001,以上利用單因子變異數分析(one-way ANOVA)及杜凱事後比較法檢定(Tukey post hoc test)判定。
[圖18A]至[圖18C]係繪示以DJ NS1及NS3主動免疫的結果,以降低被DENV感染之小鼠血清中的病毒力價。圖18A係顯示進行免疫之小鼠模式的實驗設計(n=3/group)。在第17天,以1×108 PFU DENV2病毒株454009A經由靜脈注射(i.v.)接種C3H/HeN小鼠。圖18B係顯示以DJ NS1及NS3進行主動免疫,以降低DENV引起之出血趨勢。在第17天,以1×108 PFU DENV2病毒株454009A經由靜脈注射(i.v.)接種C3H/HeN小鼠。在感染後的2天,檢測尾部出血時間。圖18C係顯示在第19天犧牲的小鼠並收集血清樣本,利用FFA檢測病毒力價。*p<0.05,**p<0.01,***p<0.001,以上利用單因子變異數分析(one-way ANOVA)及杜凱事後比較檢定法(Tukey post hoc test)判定。
[圖19]係繪示以DJ NS1及NS3主動免疫誘導之免疫反應與保護效力的示意圖。由產生NS3專一性CTL反應、CD107表現量提高、促進NS1專一性T細胞反應以及抗體力價證實,以DJ NS1加上NS3蛋白進行免疫,可以協同誘導更有效的免疫反應。保護機轉包括利用CTLs直接毒殺被DENV感染的細胞,以及利用抗NS1抗體中和NS1誘導之致病作用。
[圖20A]至[圖20D]係繪示根據本發明數個實施例之截短NS1△C-cEDIII-截短NS3c融合蛋白(圖20A及圖20B,MW=49kDa)以及截短NS1△C-截短NS3c融合蛋白(圖20C及圖20D,MW=35kDa)的表現量,其係利用SDS-PAGE(圖20A及圖20C)及西方墨點法(圖20B及圖20D)檢測。
[圖21A]至[圖21D]係繪示實驗設計(圖21A)及以截短NS1△C-cEDIII-截短NS3c(或稱為NS1f△C-cEDIII-NS3cf)融合蛋白以及截短NS1△C-截短NS3c(或稱為NS1f△C-NS3cf)融合蛋白主動免疫的結果(圖21B至圖21D),上述二種融合蛋白是由哺乳類動物293F細胞純化,可以降低被DENV感染小鼠之病毒力價(圖21B)、補體依賴型細胞毒殺作用(CDC;圖21C)及出血時間(圖21D)。
[圖22A]至[圖22D]係繪示實驗設計(圖22A)及以截短 NS1△C-cEDIII-截短NS3c(或稱為NS1f△C-cEDIII-NS3cf)融合蛋白以及截短NS1△C-截短NS3c(或稱為NS1f△C-NS3cf)融合蛋白主動免疫的結果(圖22B至圖22D),上述二種融合蛋白是由果蠅S2細胞純化,可以降低被DENV感染小鼠之病毒力價(圖22B)、補體依賴型細胞毒殺作用(CDC;圖22C)及出血時間(圖22D)。
藉由以下詳細說明,並參酌所附圖式,使本發明的實施例顯而易見,其中相同圖號係指相同元件。
此處參照引用的所有文獻,視同透過引用每篇個別文獻或專利申請書特定且個別併入參考文獻。倘若引用文獻對一術語的定義或用法,與此處對該術語的定義不一致或相反,則適用此處對該術語的定義,而不適用該引用文獻對該術語的定義。
為了解釋說明書,將適用以下定義,在適當的情況中,單數名詞也包括複數,反之亦然。整個詳細說明闡述額外的定義。
除非上下文不適當,否則此處所述的「一(a/an)」及「該(the/said)」係定義為「一或多」且包括複數型。
本發明揭露一種登革次單位疫苗組成物,其包括一融合蛋白,此融合蛋白為去除C端之非結構蛋白1(NS1△C)多肽予以共軛或連接於至少一多肽,此至少一 多肽為非結構蛋白3c(NS3c)多肽及/或同源套膜蛋白第三區塊(cEDIII)多肽,藉此加強對登革病毒攻擊的保護並減緩相關病理反應。其次,本發明揭露一種登革次單位疫苗組成物,其包含NS3c多肽及一融合蛋白,此融合蛋白為cEDIII多肽以及NS1△C多肽(cEDIII-NS1△C)。另一種方式,本發明揭露一種登革次單位疫苗組成物,其包括一融合蛋白,此融合蛋白為截短NS1△C多肽(亦稱為NS1f△C)及截短NS3c多肽(亦稱為NS3cf)。另一種方式,前述組成物亦包含轉譯上述多肽之多個聚核苷酸片段。
此處所述之「登革次單位疫苗」包含一融合蛋白,此融合蛋白為去除C端之非結構蛋白1(NS1△C)多肽予以共軛或連接於至少一多肽,此至少一多肽為非結構蛋白3c(NS3c)多肽及/或同源套膜蛋白第三區塊(cEDIII)多肽,且可選擇性地含有一或多種藥學上可接受的載劑及/或佐劑,藉此加強對登革病毒攻擊的保護並減緩相關病理反應。
在一些實施例中,此處所述之「融合蛋白」係指NS1△C多肽(或截短NS1△C)予以共軛或連接於至少一多肽,此至少一多肽為NS3c多肽(或截短NS3c)及/或cEDIII多肽,二者可以任何順序,例如cEDIII-NS1△C、NS1△C-cEDIII、NS1△C-NS3c、NS3c-NS1△C、cEDIII-NS1△C-NS3c、NS1△C-cEDIII-NS3c、NS3c-cEDIII-NS1△C,透過標準的胜肽鍵(意即無額外 的連接肽)直接連接,或透過至少一額外的連接肽(例如連接肽-1及連接肽-2)予以共軛或連接,如圖1A至圖8B所示之融合蛋白的變體。
在一些具體例中,「cEDIII」多肽可例如SEQ ID NO:1或4所示序列。「NS1△C」多肽可例如SEQ ID NO:2或5所示之序列。「NS3c」多肽可例如如SEQ ID NO:3或6所示序列。
在其他實施例中,融合蛋白之截短NS1△C多肽可例如SEQ ID NO:5所示序列,截短NS3c多肽可例如SEQ ID NO:6所示序列。在這些實施例中,上述組成物可選擇性地包含如SEQ ID NOs:1或4所示序列之cEDIII多肽。在一些實施例中,上述融合蛋白的NS1△C多肽與NS3c多肽之前、之間、之後可包含cEDIII多肽,且順序不拘。
在一些實施例中,此處所述之連接肽(linker),例如連接肽-1或連接肽-2,可無歧異地理解為一般分子生物學常用的「連接子(linker)」或「間隔區(spacer)」。連接肽可以是任何習知用於將NS1△C(或截短NS1△C、NS1f△C)予以共軛或連接於至少一多肽的寡肽或化合物,其中至少一多肽為NS3c多肽(或截短NS3c、NS3cf)及cEDIII多肽。在一些具體例中,連接肽可含有至少一胺基酸、經修飾的胺基酸或非人類胺基酸的元素。前述元素可例如包含以下一或多者:胺基-3-氧雜戊酸(amino-3-oxapentanoic acid)、PEG1、PEG2、 PEG4、β胺基酸、γ胺基酸、胺基己酸(aminohexanoic acid)或胺基3,6-二氧雜辛酸(amino-3,6-dioxaoctanoic acid)。
「登革次單位疫苗」一詞可如之前的組成物所述,用來加強對登革病毒攻擊的保護並減緩相關病理反應。
「受試對象(subject)」包括人類及非人類動物。非人類動物可包括如哺乳類及非哺乳類動物之所有的脊椎動物,像是非人類的靈長類動物、羊、狗、牛、雞、兩棲類動物及爬蟲類動物。除非另外說明,否則本文所述之「患者」或「受試對象」的名詞是相互通用的。
以下利用數個示範實施例說明本發明之應用,然其並非用以限定本發明,本發明技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
實施例
建立實驗動物模式
品系C3H/HeN小鼠是由查爾斯河實驗室(Charles River Breeding Laboratories)公司所取得。小鼠在國立成功大學醫學院實驗動物中心,以標準實驗室級飼料及水飼養。取6至8週齡的小鼠或3週齡的子代用於生產抗體及感染的實驗。上述動物實驗計畫書業經實驗動物照護與使用委員會(Institutional Animal Care and Use Committee,IACUC)的審查通過。以 下實施例已由國立成功大學動物實驗倫理委員會通過。
製備重組蛋白及血清
此實施例係構築cEDIII-NS1△C多肽,其為融合NS1△C與cEDIII的DNA片段之構築體(由陳信偉博士提供),以限制酶Not I與Xho I的位點插入pET21b質體中。由此所得的重組蛋白C端具有額外連續6個組胺酸標籤(hexahistidine tag,His-Tag)。為了表現蛋白,上述構築體係轉型至大腸桿菌BL21品系(Escherichia coli BL21 strains)中,以產生表現cEDIII-NS1△C融合蛋白的大腸桿菌。所得之轉型株菌體培養於盧里亞培養液(Luria broth,LB)中,以0.5mM的異丙基硫代半乳糖苷(isopropyl thiogalactoside,IPTG)誘導後,離心沉澱(pelleted)菌體。之後,利用超音波處理後,溶解菌體。從包涵體回收的cEDIII-NS1△C融合蛋白(或稱重組蛋白)屬於不溶的聚集物,接著在變性(denatured)試劑(尿素緩衝液,含有8M尿素、500mM NaCl、20mM Tris-HCl)中予以變性。前述重組蛋白先利用鎳離子管柱(Ni2+ column)純化後,在L-精氨酸、EDTA、PMSF、還原型麩胱甘肽及氧化型麩胱甘肽的存在下,緩緩稀釋掉變性試劑後,使重組蛋白再摺疊(refolded)。此實施例利用配置Ultracel-30濾膜的Amicon Ultra-30離心式過濾單元(Millipore)濃縮重組蛋白。此外,NS1△C(刪 除第271-352個胺基酸殘基)與DJ NS1(DENV NS1第1-270個胺基酸殘基與JEV NS1第271-352個胺基酸殘基)的cDNA選殖(cloned)到帶有組胺酸標籤(His-Tag)的pET28a載體。上述質體是利用中央研究院(Academia Sinica)蛋白質體核心設施(Proteomic Research Core Facility)製備。cEDIII質體(由陳信偉博士取得)是由大腸桿菌(E.coli)BL21表現。經純化後,利用10%或12%的十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)進行檢驗。純化後的cEDIII-NS1△C與鋁鹽(alum)混合後作為佐劑,以由皮下免疫C3H/HeN小鼠三次。分別在第一次免疫後七天、第二次免疫及第三次免疫後三天,收集小鼠血清並測定抗體力價。犧牲小鼠後,收集小鼠血清並於-20℃下儲存。
DJ NS1(DENV NS1第1-270個胺基酸殘基與JEV NS1第271-352個胺基酸殘基融合)的cDNA選殖(cloned)到帶有組胺酸標籤(His-Tag)的pET28a載體(Wan et al.,2014)。上述質體是利用中央研究院蛋白質體核心設施製備。接著將上述質體導入大腸桿菌(E.coli)BL21,利用異丙基B-D-1-硫代半乳糖苷(isopropyl B-D-1-thiogalactoside,IPTG;Calbiochem,San Diego,CA)誘導重組蛋白,溶於尿素緩衝液(含有8M尿素、500mM NaCl、20mM Tris-HCl),並利用鎳離子-氮基三醋酸(NTA)親和性管柱(Ni2+-NTA affinity column,GE Healthcare Life Science,UK)純化。純化後,利用SDS-PAGE檢驗上述蛋白,然後利用考馬思亮藍R250(Coomassie brilliant blue R250)染色。純化後的蛋白於再摺疊緩衝液[含有50mM Tris-HCl,250mM NaCl,1mM EDTA,250mM L-精胺酸(L-arginine),10mM GSH(還原型麩胱甘肽)與1mM GSSG(氧化型麩胱甘肽),以及5%甘油]中進行透析,並利用Amicon Ultra超濾離心管(Centrifugal Filters;Millipore,Billerica,MA)濃縮。
DENV NS3 cDNA選殖到帶有His-Tag的pET21b載體(由國家衛生研究院余佳益博士提供)。上述質體轉型至大腸桿菌BL21中。轉型細胞於LB培養液[含有100μg/mL安比西林(ampicillin)]中在37℃進行隔夜培養。隔夜培養物利用LB培養液[含有100μg/mL安比西林]稀釋100倍後,在37℃再培養至600nm的光密度(optical density,OD)值達0.5。接著添加1mM IPTG,在30℃誘導6小時,以表現DENV2 NS3。為了分析NS3蛋白的表現量,所有樣品在4℃以8,000×g的轉速離心30分鐘。利用離心收集細胞,並將沉澱物(pellets)儲存於-80℃備用。收集並利用電泳分析菌體沉澱物。為了純化蛋白,菌體沉澱物先再懸浮於PBS中,置於冰上利用超音波溶解菌體。上述細胞懸浮液以 13,000×g的轉速離心30分鐘。含有包涵體的沉澱物再懸浮於結合緩衝液(binding buffer,含有8M尿素,0.5M NaCl,以及20mM Tris-HCl,pH 6.95)中,置於冰上利用超音波再次溶解,然後在4℃以13,000×g的轉速離心45分鐘使反應液澄清。將含有可溶性蛋白的上清液注入鎳離子管柱(Ni2+ column)。利用沖洗緩衝液[washing buffer,含有8M尿素,0.5M NaCl,20mM Tris-HCl,以及120mM咪唑(imidazole),pH 6.95]沖洗管柱。利用沖提緩衝液(eluting buffer,含有8M尿素,0.5M NaCl,20mM Tris-HCl,以及300mM咪唑,pH 6.95)沖提出His標籤(His-tagged)蛋白。上述蛋白經純化後,利用SDS-PAGE檢驗。純化後的蛋白於再摺疊緩衝液[含有50mM Tris-HCl,250mM NaCl,1mM EDTA,250mM L-精胺酸,10%甘油,10mM GSH與1mM GSSG,pH 6.95]中進行透析,使其不含尿素,再利用Amicon Ultra(Millipore)離心並濃縮。
為了混合抗原與鋁鹽,此實施例先將Imject鋁鹽(Pierce Biotechnology,Rockford,IL)逐滴加入抗原溶液並與其混合,使Imject鋁鹽與抗原溶液的最終體積比為1:1(100μL Imject鋁鹽比上100μL抗原溶液)。之後,在4℃混合至隔夜,使Imject鋁鹽與抗原吸附完全。其他選殖株(clones)係利用上述方法選出,且其序列相似度(sequence identities)如表1所示。
Figure 109120883-A0305-02-0025-1
細胞培養
幼倉鼠腎細胞株(Baby hamster kidney cells,BHK-21)培養於含有抗生素及5% FBS的DMEM(Invitrogen,Carlsbad,CA)中。C6/36細胞與L929細胞培養於含有抗生素及10% FBS的DMEM中。由小鼠淋巴結收集到的淋巴細胞則培養於含有抗生素、10% FBS、1%非必需胺基酸、1%丙酮酸鈉、50μM 2-巰基乙醇(2-mercaptoethanol,2-ME)的RPMI-1640培養液中,在37℃及5% CO2下培養。HMEC-1細胞是由美國疾病管制與預防中心(Centers for Disease Control and Prevention,USA)取得,培養在添加1μg/mL氫化皮質酮(hydrocortisone)、10ng/mL表皮生長因子(epidermal growth factor)、3ng/mL鹼性纖維母細胞生長因子(basic fibroblast growth factor)、10μg/mL肝素(heparin)以及抗生素之內皮細胞生長培養液M200(endothelial cell growth medium M200;Invitrogen)中,以培養瓶(culture flasks)繼代。利用含有1000U/mL胰蛋白酶(trypsin)與0.5mM EDTA之脫離緩衝液(detaching buffer)使細胞分離(detached)。
病毒培養
第二型登革病毒病毒株454009A(DENV2 strain 454009A)最初是由臺灣登革病患體內分離出,並感染C6/36細胞株以維持此病毒株。簡言之,以0.01之感染倍數(multiplicity of infection,MOI)的DENV2與C6/36單層細胞培養於28℃及5% CO2中5天。利用1000×g之轉速離心10分鐘,以收取培養基並移除細胞殘骸。收集病毒懸浮液並儲存於-70℃備用。病毒力價係利用BHK-21細胞進行溶斑分析法(plaque assay)測定。簡言之,將BHK-21細胞種入12孔細胞培養盤(12-well plates,8×104細胞/孔),在富含CO2(CO2-enriched)的條件下培養於DMEM中。加入序列稀釋的病毒並吸收1小時後,將接種的細胞更換為新鮮的DMEM[含有2% FBS與0.8%甲基纖維素(methyl cellulose)]。感染5天後,移除細胞培養液,將細胞固定並利用結晶紫(crystal violet)溶液(由1%結晶紫、0.64% NaCl及2%福馬林組成)染色。
溶斑分析法(plaque assay)
將BHK-21細胞種入12孔細胞培養盤 (12-well plates,1×105細胞/孔),培養於含5% FBS之DMEM中,在37℃含5% CO2的條件下培養至隔夜。移除培養液,將以含2% FBS之DMEM序列稀釋的病毒上清液(0.4mL/孔)加入細胞,培養在37℃達1小時。然後,將接種的細胞更換為含2% FBS與0.8%甲基纖維素之DMEM,將培養盤置於37℃培養5天。感染5天後,移除細胞培養液,將細胞固定並利用結晶紫溶液(含1%結晶紫、0.64% NaCl及2%福馬林)在室溫染色1.5小時後,使溶斑可視化。病毒濃度以PFU/mL表示,並用於感染實驗中計算感染倍數(MOI)。
溶斑減少中和試驗(Plaque reduction neutralizing test,PRNT)
溶斑減少中和試驗(PRNT)係利用第一型登革病毒病毒株8700828(DENV1 strain 8700828)、第二型登革病毒病毒株16681(DENV2 strain 16681)、第三型登革病毒病毒株8700829(DENV3 strain 8700829)以及第四型登革病毒病毒株8700544(DENV4 strain 8700544),以不同的血清接種BHK-21細胞,利用上述溶斑分析法進行。將二倍序列稀釋之血清(經56℃處理1小時使補體不活化)與50-80 PFU/孔之DENV在室溫混合1小時。接著,將病毒-血清混合物加入BHK-21單層細胞1小時,再更換成含有2% FBS與0.8%甲基纖維素的DMEM予以覆蓋。5天 後,移除覆蓋物,將細胞固定並利用結晶紫溶液(含1%結晶紫、0.64% NaCl及2%福馬林)染色在室溫染色3小時後,使溶斑可視化。最後,相對於無血清病毒的溶斑,減少50%溶斑的血清濃度係稱為PRNT50,可使用Prism軟體繪製。
判定抗體力價
0.2μg/孔之DJ NS1或NS3蛋白溶於塗佈緩衝液中(含Na2CO3 1.59g,NaHCO3 2.93g,pH 9.6,最後加ddH2O到1L),加入96孔細胞培養盤中,於4℃塗佈至隔夜。上述培養盤更換為含5% BSA的PBS,於4℃阻隔(blocked)隔夜後,再利用含0.05% Tween 20的PBS潤洗三次。小鼠血清經序列稀釋後,加入蛋白塗佈的孔內,於4℃培養隔夜。上述培養盤經潤洗三次後,每孔加入HRP-共軛之抗-小鼠IgG(Cell Signaling,Danvers,MA)或IgM(KPL,Gaithersburg,MD),於室溫下培養2小時。上述培養盤經潤洗後,每孔加入ABTS,並利用微量盤讀取儀(Emax microplate reader;Molecular Devices,Sunnyvale,CA)測量405nm的吸光值。
分析樹突狀細胞以及CD4+ T細胞與CD8+ T細胞的活化
在離體研究中,合併的淋巴結細胞可利用PE-共 軛之抗CD11c抗體(eBioscience,San Diego,CA),結合APC-共軛之抗CD40抗體或抗CD86抗體(BioLegend,San Diego,CA)、PE-Cy7-共軛之抗CD80抗體(BioLegend)及FITC-共軛之抗MHC第I或II型(class)抗體(BioLegend),進行雙重染色或三重染色,以判定樹突狀細胞的活化。上述細胞利用流式細胞儀(CytoFLEXs,Beckman Coulter,Brea,CA)進行分析。
合併的淋巴結細胞(5×105cells/mL)培養於24孔細胞培養盤,利用DJ NS1或NS3(5μg/mL)刺激3天。收取細胞並利用PE共軛之抗CD25抗體(eBioscience)、FITC-共軛之抗CD4抗體以及PE-Cy7-共軛之抗CD80抗體(BD Biosciences,San Jose,CA)進行三重染色,以判定T細胞的活化。上述細胞利用流式細胞儀(CytoFLEXs)進行分析。
分析CD8+ T細胞之表面CD107a
合併的淋巴結細胞(5×105cells/mL)培養於24孔細胞培養盤,利用DJ NS1或NS3(5μg/mL)刺激3天。在第3天,利用抗CD3/CD28抗體(0.5μg/mL;eBioscience)再刺激細胞,在刺激前,將PerCP/cy5.5-共軛之CD107a抗體(BioLegend)加入細胞。上述培養物在分泌型抑制劑之存在下,於37℃於5% CO2下培養4小時,其中分泌型抑制劑為布雷非 德菌素(Brefeldin;BioLegend)與莫能菌素(monensin;BD Biosciences)可抑制細胞毒性顆粒酸化及受體介導之胞吞作用,使CD107a留在細胞表面。之後,收取細胞,並利用PE-Cy7-共軛之抗CD80抗體(BD Biosciences)進行三重染色,以判定T細胞的去顆粒化。上述細胞利用流式細胞儀(CytoFLEXs)進行分析。
L929細胞表現NS3之細胞內染色
利用PBS潤洗表現NS3之L929細胞(5×105cells/mL),並利用含4%三聚甲醛(paraformaldehyde)之PBS於室溫固定細胞10分鐘。經PBS潤洗後,利用通透緩衝液[permeabilized buffer,500mL PBS含0.5g皂素(saponin)、5g BSA及0.5g NaN3]使細胞透化,再利用抗NS3抗體於4℃染色至隔夜。利用通透緩衝液潤洗後,將細胞與Alexa-488-共軛之抗小鼠IgG(Invitrogen,Carlsbad,CA)培養於室溫達1小時。最後以PBS潤洗二次後,利用流式細胞儀(CytoFLEXs)進行分析細胞。
主動免疫反應及DENV感染小鼠模式
將25μg/小鼠之DJ NS1蛋白混合鋁鹽、12.5μg/小鼠之NS3蛋白混合鋁鹽、25μg/小鼠之DJ NS1蛋白與12.5μg/小鼠之NS3蛋白混合鋁鹽、單獨鋁鹽、以 及PBS控制組,在第0天與第14天,對三週齡的小鼠進行皮下注射(s.c.)免疫。在第21天收集小鼠血清與淋巴結細胞進行分析。針對DENV感染模式,在第17天,小鼠利用靜脈注射(i.v.)DENV2(1×108 PFU/小鼠)攻毒,在第19天犧牲並收集血漿及組織。
病毒力價分析
為了判定小鼠血清中的病毒力價,進行螢光聚焦分析法(fluorescent focus assay,FFA)。簡言之,血清利用含2% FBS之RPMI培養液經序列稀釋後,與BHK-21細胞培養於37℃達2小時。然後,更換單層細胞之培養液為含2% FBS與0.8%甲基纖維素之DMEM,於37℃培養。經2-3天後,移除覆蓋物,利用抗NS1抗體33D2(取自葉才明博士)染病毒病灶(virus foci)。上述細胞加入Alexa 488-共軛之山羊抗小鼠IgG(Invitrogen),並利用螢光顯微鏡觀察。
NS1定量型ELISA
利用自製NS1三明治式ELISA,定量NS1在小鼠血液中的濃度。簡言之,將5μg/mL之抗NS1單株抗體(mAb)33D2塗佈於96孔細胞培養盤,培養至隔夜。上述培養盤利用含1% BSA的PBS阻隔1小時後,每孔加入小鼠血清(1:5稀釋)與1μg/mL之生物素-共軛之抗NS1單株抗體31B2(取自葉才明博士),於37℃共 培養1-2小時。每孔加入HRP-標定的鏈黴親和素(streptavidin)溶液(1:40稀釋)(R&D Systems,Minneapolis,MN),於37℃培養20分鐘。在利用PBST(PBS含有0.01% Tween 20)潤洗三次後,利用四甲基聯苯胺(tetramethylbenzidine,TMB)顯色並觀察。加入終止溶液(2N H2SO4)後,利用微量盤讀取儀(Emax microplate reader,Molecular Devices)測量每孔在450nm的吸光值。
出血時間
在DENV感染後2天,於安樂死前檢測出血時間。將小鼠尾巴的尾尖切去3mm,以檢測出血時間。每30秒用濾紙收集血滴。當血斑直徑小於0.1mm時,記錄出血時間。
酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay,ELISA)
100μL之重組蛋白(cEDIII、NS1△C、DJ NS1或cEDIII-NS1△C)以塗佈緩衝液稀釋成2μg/mL之濃度後,塗佈於ELISA培養盤。上述培養盤於4℃培養隔夜。上述培養盤加入200μL含5% BSA之塗佈緩衝液,於室溫下培養2小時,再利用200μL之PBST(PBS含有0.01% Tween 20)潤洗三次。加入二倍序列稀釋的抗血清(100μL),於37℃培養2小時或於4℃培養隔 夜。上述培養盤利用200μL之PBST潤洗三次。加入HRP-共軛之二級抗體(100μL,以1:5000稀釋於PBS中),於37℃培養2小時。上述培養盤利用200μL之PBST潤洗三次後,加入ABTS(100μL)觀察反應結果。在充分顯色後,利用微量盤讀取儀測量每孔在415nm的吸光值。
抗體依賴型補體介導之細胞溶解分析
將HMEC-1細胞種入96孔細胞培養盤(5×103細胞/孔)後,於37℃及5% CO2培養箱培養至隔夜。移除上清液後,HMEC-1細胞與DENV(MOI=20)於M200培養液中培養48小時。利用PBS潤洗細胞二次後,將未免疫小鼠之血清(mock serum)、以鋁鹽免疫的血清(alum serum)、以cEDIII-NS1△C混合鋁鹽免疫的血清(cEDIII-NS1△C serum)或以DJ NS1混合鋁鹽免疫的血清(DJ NS1 serum)利用無酚紅的M200培養液以1:200倍稀釋後,在存在或不存在Low-Tox-M兔補體(1:20倍稀釋)下,與細胞培養於37℃及5% CO2下達6小時,以促使補體介導之細胞裂解(complement-mediated cell lysis)。利用市售套組(細胞毒殺性檢測套組)檢測釋放出的乳酸脫氫酶(lactate dehydrogenase,LDH),其為一種細胞質酶,藉此測定細胞溶解(cytolysis)。利用微量盤讀取儀測量每孔在490nm的吸光值。
免疫及DENV-感染小鼠模式
以鋁鹽混合重組cEDIII-NS1△C,經皮下免疫C3H/HeN小鼠。在第一次免疫後7天、第二次及第三次免疫後3天,收集小鼠血清並測定抗體力價。在第三次免疫後4天,DENV經皮內(intradermally)接種至C3H/HeN小鼠的上背部。在感染後3天,測量小鼠尾部出血時間並犧牲小鼠,亦收集小鼠血清並存放於-20℃。
利用哺乳動物細胞293F與果蠅S2細胞(drosophila S2 cells)之表現系統,表現NS1f△C-cEDIII-NS3cf與NS1f△C-NS3cf重組蛋白
二種重組蛋白(NS1f△C-cEDIII-NS3cf與NS1f△C-NS3cf,分子量分別為49kDa及35kDa)選殖至pTT5載體,其中pTT5載體表現的蛋白兩端帶有His-tag。上述質體轉染至293F細胞,由293F細胞將重組蛋白分泌至上清液中。轉染後5天收集具有重組蛋白的上清液,並利用鎳離子管柱(Ni2+ column)純化上清液。純化之後,將重組蛋白凍乾並存放於-20℃。上述由293F細胞所得的重組蛋白係由偉喬生醫股份有限公司(Leadgene Biomedical,Inc)所設計及提供。另外,為了以較穩定且純化較佳的條件生產重組蛋白,上述蛋白係選殖至pMT/BiP/V5載體中,其中pMT/BiP/V5載體表現的蛋白兩端分別帶有His-tag及Strep-tag,並 將上述質體轉染至果蠅S2細胞中。上述果蠅S2細胞之重組蛋白表現穩定細胞株是由葉才明老師實驗室所建立。首次培養細胞時,係於含有20mL之施耐德果蠅培養基(Schneider's Drosophila Medium)之直立式75T培養瓶中,在室溫下以65rpm之轉速進行震動培養。當細胞生長至濃度1.5至2×107細胞/mL後,將4個75T培養瓶的細胞移到1000mL之塑膠製三角椎瓶中培養細胞。細胞以80rpm之轉速震動培養3天,直到細胞在含有500mL培養液之塑膠製三角椎瓶中生長至濃度3至5×106細胞/mL。在上述培養液中加入500μL的500mM硫酸銅,在室溫下誘導重組蛋白達3天。為了分析重組蛋白的表現,將上述樣本在室溫下以1500rpm之轉速離心,以收集上清液。所得之500mL上清液與50mL的結合緩衝液(含50mM NaH2PO4、300mM NaCl,pH 8.0)混合,然後通過濾杯(cup filter)。含有重組蛋白的上清液注入含有Strep-tactin瓊脂糖(Strep-tactin sepharose)的管柱。利用清洗緩衝液(washing buffer,含50mM NaH2PO4、300mM NaCl,pH 8.0)流洗管柱。利用沖提緩衝液(含50mM NaH2PO4、300mM NaCl、2.5mM脫硫生物素(desthiobiotin),pH 8.0)沖提出帶有Strep-tag的重組蛋白。在純化後,利用12% SDS-PAGE及西方墨點(Western blot)分析法檢驗上述蛋白,並利用截流分子量10K的透析膜(10K dialysis membrane)隔夜透 析至PBS鹼(base)中。偉喬生醫股份有限公司將透析後的蛋白利用布拉德福蛋白分析法(Bradford protein assay)定量後凍乾。
病灶減少中和試驗(Focus reduction neutralization test,FRNT)
BHK-21細胞種入96孔細胞培養盤(1×104細胞/孔),置於37℃培養箱培養12-16小時,至細胞滿度達60-70%。從免疫小鼠取得的血清利用含2% FBS之DMEM稀釋10倍,將50μL含50-100溶斑之病毒培養液加入稀釋血清中,於室溫培養1小時。接下來,移除96孔培養盤的培養液,將100μL之血清-病毒混合物加入含有BHK-21細胞的各孔中,置於37℃培養箱培養1-1.5小時。然後,將100μL之甲基纖維素培養液(methyl cellulose medium)直接加入各孔中,培養2-2.5天。利用4%三聚甲醛在37℃固定細胞1小時,而後將初級抗體(抗NS1單株抗體33D2加上抗DENV血清型1-4型抗體,配製於0.5% Triton X-100溶液中)加入各孔中,於4℃染色至隔夜。利用FITC-共軛之山羊抗小鼠IgG將病毒病灶(virus foci)染色,並利用螢光顯微鏡觀察。
統計分析
數值以平均值±SD表示。所有數值利用Prism 軟體(GraphPad,San Diego,CA)分析。出血時間及病毒力價利用單因子變異數分析(one-way ANOVA)。補體依賴型細胞溶解分析則利用雙因子變異數分析(two-way ANOVA)。統計顯著性設定為p<0.05。
結果
利用cEDIII-NS1△C重組蛋白免疫,可誘導抗體對cEDII及NS1△C蛋白專一性的反應
用於此實施例的蛋白圖式包括cEDIII、NS1△C、DJ NS1以及線性融合的cEDIII-NS1△C重組蛋白(如圖9A所示)。利用cEDIII-NS1△C、DJ NS1或DJ NS1加上cEDIII,並混合鋁鹽作為佐劑,皮下免疫6至8週齡的C3H/HeN小鼠(如圖9B所示)。在犧牲小鼠後,測定抗體力價。此實施例係分別塗佈cEDIII、DJ NS1以及NS1△C蛋白於96孔細胞培養盤,並加入小鼠血清作為初級抗體,再利用ELISA分析,獲得免疫第二次劑量及第三次劑量的抗體力價的測定結果(如圖9C所示)。
以cEDIII-NS1△C免疫的小鼠血清可中和四種血清型的DENV
由cEDIII-NS1△C誘導的小鼠血清含有抗NS1△C及抗cEDIII抗體。因為抗E抗體在中和DENV中發揮作用,在此實施例中可用於評估以cEDIII-NS1△C免疫的小鼠血清是否能中和四種血清型 的DENV。為了驗證免疫後的小鼠血清的中和能力,此實施例進行溶斑減少中和試驗(PRNT)。將未免疫血清(mock serum)、以鋁鹽免疫的血清(alum serum)、以cEDIII-NS1△C免疫的血清(cEDIII-NS1△C serum)及以DJ NS1免疫的血清(DJ NS1 serum)經二倍序列稀釋,與DENV1、DENV2、DENV3或DENV4混合,加入12孔細胞培養盤種入的BHK-21細胞中。只有以cEDIII-NS1△C免疫的小鼠血清之組別能中和DENV1、DENV2、DENV3及DENV4,且具有劑量依存性,其中以1:128稀釋的血清顯示可減少50%的溶斑數。然而,以DJ NS1免疫的小鼠血清不能中和任何一種血清型的DENV(如圖10A至圖10D所示)。
以cEDIII-NS1△C免疫的小鼠血清可經由抗體-補體介導之細胞溶解而破壞被四種血清型DENV感染的細胞
NS1在內質網腔內經轉譯後修飾成雙體化(dimerized),並表現在受感染細胞的表面。發明人先前研究顯示,抗NS1△C抗體在活體外能藉由補體介導之細胞毒殺作用提供保護。因此,此實施例欲得知含有抗NS1△C抗體之cEDIII-NS1△C免疫的血清(cEDIII-NS1△C serum)是否能對四種血清型DENV造成補體介導之細胞溶解。為此,此實施例進行抗體依賴型補體介導之細胞毒殺分析。將HMEC-1細胞種入96孔細胞培養盤,以DENV1、DENV2、DENV3或DENV4 感染細胞。然後,將未免疫小鼠血清(mock serum)、以鋁鹽免疫的血清(alum serum)、以cEDIII-NS1△C混合鋁鹽免疫的血清(cEDIII-NS1△C serum)或以DJ NS1混合鋁鹽免疫的血清(DJ NS1 serum)以1:200倍稀釋後,在存在或不存在補體下,與細胞培養。藉由檢測釋放出的乳酸脫氫酶(LDH),測定細胞溶解(cytolysis)。相較於其他組別,以cEDIII-NS1△C及DJ NS1免疫的小鼠血清與補體混合後,可引起被四種不同血清型DENV感染的細胞溶解(如圖11A至圖11D所示)。因為NS1△C是由DENV2的NS1產生的,上述結果顯示DENV2 NS1△C對所有血清型DENV都具有交叉保護力。
以cEDIII-NS1△C蛋白免疫可降低DENV引起小鼠的出血時間延長
以鋁鹽混合cEDIII-NS1△C重組蛋白對C3H/HeN小鼠皮下免疫三次(如圖12A所示)。測定抗cEDIII及DJ NS1之血清抗體(如圖12B所示)。然後,將不同血清型DENV由靜脈注射(i.v.)接種小鼠,測試cEDIII-NS1△C蛋白的保護效果。結果顯示,相較於單獨以DENV或以DENV混合鋁鹽免疫之小鼠,以cEDIII-NS1△C免疫之小鼠可降低由四種不同血清型DENV所引起的鼠尾出血時間(如圖13A-13D所示)。
以cEDIII-NS1△C蛋白免疫可降低小鼠血清的DENV力價
為了確認cEDIII-NS1△C免疫對病毒複製的效果,測定小鼠血清的病毒力價。結果顯示,相較於單獨以DENV或以DENV混合鋁鹽免疫之小鼠,以cEDIII-NS1△C蛋白免疫之小鼠,可降低由不同血清型DENV感染所測到的病毒力價(如圖14A-圖14D所示)。
以DJ NS1及NS3免疫,可於離體與DJ NS1或NS3抗原產生反應,誘導樹突狀細胞及特定CD4+與CD8+ T細胞之活化
此實施例分析CD11c+淋巴結樹突狀細胞(CD11c+ lymph node dendritic cells,LNDCs)細胞中CD40、CD80、CD86、MHC I及MHC II的表現,以評估免疫後樹突狀細胞(dendritic cell,DC)的活化。結果顯示,大多的CD11c+ LNDCs表現MHC第I型,相較於單獨以鋁鹽、單獨以DJ NS1以及單獨以NS3免疫之其他組別,以25μg DJ NS1及12.5μg NS3免疫的小鼠誘導之LNDCs,可表現出顯著更高的MHC第I型。單獨以DJ NS1或單獨以NS3免疫的小鼠,表現MHC第II型的CD11c+ LNDCs會增加;雖不具統計顯著性,但在結合DJ NS1加上NS3免疫的小鼠中有增加的趨勢。雖不具統計顯著性,但單獨以DJ NS1、單 獨以NS3、或以DJ NS1加上NS3主動免疫的小鼠,在CD11c+ LNDCs中誘導CD40之表現有增加的趨勢。相較於第21天的PBS免疫控制組,單獨以DJ NS1、單獨以NS3、或結合DJ NS1加上NS3的主動免疫組,其CD11c+ LNDCs之CD80表現皆有顯著增加。相較於單獨以鋁鹽免疫組及PBS免疫控制組,只有結合DJ NS1加上NS3的主動免疫組增加CD11c+ LNDCs之CD86的表現具有統計顯著性。故此,由於檢測到表現協同刺激受體(co-stimulatory receptors)的DCs增加,這些結果指出DJ NS1加上NS3主動免疫能誘導DC活化(數據未呈現)。
為了評估DJ NS1與NS3是否能誘導抗原專一性T細胞反應,從被免疫的小鼠收集淋巴結細胞,並利用5μg/mL的DJ NS1或NS3蛋白再刺激3天。對所有組別施予抗CD3與抗CD28抗體,以部分模擬TCR訊息並放大反應。相較於單獨以鋁鹽或PBS控制組,單獨以DJ NS1或以DJ NS1加上NS3主動免疫的小鼠,可對DJ NS1抗原的刺激產生反應,並顯著誘導CD4+ T細胞活化(如圖15A所示)。相較於其他組別,只有以DJ NS1加上NS3主動免疫的小鼠可對NS3抗原的刺激產生反應,並顯著誘導CD4+ T細胞的活化(如圖15B所示)。相較於其他組別,以DJ NS1加上NS3主動免疫的小鼠亦可對DJ NS1抗原的刺激(如圖15C所示)及對NS3抗原的刺激(如圖15D所示)產生反應,並顯著誘導CD8+ T細胞的活化。因此,以DJ NS1加上NS3主動免疫能對DJ NS1或NS3抗原的刺激產生反應,並同時誘導CD4+與CD8+ T細胞活化。
以DJ NS1及NS3主動免疫可誘導專一性CTL反應
先前研究顯示,CD8+ T細胞能直接有助於預防DENV。在發明人先前研究中,以DJ NS1加上NS3主動免疫可誘導CD8+ T細胞活化(如圖15C至圖15D)。為了檢測是否能誘導CTL反應,此實施例從被免疫的小鼠分離出淋巴結細胞,以DJ NS1或NS3蛋白再刺激後,與表現DJ NS1或NS3的L929細胞(作為目標)共培養4小時(如圖16A所示)。為了產生表現NS3的L929細胞,此實施例建立表現野生型NS2B3或蛋白水解不活化突變型NS2B3-S135A(Rodriguez-Madoz et al.,2015)的L929細胞。由於表現NS2B3-S135A的L929細胞的表現量較佳(數據未呈現),就以該細胞作為目標細胞。結果顯示,只有從以DJ NS1加上NS3免疫的小鼠取得的CTLs能溶解表現NS1的L929細胞,但相較於其他組別並未具有統計顯著性(如圖16B所示)。另一方面,單獨以NS3免疫或以DJ NS1加上NS3免疫的小鼠取得的CTLs能顯著溶解表現NS3的L929細胞(如圖16C所示)。
此外,為了證明對目標細胞的CTL活性,此實施例更直接檢測作用細胞(effector cells)的細胞毒殺活 性。CD8+ T細胞內的細胞毒殺性顆粒之脂雙層含有溶酶體相關的膜醣蛋白(lysosomal-associated membrane glycoproteins,LAMPs),包括CD107a(LAMP-1);因此,CTL去顆粒化(degranulation)造成細胞表面累積並暴露出CD107a。在TCR刺激後,活化的CD8+ T細胞會快速發生去顆粒化,根據這項事實,從被免疫小鼠分離出的淋巴結細胞可再以DJ NS1或NS3蛋白刺激3天,並與抗CD3與抗CD28抗體培養,以在最後的4小時部分模擬TCR訊息。相較於單獨以NS3免疫、單獨以DJ NS1免疫、單獨以鋁鹽免疫以及PBS控制組,以DJ NS1加上NS3主動免疫組可對DJ NS1(圖17A)與NS3(圖17B)的刺激產生反應,顯著增加CD8+ T細胞表面CD107a的表現量。相較於單獨以鋁鹽免疫以及PBS控制組,以NS3免疫的小鼠可對NS3的刺激產生反應,顯著增加其CD8+ T細胞表面CD107a的表現量,但低於以DJ NS1加上NS3免疫的小鼠CD8+ T細胞表面的CD107a表現量(如圖17B所示)。由圖16A至17B的結果顯示,以DJ NS1加上NS3主動免疫能誘導對抗原專一性的CTL反應。
以DJ NS1加上NS3主動免疫提供抗DENV感染的保護效果
接下來,此實施例建立DENV感染模式,藉此評估以DJ NS1加上NS3主動免疫提供的保護效果,結果 如圖18A所示。
發明人先前的研究證實以高力價DENV接種小鼠可以產生例如出血時間延長及局部出血之病徵(Wan et al.,2014)。因此,此實施例藉由判斷測定DENV引起的出血時間延長,藉此評估以DJ NS1加上NS3主動免疫提供的保護效果。結果顯示,不論單獨感染DENV或結合鋁鹽感染,在感染48小時後,皆能引起小鼠的出血時間延長。相較於單獨感染DENV的組別,以DJ NS1、NS3、或DJ NS1加上NS3主動免疫,則顯著降低DENV引起小鼠的出血時間延長(如圖18B所示)。
此實施例在第19天測定病毒力價。DJ NS1蛋白能誘導抗體反應,以對DENV感染的細胞引發抗體依賴型補體介導之細胞溶解(Wan et al.,2017)。跟發明人先前的發現一致,相較於單獨感染DENV2或鋁鹽控制組感染,單獨以DJ NS1主動免疫即能顯著降低病毒力價(如圖18C所示)。相較於單獨以DJ NS1主動免疫,單獨以NS3主動免疫可更顯著降低病毒力價。在此實施例顯示的NS3專一性T細胞反應有助於清除病毒。以DJ NS1加上NS3主動免疫與單獨以NS3主動免疫相比,二者免疫後所降低的病毒力價相當。
這些結果指出,以DJ NS1或以DJ NS1加上NS3主動免疫,對於血管滲漏可提供更好的保護。
討論
以DJ NS1加上NS3主動免疫對於DENV感染提供保護效果
根據上述實施例,對於抗病毒策略而言,cEDIII-NS1△C重組蛋白可做為次單位疫苗的候選物。以非複製型蛋白為主的次單位疫苗而言,這類疫苗被認為是更安全的選擇。
考量重組cEDIII-NS1△C的結構變化可能會影響免疫療效,以下併用cEDIII與DJ NS1蛋白,藉此與融合蛋白進行比較。在上述實施例中,以併用cEDIII(5μg)與DJ NS1(20μg)對小鼠免疫,所引起對cEDIII與DJ NS1蛋白專一性的抗體力價較佳,且與以cEDIII-NS1△C(25μg)對小鼠免疫引起的抗體力價(數據未顯示)相似。以下選擇cEDIII-NS1△C作為抗體策略。
EDIII對異種血清型的DENV引起交叉反應抗體的能力較低,暗示這與重症的致病機轉有關(Chin et al.,2007)。根據四種病毒株設計DENV EDIII重組蛋白,並以DENV EDIII重組蛋白免疫小鼠以產生血清型專一性IgG1中和抗體,並可檢測到這些抗體在帶有FcγR的細胞中對DENV的活性增強。以基因工程DENV2為主的表面重建型(resurfaced)EDIIIs(rsDIIIs)蛋白的結果顯示,rsDIIIs會降低與抗原決定位不適合之抗體的結合,但對DENV通用型中和抗體則維持高度親和性。cEDIII含有四種血清型DENV之 EDIII的共有序列(consensus sequence),亦可視為潛在的次單位疫苗候選物。過去曾報導以cEDIII免疫小鼠的抗體顯示具有中和所有血清型DENV的能力。以cEDIII個別免疫猴子也顯示可提高血清裡中和抗體的含量(Chen et al.,2013;Leng et al.,2009)。在此實施例中,cEDIII重組蛋白誘導C3H/HeN小鼠產生的中和抗體,不僅可於活體外抵抗四種血清型DENV,亦可於活體內保護小鼠抵禦DENV感染的功效。另外也觀察到,在感染DENV後,相較於單獨感染DENV的組別,以cEDIII-NS1△C免疫的小鼠可降低病毒力價以及血清中可溶性NS1的含量。
近來的研究以各種機轉強調DENV NS1的致病作用。因此,NS1被認為是適合的對象物,用來對抗DENV引起之致病機轉。利用抗NS1 mAb治療可逆轉NS1誘導的內皮高通透性(endothelial hyperpermeability)(Chen et al.,2016)。以NS1疫苗接種亦可預防由DENV NS1引起的內皮通透性及血管滲漏(Beatty et al.,2015)。先前研究鑑定出DENV NS1的C端區域是主要交叉反應性的抗原決定位(Cheng et al.,2009)。因此,去除C端的NS1蛋白可避免自體免疫,被視為是較安全的次單位疫苗候選物。發明人的先前研究顯示,對NS1△C專一性的抗體具有抗體介導之補體依賴型細胞毒殺性(Wan et al.,2014)。以cEDIII-NS1△C免疫小鼠不僅能誘導抗體以破壞被四種 血清型DENV感染的細胞,亦可減少由DENV誘導小鼠的出血時間延長。
雖然T細胞在DENV感染疾病中確切的角色仍未確定,但在目前人類及小鼠的研究中,很多證據支持T細胞在DENV感染中扮演保護的角色(Katzelnick et al.,2017;Kao 2019)。非結構性蛋白已被報導含有許多T細胞活化的抗原決定位。NS1也被提到在活化CD4+及CD8+ T細胞保護抵禦DENV時扮演關鍵的角色。因此,未來可進一步研究cEDIII-NS1△C蛋白的專一性T細胞反應。併用NS1△C與NS3已嘗試作為抗DENV感染的疫苗策略(Kao et al.,2019)。在未來,cEDIII-NS1△C加上NS3蛋白可作為疫苗開發的候選物。由於Dengvaxia®含有prM與E基因,但不含DENV的非結構蛋白,因此不會產生對DENV NS1蛋白專一性的抗體,也不會產生對非結構蛋白專一性有效的T細胞反應。在這些實施例中,cEDIII含有四種血清型DENV之EDIII的共有序列,而NS1△C則是由DENV2之NS1產生,這些結果顯示,cEDIII-NS1△C對四種血清型DENV都具有交叉反應性。
基於上述結果,cEDIII-NS1△C蛋白可誘導對外膜蛋白及NS1蛋白專一性的高抗體反應,以中和及補體依賴型細胞溶解的功能,分別抵禦DENV及被DENV感染的細胞。在保護小鼠的模式中,以cEDIII-NS1△C蛋白進行預處理,也可以誘導小鼠產生對膜蛋白及NS1 蛋白具有專一性且力價高的抗體。再者,以cEDIII-NS1△C免疫的組別在感染四種不同血清型的DENV後,降低DENV引起的出血時間延長及小鼠血清的病毒力價。因此,cEDIII-NS1△C蛋白是有潛力的疫苗候選物,以抵禦DENV感染。以全球發病率及經濟影響而言,登革熱是人類重要的蚊媒病毒疾病(Bhatt et al.,2013)。儘管登革熱造成全球的負擔,但對於登革熱尚無特定的治療方式或更安全有效的疫苗,目前的預防僅限於病媒防治措施。對於開發登革熱疫苗及抗病毒藥物仍有一些障礙。其一就是致病機轉複雜,仍未完全解決。另一個困難則是缺少適合的動物模式(Coller et al.,2011;Wan et al.,2013)。近來,有幾個團隊生產了四價活性減毒疫苗,不過安全性及保護效力仍有待驗證。在這些實施例中,前述具體例生產了cEDIII-NS1△C融合蛋白,以作為抗病毒策略的次單位病毒。以cEDIII-NS1△C重組蛋白免疫產生的抗體,有能力中和DENV並破壞被DENV感染之細胞。以cEDIII-NS1△C蛋白免疫亦可減少因DENV誘導出血的趨勢,也降低小鼠血漿中可溶性NS1的濃度。由cEDIII-NS1△C引起的抗體之可能的模式或作用,也許涉及中和能力以及抗體介導之補體依賴型細胞溶解。
有幾種對種型(type)及亞型(subtype)專一性的中和抗體,已定位到EDIII(Gromowski et al.,2007;Wahala et al.,2009;Guzman et al.,2010), 而且抗EDIII抗體也已被認為是對病毒感染力最強的阻斷劑(Gromowski et al.,2007)。抗EDIII抗體存在於原發性(primary)及續發性(secondary)DENV免疫的人類血清中。然而,在與DENV結合的免疫血清中,抗EDIII抗體只佔有抗體總量的一小部分(Wahala et al.,2009)。EDIII被認為是負責與受體結合(Kuhn et al.,2002;Klein et al.,2013)。暴露在病毒顆粒表面的EDIII容易接觸,而EDIII重組蛋白可以抑制病毒的感染力(Chin et al.,2007;Guzman et al.,2010;Coller et al.,2011)。重要的是,EDIII對異種血清型的DENV引起交叉反應的抗體之潛力較低,暗示這與重症的致病機轉有關(Chin et al.,2007;Guzman et al.,2010)。
在臨床前開發中,有許多以EDIII為主的重組次單位疫苗候選物。印度的基因工程及生物技術國際中心發展出以畢赤酵母(Pichia pastoris)表現的四價嵌合EDIII融合蛋白。四價嵌合EDIII融合蛋白由DENV1、DENV2、DENV3及DENV4的EDIII功能域(domain)所組成,中間以彈性胜肽連接子相接。四價疫苗候選物添加蒙特奈特(montanide)佐劑免疫小鼠後,結果產生中和抗體反應,可對抗所有血清型DENV。生產四價登革疫苗的成本必須合算,才能使世界上資源匱乏的地區負擔得起疫苗。為了製造出單一多價的成分,cEDIII含有四種血清型DENV的EDIII之共有序列,會是很好的疫苗候 選物(Leng et al.,2009;Chen et al.,2013)。以重組cEDIII免疫小鼠,可產生對抗所有血清型DENV的中和抗體。
以cEDIII-NS1△C蛋白免疫所誘導的另一群抗體,則是抗NS1△C抗體。本案發明人已確認主要交叉反應抗原決定位在DENV NS1的C端(Cheng et al.,2009;Chen et al.,2009,Wan et al.,2008)。因此,去除C端的NS1可避免自體免疫,是更安全的次單位疫苗候選物。其次,發明人先前研究證實,抗NS1△C抗體具有抗體介導之補體依賴型細胞毒殺作用的能力(Wan et al.,2014)。在此實施例中,以cEDIII-NS1△C免疫的小鼠血清,對於被四種不同血清型DENV感染的HMEC-1細胞,可造成細胞溶解。除了抗體介導之補體依賴型細胞毒殺作用之外,還需要進一步確認抗NS1△C抗體協助抵禦DENV攻擊的其他機轉,例如防止NS1引起的血液通透性。
理想的疫苗或抗病毒藥物必須能抵禦四種血清型DENV的任何一種,而且沒有ADE的風險(Wan et al.,2013)。抗DENV E與抗DENV PrM的非中和抗體或亞中和(sub-neutralizing)抗體會與四種血清型DENV交叉反應,會增進病毒的進入及感染。DENV NS1並不是病毒表面的結構蛋白,所以抗NS1抗體不會造成ADE。在此實施例中,前述具體例驗證了cEDIII-NS1△C血清可中和所有四種血清型DENV,並 透過抗體介導之補體依賴型細胞溶解作用,破壞被DENV感染的HMEC-1細胞。為了進一步驗證cEDIII-NS1△C蛋白的保護效力,以cEDIII-NS1△C蛋白混合鋁鹽免疫後,可降低因DENV感染引起的出血時間延長,提供保護效力。
Dengvaxia®僅含有DENV的prM與E基因,沒有DENV NS蛋白,因此不能產生對NS1蛋白專一性的抗體,也沒有對NS蛋白專一性T細胞反應的功效。反之,cEDIII-NS1△C protein蛋白不僅產生中和抗體,也產生對NS1蛋白專一性的抗體,從而能更全面抵禦DENV感染。關於cEDIII-NS1△C蛋白之專一性T細胞反應需要更深入研究。此外,有報導指出以Dengvaxia®接種有不良反應。cEDIII-NS1△C蛋白是DENV蛋白次單位疫苗,但並不是完整的病毒顆粒,因此引起嚴重副作用的機會是遠低於其他活性減毒疫苗。
登革疫苗的價格應該要讓世界上資源匱乏的地區最需要疫苗的個體能負擔得起。在此實施例中,cEDIII蛋白與NS1△C蛋白融合,可節省成本,並加速蛋白純化。其次,DENV NS3引起的CD8+ T細胞反應顯示,可保護抵禦異型(heterotypic)DENV之再度感染,故可減少ADE的風險。因此,值得嘗試以cEDIII-NS1△C加上NS3蛋白作為疫苗開發的候選物。由於在大腸桿菌中表現的次單位疫苗缺乏糖基化,前述具體例已在哺乳動物細胞及果蠅細胞中表現上述重組蛋白。
圖9A至圖18C的結果摘錄於表2。關於抑制病毒力價、減少sNS1含量以及降低出血時間延長,cEDIII-NS1△C融合蛋白能提供的免疫保護力優於或類似於重組蛋白DJ NS1與NS3的混合物。
Figure 109120883-A0305-02-0052-2
在上述具體例中,新穎的疫苗策略可併用修飾的NS1與NS3,以研究所觀察到小鼠抗DENV之保護效果的機轉。非複製型重組蛋白為主的次單位疫苗被認為更安全,且更容易重新調製。為了解決次單位疫苗的共同問題,也就是高純化抗原的免疫原性較差,前述具體例將NS1蛋白與免疫顯性的(immunodominant)NS3蛋白結合。結果顯示,NS3蛋白可協同誘導更有效的免疫反應,包括不僅產生NS3專一性的CTL反應,更可促進NS1專一性的T細胞反應及抗體力價。相較於單獨以NS1免疫或單獨以NS3免疫,以DJ NS1加上NS3主動免疫的免疫反應及保護力較佳(如圖19所示)。
利用FRNT之活體外分析以及利用鼠尾出血時間之活體內分析,判斷以重組NS1f△C-cEDIII-NS3cf及NS1f△C-NS3cf蛋白免疫抗DENV感染的保護效果
承上所述,DENV NS3誘導CD8+ T細胞的反應,可保護抵禦異型(heterotypic)DENV之再度感染,從而減少抗體依賴型增強作用(ADE)的風險。因此,cEDIII、NS1△C與NS3的融合蛋白亦可評估作為疫苗發展的候選物。如圖20A至圖20D所示,NS1f△C-cEDIII-NS3cf與NS1f△C-NS3cf蛋白利用哺乳動物細胞293F(如表3所示)及果蠅細胞S2(如表4所示)表現。如圖21A及圖22A所示,將25μg的NS1f△C-cEDIII-NS3cf或NS1f△C-NS3cf蛋白與鋁鹽作為佐劑,對C3H/HeN小鼠皮下注射(s.c.)免疫三次。在第二次及第三次免疫後,收集小鼠血清,檢測抗DJ NS1、NS3及cEDIII的抗體力價(如表3及表4所示)。在對小鼠第三次免疫後,NS1f△C-NS3cf融合蛋白能刺激的抗體力價,高於NS1f△C-cEDIII-NS3cf融合蛋白。
Figure 109120883-A0305-02-0053-3
Figure 109120883-A0305-02-0054-4
Figure 109120883-A0305-02-0054-5
進行病灶減少中和測試(focus reduction neutralization test,FRNT),以驗證免疫小鼠血清 的中和能力。將稀釋10倍的未免疫血清(mock serum)、單獨以鋁鹽免疫的血清、以NS1f△C-cEDIII-NS3cf免疫的血清及以NS1f△C-NS3cf免疫的血清,與DENV混合後,加入種於96孔細胞培養盤的BHK-21細胞中。以NS1f△C-cEDIII-NS3cf免疫的小鼠血清可中和DENV,但以NS1f△C-NS3cf免疫的血清、以鋁鹽免疫的血清或未免疫控制血清(mock control serum)則否(如圖21B與圖22B所示)。
NS1表現於受感染細胞表面。發明人欲得知以NS1f△C-cEDIII-NS3cf與以NS1f△C-NS3cf免疫之含有抗NS1△C抗體的小鼠血清是否能對被DENV感染的細胞造成補體介導之細胞溶解。將Huh-7細胞種入96孔細胞培養盤,以DENV2感染。接下來,利用1:20稀釋的未免疫血清、單獨以鋁鹽免疫的血清、以NS1f△C-cEDIII-NS3cf免疫的血清及以NS1f△C-NS3cf免疫的血清,分別混合或不混合補體,藉此感染細胞。由釋放出的乳酸脫氫酶(LDH),檢測細胞溶解。相較於其他組別,與補體混合的以NS1f△C-cEDIII-NS3cf免疫的小鼠血清與以NS1f△C-NS3cf免疫的血清,二者皆可對被DENV感染的細胞造成細胞溶解(如圖21C及圖22C所示)。
之後,發明人欲檢測經靜脈注射(i.v.)接種DENV的小鼠,再以NS1f△C-cEDIII-NS3cf及NS1f△C-NS3cf蛋白免疫後提供的保護效力。結果顯示, 相較於單獨感染DENV或DENV加上鋁鹽感染的組別,以NS1f△C-cEDIII-NS3cf及NS1f△C-NS3cf蛋白免疫小鼠,可降低由DENV引起的鼠尾出血時間(如圖21D與圖22D所示)。
先前研究顯示,以產生IFN-γ為主之Th1細胞(Th1-biased)的反應,與較不嚴重的繼發性DENV感染有關,而T細胞產生的TNFα則與較嚴重的感染有關。其他研究已確認DENV2 NS3重組蛋白會誘導IFN-γ/TNFα較高量的Th1反應。然而,先前臨床研究證實,強烈的T細胞反應與登革出血熱(DHF)相關,特別是與抗NS3有關。這項差異需要進一步調查。在發明人的研究中,以DJ NS1加上NS3主動免疫,針對DJ NS1刺激的反應,可誘導CD8+ T細胞的表面上表現出CD107a,顯示併用DJ NS1與NS3可促使針對DJ NS1的細胞毒殺作用。與CTL分析的結果一致,以DJ NS1加上NS3主動免疫可誘導針對表現DJ NS1的L929細胞的細胞毒殺作用,而非針對只表現NS3的L929細胞。先前研究指出,IFN-γ與CD107a表現的同時,連同新合成的穿孔素(perforin)蛋白,可促進抗原專一性的CD8+ T細胞的細胞毒殺性。然而,細胞毒殺作用詳細的機轉仍有待釐清。
由於以NS3主動免疫也會誘導較高力價的抗NS3 IgM以及IgG,前述具體例不能排除抗NS3抗體在此感染模式中可能扮演的角色。先前研究顯示,由抗體 直接對抗NS3可產生保護效果。雖然抗NS3抗體並不是中和抗體,但可在原發性與繼發性DENV感染的病患血清中檢測到抗NS3抗體,因此抗NS3抗體的作用尚待進一步研究。
感染DENV的臨床表徵,可從無症狀、典型登革熱到嚴重危及生命的出血性登革熱(DHF),其主要特徵在於血管滲漏增加,而導致出血、低血容量症(hypovolemia)、低血壓甚至休克症候群(shock syndrome)。在DENV感染模式中,小鼠呈現病毒血症、出血時間延長、血管病變及出血。出血時間延長可能會反應出凝血異常,包括血小板減少症(thrombocytopenia)及凝血系統受到破壞。在成人,血小板的數量與DENV感染的出血表現具有顯著相關性。在DENV感染過程中,儘管已提出一些假說,但血小板減少症與出血所涉及的機轉並不完全清楚。在上述DENV感染模式中,不論以DJ NS1或NS3主動免疫,皆可縮短DENV有關的出血時間延長(如圖18B所示)。DJ NS1誘導的NS1中和抗體可直接阻斷sNS1的致病機轉(數據未顯示),亦可與抗NS1抗體對DENV感染的細胞引起補體介導之細胞溶解(Wan et al.,2017)。另一方面,以NS3主動免疫可誘導NS3專一性的CTL,降低血清中病毒力價及sNS1含量,從而使出血時間延長得以縮短。綜言之,以DJ NS1加上NS3主動免疫能透過多重機轉,顯著縮短DENV造成的出血時間延長。
血管滲漏及出血的致病機轉及防禦是很複雜的。sNS1可引導補體攻擊內皮細胞並誘導內皮細胞凋亡(Amorim et al.,2014)。近來研究顯示,sNS1可結合至TLR4,促使細胞釋放促炎細胞激素,導致血管滲漏(Modhiran et al.,2015)。sNS1也顯示可活化TLR2與TLR6,使得促炎細胞激素的生成量增加(Chen et al.,2015)。此外,由DENV或NS1感染誘導之巨噬細胞遷移抑制因子,可透過自噬(autophagy)加強DENV複製,亦可藉由破壞人類及小鼠的內皮細胞緊密連接,以促使血管滲漏(Chen et al.,2018;Chuang et al.,2011;Chen et al.,2016)。NS1亦可直接破壞內皮糖萼(glycocalyx),導致通透性增高(hyperpermeability)(Puerta-Guardo et al.,2016;Chen et al.,2018)。因此,sNS1可以是直接或間接導致血管滲漏及出血的主要因子。如結果所示,單獨以DJ NS1主動免疫或以DJ NS1加上NS3主動免疫,可顯著避免DENV相關的血管通透性改變。反之,單獨以NS3主動免疫無法避免血管變化。這些結果突顯出NS1中和抗體在預防血管滲漏及出血中扮演重要的角色。
根據臨床觀察,登革疾病在續發性異型感染中較為嚴重,任何成功的疫苗需要同時誘導出對四種DENV血清型具保護性及持續性的免疫反應,以避免ADE(Pang et al.,2017)。以DJ NS1加上NS3的疫苗候選物不會引起ADE。其次,前述具體例已證實以DJ NS1 加上NS3主動免疫可誘導專一性CD8+ T細胞反應,近來顯示能抵禦異型DENV再感染。在茲卡病毒(Zika virus,ZIKV)感染大流行之後,一些研究顯示,先前感染過DENV,再感染ZIKV後,DENV專一性抗體會引起ADE。另一方面,另一實施例證實,五株DENV-抗原表位專一性CD8+ T細胞可提供交叉保護,以抵抗後續ZIKV感染(Wen et al.,2017)。候選疫苗NS3成分含有五種抗原表位之一者,其可介導交叉保護抵禦後續ZIKV感染,且可避免ZIKV的ADE。然而,疫苗候選物提供對ZIKV感染的交叉保護力,則需要進一步研究。
綜言之,本發明揭露一種新穎的DENV疫苗策略,其結合cEDIII-NS1△C融合蛋白以及NS3蛋白,加強對登革病毒攻擊及相關病理反應的保護。
雖然本發明已以數個特定實施例揭露如上,但可對前述揭露內容進行各種潤飾、各種更動及替換,而且應可理解的是,在不脫離本發明之精神和範圍內,某些情況將採用本發明實施例之某些特徵但不對應使用其他特徵。因此,本發明的精神和權利要求範圍不應限於以上例示實施例所述。
參考文獻:
Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N, Kamaladasa A, Shyamali NLA, Ogg GS, Malavige GN. Dengue NS1 antigen contributes to disease severity by inducininterleukin (IL)-10 by monocytes. Clin Exp Immunol. 2016;184(1):90-100.
Amorim JH, Alves RP, Boscardin SB, Ferreira LC. The dengue virus non-structural 1 protein: risks and benefits. Virus Res. 2014;181:53-60. Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. 2015;7:304ra141. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW,Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7.
Biswal S, Reynales H, Saez-Llorens X, Lopez P, Borja-Tabora C,K osalaraksa P, Sirivichayakul C, Watanaveeradej V, Rivera L, Espinoza F, Fernando L, Dietze R, Luz K, da Cunha RV, Jimeno J, López-Medina E, Borkowski A, Brose M, Rauscher M, LeFevre I, Bizjajeva S, Bravo L, Wallace D, for the TIDES Study Group. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N Engl J Med. 2019;381:2009-19.
Chao CH, Wu WC, Lai YC, Tsai PJ, Perng GC, Lin YS, Yeh TM. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):e1007625.
Chen CL, Lin CF, Wan SW, Wei LS, Chen MC, Yeh TM, Liu HS, Anderson R, Lin YS. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated GSK-3b and NF-kB activation. J Immunol. 2013;191:1744-52.
Chen HR, Chao CH, Liu CC, Ho TS, Tsai HP, Perng GC, Lin YS, Wang JR, Yeh TM. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog. 2018;14(4):e1007033.
Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis. 2016;10(7):e0004828.
Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol. 2013;158(7):1523-31.
Chen J, Ng MM, Chu JJ. Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog. 2015;11:e1005053.
Chen MC, Lin CF, Lei HY, Lin SC, Liu HS, Yeh TM, Anderson R, Lin YS. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol. 2009;183(3):1797-803.
Cheng HJ, Lin CF, Lei HY, Liu HS, Yeh TM, Luo YH, Lin YS. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies. Exp Biol Med. (Maywood) 2009;234(1):63-73.
Chin JF, Chu JJ, Ng ML. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect. 2007;9(1):1-6.
Chuang YC, Lei HY, Liu HS, Lin YS, Fu TF, Yeh TM. Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine. 2011;54:222-31.
Coller BA, Clements DE, Bett AJ, Sagar SL, Ter Meulen JH. The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine. 2011;29(42):7267-75.
Diamond MS, Pierson TC. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. 2015;162(3):488-92.
Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V. Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol. 1999;73(7):6104-10.
Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The good, the bad, and the shocking: The multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu Rev Virol. 2018;5:227-53. Gromowski GD, Barrett AD. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology. 2007;366(2):349-60.
Gubler DJ, Halstead SB. Is Dengvaxia a useful vaccine for dengue endemic areas? BMJ. 2019;367:15710.
Guzman MG, Harris E. Dengue. Lancet. 2015;385:453-65.
Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillen G. Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines. 2010;9(2):137-47.
Halstead SB. Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine. 2013;31(41):4501-7.
Kao YS, Yu CY, Huang HJ, Tien SM, Wang WY, Yang M, Anderson R, Yeh TM, Lin YS, Wan SW. Combination of Modified NS1 and NS3 as a Novel Vaccine Strategy against Dengue Virus Infection. J Immunol. 2019;203:1909-17.
Katzelnick LC, Coloma J, Harris E. Dengue: Knowledge gaps, unmet needs and research priorities. Lancet Infect Dis. 2017;17(3):e88-e100.
Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, Hynes N, Diehl SA, Elwood D, Jarvis AP, Sabundayo BP, Lyon CE, Larsson CJ, Jo M, Lovchik JM, Luke CJ, Walsh MC, Fraser EA, Subbarao K, Whitehead SS. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis. 2015;212:702-10.
Klein DE, Choi JL, Harrison SC. Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol. 2013;87(4):2287-93.
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Strauss JH. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108(5):717-25.
Leng CH, Liu SJ, Tsai JP, Li YS, Chen MY, Liu HH, Lien SP, Yueh A, Hsiao KN, Lai LW, Liu FC, Chong P, Chen HW. A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect. 2009;11(2):288-95.
Lin CF, Chiu SC, Hsiao YL, Wan SW, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, Liu CC, Lin YS. Expression of cytokine, chemokine, and adhesion molecule during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol. 2005;174:395-403.
Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Wang ST, Yang TI, Sheu FC, Kuo CF, Lin YS. Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol. 2001;63(2):143-9.
Lin CF, Lei HY, Shiau AL, Liu CC, Liu HS, Yeh TM, Chen SH, Lin YS. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol. 2003;69(1):82-90.
Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, Liu HS, Liu CC, Anderson R, Lei HY. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med. (Maywood) 2011;236(5):515-23.
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261-9.
Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142.
Muller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 2013;98(2):192-208.
Normile D. Safety concerns derail dengue vaccination program. Science. 2017;358:1514-5.
Pang EL, Loh HS. Towards development of a universal dengue vaccine - how close are we? Asian Pac J Trop Med. 2017;10:220-8.
Puerta-Guardo H, Glasner DR, Harris E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog. 2016;12(7):e1005738.
Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015;15(12):745-59.
Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, Savarino S, Zambrano B, Moureau A, Khromava A, Moodie Z, Westling T, Mascareñas C, Frago C, Cortés M, Chansinghakul D, Noriega F, Bouckenooghe A, Chen J, Ng SP, Gilbert PB, Gurunathan S, DiazGranados CA. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018:379: 327-40.
Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology. 2009;392(1):103-13.
Wan SW, Chen PW, Chen CY, Lai YC, Chu YT, Hung CY, Lee H, Wu HF, Chuang YC, Lin J, Chang CP, Wang S, Liu CC, Ho TS, Lin CF, Lee CK, Wu-Hsieh BA, Anderson R, Yeh TM, Lin YS. Therapeutic effects of monoclonal antibody against dengue virus NS1 in a STAT1 knockout mouse model of dengue infection. J Immunol. 2017;199:2834-44.
Wan SW, Lin CF, Chen MC, Lei HY, Liu HS, Yeh TM, Liu CC, Lin YS. C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am J Infect Dis. 2008;4(1):85-91.
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci. 2013;20:37. Wan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One. 2014;9(3):e92495.
Wen J, Elong Ngono A, Regla-Nava JA, Kim K, Gorman MJ, Diamond MS, Shresta S. Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat Commun. 2017;8:1459.
Wichmann O, Vannice K, Asturias EJ, de Albuquerque Luna EJ, Longini I, Lopez AL, Smith PG, Tissera H, Yoon IK, Hombach J. Live-attenuated tetravalent dengue vaccines: the needs and challenges of post-licensure evaluation of vaccine safety and effectiveness. Vaccine. 2017;35:5535-42.
World Health Organization. Dengue vaccine: WHO position paper - July 2016. Wkly Epidemiol Rec. 2016;91(30): 349-64.
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005

Claims (9)

  1. 一種登革次單位疫苗組成物,包含:一融合蛋白,其為如SEQ ID NO:5所示序列之一截短NS1△C多肽以及如SEQ ID NO:6所示序列之一截短NS3c多肽,以及選擇性地含有一或多種藥學上可接受的載劑及/或佐劑。
  2. 如請求項1所述之登革次單位疫苗組成物,其中該融合蛋白之N端至C端的一順序為截短NS1△C-截短NS3c。
  3. 如請求項2所述之登革次單位疫苗組成物,其中該融合蛋白在該截短NS1△C多肽與該截短NS3c多肽之間包含一第一連接肽。
  4. 如請求項1所述之登革次單位疫苗組成物,其中該融合蛋白之N端至C端的一順序為截短NS3c-截短NS1△C。
  5. 如請求項4所述之登革次單位疫苗組成物,其中該融合蛋白在該截短NS1△C多肽與該截短NS3c多肽之間包含一第一連接肽。
  6. 如請求項1所述之登革次單位疫苗組成物, 更包含如SEQ ID NO:1所示序列之cEDIII多肽。
  7. 如請求項6所述之登革次單位疫苗組成物,其中該融合蛋白之該截短NS1△C多肽係共軛至該cEDIII多肽。
  8. 如請求項6所述之登革次單位疫苗組成物,其中該融合蛋白之該截短NS3c多肽係共軛至該cEDIII多肽。
  9. 如請求項6所述之登革次單位疫苗組成物,其中該融合蛋白之該cEDIII多肽係共軛至該截短NS1△C多肽與該截短NS3c多肽之間。
TW109120883A 2019-06-19 2020-06-19 登革次單位疫苗組成物 TWI787622B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962863278P 2019-06-19 2019-06-19
US62/863,278 2019-06-19

Publications (2)

Publication Number Publication Date
TW202115103A TW202115103A (zh) 2021-04-16
TWI787622B true TWI787622B (zh) 2022-12-21

Family

ID=74039064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120883A TWI787622B (zh) 2019-06-19 2020-06-19 登革次單位疫苗組成物

Country Status (4)

Country Link
US (1) US11786587B2 (zh)
CN (1) CN113876939A (zh)
BR (1) BR102020025455A2 (zh)
TW (1) TWI787622B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786587B2 (en) * 2019-06-19 2023-10-17 National Cheng Kung University Composition of subunit dengue vaccine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201210615A (en) * 2010-09-13 2012-03-16 Univ Nat Cheng Kung Dengue vaccine, medicinal composition comprising the same, nucleotide sequence, and antibody composition
KR20140090502A (ko) * 2013-01-09 2014-07-17 전북대학교산학협력단 콜레라 독소 b 서브유닛과 바이러스 항원 단백질의 융합 항원 단백질 백신, 이를 발현하는 식물체 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786587B2 (en) * 2019-06-19 2023-10-17 National Cheng Kung University Composition of subunit dengue vaccine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201210615A (en) * 2010-09-13 2012-03-16 Univ Nat Cheng Kung Dengue vaccine, medicinal composition comprising the same, nucleotide sequence, and antibody composition
KR20140090502A (ko) * 2013-01-09 2014-07-17 전북대학교산학협력단 콜레라 독소 b 서브유닛과 바이러스 항원 단백질의 융합 항원 단백질 백신, 이를 발현하는 식물체 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
網路文獻 Simmons, Monika, Peifang Sun, and Robert Putnak. "Recombinant dengue 2 virus NS3 helicase protein enhances antibody and T-cell response of purified inactivated vaccine." PloS one 11.4 (2016): e0152811, p1-16. *
網路文獻 李涵 "以小鼠及擬人化小鼠模式探討抗登革病毒非結構性蛋白1抗體之保護效果." 成功大學微生物及免疫學 研究所學位論文 (2014), p 1-61.; *

Also Published As

Publication number Publication date
US20200397884A1 (en) 2020-12-24
BR102020025455A2 (pt) 2022-03-08
TW202115103A (zh) 2021-04-16
CN113876939A (zh) 2022-01-04
US11786587B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
Martínez-Flores et al. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants
Tripathi et al. Recent developments in recombinant protein–based dengue vaccines
JP6018575B2 (ja) デングウイルス組換えサブユニットスワクチン
Brandler et al. Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus
Valdés et al. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice
CN109843323B (zh) 用于黄病毒疫苗接种的组合物和方法
US20150150960A1 (en) Protection against dengue virus and prevention of severe dengue disease
Zaneti et al. Dendritic cell targeting using a DNA vaccine induces specific antibodies and CD4+ T cells to the dengue virus envelope protein domain III
US11179460B2 (en) Virus-like particles comprising zika antigen
WO2018201017A1 (en) Dendritic cell targeted adenovirus for vaccination
Thomas et al. Dimerization of dengue virus E subunits impacts antibody function and domain focus
TWI787622B (zh) 登革次單位疫苗組成物
CA3213221A1 (en) Coronavirus vaccine formulations
JP2018502080A (ja) デングウイルスワクチン組成物およびその使用方法
US11291714B2 (en) Recombinant antigen derived from Zika virus E protein and use thereof
Huang et al. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein
WO2012178196A2 (en) Protection against dengue virus and prevention of severe dengue disease
US20230093782A9 (en) Subunit vaccine constructs for flaviviruses
US20220118074A1 (en) Zika virus vaccines using virus-like particles
Kim et al. Recombinant Protein Mimicking the Antigenic Structure of the Viral Surface Envelope Protein Reinforces Induction of an Antigen-Specific and Virus-Neutralizing Immune Response Against Dengue Virus
Zaneti et al. Dendritic Cell Targeting Using a DNA Vaccine and CD4+ Induces T Cells Specific to the Dengue Antibodies Virus Envelope Protein Domain III
Jachym Induction of Zika and Dengue Virus-Specific CD8+ T Cells by Means of DNA Vaccine
Campos Evaluation of a Tetravalent DNA Vaccine against Dengue: Integrating Biochemical Studies on Dengue Virus Envelope Protein to a Domain-Based Antigen Design
WO2022043686A1 (en) Vaccine
CN117769433A (zh) 冠状病毒疫苗制剂